1
|
Dost C, Michling F, Kaimenyi D, Rij M, Wendland J. Isolation of Saccharomycopsis species from plant material. Microbiol Res 2024; 283:127691. [PMID: 38492364 DOI: 10.1016/j.micres.2024.127691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
Saccharomycopsis species are natural organic sulphur auxotrophs. Their genomes do not encode genes for the uptake and assimilation of sulphate and thus these species cannot grow on media lacking e.g. methionine. Due to the similarity between sulphate and selenate, uptake and assimilation of selenate occurs through the same pathway starting from sulphate transporters encoded by the homologs of the SUL1 and SUL2 genes in S. cerevisiae. Lack of these transporters renders Saccharomycopsis species resistant to selenate levels that are toxic to other microorganisms. We used this feature to enrich environmental samples for Saccharomycopsis species. This led to the isolation of S. schoenii, S. lassenensis and a hitherto undescribed Saccharomycopsis species with limited by-catch of other yeasts, mainly belonging to Metschnikowia and Hanseniaspora. We performed growth and predation assays to characterize the potential of these new isolates as predacious yeasts. Most Saccharomycopsis species are temperature sensitive and cannot grow at 37°C; with the exception of S. lassenensis strains. Predation assays with S. schoenii and S. cerevisiae as prey indicated that predation was enhanced at 20°C compared to 30°C. We crossed an American isolate of S. schoenii with our German isolate using marker directed breeding. Viable progeny indicated that both strains are interfertile and belong to the same biological species. S. lassenensis is heterothallic, while S. schoenii and the new Saccharomycopsis isolate, for which we suggest the name S. geisenheimensis sp. nov., are homothallic.
Collapse
Affiliation(s)
- Carmen Dost
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany; Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany
| | - Florian Michling
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany; Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany
| | - Davies Kaimenyi
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany
| | - Mareike Rij
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany
| | - Jürgen Wendland
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany; Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany.
| |
Collapse
|
2
|
Narayan OP, Kumar P, Yadav B, Dua M, Johri AK. Sulfur nutrition and its role in plant growth and development. PLANT SIGNALING & BEHAVIOR 2023; 18:2030082. [PMID: 35129079 PMCID: PMC10730164 DOI: 10.1080/15592324.2022.2030082] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Sulfur is one of the essential nutrients that is required for the adequate growth and development of plants. Sulfur is a structural component of protein disulfide bonds, amino acids, vitamins, and cofactors. Most of the sulfur in soil is present in organic matter and hence not accessible to the plants. Anionic form of sulfur (SO42-) is the primary source of sulfur for plants that are generally present in minimal amounts in the soil. It is water-soluble, so readily leaches out of the soil. Sulfur and sulfur-containing compounds act as signaling molecules in stress management as well as normal metabolic processes. They also take part in crosstalk of complex signaling network as a mediator molecule. Plants uptake sulfate directly from the soil by using their dedicated sulfate transporters. In addition, plants also use the sulfur transporter of a symbiotically associated organism like bacteria and fungi to uptake sulfur from the soil especially under sulfur depleted conditions. So, sulfur is a very important component of plant metabolism and its analysis with different dimensions is highly required to improve the overall well-being of plants, and dependent animals as well as human beings. The deficiency of sulfur leads to stunted growth of plants and ultimately loss of yield. In this review, we have focused on sulfur nutrition, uptake, transport, and inter-organismic transfer to host plants. Given the strong potential for agricultural use of sulfur sources and their applications, we cover what is known about sulfur impact on the plant health. We identify opportunities to expand our understanding of how the application of soil microbes like AMF or other root endophytic fungi affects plant sulfur uptake and in turn plant growth and development.
Collapse
Affiliation(s)
| | - Paras Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Xu Q, Zhang S, Ren J, Li K, Li J, Guo Y. Uptake of Selenite by Rahnella aquatilis HX2 Involves the Aquaporin AqpZ and Na +/H + Antiporter NhaA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2371-2379. [PMID: 36734488 DOI: 10.1021/acs.est.2c07028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microbial transformation of selenite [Se(IV)] to elemental selenium nanoparticles (SeNPs) is known to be an important process for removing toxic soluble selenium (Se) oxyanions and recovery of Se from the environment as valuable nanoparticles. However, the mechanism of selenite uptake by microorganisms, the first step through which Se exerts its cellular function, remains not well studied. In this study, the effects of selenite concentration, time, pH, metabolic inhibitors, and anionic analogues on selenite uptake in Rahnella aquatilis HX2 were investigated. Selenite uptake by R. aquatilis HX2 was concentration- and time-dependent, and its transport activity was significantly dependent on pH. In addition, selenite uptake in R. aquatilis HX2 was significantly inhibited by the aquaporin inhibitor AgNO3 and sulfite (SO32-), and partially inhibited by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and 2,4-dinitrophenol (2,4-DNP) treatments. Three mutants with in-frame deletions of aqpZ, glpF, and nhaA genes were constructed. The transport assay showed that the water channel protein AqpZ, and not GlpF, was a key channel of selenite uptake by R. aquatilis HX2, and sulfite and selenite had a common uptake pathway. In addition, the Na+/H+ antiporter NhaA is also involved in selenite uptake in R. aquatilis HX2.
Collapse
Affiliation(s)
- Qiaolin Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Sasa Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Jing Ren
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Kui Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Jing Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Karuppiah V, Zhang C, Liu T, Li Y, Chen J. Transcriptome Analysis of T. asperellum GDFS 1009 Revealed the Role of MUP1 Gene on the Methionine-Based Induction of Morphogenesis and Biological Control Activity. J Fungi (Basel) 2023; 9:jof9020215. [PMID: 36836329 PMCID: PMC9963050 DOI: 10.3390/jof9020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Trichoderma spp. are biological control agents extensively used against various plant pathogens. However, the key genes shared for the growth, development and biological activity are unclear. In this study, we explored the genes responsible for the growth and development of T. asperellum GDFS 1009 under liquid-shaking culture compared to solid-surface culture. Transcriptome analysis revealed 2744 differentially expressed genes, and RT-qPCR validation showed that the high-affinity methionine permease MUP1 was the key gene for growth under different media. Deletion of the MUP1 inhibited the transport of amino acids, especially methionine, thereby inhibiting mycelial growth and sporulation, whereas inhibition could be mitigated by adding methionine metabolites such as SAM, spermidine and spermine. The MUP1 gene responsible for the methionine-dependent growth of T. asperellum was confirmed to be promoted through the PKA pathway but not the MAPK pathway. Furthermore, the MUP1 gene also increased the mycoparasitic activity of T. asperellum against Fusarium graminearum. Greenhouse experiments revealed that MUP1 strengthens the Trichoderma-induced crop growth promotion effect and SA-induced pathogen defense potential in maize. Our study highlights the effect of the MUP1 gene on growth and morphological differentiation and its importance for the agricultural application of Trichoderma against plant diseases.
Collapse
Affiliation(s)
- Valliappan Karuppiah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tong Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Hainan University, Haikou 570228, China
| | - Yi Li
- Shanghai Dajing Biotec. Ltd., Shanghai 201100, China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence:
| |
Collapse
|
5
|
Asghari-Paskiabi F, Imani M, Rafii-Tabar H, Razzaghi-Abyaneh M. Physicochemical properties, antifungal activity and cytotoxicity of selenium sulfide nanoparticles green synthesized by Saccharomyces cerevisiae. Biochem Biophys Res Commun 2019; 516:1078-1084. [PMID: 31280861 DOI: 10.1016/j.bbrc.2019.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 11/17/2022]
Abstract
Selenium sulfide is a well-known bioactive chemical whose biosynthesis as a nanoparticle (NP) is a controversial issue. In the present study, we employed Saccharomyces cerevisiae to generate a novel synthetic process of selenium sulfide NPs. The addition of selenium/sulfur precursors to S. cerevisiae culture produced NPs, which we isolated and characterized the physicochemical properties, toxicity, and antifungal activity. Transmission electron microscopy indicated the presence of the NPs inside the cells. Selenium sulfide NPs were successfully synthesized with average size of 6.0 and 153 nm with scanning electron micrographs and 360 and 289 nm in Zeta sizer using different precursors. The presence of sulfur/selenium in the particles was confirmed by energy-dispersive X-ray spectroscopy and elemental mapping. Fourier-transform infrared spectroscopy supported the production of selenium sulfide NPs. X-ray diffractograms showed the presence of characteristic peaks of selenium sulfide NPs which were further confirmed by mass spectrometry. The obtained NPs strongly inhibited the growth of pathogenic fungi that belonged to the genera Aspergillus, Candida, Alternaria and the dermatophytes, while no cytotoxicity was observed in MTT assay. In conclusion, efficient green synthesis of selenium sulfide NPs with appropriate physicochemical properties is possible in bio-systems like S. cerevisiae.
