1
|
Chemla Y, Ozer E, Algov I, Alfonta L. Context effects of genetic code expansion by stop codon suppression. Curr Opin Chem Biol 2018; 46:146-155. [DOI: 10.1016/j.cbpa.2018.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/01/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
2
|
Italia JS, Addy PS, Wrobel CJJ, Crawford LA, Lajoie MJ, Zheng Y, Chatterjee A. An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes. Nat Chem Biol 2017; 13:446-450. [PMID: 28192410 DOI: 10.1038/nchembio.2312] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/12/2016] [Indexed: 11/09/2022]
Abstract
In this study, we demonstrate the feasibility of expanding the genetic code of Escherichia coli using its own tryptophanyl-tRNA synthetase and tRNA (TrpRS-tRNATrp) pair. This was made possible by first functionally replacing this endogenous pair with an E. coli-optimized counterpart from Saccharomyces cerevisiae, and then reintroducing the liberated E. coli TrpRS-tRNATrp pair into the resulting strain as a nonsense suppressor, which was then followed by its directed evolution to genetically encode several new unnatural amino acids (UAAs). These engineered TrpRS-tRNATrp variants were also able to drive efficient UAA mutagenesis in mammalian cells. Since bacteria-derived aminoacyl-tRNA synthetase (aaRS)-tRNA pairs are typically orthogonal in eukaryotes, our work provides a general strategy to develop additional aaRS-tRNA pairs that can be used for UAA mutagenesis of proteins expressed in both E. coli and eukaryotes.
Collapse
Affiliation(s)
- James S Italia
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, USA
| | | | - Chester J J Wrobel
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, USA
| | - Lisa A Crawford
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, USA
| | - Marc J Lajoie
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Yunan Zheng
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, USA
| | | |
Collapse
|
3
|
Ozer E, Chemla Y, Schlesinger O, Aviram HY, Riven I, Haran G, Alfonta L. In vitro suppression of two different stop codons. Biotechnol Bioeng 2016; 114:1065-1073. [DOI: 10.1002/bit.26226] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/22/2016] [Accepted: 11/16/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Eden Ozer
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; P. O. Box 653 Beer-Sheva 84105 Israel
| | - Yonatan Chemla
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; P. O. Box 653 Beer-Sheva 84105 Israel
| | - Orr Schlesinger
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; P. O. Box 653 Beer-Sheva 84105 Israel
| | - Haim Yuval Aviram
- Department of Chemical Physics; Weizmann Institute of Science; Rehovot Israel
| | - Inbal Riven
- Department of Chemical Physics; Weizmann Institute of Science; Rehovot Israel
| | - Gilad Haran
- Department of Chemical Physics; Weizmann Institute of Science; Rehovot Israel
| | - Lital Alfonta
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; P. O. Box 653 Beer-Sheva 84105 Israel
| |
Collapse
|
4
|
Abstract
Bacterial strains carrying nonsense suppressor tRNA genes played a crucial role in early work on bacterial and bacterial viral genetics. In eukaryotes as well, suppressor tRNAs have played important roles in the genetic analysis of yeast and worms. Surprisingly, little is known about genetic suppression in archaea, and there has been no characterization of suppressor tRNAs or identification of nonsense mutations in any of the archaeal genes. Here, we show, using the β-gal gene as a reporter, that amber, ochre, and opal suppressors derived from the serine and tyrosine tRNAs of the archaeon Haloferax volcanii are active in suppression of their corresponding stop codons. Using a promoter for tRNA expression regulated by tryptophan, we also show inducible and regulatable suppression of all three stop codons in H. volcanii. Additionally, transformation of a ΔpyrE2 H. volcanii strain with plasmids carrying the genes for a pyrE2 amber mutant and the serine amber suppressor tRNA yielded transformants that grow on agar plates lacking uracil. Thus, an auxotrophic amber mutation in the pyrE2 gene can be complemented by expression of the amber suppressor tRNA. These results pave the way for generating archaeal strains carrying inducible suppressor tRNA genes on the chromosome and their use in archaeal and archaeviral genetics. We also provide possible explanations for why suppressor tRNAs have not been identified in archaea.
Collapse
|
5
|
Cielens I, Jackevica L, Strods A, Kazaks A, Ose V, Bogans J, Pumpens P, Renhofa R. Mosaic RNA phage VLPs carrying domain III of the West Nile virus E protein. Mol Biotechnol 2014; 56:459-69. [PMID: 24570176 DOI: 10.1007/s12033-014-9743-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The virus-neutralising domain III (DIII) of the West Nile virus glycoprotein E was exposed on the surface of RNA phage AP205 virus-like particles (VLPs) in mosaic form. For this purpose, a 111 amino acid sequence of DIII was added via amber or opal termination codons to the C-terminus of the AP205 coat protein, and mosaic AP205-DIII VLPs were generated by cultivation in amber- or opal-suppressing Escherichia coli strains. After extensive purification to 95 % homogeneity, mosaic AP205-DIII VLPs retained up to 11-16 % monomers carrying DIII domains. The DIII domains appeared on the VLP surface because they were fully accessible to anti-DIII antibodies. Immunisation of BALB/c mice with AP205-DIII VLPs resulted in the induction of specific anti-DIII antibodies, of which the level was comparable to that of the anti-AP205 antibodies generated against the VLP carrier. The AP205-DIII-induced anti-DIII response was represented by a significant fraction of IgG2 isotype antibodies, in contrast to parallel immunisation with the DIII oligopeptide, which failed to induce IgG2 isotype antibodies. Formulation of AP-205-DIII VLPs in alum adjuvant stimulated the level of the anti-DIII response, but did not alter the fraction of IgG2 isotype antibodies. Mosaic AP205-DIII VLPs could be regarded as a promising prototype of a putative West Nile vaccine.
