1
|
Younis AM, Attia G, Saleh MM, Ibrahim MAA, Hegazy MEF, Paré PW, El-Tayeb MA, Sidhom PA, Kabbash A, Ibrahim ARS. The use of the white biotechnology toolkit to edit natural purines for studying their anticancer activity via mTOR pathway. Bioorg Chem 2025; 159:108391. [PMID: 40154233 DOI: 10.1016/j.bioorg.2025.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/06/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025]
Abstract
Purine alkaloids were proven to have significant cytotoxic activity against different cancer cell lines via modulating several cellular pathways, leading to inhibition of cell proliferation and increasing cell death. The search for new potential cytotoxic compounds produced by natural eco-friendly means is of great importance. The microbial transformation of natural purine alkaloids, caffeine (Cf), theophylline (Tp), theobromine (Tb), and theacrine (Tc) via filamentous fungi was explored using Aspergillus versicolor (AUMC 4807), Aspergillus niger (NRRL 328), Cunninghamella echinulata (ATCC 1382), and Penicillium chrysogeneum (ATCC 9480). Nine metabolites were isolated via demethylation, and oxidation reactions, namely; 1.3.7-trimethyl uric acid (M1), theacrine (M2), theobromine (M3), paraxanthine (M4), theophylline (M5), 3-methylxanthine (M6), caffeine (M7), 7-methylxanthine (M8) and 3,7,9-trimethyl uric acid (M9). The structure elucidation of the metabolites was based primarily on 1D, 2D-NMR analyses and HRMS. In vitro cytotoxic activity of metabolites was evaluated against CNS (SNB-75) and melanoma (MDA-MB-435) cancer cell lines. Based on the pharmacophore and structural similarity, mTOR enzyme inhibition assay was carried out, and results were confirmed by molecular docking and molecular dynamic studies using mTOR as the target enzyme. Furthermore, the binding mode of M9 with mTOR was investigated using docking computations. The steadiness and binding affinities of compound M9 in complex with mTOR were estimated and compared to caffeine (M7) over the 100 ns MD course. Results confirmed that M9 has great potential as a cytotoxic agent with experimentally proved safety that can be produced by biotransformation.
Collapse
Affiliation(s)
- Ahmed M Younis
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Ghada Attia
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mohamed M Saleh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences, Nizwa 611, Oman; School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Mohamed-Elamir F Hegazy
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Paul W Paré
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Mohamed A El-Tayeb
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Peter A Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Amal Kabbash
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Abdel-Rahim S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
2
|
Jiang T, Zuo S, Liu C, Xing W, Wang P. Progress in Methylxanthine Biosynthesis: Insights into Pathways and Engineering Strategies. Int J Mol Sci 2025; 26:1510. [PMID: 40003976 PMCID: PMC11855574 DOI: 10.3390/ijms26041510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Methylxanthines are ubiquitous purine alkaloids in nature and have rich biological activities and functions. Today, the demand for methylxanthine is increasing but its production is low. This issue prevents its widespread use in many industrial fields, such as pharmaceuticals, food manufacturing, and chemical engineering. To address these issues, this review provides a comprehensive and systematic exploration of methylxanthines, delving into their biological structures, detailed biosynthetic pathways, and the latest research trends. These findings serve as valuable references for researchers, fostering advancements in the optimization of synthesis processes for methylxanthines and their derivatives and promoting their application across diverse industrial fields, such as medicine, food, and chemical engineering. By bridging fundamental research and practical applications, this work aims to advance the understanding of methylxanthine compounds, enhance their production efficiency, and contribute to healthcare and technological progress.
Collapse
Affiliation(s)
- Tongtong Jiang
- School of Life Science, Northeast Forestry University, Harbin 150040, China; (T.J.); (S.Z.); (C.L.)
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shangci Zuo
- School of Life Science, Northeast Forestry University, Harbin 150040, China; (T.J.); (S.Z.); (C.L.)
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chang Liu
- School of Life Science, Northeast Forestry University, Harbin 150040, China; (T.J.); (S.Z.); (C.L.)
| | - Wanbin Xing
- Aulin College, Northeast Forestry University, Harbin 150040, China;
| | - Pengchao Wang
- School of Life Science, Northeast Forestry University, Harbin 150040, China; (T.J.); (S.Z.); (C.L.)
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
- Aulin College, Northeast Forestry University, Harbin 150040, China;
| |
Collapse
|
3
|
Leite Dias S, D'Auria JC. The bitter truth: how insects cope with toxic plant alkaloids. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:5-15. [PMID: 39028613 DOI: 10.1093/jxb/erae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/18/2024] [Indexed: 07/21/2024]
Abstract
Plants are unique organisms that have developed ingenious strategies to cope with environmental challenges, such as herbivorous insects. One of these strategies is the synthesis of a vast array of chemical compounds, known as specialized metabolites, that serve many ecological functions. Among the most fascinating and diverse groups of specialized metabolites are the alkaloids, which are characterized by the presence of a nitrogen atom within a heterocyclic ring. While some have medicinal and recreational applications, others are highly unpalatable and/or toxic. The effects of alkaloids on both humans and insects can be very diverse, affecting their physiology and behavior. Insects that feed on alkaloid-containing plants have evolved various mechanisms to cope with the consequences of these toxins. These include sequestration, where insects store alkaloids in specialized tissues or organs, enzymatic detoxification through enzymes such as cytochrome P450 monooxygenases and glutathione S-transferases, and behavioral adaptations such as selective feeding. In this review, we explore the relationships between plant alkaloids and the evolutionary adaptations that enable insects to exploit alkaloid-rich plants as food sources and ecological niches minimizing the harmful effects of these natural compounds. We aim to provide a comprehensive and updated overview of this fascinating and complex ecological interaction.
Collapse
Affiliation(s)
- Sara Leite Dias
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), D-06466 Seeland, Germany
| | - John C D'Auria
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), D-06466 Seeland, Germany
| |
Collapse
|
4
|
Wissbroecker KB, Zmuda AJ, Karumanchi H, Niehaus TD. Biochemical and genomic evidence for converging metabolic routes of metformin and biguanide breakdown in environmental Pseudomonads. J Biol Chem 2024; 300:107935. [PMID: 39476966 PMCID: PMC11647477 DOI: 10.1016/j.jbc.2024.107935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 12/01/2024] Open
Abstract
Metformin is commonly used to lower blood glucose levels and is one of the most widely used pharmaceuticals worldwide. Typical doses are high (0.5-2.0 g day-1) and the majority travels through the digestive system unabsorbed and enters the wastewater system. Metformin is not removed by standard wastewater treatments and eventually enters freshwater systems, where it can form N-chloro-derivatives that are toxic to fish and human cells. Thus, metformin is one of the most prevalent anthropogenic pollutants worldwide and there has been considerable interest in finding ways to remove it. We recently isolated Pseudomonads capable of growing on metformin as the sole nitrogen source. We identified candidate genes involved in metformin breakdown through genomic analyses informed by feeding studies. One candidate, a pair of genes that are located on ∼80kb extra-genomic plasmids, was shown to encode a heteromeric Ni-dependent hydrolase that converts metformin to guanylurea and dimethylamine. Metforminase activity of these gene products is now well established as our results confirm three recently published independent studies. Our isolated Pseudomonads also grow on biguanide, suggesting the existence of an additional breakdown enzyme. Another candidate gene located on the ∼80kb plasmids was shown to encode an aminohydrolase that converts biguanide to guanylurea. Biguanide may arise through successive N-demethylations of metformin or come from other sources. Our results suggest that the recent evolution of metforminase and biguanide hydrolase enzymes allow Pseudomonads to convert either metformin or biguanide to guanylurea, which can be assimilated by existing pathways.
Collapse
Affiliation(s)
- Katie B Wissbroecker
- The Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anthony J Zmuda
- The Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Harsheeth Karumanchi
- The Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas D Niehaus
- The Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
5
|
Mai Z, Han Y, Liang D, Mai F, Zheng H, Li P, Li Y, Ma C, Chen Y, Li W, Zhang S, Feng Y, Chen X, Wang Y. Gut-derived metabolite 3-methylxanthine enhances cisplatin-induced apoptosis via dopamine receptor D1 in a mouse model of ovarian cancer. mSystems 2024; 9:e0130123. [PMID: 38899930 PMCID: PMC11264688 DOI: 10.1128/msystems.01301-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/30/2024] [Indexed: 06/21/2024] Open
Abstract
Platinum-based chemotherapy failure represents a significant challenge in the management of ovarian cancer (OC) and contributes to disease recurrence and poor prognosis. Recent studies have shed light on the involvement of the gut microbiota in modulating anticancer treatments. However, the precise underlying mechanisms, by which gut microbiota regulates the response to platinum-based therapy, remain unclear. Here, we investigated the role of gut microbiota on the anticancer response of cisplatin and its underlying mechanisms. Our results demonstrate a substantial improvement in the anticancer efficacy of cisplatin following antibiotic-induced perturbation of the gut microbiota in OC-bearing mice. 16S rRNA sequencing showed a pronounced alteration in the composition of the gut microbiome in the cecum contents following exposure to cisplatin. Through metabolomic analysis, we identified distinct metabolic profiles in the antibiotic-treated group, with a notable enrichment of the gut-derived metabolite 3-methylxanthine in antibiotic-treated mice. Next, we employed a strategy combining transcriptome analysis and chemical-protein interaction network databases. We identified metabolites that shared structural similarity with 3-methylxanthine, which interacted with genes enriched in cancer-related pathways. It is identified that 3-methylxanthinesignificantly enhances the effectiveness of cisplatin by promoting apoptosis both in vivo and in vitro. Importantly, through integrative multiomics analyses, we elucidated the mechanistic basis of this enhanced apoptosis, revealing a dopamine receptor D1-dependent pathway mediated by 3-methylxanthine. This study elucidated the mechanism by which gut-derived metabolite 3-methylxanthine mediated cisplatin-induced apoptosis. Our findings highlight the potential translational significance of 3-methylxanthine as a promising adjuvant in conjunction with cisplatin, aiming to improve treatment outcomes for OC patients.IMPORTANCEThe precise correlation between the gut microbiota and the anticancer effect of cisplatin in OC remains inadequately understood. Our investigation has revealed that manipulation of the gut microbiota via the administration of antibiotics amplifies the efficacy of cisplatin through the facilitation of apoptosis in OC-bearing mice. Metabolomic analysis has demonstrated that the cecum content from antibiotic-treated mice exhibits an increase in the levels of 3-methylxanthine, which has been shown to potentially enhance the therapeutic effectiveness of cisplatin by an integrated multiomic analysis. This enhancement appears to be attributable to the promotion of cisplatin-induced apoptosis, with 3-methylxanthine potentially exerting its influence via the dopamine receptor D1-dependent pathway. These findings significantly contribute to our comprehension of the impact of the gut microbiota on the anticancer therapy in OC. Notably, the involvement of 3-methylxanthine suggests its prospective utility as a supplementary component for augmenting treatment outcomes in patients afflicted with ovarian cancer.