Collapse
Affiliation(s)
- Farnoush Asghari-Paskiabi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mohammad Imani
- Novel Drug Delivery Systems Department, Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Iran.
| | - Hashem Rafii-Tabar
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | |
Collapse
|
6
|
The Complete Pathway for Thiosulfate Utilization in Saccharomyces cerevisiae. Appl Environ Microbiol 2018; 84:AEM.01241-18. [PMID: 30217845 DOI: 10.1128/aem.01241-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/02/2018] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae is known to grow with thiosulfate as a sulfur source, and it produces more ethanol when using thiosulfate than using sulfate. Here, we report how it assimilates thiosulfate. S. cerevisiae absorbed thiosulfate into the cell through two sulfate permeases, Sul1 and Sul2. Two rhodaneses, Rdl1 and Rdl2, converted thiosulfate to a persulfide and sulfite. The persulfide was reduced by cellular thiols to H2S, and sulfite was reduced by sulfite reductase to H2S. Cysteine synthase incorporated H2S into O-acetyl-l-homoserine to produce l-homocysteine, which is the precursor for cysteine and methionine in S. cerevisiae Several other rhodaneses replaced Rdl1 and Rdl2 for thiosulfate utilization in the yeast. Thus, any organisms with the sulfate assimilation system potentially could use thiosulfate as a sulfur source, since rhodaneses are common in most organisms.IMPORTANCE The complete pathway of thiosulfate assimilation in baker's yeast is determined. The finding reveals the extensive overlap between sulfate and thiosulfate assimilation. Rhodanese is the only additional enzyme for thiosulfate utilization. The common presence of rhodanese in most organisms, including Bacteria, Archaea, and Eukarya, suggests that most organisms with the sulfate assimilation system also use thiosulfate. Since it takes less energy to reduce thiosulfate than sulfate for assimilation, thiosulfate has the potential to become a choice of sulfur in optimized media for industrial fermentation.
Collapse
|
7
|
Harp TL, Correll JC. Recovery and characterization of spontaneous, selenate-resistant mutants ofMagnaporthe grisea, the rice blast pathogen. Mycologia 2018. [DOI: 10.1080/00275514.1998.12026992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Tyler L. Harp
- Department of Plant Pathology, University of Arkansas, 217 Plant Science, Fayetteville, Arkansas 72701
| | - James C. Correll
- Department of Plant Pathology, University of Arkansas, 217 Plant Science, Fayetteville, Arkansas 72701
| |
Collapse
|
8
|
Huang CW, Walker ME, Fedrizzi B, Gardner RC, Jiranek V. Hydrogen sulfide and its roles in Saccharomyces cerevisiae in a winemaking context. FEMS Yeast Res 2017; 17:4056150. [DOI: 10.1093/femsyr/fox058] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/28/2017] [Indexed: 01/02/2023] Open
|
9
|
Holt S, Kankipati H, De Graeve S, Van Zeebroeck G, Foulquié-Moreno MR, Lindgreen S, Thevelein JM. Major sulfonate transporter Soa1 in Saccharomyces cerevisiae and considerable substrate diversity in its fungal family. Nat Commun 2017; 8:14247. [PMID: 28165463 PMCID: PMC5303821 DOI: 10.1038/ncomms14247] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/12/2016] [Indexed: 11/24/2022] Open
Abstract
Sulfate is a well-established sulfur source for fungi; however, in soils sulfonates and sulfate esters, especially choline sulfate, are often much more prominent. Here we show that Saccharomyces cerevisiae YIL166C(SOA1) encodes an inorganic sulfur (sulfate, sulfite and thiosulfate) transporter that also catalyses sulfonate and choline sulfate uptake. Phylogenetic analysis of fungal SOA1 orthologues and expression of 20 members in the sul1Δ sul2Δ soa1Δ strain, which is deficient in inorganic and organic sulfur compound uptake, reveals that these transporters have diverse substrate preferences for sulfur compounds. We further show that SOA2, a S. cerevisiae SOA1 paralogue found in S. uvarum, S. eubayanus and S. arboricola is likely to be an evolutionary remnant of the uncharacterized open reading frames YOL163W and YOL162W. Our work highlights the importance of sulfonates and choline sulfate as sulfur sources in the natural environment of S. cerevisiae and other fungi by identifying fungal transporters for these compounds. Sulfonates are a major source of sulphur for soil microbes but their cellular uptake is still not fully understood. Here the authors show that Saccharomyces cerevisiae YIL166C(SOA1) encodes for an inorganic sulphur transporter that can also function as a sulfonate and choline sulphate transporter.
Collapse
Affiliation(s)
- Sylvester Holt
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| | - Harish Kankipati
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| | - Stijn De Graeve
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| | - Maria R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| | - Stinus Lindgreen
- Carlsberg Research Laboratory, Gamle Carlsberg Vej 4, 1799 Copenhagen V, Denmark
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| |
Collapse
|
10
|
Biochemistry and Physiology of Heavy Metal Resistance and Accumulation in Euglena. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:91-121. [PMID: 28429319 DOI: 10.1007/978-3-319-54910-1_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Free-living microorganisms may become suitable models for removal of heavy metals from polluted water bodies, sediments, and soils by using and enhancing their metal accumulating abilities. The available research data indicate that protists of the genus Euglena are a highly promising group of microorganisms to be used in bio-remediation of heavy metal-polluted aerobic and anaerobic acidic aquatic environments. This chapter analyzes the variety of biochemical mechanisms evolved in E. gracilis to resist, accumulate and remove heavy metals from the environment, being the most relevant those involving (1) adsorption to the external cell pellicle; (2) intracellular binding by glutathione and glutathione polymers, and their further compartmentalization as heavy metal-complexes into chloroplasts and mitochondria; (3) polyphosphate biosynthesis; and (4) secretion of organic acids. The available data at the transcriptional, kinetic and metabolic levels on these metabolic/cellular processes are herein reviewed and analyzed to provide mechanistic basis for developing genetically engineered Euglena cells that may have a greater removal and accumulating capacity for bioremediation and recycling of heavy metals.
Collapse
|
11
|
O'Connor CJ, Singh RM, Walde P, Spedding DJ. The Effect of pH on the Uptake of 35S(-II) by Wine Yeasts. J BIOACT COMPAT POL 2016. [DOI: 10.1177/088391158600100205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The rates of uptake of 35S from S(-II) solutions by wine yeasts, Saccharomyces cerevisiae strains R92 and R104 and Saccharomyces chevalieri strain R93, were measured at a variety of solution pH values between pH 3.1 and pH 7.8. A pH effect was observed, the rates of uptake being higher at the lower pH values, but this effect was not related entirely to changes in the H2S or HS- concentration. The transport process of S(-II) appeared to be due to simple diffusion of H2S(aq) and carrier mediated transport of HS-(aq). The kinetic constants Km and V max were calculated for the carrier component of the mechanism at pH 7.2 and the permeability coefficient P was calculated for the diffusion of H2S(aq) at pH 3.1 and 7.2. By using these parameters, it was possible to calculate a theoretical ini tial rate of uptake over a range of extracellular S(-II) concentrations (0 to 50 mmoll-1) at pH 3.1 and pH 7.2. The experimentally determined initial rates were found to agree, within the experimental error, with the theoretical values. The initial rate of uptake of S(-II) and the values of Km for yeast strain R104 (a low sulfide producer) were found to be less than those for both strain R92 (a normal sulfide producer) and for strain R93 (a high sulfide producer).
Collapse
Affiliation(s)
- Charmian J. O'Connor
- Department of Chemistry University of Auckland Private Bag Auckland, New Zealand
| | - Ragina M.D. Singh
- Department of Chemistry University of Auckland Private Bag Auckland, New Zealand
| | - Peter Walde
- Department of Chemistry University of Auckland Private Bag Auckland, New Zealand
| | - D. John Spedding
- Department of Chemistry University of Auckland Private Bag Auckland, New Zealand
| |
Collapse
|
12
|
O'Connor CJ, Ashford KP, Singh RM. Uptake of 35S-sulfur from Sulfate by Pinus radiata Pollen. J BIOACT COMPAT POL 2016. [DOI: 10.1177/088391158600100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The rates of uptake of 35S from sulfate solutions by Pinus radiata pollen were measured at a variety of extracellular concentrations (0.049—1.96 mM) of sulfate and over the temperature range 1—50°C. The transport process is not one of diffusion but appears to be carrier assisted by two carriers having dif ferent sulfate affinities. Values of Km for both carriers exhibit bell-shaped pro files when plotted against temperature. The temperature for maximum values of Km are 22 ° C and 35 ° C for the high affinity (low concentration) and low affin ity (high concentration) carriers, respectively. The activation energies for all concentrations of sulfate are greater than 147 kJ mol-1 and these high values are consistent with a carrier mediated process. The uptake of 35SO42- from a 0.196 mM sulfate solution was inhibited by the metabolic inhibitors cyanide, azide and carbonyl cyanide-m-chlorophenylhydrazone but enhanced by the metabolic energy source, adenosine-5'-triphosphate. These results support the proposal that SO42- transport is assisted by a carrier molecule. The rate of up take did not decrease in the presence of the structural isomer MoO42-, suggest ing that the high affinity carrier is specific for SO42-.
