1
|
Mickoleit F, Rosenfeldt S, Toro-Nahuelpan M, Schaffer M, Schenk AS, Plitzko JM, Schüler D. High-Yield Production, Characterization, and Functionalization of Recombinant Magnetosomes in the Synthetic Bacterium Rhodospirillum rubrum "magneticum". Adv Biol (Weinh) 2021; 5:e2101017. [PMID: 34296829 DOI: 10.1002/adbi.202101017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/10/2021] [Indexed: 01/02/2023]
Abstract
Recently, the photosynthetic Rhodospirillum rubrum has been endowed with the ability of magnetosome biosynthesis by transfer and expression of biosynthetic gene clusters from the magnetotactic bacterium Magnetospirillum gryphiswaldense. However, the growth conditions for efficient magnetite biomineralization in the synthetic R. rubrum "magneticum", as well as the particles themselves (i.e., structure and composition), have so far not been fully characterized. In this study, different cultivation strategies, particularly the influence of temperature and light intensity, are systematically investigated to achieve optimal magnetosome biosynthesis. Reduced temperatures ≤16 °C and gradual increase in light intensities favor magnetite biomineralization at high rates, suggesting that magnetosome formation might utilize cellular processes, cofactors, and/or pathways that are linked to photosynthetic growth. Magnetosome yields of up to 13.6 mg magnetite per liter cell culture are obtained upon photoheterotrophic large-scale cultivation. Furthermore, it is shown that even more complex, i.e., oligomeric, catalytically active functional moieties like enzyme proteins can be efficiently expressed on the magnetosome surface, thereby enabling the in vivo functionalization by genetic engineering. In summary, it is demonstrated that the synthetic R. rubrum "magneticum" is a suitable host for high-yield magnetosome biosynthesis and the sustainable production of genetically engineered, bioconjugated magnetosomes.
Collapse
Affiliation(s)
- Frank Mickoleit
- Dept. Microbiology, University of Bayreuth, D-95447, Bayreuth, Germany
| | - Sabine Rosenfeldt
- Bavarian Polymer Institute (BPI)/Physical Chemistry 1, University of Bayreuth, D-95447, Bayreuth, Germany
| | - Mauricio Toro-Nahuelpan
- Dept. Microbiology, University of Bayreuth, D-95447, Bayreuth, Germany.,Dept. Molecular Structural Biology, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| | - Miroslava Schaffer
- Dept. Molecular Structural Biology, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| | - Anna S Schenk
- Bavarian Polymer Institute (BPI)/Physical Chemistry - Colloidal Systems, University of Bayreuth, D-95447, Bayreuth, Germany
| | - Jürgen M Plitzko
- Dept. Molecular Structural Biology, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| | - Dirk Schüler
- Dept. Microbiology, University of Bayreuth, D-95447, Bayreuth, Germany
| |
Collapse
|
2
|
Selao TT, Branca R, Chae PS, Lehtiö J, Gellman SH, Rasmussen SG, Nordlund S, Norén A. Identification of chromatophore membrane protein complexes formed under different nitrogen availability conditions in Rhodospirillum rubrum. J Proteome Res 2011; 10:2703-14. [PMID: 21443180 PMCID: PMC3148094 DOI: 10.1021/pr100838x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The chromatophore membrane of the photosynthetic diazotroph Rhodospirillum rubrum is of vital importance for a number of central processes, including nitrogen fixation. Using a novel amphiphile, we have identified protein complexes present under different nitrogen availability conditions by the use of two-dimensional Blue Native/SDS-PAGE and NSI-LC-LTQ-Orbitrap mass spectrometry. We have identified several membrane protein complexes, including components of the ATP synthase, reaction center, light harvesting, and NADH dehydrogenase complexes. Additionally, we have identified differentially expressed proteins, such as subunits of the succinate dehydrogenase complex and other TCA cycle enzymes that are usually found in the cytosol, thus hinting at a possible association to the membrane in response to nitrogen deficiency. We propose a redox sensing mechanism that can influence the membrane subproteome in response to nitrogen availability.