Collapse
Affiliation(s)
- Zhensheng Mai
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Obstetrics & Gynecology, First people’s hospital of Foshan, Foshan, China
| | - Yubin Han
- Department of Obstetrics & Gynecology, First people’s hospital of Foshan, Foshan, China
| | - Dong Liang
- Department of Obstetrics & Gynecology, First people’s hospital of Foshan, Foshan, China
| | - Feihong Mai
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Huimin Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Pan Li
- Microbiome Research Centre, St. George and Sutherland Clinical School, UNSW, Sydney, New South Wales, Australia
| | - Yuan Li
- Department of Obstetrics & Gynecology, First people’s hospital of Foshan, Foshan, China
| | - Cong Ma
- Department of Obstetrics & Gynecology, First people’s hospital of Foshan, Foshan, China
| | - Yunqing Chen
- Department of Obstetrics & Gynecology, First people’s hospital of Foshan, Foshan, China
| | - Weifeng Li
- Department of Obstetrics & Gynecology, First people’s hospital of Foshan, Foshan, China
| | - Siyou Zhang
- Department of Obstetrics & Gynecology, First people’s hospital of Foshan, Foshan, China
| | - Yinglin Feng
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Xia Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Yifeng Wang
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Mock MB, Zhang S, Summers RM. Whole-cell Rieske non-heme iron biocatalysts. Methods Enzymol 2024; 703:243-262. [PMID: 39260998 DOI: 10.1016/bs.mie.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Rieske non-heme iron oxygenases (ROs) possess the ability to catalyze a wide range of reactions. Their ability to degrade aromatic compounds is a unique characteristic and makes ROs interesting for a variety of potential applications. However, purified ROs can be challenging to work with due to low stability and long, complex electron transport chains. Whole cell biocatalysis represents a quick and reliable method for characterizing the activity of ROs and harnessing their metabolic potential. In this protocol, we outline a step-by-step protocol for the overexpression of ROs for whole cell biocatalysis and characterization. We have utilized a caffeine-degrading, N-demethylation system, expressing the RO genes ndmA and ndmD, as an example of this method.
Collapse
Affiliation(s)
- Meredith B Mock
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, United States
| | - Shuyuan Zhang
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, United States
| | - Ryan M Summers
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, United States.
| |
Collapse
|
7
|
Zhang T, Li K, Cheung YH, Grinstaff MW, Liu P. Photo-reduction facilitated stachydrine oxidative N-demethylation reaction: A case study of Rieske non-heme iron oxygenase Stc2 from Sinorhizobium meliloti. Methods Enzymol 2024; 703:263-297. [PMID: 39260999 DOI: 10.1016/bs.mie.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Rieske-type non-heme iron oxygenases (ROs) are an important family of non-heme iron enzymes. They catalyze a diverse range of transformations in secondary metabolite biosynthesis and xenobiotic bioremediation. ROs typically shuttle electrons from NAD(P)H to the oxygenase component via reductase component(s). This chapter describes our recent biochemical characterization of stachydrine demethylase Stc2 from Sinorhizobium meliloti. In this work, the eosin Y/sodium sulfite pair serves as the photoreduction system to replace the NAD(P)H-reductase system. We describe Stc2 protein purification and quality control details as well as a flow-chemistry to separate the photo-reduction half-reaction and the oxidation half-reaction. Our study demonstrates that the eosin Y/sodium sulfite photo-reduction pair is a NAD(P)H-reductase surrogate for Stc2-catalysis in a flow-chemistry setting. Experimental protocols used in this light-driven Stc2 catalysis are likely to be applicable as a photo-reduction system for other redox enzymes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Kelin Li
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Yuk Hei Cheung
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA, United States.
| |
Collapse
|
8
|
Mock MB, Summers RM. Microbial metabolism of caffeine and potential applications in bioremediation. J Appl Microbiol 2024; 135:lxae080. [PMID: 38549434 DOI: 10.1093/jambio/lxae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
With increasing global consumption of caffeine-rich products, such as coffee, tea, and energy drinks, there is also an increase in urban and processing waste full of residual caffeine with limited disposal options. This waste caffeine has been found to leach into the surrounding environment where it poses a threat to microorganisms, insects, small animals, and entire ecosystems. Growing interest in harnessing this environmental contaminant has led to the discovery of 79 bacterial strains, eight yeast strains, and 32 fungal strains capable of metabolizing caffeine by N-demethylation and/or C-8 oxidation. Recently observed promiscuity of caffeine-degrading enzymes in vivo has opened up the possibility of engineering bacterial strains capable of producing a wide variety of caffeine derivatives from a renewable resource. These engineered strains can be used to reduce the negative environmental impact of leached caffeine-rich waste through bioremediation efforts supplemented by our increasing understanding of new techniques such as cell immobilization. Here, we compile all of the known caffeine-degrading microbial strains, discuss their metabolism and related enzymology, and investigate their potential application in bioremediation.
Collapse
Affiliation(s)
- Meredith B Mock
- Department of Chemical and Biological Engineering, The University of Alabama, Box 870203, Tuscaloosa, AL 35487, United States
| | - Ryan M Summers
- Department of Chemical and Biological Engineering, The University of Alabama, Box 870203, Tuscaloosa, AL 35487, United States
| |
Collapse
|
9
|
Mock MB, Zhang S, Pakulski K, Hutchison C, Kapperman M, Dreischarf T, Summers RM. Production of 1-methylxanthine via the biodegradation of theophylline by an optimized Escherichia coli strain. J Biotechnol 2024; 379:25-32. [PMID: 38029843 DOI: 10.1016/j.jbiotec.2023.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
1-Methylxanthine is a high-value derivative of caffeine of limited natural availability with many potential pharmaceutical applications. Unfortunately, production of 1-methylxanthine through purely chemical methods of synthesis are unfavorable due to lengthy chemical processes and the requirement of hazardous chemicals, ultimately resulting in low yields. Here, we describe a novel biosynthetic process for the production of 1-methylxanthine from theophylline using engineered Escherichia coli whole-cell biocatalysts and reaction optimization. When scaled-up to 1590 mL, the simple biocatalytic reaction produced approximately 1188 mg 1-methylxanthine from 1444 mg theophylline, constituting gram-scale production of 1-methylxanthine in as little as 3 hours. Following HPLC purification and solvent evaporation, 1163 mg of dried 1-methylxanthine powder was collected, resulting in a 97.9 wt% product recovery at a purity of 97.8%. This is the first report of a biocatalytic process designed specifically for the production and purification of the high-value biochemical 1-methylxanthine from theophylline. This process is also the most robust methylxanthine N-demethylation process featuring engineered E. coli to date, capable of gram-scale production.
Collapse
Affiliation(s)
- Meredith B Mock
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Shuyuan Zhang
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kayla Pakulski
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Camden Hutchison
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Margaret Kapperman
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Tyler Dreischarf
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Ryan M Summers
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
10
|
Caty SN, Alvarez-Buylla A, Vasek C, Tapia EE, Martin NA, McLaughlin T, Weber PK, Mayali X, Coloma LA, Morris MM, O'Connell LA. A toxic environment selects for specialist microbiome in poison frogs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574901. [PMID: 38260330 PMCID: PMC10802471 DOI: 10.1101/2024.01.10.574901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Shifts in microbiome community composition can have large effects on host health. It is therefore important to understand how perturbations, like those caused by the introduction of exogenous chemicals, modulate microbiome community composition. In poison frogs within the family Dendrobatidae, the skin microbiome is exposed to the alkaloids that the frogs sequester from their diet and use for defense. Given the demonstrated antimicrobial effects of these poison frog alkaloids, these compounds may be structuring the skin microbial community. To test this, we first characterized microbial communities from chemically defended and closely related non-defended frogs from Ecuador. Then we conducted a laboratory experiment to monitor the effect of the alkaloid decahydroquinoline (DHQ) on the microbiome of a single frog species. In both the field and lab experiments, we found that alkaloid-exposed microbiomes are more species rich and phylogenetically diverse, with an increase in rare taxa. To better understand the strain-specific behavior in response to alkaloids, we cultured microbial strains from poison frog skin and found the majority of strains exhibited either enhanced growth or were not impacted by the addition of DHQ. Additionally, stable isotope tracing coupled to nanoSIMS suggests that some of these strains are able to metabolize DHQ. Taken together, these data suggest that poison frog chemical defenses open new niches for skin-associated microbes with specific adaptations, including the likely metabolism of alkaloids, that enable their survival in this toxic environment. This work helps expand our understanding of how exposure to exogenous compounds like alkaloids can impact host microbiomes.