Collapse
Affiliation(s)
- Charmian J. O'Connor
- Department of Chemistry University of Auckland Private Bag Auckland, New Zealand
| | - Kathryn P. Ashford
- Department of Chemistry University of Auckland Private Bag Auckland, New Zealand
| | - Ragina M.D. Singh
- Department of Chemistry University of Auckland Private Bag Auckland, New Zealand
| |
Collapse
|
13
|
García-García JD, Sánchez-Thomas R, Moreno-Sánchez R. Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms. Biotechnol Adv 2016; 34:859-873. [PMID: 27184302 DOI: 10.1016/j.biotechadv.2016.05.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/29/2023]
Abstract
Free-living microorganisms may become suitable models for recovery of non-essential and essential heavy metals from wastewater bodies and soils by using and enhancing their accumulating and/or leaching abilities. This review analyzes the variety of different mechanisms developed mainly in bacteria, protists and microalgae to accumulate heavy metals, being the most relevant those involving phytochelatin and metallothionein biosyntheses; phosphate/polyphosphate metabolism; compartmentalization of heavy metal-complexes into vacuoles, chloroplasts and mitochondria; and secretion of malate and other organic acids. Cyanide biosynthesis for extra-cellular heavy metal bioleaching is also examined. These metabolic/cellular processes are herein analyzed at the transcriptional, kinetic and metabolic levels to provide mechanistic basis for developing genetically engineered microorganisms with greater capacities and efficiencies for heavy metal recovery, recycling of heavy metals, biosensing of metal ions, and engineering of metalloenzymes.
Collapse
Affiliation(s)
- Jorge D García-García
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F. 14080, México.
| | - Rosina Sánchez-Thomas
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F. 14080, México
| | - Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F. 14080, México
| |
Collapse
|
14
|
Samyn DR, Persson BL. Inorganic Phosphate and Sulfate Transport in S. cerevisiae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:253-269. [PMID: 26721277 DOI: 10.1007/978-3-319-25304-6_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inorganic ions such as phosphate and sulfate are essential macronutrients required for a broad spectrum of cellular functions and their regulation. In a constantly fluctuating environment microorganisms have for their survival developed specific nutrient sensing and transport systems ensuring that the cellular nutrient needs are met. This chapter focuses on the S. cerevisiae plasma membrane localized transporters, of which some are strongly induced under conditions of nutrient scarcity and facilitate the active uptake of inorganic phosphate and sulfate. Recent advances in studying the properties of the high-affinity phosphate and sulfate transporters by means of site-directed mutagenesis have provided further insight into the molecular mechanisms contributing to substrate selectivity and transporter functionality of this important class of membrane transporters.
Collapse
Affiliation(s)
- D R Samyn
- Department of Chemistry and Biomedical Sciences, Centre for Biomaterials Chemistry, Linnaeus University, 391 82, Kalmar, Sweden.
| | - B L Persson
- Department of Chemistry and Biomedical Sciences, Centre for Biomaterials Chemistry, Linnaeus University, 391 82, Kalmar, Sweden
| |
Collapse
|
15
|
Herrero E, Wellinger RE. Yeast as a model system to study metabolic impact of selenium compounds. MICROBIAL CELL 2015; 2:139-149. [PMID: 28357286 PMCID: PMC5349236 DOI: 10.15698/mic2015.05.200] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inorganic Se forms such as selenate or selenite (the two more abundant forms in nature) can be toxic in Saccharomyces cerevisiae cells, which constitute an adequate model to study such toxicity at the molecular level and the functions participating in protection against Se compounds. Those Se forms enter the yeast cell through other oxyanion transporters. Once inside the cell, inorganic Se forms may be converted into selenide through a reductive pathway that in physiological conditions involves reduced glutathione with its consequent oxidation into diglutathione and alteration of the cellular redox buffering capacity. Selenide can subsequently be converted by molecular oxygen into elemental Se, with production of superoxide anions and other reactive oxygen species. Overall, these events result in DNA damage and dose-dependent reversible or irreversible protein oxidation, although additional oxidation of other cellular macromolecules cannot be discarded. Stress-adaptation pathways are essential for efficient Se detoxification, while activation of DNA damage checkpoint and repair pathways protects against Se-mediated genotoxicity. We propose that yeast may be used to improve our knowledge on the impact of Se on metal homeostasis, the identification of Se-targets at the DNA and protein levels, and to gain more insights into the mechanism of Se-mediated apoptosis.
Collapse
Affiliation(s)
- Enrique Herrero
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Rovira Roure 80, 25198 Lleida, Spain
| | - Ralf E Wellinger
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, 41092 Sevilla, Spain
| |
Collapse
|
16
|
Kankipati HN, Rubio-Texeira M, Castermans D, Diallinas G, Thevelein JM. Sul1 and Sul2 sulfate transceptors signal to protein kinase A upon exit of sulfur starvation. J Biol Chem 2015; 290:10430-46. [PMID: 25724649 PMCID: PMC4400352 DOI: 10.1074/jbc.m114.629022] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Indexed: 11/24/2022] Open
Abstract
Sulfate is an essential nutrient with pronounced regulatory effects on cellular metabolism and proliferation. Little is known, however, about how sulfate is sensed by cells. Sul1 and Sul2 are sulfate transporters in the yeast Saccharomyces cerevisiae, strongly induced upon sulfur starvation and endocytosed upon the addition of sulfate. We reveal Sul1,2-dependent activation of PKA targets upon sulfate-induced exit from growth arrest after sulfur starvation. We provide two major arguments in favor of Sul1 and Sul2 acting as transceptors for signaling to PKA. First, the sulfate analogue, d-glucosamine 2-sulfate, acted as a non-transported agonist of signaling by Sul1 and Sul2. Second, mutagenesis to Gln of putative H+-binding residues, Glu-427 in Sul1 or Glu-443 in Sul2, abolished transport without affecting signaling. Hence, Sul1,2 can function as pure sulfate sensors. Sul1E427Q and Sul2E443Q are also deficient in sulfate-induced endocytosis, which can therefore be uncoupled from signaling. Overall, our data suggest that transceptors can undergo independent conformational changes, each responsible for triggering different downstream processes. The Sul1 and Sul2 transceptors are the first identified plasma membrane sensors for extracellular sulfate. High affinity transporters induced upon starvation for their substrate may generally act as transceptors during exit from starvation.
Collapse
Affiliation(s)
- Harish Nag Kankipati
- From the Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium, the Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium, and
| | - Marta Rubio-Texeira
- From the Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium, the Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium, and
| | - Dries Castermans
- From the Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium, the Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium, and
| | - George Diallinas
- the Faculty of Biology, University of Athens, Panepistimioupolis, Athens 15784, Greece
| | - Johan M Thevelein
- From the Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium, the Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium, and
| |
Collapse
|
17
|
Novick PJ. A pathway of a hundred genes starts with a single mutant: isolation of sec1-1. Proc Natl Acad Sci U S A 2014; 111:9019-9020. [PMID: 24958859 PMCID: PMC4078845 DOI: 10.1073/pnas.1404892111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023] Open
Affiliation(s)
- Peter J Novick
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
18
|
|
19
|
Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2012. [PMID: 0 DOI: 10.1016/j.envexpbot.2012.04.006] [Citation(s) in RCA: 615] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
20
|
Jennings ML, Cui J. Inactivation of Saccharomyces cerevisiae sulfate transporter Sul2p: use it and lose it. Biophys J 2012; 102:768-76. [PMID: 22385847 DOI: 10.1016/j.bpj.2012.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 12/09/2011] [Accepted: 01/03/2012] [Indexed: 12/12/2022] Open
Abstract
Saccharomyces cerevisiae SO(4)(=) transport is regulated over a wide dynamic range. Sulfur starvation causes ∼10,000-fold increase in the (35)SO(4)(=) influx mediated by transporters Sul1p and Sul2p; >80% of the influx is via Sul2p. Adding methionine to S-starved cells causes a 50-fold decline (t(1/2) ∼5 min) in SUL1 and SUL2 mRNA but a slower decline (t(1/2) ∼1 h) in transport. In contrast, SO(4)(=) addition does not affect mRNA but causes a rapid (t(1/2) = 2-4 min) decrease in transport. In met3Δ cells (unable to metabolize SO(4)(=)), addition of SO(4)(=) to S-starved cells causes inactivation of (35)SO(4)(=) influx over times in which cellular SO(4)(=) contents are nearly constant. The relationship between cellular SO(4)(=) and transport inactivation shows that cellular SO(4)(=) is not the signal for Sul2p inactivation. Instead, the transport inactivation rate has the same dependence on extracellular SO(4)(=) as (35)SO(4)(=) influx, indicating that Sul2p exhibits use-dependent inactivation; the transport process itself increases the probability of Sul2p inactivation and degradation. In addition, there is a transient efflux of SO(4)(=) shortly after adding >0.02 mM SO(4)(=) to S-starved met3Δ cells. This transient efflux provides further protection against excessive SO(4)(=) influx and may represent an alternate transport mode of Sul2p.