Collapse
Affiliation(s)
- Tiago Toscano Selao
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rui Branca
- Science for Life Laboratory, Stockholm and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Pil Seok Chae
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Janne Lehtiö
- Science for Life Laboratory, Stockholm and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Søren G.F. Rasmussen
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, USA
| | - Stefan Nordlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Agneta Norén
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
3
|
Tucker JD, Siebert CA, Escalante M, Adams PG, Olsen JD, Otto C, Stokes DL, Hunter CN. Membrane invagination in Rhodobacter sphaeroides is initiated at curved regions of the cytoplasmic membrane, then forms both budded and fully detached spherical vesicles. Mol Microbiol 2010; 76:833-47. [PMID: 20444085 DOI: 10.1111/j.1365-2958.2010.07153.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purple phototrophic bacteria synthesize an extensive system of intracytoplasmic membranes (ICM) in order to increase the surface area for absorbing and utilizing solar energy. Rhodobacter sphaeroides cells contain curved membrane invaginations. In order to study the biogenesis of ICM in this bacterium mature (ICM) and precursor (upper pigmented band - UPB) membranes were purified and compared at the single membrane level using electron, atomic force and fluorescence microscopy, revealing fundamental differences in their morphology, protein organization and function. Cryo-electron tomography demonstrates the complexity of the ICM of Rba. sphaeroides. Some ICM vesicles have no connection with other structures, others are found nearer to the cytoplasmic membrane (CM), often forming interconnected structures that retain a connection to the CM, and possibly having access to the periplasmic space. Near-spherical single invaginations are also observed, still attached to the CM by a 'neck'. Small indents of the CM are also seen, which are proposed to give rise to the UPB precursor membranes upon cell disruption. 'Free-living' ICM vesicles, which possess all the machinery for converting light energy into ATP, can be regarded as bacterial membrane organelles.
Collapse
Affiliation(s)
- Jaimey D Tucker
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Firth Court, Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Butzin NC, Owen HA, Collins MLP. A new system for heterologous expression of membrane proteins: Rhodospirillum rubrum. Protein Expr Purif 2009; 70:88-94. [PMID: 19887111 DOI: 10.1016/j.pep.2009.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/20/2009] [Accepted: 10/23/2009] [Indexed: 11/29/2022]
Abstract
Heterologous expression of membrane proteins has met with only limited success. This work presents a new host/vector system for the production of heterologous membrane proteins based on a mutant of the facultatively phototrophic bacterium Rhodospirillum rubrum. Under certain growth conditions, R. rubrum forms an intracytoplasmic membrane (ICM) that houses the photosynthetic apparatus, the structural proteins of which are encoded by puhA and pufBALM. The mutant R. rubrum H2, which was constructed by allelic exchange deleting puhA and pufBALM, does not form ICM. This strain was used as a host for a plasmid expressing the Pseudomonas aeruginosa membrane protein MscL from the Rhodobacter capsulatus puc promoter. ICM was formed in the H2 strain producing MscL but not in the vector control strain. These results suggest that a heterologous membrane protein stimulates ICM formation in R. rubrum and indicate that the capacity to form an ICM that can accommodate heterologous proteins makes R. rubrum a host that will be useful for membrane protein production. P. aeruginosa MscL, which forms inclusion bodies when produced in Escherichia coli, was expressed in R. rubrum H2 and purified from membranes with a yield of 22.8-23.4 mg/L culture (5.53-5.60 mg/g cell paste). Additionally Streptomyces lividans KcsA and P. aeruginosa CycB were produced and purified from R. rubrum H2 with yields of 13.7-14.4 mg/L culture (2.19-2.55 mg/g cell paste) and 6.6-7.4 mg/L culture (1.1-1.2mg/g cell paste), respectively.
Collapse
Affiliation(s)
- Nicholas C Butzin
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA
| | | | | |
Collapse
|
5
|
Hessner MJ, Wejksnora PJ, Collins ML. Construction, characterization, and complementation of Rhodospirillum rubrum puf region mutants. J Bacteriol 1991; 173:5712-22. [PMID: 1715861 PMCID: PMC208302 DOI: 10.1128/jb.173.18.5712-5722.1991] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rhodospirillum rubrum is a facultatively phototrophic bacterium that, under certain growth conditions, forms an intracytoplasmic chromatophore membrane (ICM) housing the photochemical apparatus. The puf operon of R. rubrum encodes protein subunits of the photochemical reaction center and the B880 light-harvesting antenna complex. Mutant strains of R. rubrum were constructed by interposon mutagenesis through which a kanamycin resistance gene cartridge was inserted into restriction sites and in place of restriction fragments of the puf region. Southern blot analysis demonstrated that the defective copies of puf sequences had replaced their normal chromosomal counterparts through homologous recombination. The phenotypes of the mutant strains were evaluated on the basis of puf gene expression, spectral analysis, pigment content of membranes, and electron-microscopic examination of thin sections of cells grown under semi-aerobic and dark anaerobic conditions. Alterations of the puf region affect phototrophic competence and the formation of the ICM. The latter result implies an obligatory role for puf gene products in ICM formation in R. rubrum. One mutant with a deletion in puf structural genes was complemented in trans to the wild-type phenotype. Other mutants could be restored to the wild-type phenotype only by recombination.