Collapse
Affiliation(s)
- Indulis Cielens
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, Riga, 1067, Latvia
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Köhrer C, Mandal D, Gaston KW, Grosjean H, Limbach PA, Rajbhandary UL. Life without tRNAIle-lysidine synthetase: translation of the isoleucine codon AUA in Bacillus subtilis lacking the canonical tRNA2Ile. Nucleic Acids Res 2013; 42:1904-15. [PMID: 24194599 PMCID: PMC3919564 DOI: 10.1093/nar/gkt1009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Translation of the isoleucine codon AUA in most prokaryotes requires a modified C (lysidine or agmatidine) at the wobble position of tRNA2Ile to base pair specifically with the A of the AUA codon but not with the G of AUG. Recently, a Bacillus subtilis strain was isolated in which the essential gene encoding tRNAIle-lysidine synthetase was deleted for the first time. In such a strain, C34 at the wobble position of tRNA2Ile is expected to remain unmodified and cells depend on a mutant suppressor tRNA derived from tRNA1Ile, in which G34 has been changed to U34. An important question, therefore, is how U34 base pairs with A without also base pairing with G. Here, we show (i) that unlike U34 at the wobble position of all B. subtilis tRNAs of known sequence, U34 in the mutant tRNA is not modified, and (ii) that the mutant tRNA binds strongly to the AUA codon on B. subtilis ribosomes but only weakly to AUG. These in vitro data explain why the suppressor strain displays only a low level of misreading AUG codons in vivo and, as shown here, grows at a rate comparable to that of the wild-type strain.
Collapse
Affiliation(s)
- Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, OH 45221, USA and Centre de Génétique Moléculaire, CNRS, Gif-sur-Yvette, F-91198, France
| | | | | | | | | | | |
Collapse
|
7
|
Thyer R, Filipovska A, Rackham O. Engineered rRNA Enhances the Efficiency of Selenocysteine Incorporation during Translation. J Am Chem Soc 2012; 135:2-5. [DOI: 10.1021/ja3069177] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ross Thyer
- Western
Australian Institute for Medical Research and
Centre for Medical Research, The University of Western Australia, Australia
| | - Aleksandra Filipovska
- Western
Australian Institute for Medical Research and
Centre for Medical Research, The University of Western Australia, Australia
| | - Oliver Rackham
- Western
Australian Institute for Medical Research and
Centre for Medical Research, The University of Western Australia, Australia
| |
Collapse
|
8
|
Helix 69 in 23S rRNA modulates decoding by wild type and suppressor tRNAs. Mol Genet Genomics 2009; 282:371-80. [PMID: 19603183 DOI: 10.1007/s00438-009-0470-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 06/27/2009] [Indexed: 10/20/2022]
Abstract
Helix 69 of 23S rRNA forms one of the major inter-subunit bridges of the 70S ribosome and interacts with A- and P-site tRNAs and translation factors. Despite the proximity of h69 to the decoding center and tRNAs, the contribution of h69 to the tRNA selection process is unclear: previous genetic analyses have shown that h69 mutations increase frameshifting and readthrough of stop codons. However, a complete deletion of h69 does not affect the selection of cognate tRNAs in vitro. To address these discrepancies, the in vivo effects of a range of single- and multi-base h69 mutations in Escherichia coli 23S rRNA on various translation errors have been determined. While a majority of the h69 mutations examined here affected readthrough of stop codons and frameshifting, the DeltaA1916 single base deletion mutation uniquely influenced missense decoding. Different h69 mutants had either increased or decreased levels of stop codon readthrough. The h69 mutations that decreased UGA readthrough also decreased UGA reading by a mutant, near-cognate tRNA(Trp) carrying a G24A substitution in the D arm, but had far less effect on UGA reading by a suppressor tRNA with a complementary anticodon. These results suggest that h69 interactions with release factors contribute significantly to termination efficiency and that interaction with the D arm of A-site tRNA is important for discrimination between cognate and near-cognate tRNAs.
Collapse
|
9
|
Köhrer C, Sullivan EL, RajBhandary UL. Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells. Nucleic Acids Res 2004; 32:6200-11. [PMID: 15576346 PMCID: PMC535668 DOI: 10.1093/nar/gkh959] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 11/08/2004] [Accepted: 11/08/2004] [Indexed: 11/13/2022] Open
Abstract
We describe the generation of a complete set of orthogonal 21st synthetase-amber, ochre and opal suppressor tRNA pairs including the first report of a 21st synthetase-ochre suppressor tRNA pair. We show that amber, ochre and opal suppressor tRNAs, derived from Escherichia coli glutamine tRNA, suppress UAG, UAA and UGA termination codons, respectively, in a reporter mRNA in mammalian cells. Activity of each suppressor tRNA is dependent upon the expression of E.coli glutaminyl-tRNA synthetase, indicating that none of the suppressor tRNAs are aminoacylated by any of the twenty aminoacyl-tRNA synthetases in the mammalian cytoplasm. Amber, ochre and opal suppressor tRNAs with a wide range of activities in suppression (increases of up to 36, 156 and 200-fold, respectively) have been generated by introducing further mutations into the suppressor tRNA genes. The most active suppressor tRNAs have been used in combination to concomitantly suppress two or three termination codons in an mRNA. We discuss the potential use of these 21st synthetase-suppressor tRNA pairs for the site-specific incorporation of two or, possibly, even three different unnatural amino acids into proteins and for the regulated suppression of amber, ochre and opal termination codons in mammalian cells.
Collapse
Affiliation(s)
- Caroline Köhrer
- Department of Biology, Room 68-671, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
10
|
Abstract
The mbrA4 mutation confers camphor resistance, severe growth defects and up to a two-fold increase in the amount of chromosomal DNA per cell. The extra DNA is replicated from oriC in a synchronous fashion. Cells containing mbrA4 are more resistant to X-rays, indicating that the extra DNA represents complete or nearly complete chromosomes. I report here that mbrA4 is an unusual allele of the leading strand DNA helicase, Rep. Eight independently isolated alleles of rep(mbrA) contain the same three changes in the rep gene: a G to A at position -44 from the start of the mRNA (+1); an opal stop at codon 142; and a glycine to serine at codon 414 (G414S). My data indicate that rep(mbrA4) is not a null mutation and that the third mutation, G414S, is necessary for camphor resistance, the phenotype associated with increased DNA content per cell. I also show that increase in DNA content does not lead to independently segregating chromosomes.