Collapse
Affiliation(s)
- Michael L Jennings
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | | |
Collapse
|
21
|
Araie H, Sakamoto K, Suzuki I, Shiraiwa Y. Characterization of the selenite uptake mechanism in the coccolithophore Emiliania huxleyi (Haptophyta). PLANT & CELL PHYSIOLOGY 2011; 52:1204-1210. [PMID: 21632656 DOI: 10.1093/pcp/pcr070] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The marine coccolithophore Emiliania huxleyi (Haptophyta) requires selenium as an essential element for growth, and the active species absorbed is selenite, not selenate. This study characterized the selenite uptake mechanism using ⁷⁵Se as a tracer. Kinetic analysis of selenite uptake showed the involvement of both active and passive transport processes. The active transport was suppressed by 0.5 mM vanadate, a membrane-permeable inhibitor of H⁺-ATPase, at pH 8.3. When the pH was lowered from 8.3 to 5.3, the selenite uptake activity greatly increased, even in the presence of vanadate, suggesting that the H⁺ concentration gradient may be a motive force for selenite transport. [⁷⁵Se]Selenite uptake at selenite-limiting concentrations was hardly affected by selenate, sulfate and sulfite, even at 100 μM. In contrast, 3 μM orthophosphate increased the K(m) 5-fold. These data showed that HSeO₃⁻, a dominant selenite species at acidic pH, is the active species for transport through the plasma membrane and transport is driven by ΔpH energized by H⁺-ATPase. Kinetic analysis showed that the selenite uptake activity was competitively inhibited by orthophosphate. Furthermore, the active selenite transport mechanism was shown to be induced de novo under Se-deficient conditions and induction was suppressed by the addition of either sufficient selenite or cycloheximide, an inhibitor of de novo protein synthesis. These results indicate that E. huxleyi cells developed an active selenite uptake mechanism to overcome the disadvantages of Se limitation in ecosystems, maintaining selenium metabolism and selenoproteins for high viability.
Collapse
Affiliation(s)
- Hiroya Araie
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | | | | |
Collapse
|
22
|
Wysocki R, Tamás MJ. How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 2011; 34:925-51. [PMID: 20374295 DOI: 10.1111/j.1574-6976.2010.00217.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Toxic metals and metalloids are widespread in nature and can locally reach fairly high concentrations. To ensure cellular protection and survival in such environments, all organisms possess systems to evade toxicity and acquire tolerance. This review provides an overview of the molecular mechanisms that contribute to metal toxicity, detoxification and tolerance acquisition in budding yeast Saccharomyces cerevisiae. We mainly focus on the metals/metalloids arsenic, cadmium, antimony, mercury, chromium and selenium, and emphasize recent findings on sensing and signalling mechanisms and on the regulation of tolerance and detoxification systems that safeguard cellular and genetic integrity.
Collapse
Affiliation(s)
- Robert Wysocki
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | | |
Collapse
|
23
|
Pootakham W, Gonzalez-Ballester D, Grossman AR. Identification and regulation of plasma membrane sulfate transporters in Chlamydomonas. PLANT PHYSIOLOGY 2010; 153:1653-68. [PMID: 20498339 PMCID: PMC2923900 DOI: 10.1104/pp.110.157875] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 05/21/2010] [Indexed: 05/18/2023]
Abstract
Chlamydomonas (Chlamydomonas reinhardtii) exhibits several responses following exposure to sulfur (S)-deprivation conditions, including an increased efficiency of import and assimilation of the sulfate anion (SO(4)(2-)). Aspects of SO(4)(2-) transport during S-replete and S-depleted conditions were previously studied, although the transporters had not been functionally identified. We employed a reverse genetics approach to identify putative SO(4)(2-) transporters, examine their regulation, establish their biogenesis and subcellular locations, and explore their functionality. Upon S starvation of wild-type Chlamydomonas cells, the accumulation of transcripts encoding the putative SO(4)(2-) transporters SLT1 (for SAC1-like transporter 1), SLT2, and SULTR2 markedly increased, suggesting that these proteins function in high-affinity SO(4)(2-) transport. The Chlamydomonas sac1 and snrk2.1 mutants (defective for acclimation to S deprivation) exhibited much less of an increase in the levels of SLT1, SLT2, and SULTR2 transcripts and their encoded proteins in response to S deprivation compared with wild-type cells. All three transporters were localized to the plasma membrane, and their rates of turnover were significantly impacted by S availability; the turnover of SLT1 and SLT2 was proteasome dependent, while that of SULTR2 was proteasome independent. Finally, mutants identified for each of the S-deprivation-responsive transporters were used to establish their critical role in the transport of SO(4)(2-) into S-deprived cells.
Collapse
Affiliation(s)
- Wirulda Pootakham
- Department of Biology, Stanford University, Stanford, California 94305-5020, USA.
| | | | | |
Collapse
|
24
|
Sulfate assimilation mediates tellurite reduction and toxicity in Saccharomyces cerevisiae. EUKARYOTIC CELL 2010; 9:1635-47. [PMID: 20675578 DOI: 10.1128/ec.00078-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite a century of research and increasing environmental and human health concerns, the mechanistic basis of the toxicity of derivatives of the metalloid tellurium, Te, in particular the oxyanion tellurite, Te(IV), remains unsolved. Here, we provide an unbiased view of the mechanisms of tellurium metabolism in the yeast Saccharomyces cerevisiae by measuring deviations in Te-related traits of a complete collection of gene knockout mutants. Reduction of Te(IV) and intracellular accumulation as metallic tellurium strongly correlated with loss of cellular fitness, suggesting that Te(IV) reduction and toxicity are causally linked. The sulfate assimilation pathway upstream of Met17, in particular, the sulfite reductase and its cofactor siroheme, was shown to be central to tellurite toxicity and its reduction to elemental tellurium. Gene knockout mutants with altered Te(IV) tolerance also showed a similar deviation in tolerance to both selenite and, interestingly, selenomethionine, suggesting that the toxicity of these agents stems from a common mechanism. We also show that Te(IV) reduction and toxicity in yeast is partially mediated via a mitochondrial respiratory mechanism that does not encompass the generation of substantial oxidative stress. The results reported here represent a robust base from which to attack the mechanistic details of Te(IV) toxicity and reduction in a eukaryotic organism.
Collapse
|
25
|
Furner IJ, Sung ZR. Regulation of sulfate uptake in carrot cells: Properties of a hypercontrolled variant. Proc Natl Acad Sci U S A 2010; 79:1149-53. [PMID: 16593159 PMCID: PMC345918 DOI: 10.1073/pnas.79.4.1149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sulfate uptake in haploid carrot cultures can be experimentally controlled by the sulfur source provided for growth. The rate of sulfate uptake is low in cells grown on cystine or sulfate and high in sulfur-starved cells. A selenate-resistant variant cell line has been isolated from a haploid carrot line. The variant shows hypersuppression of sulfate uptake by cystine and essentially normal control by the other treatments. While both lines efflux intracellular sulfate in the presence of external sulfate, the rate of efflux from the variant is 4-6 times higher at comparable levels of initial intracellular sulfate. Further, properties of the efflux and uptake in both lines suggest that they are mediated by the same system. We propose that the variant possesses an altered uptake-efflux system that is more readily reversed and more subject to control by some metabolite derived from cystine.