Collapse
Affiliation(s)
| | | | - Cooper Vasek
- Department of Biology, Stanford University, Stanford CA, USA
| | - Elicio E Tapia
- Leibniz Institute for the Analysis of Biodiversity Change Martin-Luther-King-Platz 3 20146 Hamburg, Germany
| | - Nora A Martin
- Department of Biology, Stanford University, Stanford CA, USA
| | - Theresa McLaughlin
- Stanford University Mass Spectrometry, Stanford University, Stanford CA, USA
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore CA, USA
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore CA, USA
| | - Luis A Coloma
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Jambatu, San Rafael, Quito, Ecuador
| | - Megan M Morris
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore CA, USA
| | - Lauren A O'Connell
- Department of Biology, Stanford University, Stanford CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| |
Collapse
|
11
|
Martinelli F, Thiele I. Microbial metabolism marvels: a comprehensive review of microbial drug transformation capabilities. Gut Microbes 2024; 16:2387400. [PMID: 39150897 PMCID: PMC11332652 DOI: 10.1080/19490976.2024.2387400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/18/2024] Open
Abstract
This comprehensive review elucidates the pivotal role of microbes in drug metabolism, synthesizing insights from an exhaustive analysis of over two hundred papers. Employing a structural classification system grounded in drug atom involvement, the review categorizes the microbiome-mediated drug-metabolizing capabilities of over 80 drugs. Additionally, it compiles pharmacodynamic and enzymatic details related to these reactions, striving to include information on encoding genes and specific involved microorganisms. Bridging biochemistry, pharmacology, genetics, and microbiology, this review not only serves to consolidate diverse research fields but also highlights the potential impact of microbial drug metabolism on future drug design and in silico studies. With a visionary outlook, it also lays the groundwork for personalized medicine interventions, emphasizing the importance of interdisciplinary collaboration for advancing drug development and enhancing therapeutic strategies.
Collapse
Affiliation(s)
- Filippo Martinelli
- School of Medicine, University of Galway, Galway, Ireland
- Digital Metabolic Twin Centre, University of Galway, Galway, Ireland
- The Ryan Institute, University of Galway, Galway, Ireland
| | - Ines Thiele
- School of Medicine, University of Galway, Galway, Ireland
- Digital Metabolic Twin Centre, University of Galway, Galway, Ireland
- The Ryan Institute, University of Galway, Galway, Ireland
- School of Microbiology, University of Galway, Galway, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
12
|
Rogowska-van der Molen MA, Berasategui-Lopez A, Coolen S, Jansen RS, Welte CU. Microbial degradation of plant toxins. Environ Microbiol 2023; 25:2988-3010. [PMID: 37718389 DOI: 10.1111/1462-2920.16507] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Plants produce a variety of secondary metabolites in response to biotic and abiotic stresses. Although they have many functions, a subclass of toxic secondary metabolites mainly serve plants as deterring agents against herbivores, insects, or pathogens. Microorganisms present in divergent ecological niches, such as soil, water, or insect and rumen gut systems have been found capable of detoxifying these metabolites. As a result of detoxification, microbes gain growth nutrients and benefit their herbivory host via detoxifying symbiosis. Here, we review current knowledge on microbial degradation of toxic alkaloids, glucosinolates, terpenes, and polyphenols with an emphasis on the genes and enzymes involved in breakdown pathways. We highlight that the insect-associated microbes might find application in biotechnology and become targets for an alternative microbial pest control strategy.
Collapse
Affiliation(s)
- Magda A Rogowska-van der Molen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Aileen Berasategui-Lopez
- Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Amsterdam Institute for Life and Environment, Section Ecology and Evolution, Vrije Universiteit, Amsterdam, The Netherlands
| | - Silvia Coolen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Robert S Jansen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Mondal S, Somani J, Roy S, Babu A, Pandey AK. Insect Microbial Symbionts: Ecology, Interactions, and Biological Significance. Microorganisms 2023; 11:2665. [PMID: 38004678 PMCID: PMC10672782 DOI: 10.3390/microorganisms11112665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 11/26/2023] Open
Abstract
The guts of insect pests are typical habitats for microbial colonization and the presence of bacterial species inside the gut confers several potential advantages to the insects. These gut bacteria are located symbiotically inside the digestive tracts of insects and help in food digestion, phytotoxin breakdown, and pesticide detoxification. Different shapes and chemical assets of insect gastrointestinal tracts have a significant impact on the structure and makeup of the microbial population. The number of microbial communities inside the gastrointestinal system differs owing to the varying shape and chemical composition of digestive tracts. Due to their short generation times and rapid evolutionary rates, insect gut bacteria can develop numerous metabolic pathways and can adapt to diverse ecological niches. In addition, despite hindering insecticide management programs, they still have several biotechnological uses, including industrial, clinical, and environmental uses. This review discusses the prevalent bacterial species associated with insect guts, their mode of symbiotic interaction, their role in insecticide resistance, and various other biological significance, along with knowledge gaps and future perspectives. The practical consequences of the gut microbiome and its interaction with the insect host may lead to encountering the mechanisms behind the evolution of pesticide resistance in insects.
Collapse
Affiliation(s)
- Sankhadeep Mondal
- Deparment of Entomology, Tea Research Association, Tocklai Tea Research Institute, Jorhat 785008, Assam, India; (S.M.)
| | - Jigyasa Somani
- Deparment of Entomology, Tea Research Association, Tocklai Tea Research Institute, Jorhat 785008, Assam, India; (S.M.)
| | - Somnath Roy
- Deparment of Entomology, Tea Research Association, Tocklai Tea Research Institute, Jorhat 785008, Assam, India; (S.M.)
| | - Azariah Babu
- Deparment of Entomology, Tea Research Association, Tocklai Tea Research Institute, Jorhat 785008, Assam, India; (S.M.)
| | - Abhay K. Pandey
- Deparment of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Centre, Nagrakata, Jalpaiguri 735225, West Bengal, India
| |
Collapse
|
14
|
Runda ME, de Kok NAW, Schmidt S. Rieske Oxygenases and Other Ferredoxin-Dependent Enzymes: Electron Transfer Principles and Catalytic Capabilities. Chembiochem 2023; 24:e202300078. [PMID: 36964978 DOI: 10.1002/cbic.202300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/27/2023]
Abstract
Enzymes that depend on sophisticated electron transfer via ferredoxins (Fds) exhibit outstanding catalytic capabilities, but despite decades of research, many of them are still not well understood or exploited for synthetic applications. This review aims to provide a general overview of the most important Fd-dependent enzymes and the electron transfer processes involved. While several examples are discussed, we focus in particular on the family of Rieske non-heme iron-dependent oxygenases (ROs). In addition to illustrating their electron transfer principles and catalytic potential, the current state of knowledge on structure-function relationships and the mode of interaction between the redox partner proteins is reviewed. Moreover, we highlight several key catalyzed transformations, but also take a deeper dive into their engineerability for biocatalytic applications. The overall findings from these case studies highlight the catalytic capabilities of these biocatalysts and could stimulate future interest in developing additional Fd-dependent enzyme classes for synthetic applications.
Collapse
Affiliation(s)
- Michael E Runda
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Niels A W de Kok
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
15
|
Lin Z, Wei J, Hu Y, Pi D, Jiang M, Lang T. Caffeine Synthesis and Its Mechanism and Application by Microbial Degradation, A Review. Foods 2023; 12:2721. [PMID: 37509813 PMCID: PMC10380055 DOI: 10.3390/foods12142721] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Caffeine is a metabolite derived from purine nucleotides, typically accounting for 2-5% of the dry weight of tea and 1-2% of the dry weight of coffee. In the tea and coffee plants, the main synthesis pathway of caffeine is a four-step sequence consisting of three methylation reactions and one nucleosidase reaction using xanthine as a precursor. In bacteria, caffeine degradation occurs mainly through the pathways of N-demethylation and C-8 oxidation. However, a study fully and systematically summarizing the metabolism and application of caffeine in microorganisms has not been established elsewhere. In the present study, we provide a review of the biosynthesis, microbial degradation, gene expression, and application of caffeine microbial degradation. The present review aims to further elaborate the mechanism of caffeine metabolism by microorganisms and explore the development prospects in this field.
Collapse
Affiliation(s)
- Zhipeng Lin
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530008, China
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Jian Wei
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing 100091, China
| | - Yongqiang Hu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Dujuan Pi
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Mingguo Jiang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530008, China
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Tao Lang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518071, China
| |
Collapse
|
16
|
van de Wouw M, Rojas L, Vaghef-Mehrabani E, Wang Y, Fichter C, Workentine ML, Dewey D, Arrieta MC, Reimer RA, Tomfohr-Madsen L, Giesbrecht GF. Exploring Associations Between the Gut Microbiota and Full-Scale Intelligence in Preschool Children. Neurosci Lett 2023:137357. [PMID: 37355156 DOI: 10.1016/j.neulet.2023.137357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
The relationship between the gut microbiota and neurocognitive outcomes is becoming increasingly recognized; however, findings in humans are inconsistent. In addition, few studies have investigated the gut microbial metabolites that may mediate this relationship. The objective of this study was to investigate associations between full-scale intelligence (FSIQ) and the composition of the gut microbiota and metabolome in preschool children. Stool samples were collected from a community sample of 245 typically developing children (3-5 years) from the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort. The faecal microbiome was assessed using 16S rRNA sequencing and the metabolome using LC-MS/MS. FSIQ and scores on the Verbal Comprehension, Visual Spatial, Working Memory indices of the Wechsler Preschool and Primary Scale of Intelligence-IV were used to assess neurocognition. Associations between the gut microbiota and FSIQ were determined using Pearson and Spearman correlations, which were corrected for multiple testing and relevant covariates. Verbal Comprehension negatively correlated with both Shannon alpha diversity (r=-0.14, p=0.032) and the caffeine-derived metabolite paraxanthine (r=-0.22, p<0.001). No other significant correlations were observed. Overall, the weak to modest correlations between Verbal Comprehension with alpha diversity and paraxanthine provide limited evidence of an association between the gut microbiota and neurocognitive outcomes in typically developing preschool children.