Collapse
Affiliation(s)
- Nancy Trun
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA.
| |
Collapse
|
11
|
Ulitzur S, Kuhn J. Construction of lux bacteriophages and the determination of specific bacteria and their antibiotic sensitivities. Methods Enzymol 2000; 305:543-57. [PMID: 10812625 DOI: 10.1016/s0076-6879(00)05512-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- S Ulitzur
- Department of Food Engineering and Biotechnology, Technion, Haifa, Israel
| | | |
Collapse
|
12
|
Konan KV, Yanofsky C. Rho-dependent transcription termination in the tna operon of Escherichia coli: roles of the boxA sequence and the rut site. J Bacteriol 2000; 182:3981-8. [PMID: 10869076 PMCID: PMC94583 DOI: 10.1128/jb.182.14.3981-3988.2000] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the tryptophanase (tna) operon of Escherichia coli is regulated by catabolite repression and by tryptophan-induced transcription antitermination. Tryptophan induction prevents Rho-dependent transcription termination in the leader region of the operon. Induction requires translation of a 24-residue leader peptide-coding region, tnaC, containing a single, crucial Trp codon. Studies with a lacZ reporter construct lacking the tnaC-tnaA spacer region suggest that, in the presence of excess tryptophan, the TnaC leader peptide acts in cis on the ribosome translating tnaC to inhibit its release. The stalled ribosome is thought to block Rho's access to the transcript. In this paper we examine the roles of the boxA sequence and the rut site in Rho-dependent termination. Deleting six nucleotides (CGC CCT) of boxA or introducing specific point mutations in boxA results in high-level constitutive expression. Some constitutive changes introduced in boxA do not change the TnaC peptide sequence. We confirm that deletion of the rut site results in constitutive expression. We also demonstrate that, in each constitutive construct, replacement of the tnaC start codon by a UAG stop codon reduces expression significantly, suggesting that constitutive expression requires translation of the tnaC coding sequence. Addition of bicyclomycin, an inhibitor of Rho, to these UAG constructs increases expression, demonstrating that reduced expression is due to Rho action. Combining a boxA point mutation with rut site deletion results in constitutive expression comparable to that of a maximally induced operon. These results support the hypothesis that in the presence of tryptophan the ribosome translating tnaC blocks Rho's access to the boxA and rut sites, thereby preventing transcription termination.
Collapse
Affiliation(s)
- K V Konan
- Department of Biological Sciences, Stanford University, CA 94305-5020, USA
| | | |
Collapse
|
13
|
Suppmann S, Persson BC, Böck A. Dynamics and efficiency in vivo of UGA-directed selenocysteine insertion at the ribosome. EMBO J 1999; 18:2284-93. [PMID: 10205181 PMCID: PMC1171311 DOI: 10.1093/emboj/18.8.2284] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The kinetics and efficiency of decoding of the UGA of a bacterial selenoprotein mRNA with selenocysteine has been studied in vivo. A gst-lacZ fusion, with the fdhF SECIS element ligated between the two fusion partners, gave an efficiency of read-through of 4-5%; overproduction of the selenocysteine insertion machinery increased it to 7-10%. This low efficiency is caused by termination at the UGA and not by translational barriers at the SECIS. When the selenocysteine UGA codon was replaced by UCA, and tRNASec with anticodon UGA was allowed to compete with seryl-tRNASer1 for this codon, selenocysteine was found in 7% of the protein produced. When a non-cognate SelB-tRNASec complex competed with EF-Tu for a sense codon, no effects were seen, whereas a non-cognate SelB-tRNASec competing with EF-Tu-mediated Su7-tRNA nonsense suppression of UGA interfered strongly with suppression. The induction kinetics of beta-galactosidase synthesis from fdhF'-'lacZ gene fusions in the absence or presence of SelB and/or the SECIS element, showed that there was a translational pause in the fusion containing the SECIS when SelB was present. The results show that decoding of UGA is an inefficient process and that using the third dimension of the mRNA to accommodate an additional amino acid is accompanied by considerable quantitative and kinetic costs.
Collapse
Affiliation(s)
- S Suppmann
- Lehrstuhl für Mikrobiologie der Universität München, Maria-Ward-Strasse 1a, D-80638 München, Germany
| | | | | |
Collapse
|
14
|
Jarvill-Taylor KJ, VanDyk C, Minion FC. Cloning of mnuA, a membrane nuclease gene of Mycoplasma pulmonis, and analysis of its expression in Escherichia coli. J Bacteriol 1999; 181:1853-60. [PMID: 10074079 PMCID: PMC93585 DOI: 10.1128/jb.181.6.1853-1860.1999] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane nucleases of mycoplasmas are believed to play important roles in growth and pathogenesis, although no clear evidence for their importance has yet been obtained. As a first step in defining the function of this unusual membrane activity, studies were undertaken to clone and analyze one of the membrane nuclease genes from Mycoplasma pulmonis. A novel screening strategy was used to identify a recombinant lambda phage expressing nuclease activity, and its cloned fragment was analyzed. Transposon mutagenesis was used to identify an open reading frame of 1,410 bp, which coded for nuclease activity in Escherichia coli. This gene coded for a 470-amino-acid polypeptide of 53,739 Da and was designated mnuA (for "membrane nuclease"). The MnuA protein contained a prolipoprotein signal peptidase II recognition sequence along with an extensive hydrophobic region near the amino terminus, suggesting that the protein may be lipid modified or that it is anchored in the membrane by this membrane-spanning region. Antisera raised against two MnuA peptide sequences identified an M. pulmonis membrane protein of approximately 42 kDa by immunoblotting, which corresponded to a trypsin-sensitive nucleolytic band of the same size. Maxicell experiments with E. coli confirmed that mnuA coded for a nuclease of unknown specificity. Hybridization studies showed that mnuA sequences are found in few Mycoplasma species, suggesting that mycoplasma membrane nucleases display significant sequence variation within the genus Mycoplasma.