Collapse
Affiliation(s)
- M J Hessner
- Department of Biological Sciences, University of Wisconsin-Milwaukee 53201
| | | | | |
Collapse
|
6
|
Majewski C, Trebst A. The pet genes of Rhodospirillum rubrum: cloning and sequencing of the genes for the cytochrome bc1-complex. MOLECULAR & GENERAL GENETICS : MGG 1990; 224:373-82. [PMID: 2176269 DOI: 10.1007/bf00262431] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A cytochrome bc1-complex of Rs. rubrum was isolated and the three subunits were purified to homogeneity. The N-terminal amino acid sequence of the purified subunits was determined by automatic Edman degradation. The pet genes of Rhodospirillum rubrum coding for the three subunits of the cytochrome bc1-complex were isolated from a genomic library of Rs. rubrum using oligonucleotides specific for conserved regions of the subunits from other organisms and a heterologous probe derived from the genes for the complex of Rb. capsulatus. The complete nucleotide sequence of a 5500 bp SalI/SphI fragment is described which includes the pet genes and three additional unidentified open reading frames. The N-terminal amino acid sequence of the isolated subunits was used for the identification of the three genes. The genes encoding the subunits are organized as follows: Rieske protein, cytochrome b, cytochrome c1. Comparison of the N-terminal protein sequences with the protein sequences deduced from the nucleotide sequence showed that only cytochrome c1 is processed during transport and assembly of the three subunits of the complex. Only the N-terminal methionine of the Rieske protein is cleaved off. The similarity of the deduced amino acid sequence of the three subunits to the corresponding subunits of other organisms is described and implications for structural features of the subunits are discussed.
Collapse
Affiliation(s)
- C Majewski
- Lehrstuhl Biochemie der Pflanzen, Ruhr-Universität, Bochum, FRG
| | | |
Collapse
|
7
|
Myers CR, Collins MLP. Membrane fractionation based on functional composition: Evidence for membrane domains. Curr Microbiol 1989. [DOI: 10.1007/bf01568902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
|
9
|
Myers CR, Collins ML. Cell-cycle-specific oscillation in the composition of chromatophore membrane in Rhodospirillum rubrum. J Bacteriol 1986; 166:818-23. [PMID: 3086290 PMCID: PMC215199 DOI: 10.1128/jb.166.3.818-823.1986] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Synchrony in phototrophic cultures of Rhodospirillum rubrum was induced by stationary-phase cycling or by alterations in light intensity. Intracytoplasmic chromatophore membranes were prepared by differential centrifugation. Analysis of the composition of chromatophores obtained from cells at different times indicated that the protein/bacteriochlorophyll a ratio was constant throughout the cell cycle but that the protein/phospholipid ratio oscillated. This cell-cycle-dependent fluctuation in chromatophore membrane composition was reflected in the buoyant densities of the isolated chromatophores.
Collapse
|
10
|
Collins MLP, Hughes CAN. Identity of succinate dehydrogenase in chemotrophically and phototrophically grown Rhodospirillum rubrum. Arch Microbiol 1983. [DOI: 10.1007/bf00415601] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Yoch DC, Cantu M, Zhang ZM. Evidence for a glutamine synthetase-chromatophore association in the phototroph Rhodospirillum rubrum: purification, properties, and regulation of the enzyme. J Bacteriol 1983; 154:632-9. [PMID: 6132914 PMCID: PMC217510 DOI: 10.1128/jb.154.2.632-639.1983] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The characteristics of soluble and membrane-bound glutamine synthetase (GS) from Rhodospirillum rubrum were compared with those of the enzyme located in situ (measured in detergent-treated cells). The results suggest that in vivo GS may be associated with, or bound to, the chromatophore membranes. GS was found to reversibly associate and dissociate from purified chromatophores as a function of the ionic strength of the buffer or the Mg2+ concentration. Solubilized GS was purified to homogeneity and found to be similar to the GS of enteric bacteria in that its molecular weight was about 600,000 and it had one type of subunit of 51,000 molecular weight. Removal of GS from the membrane had no effect on the Km values for the substrates of the biosynthetic reaction, but it did have a substantial effect on both its Mg2+ requirement (the Km increased 10-fold) and the sensitivity of the gamma-glutamyl transferase reaction to the inhibitor methionine sulfoximine (the I0.5 decreased from 1,500 to 60 microM). Both observations suggest that the active site of GS is influenced by its association with the membrane. GS activity was shown to respond to NH4+, phosphodiesterase, Mg2+, and adenylylation cofactors in a manner identical to that of the GS of the coliform bacteria, suggesting that the former may also respond to adenylylation and deadenylylation. Finally, R. rubrum GS was also inhibited by NH4+ by a newly observed, as yet undefined, system.