Collapse
Affiliation(s)
- I J Furner
- Department of Genetics, University of California, Berkeley, Berkeley, California 94720
| | | |
Collapse
|
26
|
Chromium uptake, retention and reduction in photosynthetic Euglena gracilis. Arch Microbiol 2009; 191:431-40. [DOI: 10.1007/s00203-009-0469-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/14/2009] [Accepted: 02/25/2009] [Indexed: 10/21/2022]
|
27
|
Allen JW, Shachar-Hill Y. Sulfur transfer through an arbuscular mycorrhiza. PLANT PHYSIOLOGY 2009; 149:549-60. [PMID: 18978070 PMCID: PMC2613693 DOI: 10.1104/pp.108.129866] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 10/29/2008] [Indexed: 05/18/2023]
Abstract
Despite the importance of sulfur (S) for plant nutrition, the role of the arbuscular mycorrhizal (AM) symbiosis in S uptake has received little attention. To address this issue, 35S-labeling experiments were performed on mycorrhizas of transformed carrot (Daucus carota) roots and Glomus intraradices grown monoxenically on bicompartmental petri dishes. The uptake and transfer of 35SO4(2-) by the fungus and resulting 35S partitioning into different metabolic pools in the host roots was analyzed when altering the sulfate concentration available to roots and supplying the fungal compartment with cysteine (Cys), methionine (Met), or glutathione. Additionally, the uptake, transfer, and partitioning of 35S from the reduced S sources [35S]Cys and [35S]Met was determined. Sulfate was taken up by the fungus and transferred to mycorrhizal roots, increasing root S contents by 25% in a moderate (not growth-limiting) concentration of sulfate. High sulfate levels in the mycorrhizal root compartment halved the uptake of 35SO4(2-) from the fungal compartment. The addition of 1 mm Met, Cys, or glutathione to the fungal compartment reduced the transfer of sulfate by 26%, 45%, and 80%, respectively, over 1 month. Similar quantities of 35S were transferred to mycorrhizal roots whether 35SO4(2-), [35S]Cys, or [35S]Met was supplied in the fungal compartment. Fungal transcripts for putative S assimilatory genes were identified, indicating the presence of the trans-sulfuration pathway. The suppression of fungal sulfate transfer in the presence of Cys coincided with a reduction in putative sulfate permease and not sulfate adenylyltransferase transcripts, suggesting a role for fungal transcriptional regulation in S transfer to the host. A testable model is proposed describing root S acquisition through the AM symbiosis.
Collapse
Affiliation(s)
- James W Allen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
28
|
Gremel G, Dorrer M, Schmoll M. Sulphur metabolism and cellulase gene expression are connected processes in the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei). BMC Microbiol 2008; 8:174. [PMID: 18842142 PMCID: PMC2584116 DOI: 10.1186/1471-2180-8-174] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 10/08/2008] [Indexed: 02/02/2023] Open
Abstract
Background Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have developed a complex regulatory circuit that governs the expression of enzymes involved in sulphur assimilation and metabolism. In the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei) little is known about the participants in this circuit. Results Analyses of proteins binding to the cellulase activating element (CAE) within the promotor of the cellobiohydrolase cbh2 gene led to the identification of a putative E3 ubiquitin ligase protein named LIMPET (LIM1), which is an orthologue of the sulphur regulators SCON-2 of Neurospora crassa and Met30p of Saccharomyces cerevisiae. Transcription of lim1 is specifically up-regulated upon sulphur limitation and responds to cellulase inducing conditions. In addition, light dependent stimulation/shut down of cellulase gene transcription by methionine in the presence of sulphate was observed. Further, lim1 transcriptionally reacts to a switch from constant darkness to constant light and is subject to regulation by the light regulatory protein ENVOY. Thus lim1, despite its function in sulphur metabolite repression, responds both to light as well as sulphur- and carbon source. Upon growth on cellulose, the uptake of sulphate is dependent on the light status and essential for growth in light. Unlike other fungi, growth of H. jecorina is not inhibited by selenate under low sulphur conditions, suggesting altered regulation of sulphur metabolism. Phylogenetic analysis of the five sulphate permeases found in the genome of H. jecorina revealed that the predominantly mycelial sulphate permease is lacking, thus supporting this hypothesis. Conclusion Our data indicate that the significance of the sulphate/methionine-related signal with respect to cellulase gene expression is dependent on the light status and reaches beyond detection of sulphur availability.
Collapse
Affiliation(s)
- Gabriela Gremel
- Research Area of Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/1665, A-1060 Wien, Austria.
| | | | | |
Collapse
|
29
|
Pereira Y, Lagniel G, Godat E, Baudouin-Cornu P, Junot C, Labarre J. Chromate causes sulfur starvation in yeast. Toxicol Sci 2008; 106:400-12. [PMID: 18794233 DOI: 10.1093/toxsci/kfn193] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chromate is a widespread pollutant as a waste of human activities. However, the mechanisms underlying its high toxicity are not clearly understood. In this work, we used the yeast Saccharomyces cerevisiae to analyse the physiological effects of chromate exposure in a eukaryote cell model. We show that chromate causes a strong decrease of sulfate assimilation and sulfur metabolite pools suggesting that cells experience sulfur starvation. As a consequence, nearly all enzymes of the sulfur pathway are highly induced as well as enzymes of the sulfur-sparing response such as Pdc6, the sulfur-poor pyruvate decarboxylase. The induction of Pdc6 was regulated at the mRNA level and dependent upon Met32, a coactivator of Met4, the transcriptional activator of the sulfur pathway. Finally, we found that chromate enters the cells mainly through sulfate transporters and competitively inhibits sulfate uptake. Also consistent with a competition between the two substrates, sulfate supplementation relieves chromate toxicity. However, the data suggest that the chromate-mediated sulfur depletion is not simply due to this competitive uptake but would also be the consequence of competitive metabolism between the two compounds presumably at another step of the sulfur assimilation pathway.
Collapse
Affiliation(s)
- Yannick Pereira
- Laboratoire de Biologie Intégrative, SBIGeM/iBiTec-S, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
30
|
Malanovic N, Streith I, Wolinski H, Rechberger G, Kohlwein SD, Tehlivets O. S-adenosyl-L-homocysteine hydrolase, key enzyme of methylation metabolism, regulates phosphatidylcholine synthesis and triacylglycerol homeostasis in yeast: implications for homocysteine as a risk factor of atherosclerosis. J Biol Chem 2008; 283:23989-99. [PMID: 18591246 PMCID: PMC3259781 DOI: 10.1074/jbc.m800830200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 06/30/2008] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, S-adenosyl-L-homocysteine hydrolase (Sah1) offers a single way for degradation of S-adenosyl-L-homocysteine, a product and potent competitive inhibitor of S-adenosyl-L-methionine (AdoMet)-dependent methyltransferases. De novo phosphatidylcholine (PC) synthesis requires three AdoMet-dependent methylation steps. Here we show that down-regulation of SAH1 expression in yeast leads to accumulation of S-adenosyl-L-homocysteine and decreased de novo PC synthesis in vivo. This decrease is accompanied by an increase in triacylglycerol (TG) levels, demonstrating that Sah1-regulated methylation has a major impact on cellular lipid homeostasis. TG accumulation is also observed in cho2 and opi3 mutants defective in methylation of phosphatidylethanolamine to PC, confirming that PC de novo synthesis and TG synthesis are metabolically coupled through the efficiency of the phospholipid methylation reaction. Indeed, because both types of lipids share phosphatidic acid as a precursor, we find in cells with down-regulated Sah1 activity major alterations in the expression of the INO1 gene as well as in the localization of Opi1, a negative regulatory factor of phospholipid synthesis, which binds and is retained in the endoplasmic reticulum membrane by phosphatidic acid in conjunction with VAMP/synaptobrevin-associated protein, Scs2. The addition of homocysteine, by the reversal of the Sah1-catalyzed reaction, also leads to TG accumulation in yeast, providing an attractive model for the role of homocysteine as a risk factor of atherosclerosis in humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Oksana Tehlivets
- Institute of Molecular Biosciences, University of Graz, A-8010 Graz,
Austria
| |
Collapse
|
31
|
Simonics T, Maráz A. Cloning of the ATP sulphurylase gene of Schizosaccharomyces pombe by functional complementation. Can J Microbiol 2008; 54:71-4. [PMID: 18388974 DOI: 10.1139/w07-111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ATP sulphurylase gene of Schizosaccharomyces pombe has been cloned by complementation of cysteine auxotrophy of a selenate-resistant mutant, which supposedly had a defect in ATP sulphurylase. A sulphate nonutilizing (cysteine auxotrophic) and selenate-resistant mutant of S. pombe was transformed with a wild-type S. pombe genomic library and sulphate-utilizing clones were isolated. The open reading frame encoding the ATP sulphurylase enzyme was found to be responsible for the restoration of sulphate assimilation. Transformants became as sensitive for selenate as the wild-type strain and produced a comparable amount of ATP sulphurylase as the prototrophic strains. The cloned ATP sulphurylase gene (sua1) proved to be an efficient selection marker in an ARS vector, when different isogenic or nonisogenic S. pombe selenate-resistant mutants were used as cloning hosts. Complementation of sua1- mutations by sua1-bearing multicopy vectors functions as a useful dual positive and negative selection marker. The cloned sua1 gene also complemented the met3 (ATP sulphurylase deficient) mutation in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Tibor Simonics
- Department of Microbiology and Biotechnology, Faculty of Food Science, Corvinus University of Budapest, Somloi ut 14-16, Budapest H-1118, Hungary
| | | |
Collapse
|
32
|
Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae. Appl Environ Microbiol 2008; 74:1418-27. [PMID: 18192430 DOI: 10.1128/aem.01758-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A screen of the Saccharomyces cerevisiae deletion strain set was performed to identify genes affecting hydrogen sulfide (H(2)S) production. Mutants were screened using two assays: colony color on BiGGY agar, which detects the basal level of sulfite reductase activity, and production of H(2)S in a synthetic juice medium using lead acetate detection of free sulfide in the headspace. A total of 88 mutants produced darker colony colors than the parental strain, and 4 produced colonies significantly lighter in color. There was no correlation between the appearance of a dark colony color on BiGGY agar and H(2)S production in synthetic juice media. Sixteen null mutations were identified as leading to the production of increased levels of H(2)S in synthetic juice using the headspace analysis assay. All 16 mutants also produced H(2)S in actual juices. Five of these genes encode proteins involved in sulfur containing amino acid or precursor biosynthesis and are directly associated with the sulfate assimilation pathway. The remaining genes encode proteins involved in a variety of cellular activities, including cell membrane integrity, cell energy regulation and balance, or other metabolic functions. The levels of hydrogen sulfide production of each of the 16 strains varied in response to nutritional conditions. In most cases, creation of multiple deletions of the 16 mutations in the same strain did not lead to a further increase in H(2)S production, instead often resulting in decreased levels.