Collapse
Affiliation(s)
- K J Jarvill-Taylor
- Department of Veterinary Microbiology and Preventive Medicine, Veterinary Medical Research Institute, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
15
|
Konan KV, Yanofsky C. Role of ribosome release in regulation of tna operon expression in Escherichia coli. J Bacteriol 1999; 181:1530-6. [PMID: 10049385 PMCID: PMC93543 DOI: 10.1128/jb.181.5.1530-1536.1999] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the degradative tryptophanase (tna) operon of Escherichia coli is regulated by catabolite repression and tryptophan-induced transcription antitermination. In cultures growing in the absence of added tryptophan, transcription of the structural genes of the tna operon is limited by Rho-dependent transcription termination in the leader region of the operon. Tryptophan induction prevents this Rho-dependent termination, and requires in-frame translation of a 24-residue leader peptide coding region, tnaC, that contains a single, crucial, Trp codon. Studies with a lacZ reporter construct lacking the spacer region between tnaC and the first major structural gene, tnaA, suggested that tryptophan induction might involve cis action by the TnaC leader peptide on the ribosome translating the tnaC coding region. The leader peptide was hypothesized to inhibit ribosome release at the tnaC stop codon, thereby blocking Rho's access to the transcript. Regulatory studies with deletion constructs of the tna operon of Proteus vulgaris supported this interpretation. In the present study the putative role of the tnaC stop codon in tna operon regulation in E. coli was examined further by replacing the natural tnaC stop codon, UGA, with UAG or UAA in a tnaC-stop codon-tnaA'-'lacZ reporter construct. Basal level expression was reduced to 20 and 50% when the UGA stop codon was replaced by UAG or UAA, respectively, consistent with the finding that in E. coli translation terminates more efficiently at UAG and UAA than at UGA. Tryptophan induction was observed in strains with any of the stop codons. However, when UAG or UAA replaced UGA, the induced level of expression was also reduced to 15 and 50% of that obtained with UGA as the tnaC stop codon, respectively. Introduction of a mutant allele encoding a temperature-sensitive release factor 1, prfA1, increased basal level expression 60-fold when the tnaC stop codon was UAG and 3-fold when this stop codon was UAA; basal level expression was reduced by 50% in the construct with the natural stop codon, UGA. In strains with any of the three stop codons and the prfA1 mutation, the induced levels of tna operon expression were virtually identical. The effects of tnaC stop codon identity on expression were also examined in the absence of Rho action, using tnaC-stop codon-'lacZ constructs that lack the tnaC-tnaA spacer region. Expression was low in the absence of tnaC stop codon suppression. In most cases, tryptophan addition resulted in about 50% inhibition of expression when UGA was replaced by UAG or UAA and the appropriate suppressor was present. Introduction of the prfA1 mutant allele increased expression of the suppressed construct with the UAG stop codon; tryptophan addition also resulted in ca. 50% inhibition. These findings provide additional evidence implicating the behavior of the ribosome translating tnaC in the regulation of tna operon expression.
Collapse
Affiliation(s)
- K V Konan
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | |
Collapse
|
16
|
Tsai F, Curran JF. tRNA(2Gln) mutants that translate the CGA arginine codon as glutamine in Escherichia coli. RNA (NEW YORK, N.Y.) 1998; 4:1514-1522. [PMID: 9848650 PMCID: PMC1369722 DOI: 10.1017/s1355838298981274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We present a novel missense suppression system for the selection of tRNA(2GIn) mutants that can efficiently translate the CGA (arginine) codon as glutamine. tRNA(2Gln) mutants were cloned from a partially randomized synthetic gene pool using a plasmid vector that simultaneously expresses the tRNA gene and, to ensure efficient aminoacylation, the glutamine aminoacyl-tRNA synthetase gene (glnS). tRNA mutants that insert glutamine at CGA were selected as missense suppressors of a lacZ mutant (lacZ625(CGA)) that contains CGA substituted for an essential glutamine codon. Preliminary characterizations of four suppressors is presented. All of them contain two anticodon mutations: C-->U at position 34 and U-->C at position 35, which allow for cognate translation of CGA. U35 was previously shown to be an important determinant for glutaminylation of tRNA(2Gln) in vitro; suppression in vivo requires overexpression of the glutaminyl-tRNA synthetase gene (glnS). One tRNA variant contains no further mutations and has the highest missense suppression activity (8%). Three other isolates each contain an additional point mutation that alters suppression efficiency. This system will be useful for further studies of tRNA structure and function. In addition, because relatively efficient translation of the rare CGA codon as glutamine is not toxic for Escherichia coli, it may be possible to translate this sense codon with other alternate meanings, a property which could greatly facilitate protein engineering.
Collapse
Affiliation(s)
- F Tsai
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109, USA
| | | |
Collapse
|
17
|
Konan KV, Yanofsky C. Regulation of the Escherichia coli tna operon: nascent leader peptide control at the tnaC stop codon. J Bacteriol 1997; 179:1774-9. [PMID: 9045840 PMCID: PMC178893 DOI: 10.1128/jb.179.5.1774-1779.1997] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Expression of the tryptophanase (tna) operon of Escherichia coli is regulated by catabolite repression and by tryptophan-induced transcription antitermination at Rho-dependent termination sites in the leader region of the operon. Tryptophan induction is dependent on translation of a short leader peptide coding region, tnaC, that contains a single, crucial tryptophan codon. Recent studies suggest that during induction, the TnaC leader peptide acts in cis on the translating ribosome to inhibit its release at the tnaC stop codon. In the present study we use a tnaC-UGA-'lacZ construct lacking the tnaC-tnaA spacer region to analyze the effect of TnaC synthesis on the behavior of the ribosome that translates tnaC. The tnaC-UGA-'lacZ construct is not expressed significantly in the presence or absence of inducer. However, it is expressed in the presence of UGA suppressors, or when the structural gene for polypeptide release factor 3 is disrupted, or when wild-type tRNATrP is overproduced. In each situation, tnaC-UGA-'lacZ expression is reduced appreciably by the presence of inducing levels of tryptophan. Replacing the tnaC UGA stop codon with a sense codon allows considerable expression, which is also reduced, although to a lesser extent, by the addition of tryptophan. Inhibition by tryptophan is not observed when Trp codon 12 of tnaC is changed to a Leu codon. Overexpression of tnaC in trans from a multicopy plasmid prevents inhibition of expression by tryptophan. These results support the hypothesis that the TnaC leader peptide acts in cis to alter the behavior of the translating ribosome.