Collapse
|
12
|
Inamine GS, Niederman RA. Development and growth of photosynthetic membranes of Rhodospirillum rubrum. J Bacteriol 1982; 150:1145-53. [PMID: 6804438 PMCID: PMC216335 DOI: 10.1128/jb.150.3.1145-1153.1982] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In cell-free extracts from low-aeration suspensions of Rhodospirillum rubrum strain G-9, bacteriochlorophyll a was distributed in two bands after rate-zone sedimentation in sucrose density gradients. From the physicochemical properties of these fractions, it was concluded that the upper band consisted of small membrane fragments, whereas the major band was composed of fragmented vesicular intracytoplasmic membrane (chromatophores). After a pulse with L-[35S]methionine, apparent polypeptide subunits of the reaction center and light-harvesting complexes within the upper pigmented fraction were labeled more rapidly than those of chromatophores; after a chase with excess unlabeled L-methionine, radioactivity from these components within the upper band appeared to be chased into the corresponding polypeptides of chromatophores. These labeling patterns are interpreted to reflect growth initiation and maturation of the photosynthetic apparatus and may, in part, represent a general mechanism for the development of vesicular intracytoplasmic membranes.
Collapse
|
13
|
|
14
|
|
15
|
Francis GA, Richards WR. Localization of photosynthetic membrane components in Rhodopseudomonas sphaeroides by a radioactive labeling procedure. Biochemistry 1980; 19:5104-11. [PMID: 6970049 DOI: 10.1021/bi00563a026] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Reduction with [3H]KBH4 of Schiff's bases generated by reaction with pyridoxal 5'-phosphate (which cannot penetrate the intact cytoplasmic membrane) yields tritium-labeled derivatives of both proteins and lipids accessible on the periplasmic side of the cytoplasmic membrane. Application of this technique to phototrophically grown Rhodopseudomonas sphaeroides labeled both the cell envelope and chromatophore fractions. The technique was also applied to R. sphaeroides harvested at various times during an adaptation from heterotrophic to phototrophic growth conditions. The specific activity of the chromatophore fraction after 20 h of adaptation was 76% of that found at the beginning, indicating that the intracytoplasmic membranes and cytoplasmic membrane form a continuous membrane system, with the majority of the intracytoplasmic membranes accessible to the external medium throughout the adaptation. The identity of the proteins labeled by this technique was investigated in two fractions labeled after cell disruption: normal "inside-out" chromatophores and "right-side-out" membrane vesicles isolated by lysozyme--osmotic shock treatment of cells grown in high light intensity (15000 lx). The results after sodium dodecyl sulfate--polyacrylamide gel electrophoresis and fluorography indicated that the 28000-dalton subunit (and to a lesser extent the 21000-dalton subunit) of the reaction center complex and two polypeptides in the light-harvesting region of the gel were heavily labeled in the chromatophores and were thus accessible on the cytoplasmic side of the membrane. At least one of the latter two polypeptides was also labeled in the membrane vesicles and was thus also accessible on the periplasmic side of the membrane. None of the reaction center subunits was significantly labeled in a reaction center complex prepared from the membrane vesicle sample.