Collapse
Affiliation(s)
- Marcel van de Wouw
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.
| | - Laura Rojas
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.
| | | | - Yanan Wang
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada; Microbiomes for One Systems Health, Health & Biosecurity, CSIRO, Adelaide, SA, Australia.
| | - Chloe Fichter
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.
| | - Matthew L Workentine
- UCVM Bioinformatics, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Deborah Dewey
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada.
| | - Marie-Claire Arrieta
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada; International Microbiome Centre, University of Calgary, Calgary, AB, Canada.
| | - Raylene A Reimer
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada; Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Alberta, Canada.
| | - Lianne Tomfohr-Madsen
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada; Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada.
| | - Gerald F Giesbrecht
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada; Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
17
|
Mock MB, Summers RM. Mixed culture biocatalytic production of the high-value biochemical 7-methylxanthine. J Biol Eng 2023; 17:2. [PMID: 36627657 PMCID: PMC9830774 DOI: 10.1186/s13036-022-00316-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND 7-Methylxanthine, a derivative of caffeine noted for its lack of toxicity and ability to treat and even prevent myopia progression, is a high-value biochemical with limited natural availability. Attempts to produce 7-methylxanthine through purely chemical methods of synthesis are faced with complicated chemical processes and/or the requirement of a variety of hazardous chemicals, resulting in low yields and racemic mixtures of products. In recent years, we have developed engineered microbial cells to produce several methylxanthines, including 3-methylxanthine, theobromine, and paraxanthine. The purpose of this study is to establish a more efficient biosynthetic process for the production of 7-methylxanthine from caffeine. RESULTS Here, we describe the use of a mixed-culture system composed of Escherichia coli strains engineered as caffeine and theobromine "specialist" cells. Optimal reaction conditions for the maximal conversion of caffeine to 7-methylxanthine were determined to be equal concentrations of caffeine and theobromine specialist cells at an optical density (600 nm) of 50 reacted with 2.5 mM caffeine for 5 h. When scaled-up to 560 mL, the simple biocatalytic reaction produced 183.81 mg 7-methylxanthine from 238.38 mg caffeine under ambient conditions, an 85.6% molar conversion. Following HPLC purification and solvent evaporation, 153.3 mg of dried 7-methylxanthine powder was collected, resulting in an 83.4% product recovery. CONCLUSION We present the first report of a biocatalytic process designed specifically for the production and purification of the high-value biochemical 7-methylxanthine from caffeine using a mixed culture of E. coli strains. This process constitutes the most efficient method for the production of 7-methylxanthine from caffeine to date.
Collapse
Affiliation(s)
- Meredith B. Mock
- grid.411015.00000 0001 0727 7545Department of Chemical and Biological Engineering, The University of Alabama, 35487 Tuscaloosa, AL USA
| | - Ryan M. Summers
- grid.411015.00000 0001 0727 7545Department of Chemical and Biological Engineering, The University of Alabama, 35487 Tuscaloosa, AL USA
| |
Collapse
|
18
|
Hu WY, Li K, Weitz A, Wen A, Kim H, Murray JC, Cheng R, Chen B, Naowarojna N, Grinstaff MW, Elliott SJ, Chen JS, Liu P. Light-Driven Oxidative Demethylation Reaction Catalyzed by a Rieske-Type Non-heme Iron Enzyme Stc2. ACS Catal 2022; 12:14559-14570. [PMID: 37168530 PMCID: PMC10168674 DOI: 10.1021/acscatal.2c04232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rieske-type non-heme iron oxygenases/oxidases catalyze a wide range of transformations. Their applications in bioremediation or biocatalysis face two key barriers: the need of expensive NAD(P)H as a reductant and a proper reductase to mediate the electron transfer from NAD(P)H to the oxygenases. To bypass the need of both the reductase and NAD(P)H, using Rieske-type oxygenase (Stc2) catalyzed oxidative demethylation as the model system, we report Stc2 photocatalysis using eosin Y/sulfite as the photosensitizer/sacrificial reagent pair. In a flow-chemistry setting to separate the photo-reduction half-reaction and oxidation half-reaction, Stc2 photo-biocatalysis outperforms the Stc2-NAD(P)H-reductase (GbcB) system. In addition, in a few other selected Rieske enzymes (NdmA, CntA, and GbcA), and a flavin-dependent enzyme (iodotyrosine deiodinase, IYD), the eosin Y/sodium sulfite photo-reduction pair could also serve as the NAD(P)H-reductase surrogate to support catalysis, which implies the potential applicability of this photo-reduction system to other redox enzymes.
Collapse
Affiliation(s)
- Wei-Yao Hu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Kelin Li
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Andrew Weitz
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Aiwen Wen
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Hyomin Kim
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Jessica C. Murray
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Ronghai Cheng
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Baixiong Chen
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Nathchar Naowarojna
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Mark W. Grinstaff
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Sean J. Elliott
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| |
Collapse
|
19
|
Mock MB, Cyrus A, Summers RM. Biocatalytic production of 7-methylxanthine by a caffeine-degrading Escherichia coli strain. Biotechnol Bioeng 2022; 119:3326-3331. [PMID: 36059194 DOI: 10.1002/bit.28212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/08/2022]
Abstract
7-Methylxanthine, a derivative of caffeine (1,3,7-trimethylxanthine), is a high-value compound that has multiple medical applications, particularly with respect to eye health. Here, we demonstrate the biocatalytic production of 7-methylxanthine from caffeine using Escherichia coli strain MBM019, which was constructed for production of paraxanthine (1,7-dimethylxanthine). The mutant N-demethylase NdmA4, which was previously shown to catalyze N3 -demethylation of caffeine to produce paraxanthine, also retains N1 -demethylation activity toward paraxanthine. This study demonstrates that whole cell biocatalysts containing NdmA4 are more active toward paraxanthine than caffeine. We used four serial resting cell assays, with spent cells exchanged for fresh cells between each round, to produce 2,120 μM 7-methylxanthine and 552 μM paraxanthine from 4,331 μM caffeine. The purified 7-methylxanthine and paraxanthine were then isolated via preparatory-scale HPLC, resulting in 177.3 mg 7-methylxanthine and 48.1 mg paraxanthine at high purity. This is the first reported strain genetically optimized for the biosynthetic production of 7-methylxanthine from caffeine.
Collapse
Affiliation(s)
- Meredith B Mock
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Ashley Cyrus
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Ryan M Summers
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
20
|
Mock MB, Mills SB, Cyrus A, Campo H, Dreischarf T, Strock S, Summers RM. Biocatalytic Production and Purification of the High-value Biochemical Paraxanthine. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0301-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
de Sousa LP, Cipriano MAP, Freitas SDS, Carazzolle MF, da Silva MJ, Mondego JMC. Genomic and physiological evaluation of two root associated Pseudomonas from Coffea arabica. Microbiol Res 2022; 263:127129. [PMID: 35907286 DOI: 10.1016/j.micres.2022.127129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
Many Pseudomonas species promote plant growth and colonize a wide range of environments. The annotation of a Coffea arabica ESTs database revealed a considerable number of Pseudomonas sequences. To evaluate the genomic and physiology of Pseudomonas that inhabit coffee plants, fluorescent Pseudomonas from C. arabica root environment were isolated. Two of them had their genomes sequenced; one from rhizospheric soil, named as MNR3A, and one from internal part of the root, named as EMN2. In parallel, we performed biochemical and physiological experiments to confirm genomic analyses results. Interestingly, EMN2 has achromobactin and aerobactin siderophore receptors, but does not have the genes responsible for the production of these siderophores, suggesting an interesting bacterial competition strategy. The two bacterial isolates were able to degrade and catabolize plant phenolic compounds for their own benefit. Surprisingly, MNR3A and EMN2 do not contain caffeine methylases that are responsible for the catabolism of caffeine. In fact, bench experiments confirm that the bacteria did not metabolize caffeine, but were resistant and chemically attracted to it. Furthermore, both bacteria, most especially MNR3A, were able to increase growth of lettuce plants. Our results indicate MNR3A as a potential plant growth promoting bacteria.