Collapse
|
33
|
Hawkesford MJ. Uptake, Distribution and Subcellular Transport of Sulfate. SULFUR METABOLISM IN PHOTOTROPHIC ORGANISMS 2008. [DOI: 10.1007/978-1-4020-6863-8_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
|
35
|
El Kassis E, Cathala N, Rouached H, Fourcroy P, Berthomieu P, Terry N, Davidian JC. Characterization of a selenate-resistant Arabidopsis mutant. Root growth as a potential target for selenate toxicity. PLANT PHYSIOLOGY 2007; 143:1231-41. [PMID: 17208959 PMCID: PMC1820920 DOI: 10.1104/pp.106.091462] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Accepted: 12/26/2006] [Indexed: 05/13/2023]
Abstract
Screening an Arabidopsis (Arabidopsis thaliana) T-DNA mutant library for selenate resistance enabled us to isolate a selenate-resistant mutant line (sel1-11). Molecular and genetic characterization showed that the mutant contained a lesion in the SULTR1;2 gene that encodes a high affinity root sulfate transporter. We showed that SULTR1;2 is the only gene among 13 mutated genes of the Arabidopsis sulfate transporter family whose mutation conferred selenate resistance to Arabidopsis. The selenate resistance phenotype of the sel1-11 mutant was mirrored by an 8-fold increase of root growth in the presence of selenate as shown by the calculated lethal concentration values. The impairment of SULTR1;2 activity in sel1-11 resulted in a reduced (35)S-sulfate uptake capacity by both roots and calli and a reduced sulfate and selenate content in root, shoot, and calli. Comparing sulfate-to-selenate ratios instead of absolute sulfate and selenate contents in roots and shoots enabled us to gain better insight into the mechanism of selenate toxicity in Arabidopsis. Roots of the sel1-11 mutant line showed a higher sulfate to selenate ratio than that of wild-type roots, while there were no significant differences in sulfate to selenate ratios in shoots of wild-type and mutant lines. These results indicated that the mechanism that confers the selenate resistance phenotype to the sel1-11 line takes place rather in the roots. It might be in part the result of a lower selenate uptake and of a protective effect of sulfate against the toxic effects of selenate on root growth. These results revealed in plants a central and specific role of the transporter SULTR1;2 in selenate sensitivity; they further suggested that root growth and potentially the root tip activity might be a specific target of selenate toxicity in Arabidopsis.
Collapse
Affiliation(s)
- Elie El Kassis
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Ecole Nationale Supérieure Agronomique de Montpellier, Institut National de la Recherche Agronomique, Université Montpellier II, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Mansouri-Bauly H, Kruse J, Sýkorová Z, Scheerer U, Kopriva S. Sulfur uptake in the ectomycorrhizal fungus Laccaria bicolor S238N. MYCORRHIZA 2006; 16:421-427. [PMID: 16596384 DOI: 10.1007/s00572-006-0052-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 03/06/2006] [Indexed: 05/08/2023]
Abstract
The importance of the ectomycorrhiza symbiosis for plant acquisition of phosphorus and nitrogen is well established whereas its contribution to sulfur nutrition is only marginally understood. In a first step to investigate the role of ectomycorrhiza in plant sulfur nutrition, we characterized sulfate and glutathione uptake in Laccaria bicolor. By studying the regulation of sulfate uptake in this ectomycorrhizal fungus, we found that in contrast to bacteria, yeast, and plants, sulfate uptake in L. bicolor was not feedback-inhibited by glutathione. On the other hand, sulfate uptake was increased by sulfur starvation as in other organisms. The activity of 3'-phosphoadenosine 5'-phosphosulfate reductase, the key enzyme of the assimilatory sulfate reduction pathway in fungi, was increased by sulfur starvation and decreased after treatment with glutathione revealing an uncoupling of sulfate uptake and reduction in the presence of reduced sulfur compounds. These results support the hypothesis that L. bicolor increases sulfate supply to the plant by extended sulfate uptake and the plant provides the ectomycorrhizal fungus with reduced sulfur.
Collapse
Affiliation(s)
- Hounayda Mansouri-Bauly
- Albert-Ludwigs-University of Freiburg, Institute of Forest Botany and Tree Physiology, Georges-Köhler-Allee 053, 79110, Freiburg, Germany
| | - Jörg Kruse
- Albert-Ludwigs-University of Freiburg, Institute of Forest Botany and Tree Physiology, Georges-Köhler-Allee 053, 79110, Freiburg, Germany
- The School of Forest and Ecosystem Science, University of Melbourne, Melbourne, Australia
| | - Zuzana Sýkorová
- Albert-Ludwigs-University of Freiburg, Institute of Forest Botany and Tree Physiology, Georges-Köhler-Allee 053, 79110, Freiburg, Germany
- Institute of Botany, University of Basel, Basel, Switzerland
| | - Ursula Scheerer
- Albert-Ludwigs-University of Freiburg, Institute of Forest Botany and Tree Physiology, Georges-Köhler-Allee 053, 79110, Freiburg, Germany
| | - Stanislav Kopriva
- Albert-Ludwigs-University of Freiburg, Institute of Forest Botany and Tree Physiology, Georges-Köhler-Allee 053, 79110, Freiburg, Germany.
- John Innes Institute, Norwich, UK.
| |
Collapse
|
37
|
Scully LR, Bidochka MJ. A cysteine/methionine auxotroph of the opportunistic fungus Aspergillus flavus is associated with host-range restriction: a model for emerging diseases. MICROBIOLOGY-SGM 2006; 152:223-232. [PMID: 16385132 DOI: 10.1099/mic.0.28452-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The evolution of host specialization in pathogens is a topic of considerable interest, particularly since it can represent a decisive step in the emergence of infectious diseases. Aspergillus flavus is an opportunistic fungus capable of infecting a wide variety of hosts, including plants, insects and mammals, although with low virulence. Here the derivation of an A. flavus strain that exhibits severe host restriction is reported. This strain exhibited a severe diminution or a complete lack of conidial production on a variety of standard agar media and on various plant species. However, it retained its ability to infect insects from various orders and to re-emerge from and adequately conidiate on the insect cadavers as a culmination of the pathogenic life cycle. This strain, demonstrating insect-dependent conidiation, was discovered to be a cysteine/methionine auxotroph due to an inability to reduce sulfate to sulfite. However, other A. flavus auxotrophs tested for plant and insect host range failed to show insect-dependent conidiation. An association between this specific auxotroph and a decreased host range is shown, emphasizing the role of nutrition in the host-pathogen relationship with respect to host restriction and evolution towards obligate pathogenesis.