Collapse
Affiliation(s)
- K V Konan
- Department of Biological Sciences, Stanford University, California 94305-5020, USA
| | | |
Collapse
|
18
|
Gish K, Yanofsky C. Evidence suggesting cis action by the TnaC leader peptide in regulating transcription attenuation in the tryptophanase operon of Escherichia coli. J Bacteriol 1995; 177:7245-54. [PMID: 8522534 PMCID: PMC177606 DOI: 10.1128/jb.177.24.7245-7254.1995] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Expression of the tryptophanase (tna) operon in Escherichia coli is regulated by catabolite repression and transcription attenuation. Elevated levels of tryptophan induce transcription antitermination at one or more Rho factor-dependent termination sites in the leader region of the operon. Induction requires translation of a 24-residue coding region, tnaC, located in the 319-nucleotide transcribed leader region preceding tnaA, the structural gene for tryptophanase. In the present paper, we show that two bacterial species that lack tryptophanase activity, Enterobacter aerogenes and Salmonella typhimurium, allow tryptophanase induction and tna operon regulation when they carry a plasmid containing the E. coli tna operon. The role of tnaC in induction was examined by introducing mutations in a 24-nucleotide segment of tnaC of E. coli surrounding and including the crucial Trp codon 12. Some mutations resulted in a noninducible phenotype; these mostly introduced nonconservative amino acid substitutions in TnaC. Other mutations had little or no effect; these generally were in third positions of codons or introduced conservative amino acid replacements. A tryptophan-inserting, UGA-reading glutamine suppressor tRNA was observed to restore partial regulation when Trp codon 12 of tnaC was changed to UGA. Stop codons introduced downstream of Trp codon 12 in all three reading frames established that induction requires translation in the natural tnaC reading frame. Our findings suggest that the TnaC leader peptide acts in cis to prevent Rho-dependent termination.
Collapse
Affiliation(s)
- K Gish
- Department of Biological Sciences, Stanford University, California 94305-5020, USA
| | | |
Collapse
|
19
|
Minion FC, Vandyk C, Smiley BK. Use of an enhanced Escherichia coli opal suppressor strain to screen a Mycoplasma hyopneumoniae library. FEMS Microbiol Lett 1995. [DOI: 10.1111/j.1574-6968.1995.tb07758.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Proft T, Herrmann R. Identification and characterization of hitherto unknown Mycoplasma pneumoniae proteins. Mol Microbiol 1994; 13:337-48. [PMID: 7984111 DOI: 10.1111/j.1365-2958.1994.tb00427.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Eleven hitherto unknown Mycoplasma pneumoniae proteins were identified and characterized with respect to their size and subcellular location. This was carried out through the construction of in vitro gene fusions between a modified mouse dehydrofolate reductase (dhfr) gene and selected regions (cosmid clones) of the M. pneumoniae genome and expressing them in Escherichia coli. Positive clones were identified using antibodies against specific fractions of M. pneumoniae. The deduced protein sequences of 11 out of 30 clones did not show significant homologies to known proteins in protein data-bank searches. Monospecific antibodies against these 11 fusion proteins were used to determine the size and cellular location of the corresponding M. pneumoniae proteins by immunoscreening Western blots of SDS-acrylamide gels from M. pneumoniae cell extracts.
Collapse
Affiliation(s)
- T Proft
- ZMBH, University of Heidelberg, Germany
| | | |
Collapse
|
21
|
Schüll C, Beier H. Three Tetrahymena tRNA(Gln) isoacceptors as tools for studying unorthodox codon recognition and codon context effects during protein synthesis in vitro. Nucleic Acids Res 1994; 22:1974-80. [PMID: 8029002 PMCID: PMC308109 DOI: 10.1093/nar/22.11.1974] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Three glutamine tRNA isoacceptors are known in Tetrahymena thermophila. One of these has the anticodon UmUG which reads the two normal glutamine codons CAA and CAG, whereas the two others with CUA and UmUA anticodons recognize UAG and UAA, respectively, which serve as termination codons in other organisms. We have employed these tRNA(Gln)-isoacceptors as tools for studying unconventional base interactions in a mRNA- and tRNA-dependent wheat germ extract. We demonstrate here (i) that tRNA(Gln)UmUG suppresses the UAA as well as the UAG stop codon, involving a single G:U wobble pair at the third anticodon position and two simultaneous wobble base pairings at the first and third position, respectively, and (ii) that tRNA(Gln)CUA, in addition to its cognate codon UAG, reads the UAA stop codon which necessitates a C:A mispairing in the first anticodon position. These unorthodox base interactions take place in a codon context which favours readthrough in tobacco mosaic virus (TMV) or tobacco rattle virus (TRV) RNA, but are not observed in a context that terminates zein and globin protein synthesis. Furthermore, our data reveal that wobble or mispairing in the middle position of anticodon-codon interactions is precluded in either context. The suppressor activities of tRNAs(Gln) are compared with those of other known naturally occurring suppressor tRNAs, i.e., tRNA(Tyr)G psi A and tRNA(Trp)CmCA. Our results indicate that a 'leaky' context is neither restricted to a single stop codon nor to a distinct tRNA species.
Collapse
Affiliation(s)
- C Schüll
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, Germany
| | | |
Collapse
|
22
|
Atkinson J, Martin R. Mutations to nonsense codons in human genetic disease: implications for gene therapy by nonsense suppressor tRNAs. Nucleic Acids Res 1994; 22:1327-34. [PMID: 8190621 PMCID: PMC307985 DOI: 10.1093/nar/22.8.1327] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Nonsense suppressor tRNAs have been suggested as potential agents for human somatic gene therapy. Recent work from this laboratory has described significant effects of 3' codon context on the efficiency of human nonsense suppressors. A rapid increase in the number of reports of human diseases caused by nonsense codons, prompted us to determine how the spectrum of mutation to either UAG, UAA or UGA codons and their respective 3' contexts, might effect the efficiency of human suppressor tRNAs employed for purposes of gene therapy. This paper presents a survey of 179 events of mutations to nonsense codons which cause human germline or somatic disease. The analysis revealed a ratio of approximately 1:2:3 for mutation to UAA, UAG and UGA respectively. This pattern is similar, but not identical, to that of naturally occurring stop codons. The 3' contexts of new mutations to stop were also analysed. Once again, the pattern was similar to the contexts surrounding natural termination signals. These results imply there will be little difference in the sensitivity of nonsense mutations and natural stop codons to suppression by nonsense suppressor tRNAs. Analysis of the codons altered by nonsense mutations suggests that efforts to design human UAG suppressor tRNAs charged with Trp, Gln, and Glu; UAA suppressors charged with Gln and Glu, and UGA suppressors which insert Arg, would be an essential step in the development of suppressor tRNAs as agents of human somatic gene therapy.