Collapse
|
16
|
Collins ML, Mallon DE, Niederman RA. Assessment of Rhodopseudomonas sphaeroides chromatophore membrane asymmetry through bilateral antiserum adsorption studies. J Bacteriol 1980; 143:221-30. [PMID: 6967482 PMCID: PMC294215 DOI: 10.1128/jb.143.1.221-230.1980] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The asymmetric structure of the Rhodopseudomonas sphaeroides chromatophore membrane was examined in detail by crossed immunoelectrophoresis techniques. Because these methods are quantitative and allow increased resolution and sensitivity, it was possible to analyze simultaneously the relative transmembrane distribution of a number of previously identified antigenic components. This was demonstrated by analysis of immunoglobulin samples that were adsorbed by preincubation with either isolated chromatophores or osmotically protected spheroplasts. The photochemical reaction center, the light-harvesting bacteriochlorophyll a-protein complex, the L-lactate dehydrogenase, and reduced nicotinamide adenine dinucleotide dehydrogenase (EC 1.6.99.3) were found to be exposed on the chromatophore surface (cytoplasmic aspect of the membrane within the cell). Other antigenic components were found to be exposed on the surface of spheroplasts (periplasmic aspect of the in vivo chromatophore membrane). Antigens with determinants expressed on both sides of the chromatophore membrane were also identified. Charge shift crossed immunoelectrophoresis confirmed the suggested amphiphilic character of the pigment-protein complexes and identified several additional amphiphilic membrane components.
Collapse
|
17
|
Niederman RA, Hunter CN, Mallon DE, Jones OT. Detection of cytochrome b+50 in membranes of Rhodospirillum rubrum isolated from aerobically and phototrophically grown cells. Biochem J 1980; 186:453-9. [PMID: 6769433 PMCID: PMC1161596 DOI: 10.1042/bj1860453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
1. Dark equilibrium potentiometric titrations were conducted on membranes purified from Rhodospirillum rubrum in an effort to identify b-type cytochrome components reported in other Rhodospirillaceae. In preparations from aerobically grown cells virtually devoid of bacteriochlorophyll a, three components were observed at 560-540 nm. Their oxidation-reduction midpoint potentials assigned by computer-assisted analysis were +195, +50 and -110 mV at pH 7.0; each of these fitted closely to theoretical single-electron equivalent curves. 2. In chromatophores from phototrophically grown carotenoidless mutant G-9, three components were also observed with E0' +190, +50 and -90mV. 3. The alpha-band of the +50mV component exhibited an absorption maximum near 560nm in difference spectra obtained at fixed oxidation-reduction potentials. 4. This component could be demonstrated most readily in purified membrane preparations and may have been obscured in previous studies by residual cytochrome c'. 5. This is the first definitive report of cytochrome b+50 in membranes from Rs. rubrum and aligns this bacterium with other Rhodospirillaceae in which this component functions in light-driven cyclic electron flow.
Collapse
|
18
|
Abstract
The chromatophores of Chromatium vinosum, as well as six other photosynthetic bacteria, contained two or more proteins which were insoluble when heated in the presence of sodium dodecyl sulfate (SDS) and 2-mercaptoethanol (beta-ME). When the chromatophores were dissolved at room temperature in SDS-beta-ME, these proteins were present in the SDS-polyacrylamide gel electrophoresis profiles, but when the samples were dissolved at 100 degrees C, they were absent or considerably diminished. When one-dimensional gels of chromatophores solubilized at room temperature were soaked in the SDS-beta-ME solution and heated to 100 degrees C and the gels were run in a second dimension, the proteins became immobilized in the original first-dimension gel, where they could be detected by staining. The two major proteins so affected in C. vinosum had apparent molecular weights of 28,000 and 21,000. The chromatophores of several other photosynthetic bacteria also contained predominant proteins between 30,000 and 19,000 molecular weight, which became insoluble when heated in the presence of SDS and beta-ME. In at least two of the species examined, these appeared to be reaction center proteins. The conditions causing the proteins to become insoluble were complex and involved temperature, SDS concentration, and the presence of sulfhydryl reagents. The chromatophores of four of the Chromatiaceae species and two strains of one of the Rhodospirillaceae species examined had a protein-pigment complex that was visible in SDS-polyacrylamide gel profiles of samples dissolved at room temperature but was absent in samples dissolved at 100 degrees C.
Collapse
|
19
|
Shepherd WD, Kaplan S. A rapid method for the isolation of intracytoplasmic membranes from Rhodopseudomonas sphaeroides using an air-driven ultracentrifuge. Anal Biochem 1978; 91:194-8. [PMID: 9762099 DOI: 10.1016/0003-2697(78)90831-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
A method has been developed for the isolation intracytoplasmic (ICM) vesicles (chromatophores) from Rhodopseudomonas sphaeroides using an air-driven ultracentrifuge. Application of conventional techniques used for preparative scale equipment to the air-driven ultracentrifuge allows the rapid isolation of ICM vesicles from reduced quantities of starting material. Sodium dodecyl sulfatepolyacrylamide gel electrophoresis profiles of ICM vesicles isolated in this fashion are essentially indistinguishable from those isolated by conventional means.