Collapse
Affiliation(s)
- Lisa R Scully
- Department of Biological Sciences, 500 Glenridge Avenue, Brock University, St Catharines, Ontario, Canada L2S 3A1
| | - Michael J Bidochka
- Department of Biological Sciences, 500 Glenridge Avenue, Brock University, St Catharines, Ontario, Canada L2S 3A1
| |
Collapse
|
38
|
Kondrat'eva VI, Naumov GI. Genetic differentiation of a new biological species of the predatory yeast Arthroascus. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2006; 407:142-3. [PMID: 16739477 DOI: 10.1134/s0012496606020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- V I Kondrat'eva
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia
| | | |
Collapse
|
39
|
Melis A, Chen HC. Chloroplast sulfate transport in green algae--genes, proteins and effects. PHOTOSYNTHESIS RESEARCH 2005; 86:299-307. [PMID: 16307303 DOI: 10.1007/s11120-005-7382-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Accepted: 05/13/2005] [Indexed: 05/03/2023]
Abstract
This review summarizes evidence at the molecular genetic, protein and regulatory levels concerning the existence and function of a putative ABC-type chloroplast envelope-localized sulfate transporter in the model unicellular green alga Chlamydomonas reinhardtii. From the four nuclear genes encoding this sulfate permease holocomplex, two are coding for chloroplast envelope-targeted transmembrane proteins (SulP and SulP2), a chloroplast stroma-targeted ATP-binding protein (Sabc) and a substrate (sulfate)-binding protein (Sbp) that is localized on the cytosolic side of the chloroplast envelope. The sulfate permease holocomplex is postulated to consist of a SulP-SulP2 chloroplast envelope transmembrane heterodimer, flanked by the Sabc and the Sbp proteins on the stroma side and the cytosolic side of the inner envelope, respectively. The mature SulP and SulP2 proteins contain seven transmembrane domains and one or two large hydrophilic loops, which are oriented toward the cytosol. The corresponding prokaryotic-origin genes (SulP and SulP2) probably migrated from the chloroplast to the nuclear genome during the evolution of Chlamydomonas reinhardtii. These genes, or any of its homologues, have not been retained in vascular plants, e.g. Arabidopsis thaliana, although they are encountered in the chloroplast genome of a liverwort (Marchantia polymorpha). The function of the SulP protein was probed in antisense transformants of C. reinhardtii having lower expression levels of the SulP gene. Results showed that cellular sulfate uptake capacity was lowered as a consequence of attenuated SulP gene expression in the cell, directly affecting rates of de novo protein biosynthesis in the chloroplast. The antisense transformants exhibited phenotypes of sulfate-deprived cells, displaying slow rates of light-saturated oxygen evolution, low levels of Rubisco in the chloroplast and low steady-state levels of the Photosystem II D1 reaction center protein. The role of the chloroplast sulfate transport in the uptake and assimilation of sulfate in Chlamydomonas reinhardtii is discussed along with its impact on the repair of Photosystem II from a frequently occurring photo-oxidative damage and H2-evolution related metabolism in this green alga.
Collapse
Affiliation(s)
- Anastasios Melis
- Department of Plant & Microbial Biology, University of California , Berkeley, CA 94720-3102, USA.
| | | |
Collapse
|
40
|
Sors TG, Ellis DR, Salt DE. Selenium uptake, translocation, assimilation and metabolic fate in plants. PHOTOSYNTHESIS RESEARCH 2005; 86:373-389. [PMID: 16307305 DOI: 10.1007/s11120-005-5222-5229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 04/10/2005] [Indexed: 05/19/2023]
Abstract
The chemical and physical resemblance between selenium (Se) and sulfur (S) establishes that both these elements share common metabolic pathways in plants. The presence of isologous Se and S compounds indicates that these elements compete in biochemical processes that affect uptake, translocation and assimilation throughout plant development. Yet, minor but crucial differences in reactivity and other metabolic interactions infer that some biochemical processes involving Se may be excluded from those relating to S. This review examines the current understanding of physiological and biochemical relationships between S and Se metabolism by highlighting their similarities and differences in relation to uptake, transport and assimilation pathways as observed in Se hyperaccumulator and non-accumulator plant species. The exploitation of genetic resources used in bioengineering strategies of plants is illuminating the function of sulfate transporters and key enzymes of the S assimilatory pathway in relation to Se accumulation and final metabolic fate. These strategies are providing the basic framework by which to resolve questions relating to the essentiality of Se in plants and the mechanisms utilized by Se hyperaccumulators to circumvent toxicity. In addition, such approaches may assist in the future application of genetically engineered Se accumulating plants for environmental renewal and human health objectives.
Collapse
Affiliation(s)
- T G Sors
- Horticulture and Landscape Architecture, Center for Plant Environmental Stress Physiology, Purdue University, 1165 Horticulture Building, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
41
|
Sors TG, Ellis DR, Salt DE. Selenium uptake, translocation, assimilation and metabolic fate in plants. PHOTOSYNTHESIS RESEARCH 2005; 86:373-89. [PMID: 16307305 DOI: 10.1007/s11120-005-5222-9] [Citation(s) in RCA: 317] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 04/10/2005] [Indexed: 05/02/2023]
Abstract
The chemical and physical resemblance between selenium (Se) and sulfur (S) establishes that both these elements share common metabolic pathways in plants. The presence of isologous Se and S compounds indicates that these elements compete in biochemical processes that affect uptake, translocation and assimilation throughout plant development. Yet, minor but crucial differences in reactivity and other metabolic interactions infer that some biochemical processes involving Se may be excluded from those relating to S. This review examines the current understanding of physiological and biochemical relationships between S and Se metabolism by highlighting their similarities and differences in relation to uptake, transport and assimilation pathways as observed in Se hyperaccumulator and non-accumulator plant species. The exploitation of genetic resources used in bioengineering strategies of plants is illuminating the function of sulfate transporters and key enzymes of the S assimilatory pathway in relation to Se accumulation and final metabolic fate. These strategies are providing the basic framework by which to resolve questions relating to the essentiality of Se in plants and the mechanisms utilized by Se hyperaccumulators to circumvent toxicity. In addition, such approaches may assist in the future application of genetically engineered Se accumulating plants for environmental renewal and human health objectives.
Collapse
Affiliation(s)
- T G Sors
- Horticulture and Landscape Architecture, Center for Plant Environmental Stress Physiology, Purdue University, 1165 Horticulture Building, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
42
|
Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A, Moreno-Sánchez R. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 2005; 29:653-71. [PMID: 16102596 DOI: 10.1016/j.femsre.2004.09.004] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 08/03/2004] [Accepted: 09/17/2004] [Indexed: 11/28/2022] Open
Abstract
Glutathione (gamma-glu-cys-gly; GSH) is usually present at high concentrations in most living cells, being the major reservoir of non-protein reduced sulfur. Because of its unique redox and nucleophilic properties, GSH serves in bio-reductive reactions as an important line of defense against reactive oxygen species, xenobiotics and heavy metals. GSH is synthesized from its constituent amino acids by two ATP-dependent reactions catalyzed by gamma-glutamylcysteine synthetase and glutathione synthetase. In yeast, these enzymes are found in the cytosol, whereas in plants they are located in the cytosol and chloroplast. In protists, their location is not well established. In turn, the sulfur assimilation pathway, which leads to cysteine biosynthesis, involves high and low affinity sulfate transporters, and the enzymes ATP sulfurylase, APS kinase, PAPS reductase or APS reductase, sulfite reductase, serine acetyl transferase, O-acetylserine/O-acetylhomoserine sulfhydrylase and, in some organisms, also cystathionine beta-synthase and cystathionine gamma-lyase. The biochemical and genetic regulation of these pathways is affected by oxidative stress, sulfur deficiency and heavy metal exposure. Cells cope with heavy metal stress using different mechanisms, such as complexation and compartmentation. One of these mechanisms in some yeast, plants and protists is the enhanced synthesis of the heavy metal-chelating molecules GSH and phytochelatins, which are formed from GSH by phytochelatin synthase (PCS) in a heavy metal-dependent reaction; Cd(2+) is the most potent activator of PCS. In this work, we review the biochemical and genetic mechanisms involved in the regulation of sulfate assimilation-reduction and GSH metabolism when yeast, plants and protists are challenged by Cd(2+).