Collapse
Affiliation(s)
- J Atkinson
- Krebs Institute for Biomolecular Research, University of Sheffield, Western Bank, UK
| | | |
Collapse
|
23
|
Ringquist S, Schneider D, Gibson T, Baron C, Böck A, Gold L. Recognition of the mRNA selenocysteine insertion sequence by the specialized translational elongation factor SELB. Genes Dev 1994; 8:376-85. [PMID: 8314089 DOI: 10.1101/gad.8.3.376] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In Escherichia coli the unusual amino acid selenocysteine is incorporated cotranslationally at an in-frame UGA codon. Incorporation of selenocysteine relies, in part, on the interaction between a specialized elongation factor, the SELB protein, and a cis-acting element within the mRNA. Boundary and toeprint experiments illustrate that the SELB-GTP-Sec-tRNA(Sec) ternary complex binds to the selenoprotein encoding mRNAs fdhF and fdnG, serving to increase the concentration of SELB and Sec-tRNA(Sec) on these mRNAs in vivo. Moreover, toeprint experiments indicate that SELB recognizes the ribosome-bound message and that, upon binding, SELB may protrude out of the ribosomal-mRNA track so as to approach the large ribosomal subunit. The results place the mRNA-bound SELB-GTP-Sec-tRNA(Sec) ternary complex at the selenocysteine codon (as expected) and suggest a mechanism to explain the specificity of selenocysteine insertion. Cis-acting mRNA regulatory elements can tether protein factors to the translation complex during protein synthesis.
Collapse
MESH Headings
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Codon
- Escherichia coli/genetics
- Molecular Sequence Data
- Peptide Chain Elongation, Translational/physiology
- Peptide Chain Initiation, Translational/physiology
- Peptide Elongation Factors/metabolism
- Protein Binding
- Protein Biosynthesis
- Proteins
- RNA, Messenger/metabolism
- RNA, Transfer, Amino Acid-Specific
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Met/metabolism
- Ribosomal Proteins/metabolism
- Ribosomes/metabolism
- Selenocysteine/genetics
- Selenocysteine/metabolism
- Selenoproteins
- Sequence Analysis, RNA
Collapse
Affiliation(s)
- S Ringquist
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309
| | | | | | | | | | | |
Collapse
|
24
|
Smiley BK, Minion FC. Enhanced readthrough of opal (UGA) stop codons and production of Mycoplasma pneumoniae P1 epitopes in Escherichia coli. Gene X 1993; 134:33-40. [PMID: 7694887 DOI: 10.1016/0378-1119(93)90171-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Expression of mycoplasma sequences in Escherichia coli is often hindered by an unusual mycoplasmal codon usage pattern: the UGA stop codon is utilized for tryptophan. This may result in the truncation of cloned proteins and may prevent the detection of products of many cloned genes. To circumvent this translation barrier, we have developed an expression system for the production of mycoplasma proteins in E. coli. The efficiency of an opal suppressor tRNA (trpT176) was augmented with other suppressor mutations (prfB3 or rrsB(SuUGA-delta C1054)) which influence termination events. System efficacy was analyzed by employing suppressor mutations in the expression of TGA-containing sequences from the P1 protein-encoding gene of Mycoplasma pneumoniae.
Collapse
Affiliation(s)
- B K Smiley
- Department of Microbiology, Immunology and Preventive Medicine, Iowa State University, Ames 50011
| | | |
Collapse
|
25
|
Kopelowitz J, Hampe C, Goldman R, Reches M, Engelberg-Kulka H. Influence of codon context on UGA suppression and readthrough. J Mol Biol 1992; 225:261-9. [PMID: 1375653 DOI: 10.1016/0022-2836(92)90920-f] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We studied the influence of the codon context on UGA suppression by a suppressor tRNA and on UGA readthrough by a normal tRNA in Escherichia coli. This was done by a series of constructs where only the immediate context of the TGA codon was varied by only one nucleotide at a time. For both UGA suppression and UGA readthrough the codon context had a similar influence according to the following rules. (1) The nature of the nucleotide immediately adjacent to the 3' side of the UGA is an important determinant; at that position the level of UGA translation is influenced by the nucleotides in the order A greater than G greater than C greater than U. (2) At extremely high or low levels of UGA translation this influence of the adjacent 3' nucleotide is not seen. (3) In all cases, the nature of both the nucleotide immediately adjacent to the 5' side of the codon and that following the base adjacent to the 3' side of the codon have little effect, if any, on UGA translation. The varying influence of the codon context effect on UGA translation is discussed in relation to its role in gene expression.
Collapse
Affiliation(s)
- J Kopelowitz
- Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
26
|
Yu W, Spreitzer RJ. Chloroplast heteroplasmicity is stabilized by an amber-suppressor tryptophan tRNA(CUA). Proc Natl Acad Sci U S A 1992; 89:3904-7. [PMID: 1570311 PMCID: PMC525599 DOI: 10.1073/pnas.89.9.3904] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Photosynthesis-deficient mutants of the green alga Chlamydomonas reinhardtii were previously shown to arise from nonsense mutations within the chloroplast rbcL gene, which encodes the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39). Photosynthesis-competent revertants of these nonsense mutants have often been found to be stably heteroplasmic, giving rise to both mutant and revertant cells during mitotic or meiotic divisions under nonselective growth conditions. It was proposed that the stable heteroplasmicity might arise from a balanced polymorphism of suppressor and wild-type alleles of a tRNA gene maintained within the polyploid chloroplast genome. In the present study, we have focused on determining the molecular basis for the heteroplasmicity of one such revertant, named R13-3C, which was recovered from the 18-7G amber (UAG) mutant. Restriction-enzyme analysis and DNA sequencing showed that the amber mutation is still present in the rbcL gene of the revertant strain. In contrast, DNA sequencing of the suspected tRNA(Trp) gene of the revertant revealed a mutation that would change its CCA anticodon to amber-specific CUA. This mutation was found to be heteroplasmic, being present in only 70% of the tRNA(Trp) gene copies. Under nonselective conditions, the suppressor mutation was lost from cells that also lost the revertant phenotype. We conclude that stable heteroplasmicity can arise as a balanced polymorphism of organellar alleles. This observation suggests that additional tRNA suppressors may be identified due to their heteroplasmic nature within polyploid genomes.