Collapse
Affiliation(s)
- W D Shepherd
- Department of Microbiology, University of Illinois, Urbana 61801, USA
| | | |
Collapse
|
20
|
Shepherd WD, Kaplan S. Effect of heat and 2-mercaptoethanol on intracytoplasmic membrane polypeptides of Rhodopseudomonas sphaeroides. J Bacteriol 1978; 135:656-67. [PMID: 308064 PMCID: PMC222427 DOI: 10.1128/jb.135.2.656-667.1978] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Solubilization at 75 degrees C of Rhodopseudomonas sphaeroides chromatophores in the presence of sodium dodecyl sulfate (SDS) and 2-mercaptoethanol (beta-ME) resulted in the selective absence of reaction center B and C polypeptides from SDS-polyacrylamide gel electrophoresis profiles. A newly identified, chromatophore-specific polypeptide, with a mass of 35.2 kdaltons, was also missing under these conditions of chromatophore solubilization. Solubilization at 27 degrees C in the presence of SDS and beta-ME also resulted in the disappearance of these three polypeptides, but at much slower rates. Disappearance of either endogenous or exogenously supplied reaction center polypeptides B and C during SDS solubilization of whole chromatophores at either 27 or 75 degrees C was shown to be entirely dependent upon the presence of beta-ME. After chromatophore solubilization in the presence of beta-ME and subsequent SDS-polyacrylamide gel electrophoresis, exogenously added reaction centers B and C could be localized in a complex of no less than 100 to 200 kdaltons. However, the precise size of the complex was influenced by the stoichiometry of the reacting components. The disappearance of the 35.2-kdalton polypeptide was neither dependent upon the presence of beta-ME nor dependent upon the presence of any additional chromatophore polypeptides. The 35.2-kdalton polypeptide underwent a heat-induced oligomerization to yield several high-molecular-weight species.
Collapse
|
21
|
Markwell JP, Lascelles J. Membrane-bound, pyridine nucleotide-independent L-lactate dehydrogenase of Rhodopseudomonas sphaeroides. J Bacteriol 1978; 133:593-600. [PMID: 304854 PMCID: PMC222063 DOI: 10.1128/jb.133.2.593-600.1978] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rhodopseudomonas sphaeroides has a pyridine nucleotide-independent L-lactate dehydrogenase associated with the membrane fraction of cells grown either aerobically or phototrophically. The dehydrogenase is present in cells grown on a variety of carbon sources, but at levels less than 20% of that found in cells grown with DL-lactate. The dehydrogenase has been purified 45-fold from membranes of strain L-57, a non-photosynthetic mutant, by steps involving solubilization with lauryl dimethylamine oxide and three anion-exchange chromatography steps. The purified enzyme was specific for the L-isomer of lactate. The Km of the purified enzyme for L-lactate is 1.4 mM, whereas that of the membrane-associated enzyme is 0.5 mM. The enzyme activity was inhibited competitively by D-lactate and non-competitively by oxalate and oxamate. Quinacrine, a flavin analog, also inhibited the activity. The inducible enzyme may serve as a marker of membrane protein in studies of membrane development.
Collapse
|
22
|
Collins ML, Niederman RA. Membranes of Rhodospirillum rubrum: isolation and physicochemical properties of membranes from aerobically grown cells. J Bacteriol 1976; 126:1316-25. [PMID: 820689 PMCID: PMC233158 DOI: 10.1128/jb.126.3.1316-1325.1976] [Citation(s) in RCA: 43] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Highly purified preparations of cytoplasmic and outer membrane were isolated from aerobically grown Rhodospirillum rubrum lysed by sequential treatment with lysozyme, ethylenediaminetetraacetate, and Brij 58. The membranes were resolved and separated from other cellular constitutents by a combination of velocity and isopyknic sedimentation in sucrose density gradients. On the basis of their appearance in electron micrographs and their protein profiles in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, these preparations appear to be quite similar to those obtained from other gram-negative bacteria. The cytoplasmic membrane fraction contained the majority of the total membrane-bound succinic dehydrogenase activity and was 10-fold enriched in b- and c-type cytochrome with respect to the outer membrane. The latter fraction was characterized by a much greater carbohydrate content and the presence of arachidic acid, which is typical of R. rubrum lipopolysaccharide. Their protein fatty acid, and overall chemical compositions suggested that these preparations were freer from cross-contamination than those obtained from R. rubrum with currently available methods.
Collapse
|