Collapse
Affiliation(s)
- David Mendoza-Cózatl
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Juan Badiano 1, Col. Sección XVI Tlalpan, México.
| | | | | | | |
Collapse
|
43
|
Kaiser BN, Gridley KL, Ngaire Brady J, Phillips T, Tyerman SD. The role of molybdenum in agricultural plant production. ANNALS OF BOTANY 2005; 96:745-54. [PMID: 16033776 PMCID: PMC4247040 DOI: 10.1093/aob/mci226] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 03/22/2005] [Accepted: 05/02/2005] [Indexed: 05/03/2023]
Abstract
BACKGROUND The importance of molybdenum for plant growth is disproportionate with respect to the absolute amounts required by most plants. Apart from Cu, Mo is the least abundant essential micronutrient found in most plant tissues and is often set as the base from which all other nutrients are compared and measured. Molybdenum is utilized by selected enzymes to carry out redox reactions. Enzymes that require molybdenum for activity include nitrate reductase, xanthine dehydrogenase, aldehyde oxidase and sulfite oxidase. SCOPE Loss of Mo-dependent enzyme activity (directly or indirectly through low internal molybdenum levels) impacts upon plant development, in particular, those processes involving nitrogen metabolism and the synthesis of the phytohormones abscisic acid and indole-3 butyric acid. Currently, there is little information on how plants access molybdate from the soil solution and redistribute it within the plant. In this review, the role of molybdenum in plants is discussed, focusing on its current constraints in some agricultural situations and where increased molybdenum nutrition may aid in agricultural plant development and yields. CONCLUSIONS Molybdenum deficiencies are considered rare in most agricultural cropping areas; however, the phenotype is often misdiagnosed and attributed to other downstream effects associated with its role in various enzymatic redox reactions. Molybdenum fertilization through foliar sprays can effectively supplement internal molybdenum deficiencies and rescue the activity of molybdoenzymes. The current understanding on how plants access molybdate from the soil solution or later redistribute it once in the plant is still unclear; however, plants have similar physiological molybdenum transport phenotypes to those found in prokaryotic systems. Thus, careful analysis of existing prokaryotic molybdate transport mechanisms, as well as a re-examination of know anion transport mechanisms present in plants, will help to resolve how this important trace element is accumulated.
Collapse
Affiliation(s)
- Brent N Kaiser
- Discipline of Wine and Horticulture, School of Agriculture and Wine, University of Adelaide, PMB 1 Glen Osmond, South Australia 5064, Australia.
| | | | | | | | | |
Collapse
|
44
|
Gharieb MM, Gadd GM. The kinetics of 75[Se]-selenite uptake by Saccharomyces cerevisiae and the vacuolization response to high concentrations. ACTA ACUST UNITED AC 2005; 108:1415-22. [PMID: 15757177 DOI: 10.1017/s0953756204001418] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Uptake of 75[Se]-selenite by Saccharomyces cerevisiae has been characterized. At a 0.5 mM selenite, approximately 0.14 nmol Se (10(6) cells)-1 was rapidly accumulated by the cells at a rate of approximately 56 pmol x min-1 (10(6) cells)-1 which was independent of temperature and glucose. This rapid phase was followed by a slower uptake phase which was sensitive to glucose, temperature and metabolic inhibitors [2,4-dinitrophenol (DNP), carbonyl cyanide m-chlorophenyl hydrazone (CCCP), potassium cyanide (KCN) and sodium azide (NaN3)] and therefore presumed to be metabolism-dependent. Two transport systems appeared to be involved in selenite uptake. At the low range of selenite concentrations used (0.025-0.1 mM), a high affinity transport system occurred with apparent Km and Vmax values of 54.0 microM and 3.14 pmol x min(-1) (10(6) cells)(-1) respectively. A low affinity system was present at higher concentrations (0.1-1.0 mM) with apparent kinetic parameters of Km = 435 microM and Vmax = 11.6 pmol x min(-1) (10(6) cells)(-1). Elevated sulphate concentrations (up to 2.5 mM) did not affect the accumulation of selenite. However, the transport rate from 0.5 mM selenite was stimulated by sulphite, with the maximum effect occurring at 0.5 mM sulphite. Methionine had a detectable inhibitory action on selenite uptake whereas cystine and cysteine completely inhibited active transport of selenite. Transmission electron microscopy of 5 mM selenite-grown cells revealed the presence of abundant small cytoplasmic vesicles containing electron-dense granules which could represent an intracellular selenium-detoxification mechanism.
Collapse
Affiliation(s)
- Mohammed M Gharieb
- Botany Department, Faculty of Science, Menoufia University, Shebein El-Koom, Egypt
| | | |
Collapse
|
45
|
Babyak LY, Ksheminskaya GP, Gonchar MV, Yanovich DV, Fedorovich DV. Selection and properties of mutant yeast Pichia guilliermondii strains resistant to chromium (VI). APPL BIOCHEM MICRO+ 2005. [DOI: 10.1007/s10438-005-0031-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Vermeulen C, Gijs L, Collin S. Sensorial Contribution and Formation Pathways of Thiols in Foods: A Review. FOOD REVIEWS INTERNATIONAL 2005. [DOI: 10.1081/fri-200040601] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
|
48
|
Bánszky L, Simonics T, Maráz A. Sulphate metabolism of selenate-resistant Schizosaccharomyces pombe mutants. J GEN APPL MICROBIOL 2004; 49:271-8. [PMID: 14723223 DOI: 10.2323/jgam.49.271] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Selenate-resistant mutants were obtained from several strains of Schizosaccharomyces pombe. The obtained mutants all belonged to the same genetic complementation group. They were low in sulphate uptake activity and in ATP sulphurylase activity. They grew on medium containing sulphite, thiosulphate, cysteine or glutathione but not methionine as the sole source of sulphur. From these results, the mutants were concluded to carry mutations in the ATP sulphurylase gene. Inability of the mutants to utilize methionine as a sulphur source is rationalized by the absence of the reverse transsulphurylation pathway in this organism; wild type strains must utilize methionine as a sulphur source after it is degraded to give rise to sulphate.
Collapse
Affiliation(s)
- Luca Bánszky
- Department of Microbiology and Biotechnology, Faculty of Food Science, Budapest Corvinus University, H-1118 Budapest, Somlói ut 14-16, Hungary
| | | | | |
Collapse
|
49
|
Chen HC, Yokthongwattana K, Newton AJ, Melis A. SulP, a nuclear gene encoding a putative chloroplast-targeted sulfate permease in Chlamydomonas reinhardtii. PLANTA 2003; 218:98-106. [PMID: 12883888 DOI: 10.1007/s00425-003-1076-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2003] [Accepted: 06/11/2003] [Indexed: 05/22/2023]
Abstract
Genomic, proteomic, phylogenetic and evolutionary aspects of a novel gene encoding a putative chloroplast-targeted sulfate permease of prokaryotic origin in the green alga Chlamydomonas reinhardtii are described. This nuclear-encoded sulfate permease gene (SulP) contains four introns, whereas all other known chloroplast sulfate permease genes lack introns and are encoded by the chloroplast genome. The deduced amino acid sequence of the protein showed an extended N-terminus, which includes a putative chloroplast transit peptide. The mature protein contains seven transmembrane domains and two large hydrophilic loops. This novel prokaryotic-origin gene probably migrated from the chloroplast to the nuclear genome during evolution of C. reinhardtii. The SulP gene, or any of its homologues, has not been retained in vascular plants, e.g. Arabidopsis thaliana, although it is encountered in the chloroplast genome of a liverwort (Marchantia polymorpha). A comparative structural analysis and phylogenetic origin of chloroplast sulfate permeases in a variety of species is presented.
Collapse
Affiliation(s)
- Hsu-Ching Chen
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | | | | | | |
Collapse
|
50
|
Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP. Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:475-86. [PMID: 11846880 DOI: 10.1046/j.0960-7412.2001.01232.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To investigate how plants acquire and assimilate sulfur from their environment, we isolated and characterized two mutants of Arabidopsis thaliana deficient in sulfate transport. The mutants are resistant to selenate, a toxic analogue of sulfate. They are allelic to each other and to the previously isolated sel1 (selenate-resistant) mutants, and have been designated sel1-8 and sel1-9. Root elongation in these mutants is less sensitive to selenate than in wild-type plants. Sulfate uptake into the roots is impaired in the mutants under both sulfur-sufficient and sulfur-deficient conditions, but transport of sulfate to the shoot is not affected. The sel1 mutants contain lesions in the sulfate transporter gene Sultr1;2 located on the lower arm of chromosome 1. The sel1-1, sel1-3 and sel1-8 mutants contain point mutations in the coding sequences of Sultr1;2, while the sel1-9 mutant has a T-DNA insertion in the Sultr1;2 promoter. The Sultr1;2 cDNA derived from wild-type plants is able to complement Saccharomyces cerevisiae mutants defective in sulfate transport, but the Sultr1;2 cDNA from sel1-8 is not. The Sultr1;2 gene is expressed mainly in roots, and accumulation of transcripts increases during sulfate deprivation. Examination of transgenic plants containing the Sultr1;2 promoter fused to the GUS-reporter gene indicates that Sultr1;2 is expressed mainly in the root cortex, the root tip and lateral roots. Weaker expression of the reporter gene was observed in hydathodes, guard cells and auxiliary buds of leaves, and in anthers and the basal parts of flowers. The results indicate that Sultr1;2 is primarily involved in importing sulfate from the environment into the root.
Collapse
Affiliation(s)
- Nakako Shibagaki
- Department of Botany, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | |
Collapse
|