Collapse
Affiliation(s)
- Leandro Pio de Sousa
- Instituto Agronômico de Campinas, IAC, Campinas, SP, Brazil; UNICAMP, Programa de Pós-graduação em Genética e Biologia Molecular, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
22
|
Zhou J, Wang D, Ju F, Hu W, Liang J, Bai Y, Liu H, Qu J. Profiling microbial removal of micropollutants in sand filters: Biotransformation pathways and associated bacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127167. [PMID: 34536843 DOI: 10.1016/j.jhazmat.2021.127167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/13/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Although there is growing evidence that micropollutants can be microbially converted in rapid sand filters of drinking water treatment plants (DWTPs), little is known about the biotransformation pathways and associated microbial strains in this process. Here, we constructed sand filter columns filled with manganese or quartz sand obtained from full-scale DWTPs to explore the biotransformation of eight micropollutants. Under seven different empty bed contact times (EBCTs), the column experiments showed that caffeine and atenolol were easily removed (up to 92.1% and 97.6%, respectively) with adsorption and microbial biotransformation of the filters. In contrast, the removal of other six micropollutants (i.e., naproxen, carbamazepine, atrazine, trimethoprim, sulfamethoxazole, and sulfadiazine) in the filters were less than 27.1% at shorter EBCTs, but significantly increased at EBCT = 4 h, indicating the dominant role of microbial biotransformation in these micropollutants removal. Integrated analysis of metagenomic reads and transformation products of micropollutants showed a shift in caffeine oxidation and demethylation pathways at different EBCTs, simultaneous occurrence of atrazine hydrolysis and oxidation pathways, and sulfadiazine and sulfamethoxazole oxidation in the filters. Furthermore, using genome-centric analysis, we observed previously unidentified degrading strains, e.g., Piscinibacter, Hydrogenophaga, and Rubrivivax for caffeine transformation, and Methylophilus and Methyloversatilis for atenolol transformation.
Collapse
Affiliation(s)
- Jie Zhou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Wanchao Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinsong Liang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
23
|
Klein VJ, Irla M, Gil López M, Brautaset T, Fernandes Brito L. Unravelling Formaldehyde Metabolism in Bacteria: Road towards Synthetic Methylotrophy. Microorganisms 2022; 10:microorganisms10020220. [PMID: 35208673 PMCID: PMC8879981 DOI: 10.3390/microorganisms10020220] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/26/2022] Open
Abstract
Formaldehyde metabolism is prevalent in all organisms, where the accumulation of formaldehyde can be prevented through the activity of dissimilation pathways. Furthermore, formaldehyde assimilatory pathways play a fundamental role in many methylotrophs, which are microorganisms able to build biomass and obtain energy from single- and multicarbon compounds with no carbon–carbon bonds. Here, we describe how formaldehyde is formed in the environment, the mechanisms of its toxicity to the cells, and the cell’s strategies to circumvent it. While their importance is unquestionable for cell survival in formaldehyde rich environments, we present examples of how the modification of native formaldehyde dissimilation pathways in nonmethylotrophic bacteria can be applied to redirect carbon flux toward heterologous, synthetic formaldehyde assimilation pathways introduced into their metabolism. Attempts to engineer methylotrophy into nonmethylotrophic hosts have gained interest in the past decade, with only limited successes leading to the creation of autonomous synthetic methylotrophy. Here, we discuss how native formaldehyde assimilation pathways can additionally be employed as a premise to achieving synthetic methylotrophy. Lastly, we discuss how emerging knowledge on regulation of formaldehyde metabolism can contribute to creating synthetic regulatory circuits applied in metabolic engineering strategies.
Collapse
|
24
|
Thathola P, Agnihotri V, Pandey A. Microbial Degradation of Caffeine Using Himalayan Psychrotolerant Pseudomonas sp.GBPI_Hb5 (MCC 3295). Curr Microbiol 2021; 78:3924-3935. [PMID: 34522981 DOI: 10.1007/s00284-021-02644-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Caffeine, a xenobiotic compound, is continuously released into the environment. Fifteen psychrotolerant bacterial strains, isolated from the Indian Himalayan region, were screened for their caffeine degradation capacity. The medium for the growth of bacteria was optimized using Box-Behnken method. Among these bacteria, Pseudomonassp. (GBPI_Hb5), showing the best response, was further used for caffeine degradation in batch mode. The culture medium, having caffeine as a sole source of carbon, was used for analyzing the effect of pH, agitation speed, temperature, inoculum volume, and caffeine concentration on bacterial growth and its caffeine degradation potential. The bacterium GBPI_Hb5 showed approx. 93% caffeine degradation up to 96 h under controlled conditions. The compounds produced during the degradation of caffeine were also studied. The study is likely to have implications in the bioremediation of caffeine from polluted environments.
Collapse
Affiliation(s)
- Pooja Thathola
- Centre for Land and Water Resource Management, G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, 263643, India
| | - Vasudha Agnihotri
- Centre for Land and Water Resource Management, G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, 263643, India.
| | - Anita Pandey
- Department of Biotechnology, Graphic Era University, Bell Road, Clement Town, Dehradun, Uttarakhand, 248002, India
| |
Collapse
|
25
|
Vega FE, Emche S, Shao J, Simpkins A, Summers RM, Mock MB, Ebert D, Infante F, Aoki S, Maul JE. Cultivation and Genome Sequencing of Bacteria Isolated From the Coffee Berry Borer ( Hypothenemus hampei), With Emphasis on the Role of Caffeine Degradation. Front Microbiol 2021; 12:644768. [PMID: 33889142 PMCID: PMC8055839 DOI: 10.3389/fmicb.2021.644768] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
The coffee berry borer, the most economically important insect pest of coffee worldwide, is the only insect capable of feeding and reproducing solely on the coffee seed, a food source containing the purine alkaloid caffeine. Twenty-one bacterial species associated with coffee berry borers from Hawai’i, Mexico, or a laboratory colony in Maryland (Acinetobacter sp. S40, S54, S55, Bacillus aryabhattai, Delftia lacustris, Erwinia sp. S38, S43, S63, Klebsiella oxytoca, Ochrobactrum sp. S45, S46, Pantoea sp. S61, Pseudomonas aeruginosa, P. parafulva, and Pseudomonas sp. S30, S31, S32, S37, S44, S60, S75) were found to have at least one of five caffeine N-demethylation genes (ndmA, ndmB, ndmC, ndmD, ndmE), with Pseudomonas spp. S31, S32, S37, S60 and P. parafulva having the full complement of these genes. Some of the bacteria carrying the ndm genes were detected in eggs, suggesting possible vertical transmission, while presence of caffeine-degrading bacteria in frass, e.g., P. parafulva (ndmABCDE) and Bacillus aryabhattai (ndmA) could result in horizontal transmission to all insect life stages. Thirty-five bacterial species associated with the insect (Acinetobacter sp. S40, S54, S55, B. aryabhattai, B. cereus group, Bacillus sp. S29, S70, S71, S72, S73, D. lacustris, Erwinia sp. S38, S43, S59, S63, K. oxytoca, Kosakonia cowanii, Ochrobactrum sp. S45, S46, Paenibacillus sp. S28, Pantoea sp. S61, S62, P. aeruginosa, P. parafulva, Pseudomonas sp. S30, S31, S32, S37, S44, S60, S75, Stenotrophomonas sp. S39, S41, S48, S49) might contribute to caffeine breakdown using the C-8 oxidation pathway, based on presence of genes required for this pathway. It is possible that caffeine-degrading bacteria associated with the coffee berry borer originated as epiphytes and endophytes in the coffee plant microbiota.
Collapse
Affiliation(s)
- Fernando E Vega
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Sarah Emche
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Jonathan Shao
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Ann Simpkins
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Ryan M Summers
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, United States
| | - Meredith B Mock
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, United States
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | | | - Sayaka Aoki
- Department of Plant and Environmental Protection Sciences, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Jude E Maul
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
26
|
Nguyen PY, Carvalho G, Reis MAM, Oehmen A. A review of the biotransformations of priority pharmaceuticals in biological wastewater treatment processes. WATER RESEARCH 2021; 188:116446. [PMID: 33038717 DOI: 10.1016/j.watres.2020.116446] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 05/18/2023]
Abstract
Wastewater effluent discharges have been considered as one of the main sources of synthetic chemicals entering into the aquatic environment. Even though they occur at low concentrations, pharmaceutically active compounds (PhACs) can have an impact on ecological toxicity that affects aquatic organisms. Moreover, new regulations in development toward preserving water quality reinforces the increasing need to monitor and abate some PhACs in wastewater treatment plants (WWTPs), where they are typically only partially eliminated. Unlike most previous reviews, we have focussed on how the main biological and chemical molecular factors impact the biotransformations of key PhACs in biological WWTP processes. Biotransformations have been found to be an important contributor towards the removal of PhACs from WWTP effluents. This review paper critically assesses these aspects and the recent advances that have been achieved in wastewater treatment processes for biodegradation of 7 PhACs; namely the non-steroidal anti-inflammatory drug (NSAID) diclofenac (DCF); the macrolide antibiotics azithromycin (AZM), erythromycin (ERY) and clarithromycin (CLR); the two natural estrogens estrone (E1) and 17β-estradiol (E2), and the synthetic estrogen 17α-ethinylesradiol (EE2). These represent the micropollutants of the EU Watch list in Decision 2015/495/EU that are most relevant to WWTPs due to their frequent detection. The metabolic pathways, transformation products and impact of relevant factors to biological WWTP processes is addressed in this review. The biokinetics of PhAC biodegradation in different engineered bioprocesses is also discussed. Promising technologies and operational strategies that are likely to have a high impact on controlling PhAC releases are highlighted and future research needs are also proposed.
Collapse
Affiliation(s)
- P Y Nguyen
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Gilda Carvalho
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Maria A M Reis
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
27
|
Shanmugam MK, Sriman S, Gummadi SN. Online measurement of dissolved oxygen in shake flask to elucidate its role on caffeine degradation by Pseudomonas sp. Chem Ind 2020. [DOI: 10.1080/00194506.2020.1847699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Manoj Kumar Shanmugam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | | | - Sathyanarayana N. Gummadi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
28
|
Draft Genome Sequence of Pseudomonas sp. Strain CES, Containing the Entire Alkylxanthine Gene Cluster for Caffeine Breakdown. Microbiol Resour Announc 2020; 9:9/28/e00484-20. [PMID: 32646901 PMCID: PMC7348019 DOI: 10.1128/mra.00484-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas strain CES was isolated from caffeine-enriched soil and found to possess the N-demethylation pathway for caffeine breakdown. We report the nucleotide sequence of the draft genome with 5,827,822 bp, 62.6% G+C content, and 5,427 protein-coding regions. Pseudomonas strain CES was isolated from caffeine-enriched soil and found to possess the N-demethylation pathway for caffeine breakdown. We report the nucleotide sequence of the draft genome with 5,827,822 bp, 62.6% G+C content, and 5,427 protein-coding regions.