Collapse
Affiliation(s)
- W Yu
- Department of Biochemistry, University of Nebraska, Lincoln 68583-0718
| | | |
Collapse
|
27
|
Prescott CD, Kornau HC. Mutations in E.coli 16s rRNA that enhance and decrease the activity of a suppressor tRNA. Nucleic Acids Res 1992; 20:1567-71. [PMID: 1374555 PMCID: PMC312239 DOI: 10.1093/nar/20.7.1567] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The in vivo expression of mutations constructed within helix 34 of 16S rRNA has been examined together with a nonsense tRNA suppressor for their action at stop codons. The data revealed two novel results: in contrast to previous findings, some of the rRNA mutations affected suppression at UAA and UAG nonsense codons. Secondly, both an increase and a decrease in the efficiency of the suppressor tRNA were induced by the mutations. This is the first report that rRNA mutations decreased the efficiency of a suppressor tRNA. The data are interpreted as there being competition between the two release factors (RF-1 and RF-2) for an overlapping domain and that helix 34 influences this interaction.
Collapse
Affiliation(s)
- C D Prescott
- Max Planck Institut für Molekulare Genetik, Berlin, Germany
| | | |
Collapse
|
28
|
Abstract
The selC gene product, tRNA(Sec), inserts selenocysteine at UGA (opal) codons in a specialized mRNA context. We have investigated the action of the tRNA at ordinary UGA codons, normally not translated, by changing the unusual structural features of tRNA(Sec). Sequences in the D arm, CCA arm and variable arm of the tRNA all contribute to the prohibition against translation of ordinary UGA codons. One multiple mutant is a moderately efficient serine-inserting UGA suppressor tRNA.
Collapse
Affiliation(s)
- W Q Li
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347
| | | |
Collapse
|
29
|
Abstract
This chapter summarizes the present state of knowledge concerning translational suppression in retroviruses. Other viruses, using similar mechanisms, are mentioned only briefly and tangentially. Retroviruses are a unique class of viruses that have been found in all classes of vertebrates but not in other organisms. Perhaps, their most distinctive properties are the flow of information from RNA to DNA early in the infectious process, and the subsequent integration of the viral DNA into the chromosomal DNA of the host cell. Retroviruses are the causative agents of acquired immunodeficiency syndrome (AIDS) and of a variety of neoplastic diseases in man and domestic animals. Elements with striking similarities to retroviruses, termed retrotransposons, occur in yeast and many other eukaryotes; elements sharing some characteristics with retroviruses have also recently been observed in prokaryotes. Because of the apparent relationship between retroviruses and retrotransposons, this chapter discusses of retrotransposons as well as retroviruses. Though all retroviruses utilize translational suppression in pol-protein synthesis, different groups of retroviruses use two completely distinct types of translational suppression. One of these is in-frame or readthrough suppression and the other is ribosomal frameshifting.
Collapse
Affiliation(s)
- D L Hatfield
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
30
|
Schoulaker-Schwarz R, Dekel-Gorodetsky L, Engelberg-Kulka H. An additional function for bacteriophage lambda rex: the rexB product prevents degradation of the lambda O protein. Proc Natl Acad Sci U S A 1991; 88:4996-5000. [PMID: 1828888 PMCID: PMC51794 DOI: 10.1073/pnas.88.11.4996] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The rex operon of bacteriophage lambda excludes the development of several unrelated bacteriophages. Here we present an additional lambda rexB function: it prevents degradation of the short-lived protein lambda O known to be involved in lambda DNA replication. We have shown that it is the product of rexB that is responsible for the stabilization of lambda O: when a nonsense mutation is present in rexB, lambda O protein is labile; suppression of the mutation by the corresponding nonsense suppressor causes partial restabilization of lambda O. lambda rexB also stabilizes lambda O in trans. We discuss our results in relation to the function of rexB in lambda DNA replication and its role in the protein degradation pathways of bacteriophage lambda.
Collapse
Affiliation(s)
- R Schoulaker-Schwarz
- Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
31
|
Feng YX, Copeland TD, Oroszlan S, Rein A, Levin JG. Identification of amino acids inserted during suppression of UAA and UGA termination codons at the gag-pol junction of Moloney murine leukemia virus. Proc Natl Acad Sci U S A 1990; 87:8860-3. [PMID: 2247457 PMCID: PMC55059 DOI: 10.1073/pnas.87.22.8860] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Expression of the murine leukemia virus pol gene occurs by translational readthrough of an in-frame UAG codon between the gag and pol coding regions. In a previous study, we mutated the UAG codon to UAA or UGA and demonstrated that both of these termination codons could be suppressed in reticulocyte lysates and in infected cells with the same efficiency as UAG. We now report the identity of the amino acids inserted in vitro in response to UAA and UGA in fusion products containing the gag-pol junction region. The results show that UAA, like UAG, directs the incorporation of glutamine, whereas UGA directs the incorporation of three amino acids, arginine, cysteine, and tryptophan. To our knowledge, this is the first report indicating misreading of UAA as glutamine and UGA as arginine and cysteine in higher eukaryotes. Interestingly, although our protein synthesis system presumably contains other known UAG and UGA suppressors, these tRNAs did not suppress the termination codons in our experiments. Thus, it seems possible that the sequence surrounding the gag-pol junction not only promotes suppression but also helps determine which tRNAs function in suppression.