Collapse
|
29
|
Novel caffeine degradation gene cluster is mega-plasmid encoded in Paraburkholderia caffeinilytica CF1. Appl Microbiol Biotechnol 2020; 104:3025-3036. [PMID: 32009202 DOI: 10.1007/s00253-020-10384-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
The widespread use of caffeine in food and drug industries has caused great environmental pollution. Herein, an efficient caffeine-degrading strain Paraburkholderia caffeinilytica CF1 isolated from a tea garden in China can utilize caffeine as its sole carbon and nitrogen source. Combination of chromatographic and spectrophotometric techniques confirmed that strain CF1 adopts N-demethylation pathway for caffeine degradation. Whole genome sequencing of strain CF1 reveals that it has two chromosomes with sizes 3.62 Mb and 4.53 Mb, and a 174-kb mega-plasmid. The plasmid P1 specifically harbors the genes essential for caffeine metabolism. By analyzing the sequence alignment and quantitative real-time PCR data, the redundant gene cluster of caffeine degradation was elucidated. Genes related to catalyzing the N1-demethylation of caffeine to theobromine, the first step of caffeine degradation were heterologously expressed, and methylxanthine N1-demethylase was purified and characterized. Above all, this study systematically unravels the molecular mechanism of caffeine degradation by Paraburkholderia. KEY POINTS: • Caffeine degradation cluster in Paraburkholderia caffeinilytica CF1 was located in mega-plasmid P1. • The whole genome and the caffeine degrading pathway of P. caffeinilytica CF1 were sequenced and elucidated, respectively. • This study succeeded in heterologous expression of methylxanthine N1-demethylase (CdnA) and Rieske oxygenase reductase (CdnD) and illuminated the roles of CdnA and CdnD in caffeine degradation of P. caffeinilytica CF1.
Collapse
|
30
|
Carrillo-Campos J. Estructura y función de las oxigenasas tipo Rieske/mononuclear. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2019. [DOI: 10.22201/fesz.23958723e.2019.0.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Las oxigenasas Rieske/mononuclear son un grupo de metaloenzimas que catalizan la oxidación de una variedad de compuestos, destaca su participación en la degradación de compuestos xenobióticos contaminantes; estas enzimas también participan en la biosíntesis de algunos compuestos de interés comercial. Poseen una amplia especificidad por el sustrato, convirtiéndolas en un grupo de enzimas con un alto potencial de aplicación en procesos biotecnológicos que hasta el momento no ha sido explotado. La presente revisión aborda aspectos generales acerca de la función y estructura de este importante grupo de enzimas.
Collapse
|
31
|
Alba-Alejandre I, Alba-Tercedor J, Vega FE. Anatomical study of the coffee berry borer (Hypothenemus hampei) using micro-computed tomography. Sci Rep 2019; 9:17150. [PMID: 31748574 PMCID: PMC6868283 DOI: 10.1038/s41598-019-53537-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/04/2019] [Indexed: 11/09/2022] Open
Abstract
Traditionally, the study of anatomy in insects has been based on dissection techniques. Micro-computed tomography (micro-CT) is an X-ray based technique that allows visualization of the internal anatomy of insects in situ and does not require dissections. We report on the use of micro-CT scans to study, in detail, the internal structures and organs of the coffee berry borer (Hypothenemus hampei), the most damaging insect pest of coffee worldwide. Detailed images and videos allowed us to make the first description of the aedeagus and the first report of differences between the sexes based on internal anatomy (flight musculature, midgut shape, hindgut convolutions, brain shape and size) and external morphology (lateral outline of the pronotum and number of abdominal tergites). This study is the first complete micro-CT reconstruction of the anatomy of an insect and is also the smallest insect to have been evaluated in this way. High quality rendered images, and additional supplementary videos and 3D models are suitable for use with mobile devices and are useful tools for future research and as teaching aids.
Collapse
Affiliation(s)
- Ignacio Alba-Alejandre
- Department of Zoology, Faculty of Sciences, University of Granada, Campus de Fuentenueva, 18071, Granada, Spain
| | - Javier Alba-Tercedor
- Department of Zoology, Faculty of Sciences, University of Granada, Campus de Fuentenueva, 18071, Granada, Spain.
| | - Fernando E Vega
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
32
|
Bioassay for Determining the Concentrations of Caffeine and Individual Methylxanthines in Complex Samples. Appl Environ Microbiol 2019; 85:AEM.01965-19. [PMID: 31540989 DOI: 10.1128/aem.01965-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/17/2019] [Indexed: 11/20/2022] Open
Abstract
Caffeine and other methylxanthines are stimulant molecules found in formulated beverages, including sodas and energy drinks, and in brewed beverages, such as coffee and teas. Previously, we developed a bioassay for caffeine that involves monitoring the growth of a ΔguaB mutant of Escherichia coli defective in de novo guanine biosynthesis. When supplemented with a plasmid expressing the genes for an N-demethylation pathway from Pseudomonas putida CBB5, these bacteria demethylate caffeine (1,3,7-trimethylxanthine) and other methylxanthines into xanthine, which is then converted into guanine to support cell growth. A major limitation of this bioassay was that it could only measure the total concentration of all methylxanthines in a mixture. Therefore, it could not be used to measure the caffeine content of beverages like teas, which contain substantial quantities of multiple methylxanthines. To overcome this limitation, we created seven new plasmids containing all subsets of the three demethylase genes (ndmA, ndmB, and ndmC). We show that strains of ΔguaB E. coli containing each plasmid are able to demethylate specific subsets of methylxanthines and that they can be used to determine the concentrations of individual methylxanthines in complex mixtures containing multiple methylxanthines, including coffee doped with an additional methylxanthine. While validating this assay, we also discovered an unexpected demethylation event at the 1-methyl position when NdmB and NdmC were expressed in the absence of NdmA. The improved cell-based bioassay is inexpensive, is easy to use, and gives results comparable to standard high-performance liquid chromatography methods for measuring methylxanthine concentrations.IMPORTANCE Caffeine (1,3,7-trimethylxanthine) is the dominant neurostimulant found in coffee, teas, sodas, and energy drinks. Measuring the amount of caffeine and other methylxanthines in these beverages is important for quality assurance and safety in food science. Methylxanthines are also used in medicine and as performance-enhancing drugs, two contexts in which accurately determining their concentrations in bodily fluids is important. Liquid chromatography is the standard method for measuring methylxanthine concentrations in a sample, but it requires specialized equipment and expertise. We improved a previous bioassay that links E. coli growth to methylxanthine demethylation so that it can now be used to determine the amounts of individual methylxanthines in complex mixtures or beverages, such as coffee.
Collapse
|
33
|
The Properties of 5-Methyltetrahydrofolate Dehydrogenase (MetF1) and Its Role in the Tetrahydrofolate-Dependent Dicamba Demethylation System in Rhizorhabdus dicambivorans Ndbn-20. J Bacteriol 2019; 201:JB.00096-19. [PMID: 31209079 DOI: 10.1128/jb.00096-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/13/2019] [Indexed: 11/20/2022] Open
Abstract
The herbicide dicamba is initially degraded via the tetrahydrofolate (THF)-dependent demethylation system in Rhizorhabdus dicambivorans Ndbn-20. Two THF-dependent dicamba methyltransferase gene clusters, scaffold 50 and scaffold 66, were found in the genome of strain Ndbn-20. Each cluster contains a dicamba methyltransferase gene and three THF metabolism-related genes, namely, metF (coding for 5,10-CH2-THF reductase), folD (coding for 5,10-CH2-THF dehydrogenase-5,10-methenyl-THF cyclohydrolase), and purU (coding for 10-formyl-THF deformylase). In this study, reverse transcription-PCR (RT-PCR) results showed that only genes in scaffold 66, not those in scaffold 50, were transcribed in dicamba-cultured cells. The metF gene of scaffold 66 (metF1) was expressed in Escherichia coli BL21(DE3), and the product was purified as a His6-tagged protein. Purified MetF1 was found to be a monomer and exhibited 5-CH3-THF dehydrogenase activity in vitro The k cat and Km for 5-CH3-THF were 0.23 s-1 and 16.48 μM, respectively. However, 5,10-CH2-THF reductase activity was not detected for MetF1 under the conditions tested. Gene disruption results showed that metF1 is essential for dicamba degradation, whereas folD1 is dispensable.IMPORTANCE There are several THF-dependent methyltransferase genes and THF-metabolic genes in the genome of R. dicambivorans Ndbn-20; however, which genes are involved in dicamba demethylation and the mechanism underlying THF regeneration remain unknown. This study revealed that scaffold 66 is responsible for dicamba demethylation and that MetF1 physiologically catalyzes the dehydrogenation of 5-CH3-THF to 5,10-CH2-THF in the THF-dependent dicamba demethylation system in R. dicambivorans Ndbn-20. Furthermore, the results showed that MetF1 differs from previously characterized MetF in phylogenesis, biochemical properties, and catalytic activity; e.g., MetF1 in vitro did not show 5,10-CH2-THF reductase activity, which is the physiological function of Escherichia coli MetF. This study provides new insights into the mechanism of the THF-dependent methyltransferase system.
Collapse
|
34
|
Hagel JM, Facchini PJ. Expanding the roles for 2-oxoglutarate-dependent oxygenases in plant metabolism. Nat Prod Rep 2019; 35:721-734. [PMID: 29488530 DOI: 10.1039/c7np00060j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Covering: up to 2018 2-Oxoglutarate-dependent oxygenases (2ODOs) comprise a large enzyme superfamily in plant genomes, second in size only to the cytochromes P450 monooxygenase (CYP) superfamily. 2ODOs participate in both primary and specialized plant pathways, and their occurrence across all life kingdoms points to an ancient origin. Phylogenetic evidence supports substantial expansion and diversification of 2ODOs following the split from the common ancestor of land plants. More conserved roles for these enzymes include oxidation within hormone metabolism, such as the recently described capacity of Dioxygenase for Auxin Oxidation (DAO) for governing auxin homeostasis. Conserved structural features among 2ODOs has provided a basis for continued investigation into their mechanisms, and recent structural work is expected to illuminate intriguing reactions such as that of 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO). Phylogenetic radiation among this superfamily combined with neo- and subfunctionalization has enabled recruitment to highly specialized pathways, including those yielding medicines, flavours, dyes, poisons, and compounds important for plant-environment interactions. Catalytic versatility of 2ODOs in plants and across broader taxa continues to inspire biochemists tasked with the discovery of new enzymes. This highlight article summarizes recent reports up to 2018 of 2ODOs within plant metabolism. Furthermore, the respective contributions of 2ODOs and other oxidases to natural product biosynthesis are discussed as a framework for continued discovery.
Collapse
Affiliation(s)
- J M Hagel
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada.
| | - P J Facchini
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
35
|
Kim JH, Kim BH, Brooks S, Kang SY, Summers RM, Song HK. Structural and Mechanistic Insights into Caffeine Degradation by the Bacterial N-Demethylase Complex. J Mol Biol 2019; 431:3647-3661. [PMID: 31412262 DOI: 10.1016/j.jmb.2019.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 01/06/2023]
Abstract
Caffeine, found in many foods, beverages, and pharmaceuticals, is the most used chemical compound for mental alertness. It is originally a natural product of plants and exists widely in environmental soil. Some bacteria, such as Pseudomonas putida CBB5, utilize caffeine as a sole carbon and nitrogen source by degrading it through sequential N-demethylation catalyzed by five enzymes (NdmA, NdmB, NdmC, NdmD, and NdmE). The environmentally friendly enzymatic reaction products, methylxanthines, are high-value biochemicals that are used in the pharmaceutical and cosmetic industries. However, the structures and biochemical properties of bacterial N-demethylases remain largely unknown. Here, we report the structures of NdmA and NdmB, the initial N1- and N3-specific demethylases, respectively. Reverse-oriented substrate bindings were observed in the substrate-complexed structures, offering methyl position specificity for proper N-demethylation. For efficient sequential degradation of caffeine, these enzymes form a unique heterocomplex with 3:3 stoichiometry, which was confirmed by enzymatic assays, fluorescent labeling, and small-angle x-ray scattering. The binary structure of NdmA with the ferredoxin domain of NdmD, which is the first structural information for the plant-type ferredoxin domain in a complex state, was also determined to better understand electron transport during N-demethylation. These findings broaden our understanding of the caffeine degradation mechanism by bacterial enzymes and will enable their use for industrial applications.
Collapse
Affiliation(s)
- Jun Hoe Kim
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Bong Heon Kim
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Shelby Brooks
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Seung Yeon Kang
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ryan M Summers
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
36
|
Jiang Y, Lu Y, Huang Y, Chen S, Ji Z. Bacillus amyloliquefaciens HZ-12 heterologously expressing NdmABCDE with higher ability of caffeine degradation. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Schütz V, Bigler L, Girel S, Laschke L, Sicker D, Schulz M. Conversions of Benzoxazinoids and Downstream Metabolites by Soil Microorganisms. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00238] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Guthrie L, Wolfson S, Kelly L. The human gut chemical landscape predicts microbe-mediated biotransformation of foods and drugs. eLife 2019; 8:42866. [PMID: 31184303 PMCID: PMC6559788 DOI: 10.7554/elife.42866] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
Microbes are nature's chemists, capable of producing and metabolizing a diverse array of compounds. In the human gut, microbial biochemistry can be beneficial, for example vitamin production and complex carbohydrate breakdown; or detrimental, such as the reactivation of an inactive drug metabolite leading to patient toxicity. Identifying clinically relevant microbiome metabolism requires linking microbial biochemistry and ecology with patient outcomes. Here we present MicrobeFDT, a resource which clusters chemically similar drug and food compounds and links these compounds to microbial enzymes and known toxicities. We demonstrate that compound structural similarity can serve as a proxy for toxicity, enzyme sharing, and coarse-grained functional similarity. MicrobeFDT allows users to flexibly interrogate microbial metabolism, compounds of interest, and toxicity profiles to generate novel hypotheses of microbe-diet-drug-phenotype interactions that influence patient outcomes. We validate one such hypothesis experimentally, using MicrobeFDT to reveal unrecognized gut microbiome metabolism of the ovarian cancer drug altretamine.
Collapse
Affiliation(s)
- Leah Guthrie
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, New York, United States
| | - Sarah Wolfson
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, New York, United States
| | - Libusha Kelly
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, New York, United States.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
| |
Collapse
|
39
|
Cloning and coexpression of recombinant N-demethylase B and Glycolate oxidase genes in Escherichia coli. Mol Biol Rep 2018; 46:505-510. [PMID: 30498881 DOI: 10.1007/s11033-018-4504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
NdmB genes from Pseudomonas putida CBB5 and GO genes from spinach, which encode N-demethylase B (NdmB) and Glycolate oxidase (GO) respectively, were separately ligated into expression vectors of pACYCDuet-1 and pET32a to construct recombinant plasmids of pACYCDuet-1-ndmBHis (pBH) and pET32a-GOHis (pGOH). Then the two plasmids were both transformed in Escherichia coli (E. coli) strain BL21 (DE3) and screening the recombinants (pBHGOH) using ampicillin and chloramphonicol as two antibiotics in Luria-Bertani medium. After induction with IPTG, both recombinant ndmB and GO genes were coexpressed in E. coli. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed that the estimated molecular weight of NdmB and GO was 35 kDa and 40 kDa, respectively. By two-step purification of Ni affinity chromatography and Q-Sepharose chromatography, the coexpressed NdmB and GO were separated and resulted in a 15.8-fold purification with 8.7% yield and 12.8-fold purification with 7.2% yield, respectively.
Collapse
|
40
|
Chuang YH, Liu CH, Hammerschmidt R, Zhang W, Boyd SA, Li H. Metabolic Demethylation and Oxidation of Caffeine during Uptake by Lettuce. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7907-7915. [PMID: 29957948 DOI: 10.1021/acs.jafc.8b02235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals can be metabolized after being taken up by plants. The metabolites could manifest similar or equivalent bioactivity to the parent compound, promoting the critical need to understand the metabolism in plants. Caffeine has been frequently detected in agriculture produce; however, little attention is given to its metabolites in vegetables. This study examined uptake and metabolism of caffeine in lettuce in a hydroponic system. Caffeine and its metabolites in aqueous solution and lettuce were identified and quantified using a liquid chromatography coupled to a QTrap tandem mass spectrometry instrument. After 144 h, over 50% of applied caffeine dissipated in the hydroponic lettuce system, and eight caffeine metabolites were identified primarily in the shoots. Caffeine underwent demethylation reactions, which were confirmed with authentic standards, and the total amount accounted for 20% of the initially applied caffeine. Other metabolism pathways included oxidation and hydroxylation, and the amount of metabolites increased over uptake time.
Collapse
|
41
|
Retnadhas S, Gummadi SN. Identification and characterization of oxidoreductase component (NdmD) of methylxanthine oxygenase system in Pseudomonas sp. NCIM 5235. Appl Microbiol Biotechnol 2018; 102:7913-7926. [PMID: 30014169 DOI: 10.1007/s00253-018-9224-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/24/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
Abstract
Pseudomonas sp. NCIM 5235 is a caffeine-degrading bacterial strain that metabolizes caffeine by sequential demethylation using methylxanthine demethylases. These enzymes belong to the class of two-component Rieske oxygenases and require an oxidoreductase, NdmD, for efficient catalysis. NdmD in Pseudomonas sp. has a unique domain fusion in its N-terminal that is not observed in any other Rieske oxygenase reductases reported so far. In this report, a ~ 1.7 kb ndmD gene from the gDNA of Pseudomonas sp. has been isolated and has been cloned in a pET28a expression vector. Soluble NdmD was over-expressed in Escherichia coli BL21 cells and purified by Ni2+ NTA chromatography. Monomeric molecular mass of the protein was found to be ~ 65 kDa and optimal activity was observed at 35 °C and pH 8.0. It showed broad substrate specificity with highest Kcat/km of 490.8 ± 17.7 towards cytochrome c. To determine the role of N-terminal Rieske domain in its reductase activity, two deletion constructs Δ114NdmD and Δ250NdmD were made. Cytochrome c reductase (ccr) activity of the NdmD constructs and demethylase activity of NdmA in the presence of NdmD constructs showed that there is no significant difference in the catalytic activity of NdmD upon deletion of its N-terminal Rieske domain. However, there might be some functional and evolutionary significance for the fusion of Rieske domain to NdmD and we hypothesize that this domain fusion is an intermediate phase of evolution towards the development of a more efficient enzyme system for xenobiotic degradation.
Collapse
Affiliation(s)
- Sreeahila Retnadhas
- Applied and Industrial Microbiology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
42
|
Itoh H, Tago K, Hayatsu M, Kikuchi Y. Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat Prod Rep 2018; 35:434-454. [DOI: 10.1039/c7np00051k] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Symbiotic microorganisms degrade natural and artificial toxic compounds, and confer toxin resistance on insect hosts.
Collapse
Affiliation(s)
- Hideomi Itoh
- Bioproduction Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido
- Sapporo 062-8517
- Japan
| | - Kanako Tago
- Institute for Agro-Environmental Sciences
- National Agriculture and Food Research Organization (NARO)
- Tsukuba 305-8604
- Japan
| | - Masahito Hayatsu
- Institute for Agro-Environmental Sciences
- National Agriculture and Food Research Organization (NARO)
- Tsukuba 305-8604
- Japan
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido
- Sapporo 062-8517
- Japan
- Graduate School of Agriculture
| |
Collapse
|
43
|
Mereghetti V, Chouaia B, Montagna M. New Insights into the Microbiota of Moth Pests. Int J Mol Sci 2017; 18:ijms18112450. [PMID: 29156569 PMCID: PMC5713417 DOI: 10.3390/ijms18112450] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 01/30/2023] Open
Abstract
In recent years, next generation sequencing (NGS) technologies have helped to improve our understanding of the bacterial communities associated with insects, shedding light on their wide taxonomic and functional diversity. To date, little is known about the microbiota of lepidopterans, which includes some of the most damaging agricultural and forest pests worldwide. Studying their microbiota could help us better understand their ecology and offer insights into developing new pest control strategies. In this paper, we review the literature pertaining to the microbiota of lepidopterans with a focus on pests, and highlight potential recurrent patterns regarding microbiota structure and composition.
Collapse
Affiliation(s)
- Valeria Mereghetti
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Bessem Chouaia
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| |
Collapse
|
44
|
Molecular Mechanism and Genetic Determinants of Buprofezin Degradation. Appl Environ Microbiol 2017; 83:AEM.00868-17. [PMID: 28710269 DOI: 10.1128/aem.00868-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 07/07/2017] [Indexed: 11/20/2022] Open
Abstract
Buprofezin is a widely used insect growth regulator whose residue has been frequently detected in the environment, posing a threat to aquatic organisms and nontarget insects. Microorganisms play an important role in the degradation of buprofezin in the natural environment. However, the relevant catabolic pathway has not been fully characterized, and the molecular mechanism of catabolism is still completely unknown. Rhodococcus qingshengii YL-1 can utilize buprofezin as a sole source of carbon and energy for growth. In this study, the upstream catabolic pathway in strain YL-1 was identified using tandem mass spectrometry. Buprofezin is composed of a benzene ring and a heterocyclic ring. The degradation is initiated by the dihydroxylation of the benzene ring and continues via dehydrogenation, aromatic ring cleavage, breaking of an amide bond, and the release of the heterocyclic ring 2-tert-butylimino-3-isopropyl-1,3,5-thiadiazinan-4-one (2-BI). A buprofezin degradation-deficient mutant strain YL-0 was isolated. A comparative genomic analysis combined with gene deletion and complementation experiments revealed that the gene cluster bfzBA3A4A1A2C is responsible for the upstream catabolic pathway of buprofezin. The bfzA3A4A1A2 cluster encodes a novel Rieske nonheme iron oxygenase (RHO) system that is responsible for the dihydroxylation of buprofezin at the benzene ring; bfzB is involved in dehydrogenation, and bfzC is in charge of benzene ring cleavage. Furthermore, the products of bfzBA3A4A1A2C can also catalyze dihydroxylation, dehydrogenation, and aromatic ring cleavage of biphenyl, flavanone, flavone, and bifenthrin. In addition, a transcriptional study revealed that bfzBA3A4A1A2C is organized in one transcriptional unit that is constitutively expressed in strain YL-1.IMPORTANCE There is an increasing concern about the residue and environmental fate of buprofezin. Microbial metabolism is an important mechanism responsible for the buprofezin degradation in the natural environment. However, the molecular mechanism and genetic determinants of microbial degradation of buprofezin have not been well identified. This work revealed that gene cluster bfzBA3A4A1A2C is responsible for the upstream catabolic pathway of buprofezin in Rhodococcus qingshengii YL-1. The products of bfzBA3A4A1A2C could also degrade bifenthrin, a widely used pyrethroid insecticide. These findings enhance our understanding of the microbial degradation mechanism of buprofezin and benefit the application of strain YL-1 and bfzBA3A4A1A2C in the bioremediation of buprofezin contamination.
Collapse
|
45
|
Production of theobromine by N-demethylation of caffeine using metabolically engineered E . coli. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Quantifying the Importance of the Rare Biosphere for Microbial Community Response to Organic Pollutants in a Freshwater Ecosystem. Appl Environ Microbiol 2017; 83:AEM.03321-16. [PMID: 28258138 DOI: 10.1128/aem.03321-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/01/2017] [Indexed: 01/01/2023] Open
Abstract
A single liter of water contains hundreds, if not thousands, of bacterial and archaeal species, each of which typically makes up a very small fraction of the total microbial community (<0.1%), the so-called "rare biosphere." How often, and via what mechanisms, e.g., clonal amplification versus horizontal gene transfer, the rare taxa and genes contribute to microbial community response to environmental perturbations represent important unanswered questions toward better understanding the value and modeling of microbial diversity. We tested whether rare species frequently responded to changing environmental conditions by establishing 20-liter planktonic mesocosms with water from Lake Lanier (Georgia, USA) and perturbing them with organic compounds that are rarely detected in the lake, including 2,4-dichlorophenoxyacetic acid (2,4-D), 4-nitrophenol (4-NP), and caffeine. The populations of the degraders of these compounds were initially below the detection limit of quantitative PCR (qPCR) or metagenomic sequencing methods, but they increased substantially in abundance after perturbation. Sequencing of several degraders (isolates) and time-series metagenomic data sets revealed distinct cooccurring alleles of degradation genes, frequently carried on transmissible plasmids, especially for the 2,4-D mesocosms, and distinct species dominating the post-enrichment microbial communities from each replicated mesocosm. This diversity of species and genes also underlies distinct degradation profiles among replicated mesocosms. Collectively, these results supported the hypothesis that the rare biosphere can serve as a genetic reservoir, which can be frequently missed by metagenomics but enables community response to changing environmental conditions caused by organic pollutants, and they provided insights into the size of the pool of rare genes and species.IMPORTANCE A single liter of water or gram of soil contains hundreds of low-abundance bacterial and archaeal species, the so called rare biosphere. The value of this astonishing biodiversity for ecosystem functioning remains poorly understood, primarily due to the fact that microbial community analysis frequently focuses on abundant organisms. Using a combination of culture-dependent and culture-independent (metagenomics) techniques, we showed that rare taxa and genes commonly contribute to the microbial community response to organic pollutants. Our findings should have implications for future studies that aim to study the role of rare species in environmental processes, including environmental bioremediation efforts of oil spills or other contaminants.
Collapse
|
47
|
Li D, Han Q. Cloning and co-expression of recombinant N-demethylase B and N-demethylase D genes in Escherichia coli. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1295819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Dengchao Li
- Department of Bioengineering, School of Life Science, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, Jiangsu Province, P.R. China
| | - Qiumin Han
- School of Health, Jiangsu Food and Pharmaceutical Science College, Huai'an, Jiangsu Province, P.R. China
| |
Collapse
|
48
|
Xanthine Alkaloids: Occurrence, Biosynthesis, and Function in Plants. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 105 2017; 105:1-88. [DOI: 10.1007/978-3-319-49712-9_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
van den Bosch TJM, Welte CU. Detoxifying symbionts in agriculturally important pest insects. Microb Biotechnol 2016; 10:531-540. [PMID: 27943632 PMCID: PMC5404199 DOI: 10.1111/1751-7915.12483] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/05/2022] Open
Abstract
Pest insects lead to excessive agricultural and therefore economical losses on crops worldwide. These insects have to withstand toxic molecules that are inherent to plant defences, as well as those that are produced and introduced by humans in the form of insecticides. In recent years, research on insect–microbe symbioses has recognized that microbial symbionts may play a role protecting against these toxins, leading to a form of defensive symbiosis between the pest insect and different types of microorganisms that we term detoxifying symbioses. In this minireview, we will highlight well‐characterized and emerging insect model systems of detoxifying symbioses and assess how the microorganisms influence the host's success.
Collapse
Affiliation(s)
- Tijs J M van den Bosch
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, The Netherlands
| |
Collapse
|
50
|
Costa KC, Glasser NR, Conway SJ, Newman DK. Pyocyanin degradation by a tautomerizing demethylase inhibits Pseudomonas aeruginosa biofilms. Science 2016; 355:170-173. [PMID: 27940577 DOI: 10.1126/science.aag3180] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/14/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa produces colorful redox-active metabolites called phenazines, which underpin biofilm development, virulence, and clinical outcomes. Although phenazines exist in many forms, the best studied is pyocyanin. Here, we describe pyocyanin demethylase (PodA), a hitherto uncharacterized protein that oxidizes the pyocyanin methyl group to formaldehyde and reduces the pyrazine ring via an unusual tautomerizing demethylation reaction. Treatment with PodA disrupts P. aeruginosa biofilm formation similarly to DNase, suggesting interference with the pyocyanin-dependent release of extracellular DNA into the matrix. PodA-dependent pyocyanin demethylation also restricts established biofilm aggregate populations experiencing anoxic conditions. Together, these results show that modulating extracellular redox-active metabolites can influence the fitness of a biofilm-forming microorganism.
Collapse
Affiliation(s)
- Kyle C Costa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nathaniel R Glasser
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Stuart J Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA. .,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|