Collapse
Affiliation(s)
- Y X Feng
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
32
|
Gollnick P, Yanofsky C. tRNA(Trp) translation of leader peptide codon 12 and other factors that regulate expression of the tryptophanase operon. J Bacteriol 1990; 172:3100-7. [PMID: 2345136 PMCID: PMC209113 DOI: 10.1128/jb.172.6.3100-3107.1990] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tryptophanase (tna) operon expression in Escherichia coli is induced by tryptophan. This response is mediated by features of a 319-base-pair leader region preceding the major structural genes of the operon. Translation of the coding region (tnaC) for a 24-amino-acid leader peptide is essential for induction. We have used site-directed mutagenesis to investigate the role of the single Trp codon, at position 12 in tnaC, in regulation of the operon. Codon 12 was changed to either a UAG or UGA stop codon or to a CGG arginine codon. Induction by tryptophan was eliminated by any of these changes. Studies with suppressor tRNAs indicated that tRNA(Trp) translation of codon 12 in tnaC is essential for induction of the operon. Reduction of tna expression by a miaA mutation supports a role for translation by tRNA(Trp) in regulation of the operon. Frameshift mutations and suppression that allows translation of tnaC to proceed beyond the normal stop codon result in constitutive tna operon expression. Deletion of a potential site for Rho factor utilization just beyond tnaC also results in partial constitutive expression. These studies suggest possible models for tryptophan induction of tna operon expression involving tRNA(Trp)-mediated frame shifting or readthrough at the tnaC stop codon.
Collapse
Affiliation(s)
- P Gollnick
- Department of Biological Sciences, Stanford University, California 94305-5020
| | | |
Collapse
|
33
|
Renbaum P, Abrahamove D, Fainsod A, Wilson GG, Rottem S, Razin A. Cloning, characterization, and expression in Escherichia coli of the gene coding for the CpG DNA methylase from Spiroplasma sp. strain MQ1(M.SssI). Nucleic Acids Res 1990; 18:1145-52. [PMID: 2181400 PMCID: PMC330428 DOI: 10.1093/nar/18.5.1145] [Citation(s) in RCA: 166] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We describe here the cloning, characterization and expression in E. coli of the gene coding for a DNA methylase from Spiroplasma sp. strain MQ1 (M.SssI). This enzyme methylates completely and exclusively CpG sequences. The Spiroplasma gene was transcribed in E. coli using its own promoter. Translation of the entire message required the use of an opal suppressor, suggesting that UGA triplets code for tryptophan in Spiroplasma. Sequence analysis of the gene revealed several UGA triplets, in a 1158 bp long open reading frame. The deduced amino acid sequence revealed in M.SssI all common domains characteristic of bacterial cytosine DNA methylases. The putative sequence recognition domain of M.SssI showed no obvious similarities with that of the mouse DNA methylase, in spite of their common sequence specificity. The cloned enzyme methylated exclusively CpG sequences both in vivo and in vitro. In contrast to the mammalian enzyme which is primarily a maintenance methylase, M.SssI displayed de novo methylase activity, characteristic of prokaryotic cytosine DNA methylases.
Collapse
Affiliation(s)
- P Renbaum
- Department of Cellular Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
34
|
Schultz DW, Yarus M. A simple and sensitive in vivo luciferase assay for tRNA-mediated nonsense suppression. J Bacteriol 1990; 172:595-602. [PMID: 2105299 PMCID: PMC208482 DOI: 10.1128/jb.172.2.595-602.1990] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We present a rapid assay for tRNA suppression in living Escherichia coli. An amber, ochre, or opal nonsense mutation in a cloned luxB gene from the bacterium Vibrio harveyi was suppressed. Because luciferase (Lux) activity depends completely on the appearance of the full-length luxB gene product, the amount of light produced was proportional to tRNA-mediated nonsense suppression in the cell. This luminometric assay was notably quicker, easier, and more sensitive than a traditional colorimetric assay employing beta-galactosidase. Assays required only one addition to a growing culture and were complete within 1 min. Light output was directly proportional to the amount of bacterial luciferase in a sample over a range of greater than or equal to 40,000-fold. Fewer than 100 cells were required for detection of Lux with ordinary instrumentation; assays were 80-fold more sensitive than simultaneous beta-galactosidase measurements. Assayed cells survived and could be recovered as colony formers. The beta-galactosidase colorimetric assay and the luciferase assay were similarly reproducible. Light from colonies expressing Lux was visible to the dark-adapted eye and useful for screening. A rapid assay that does not depend on the formation of permanent transformants can be based on electroporation followed by luminometry.
Collapse
Affiliation(s)
- D W Schultz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347
| | | |
Collapse
|
35
|
Abstract
Nucleotides that neighbor codons in Escherichia coli genes are highly non-random. Furthermore, these context biases are stronger and extend farther from the codon in weakly expressed than in highly expressed genes. We therefore suggested that codon contexts are selected to reduce gene expression levels. We now compare the expression levels of lacZ genes containing two specific coding sequences (context inserts). One context insert represents contexts seen in weakly expressed genes (low variant); the other represents contexts seen in highly expressed genes (high variant). The two variants have identical nucleotide and codon compositions, and encode the same protein. A permutation of four nucleotides, which changes eight codon:codon interfaces of 1043, comprises the only difference between the high and low context variant genes. In three different lacZ mRNAs, the low variant was expressed at a level significantly below that of the high variant. This context effect depends entirely on translation of the contexts in the correct frame; its magnitude depends in part on the placement of other features (e.g. transcriptional pauses and terminators, or perhaps other slow codons or contexts) in the mRNAs. Changing the ribosome density on the message by changing the ribosome binding site distinguishes between dropoff, interference and polarity, three fundamentally different types of models for the context effect. The expression difference between context variants is eliminated by both increases and decreases in the ribosome initiation frequency, as uniquely predicted by the polarity model. In fact, data from all constructions are accommodated by a model in which slow translation of the low context insert increases rho-dependent transcriptional termination within the test gene. The data suggest that the rates of translational initiation and elongation are poised with respect to the rate of transcriptional elongation so that all are influential in setting the expression level of wild-type lacZ. We conclude that context-induced polarity will exist in genes wherever low and reproducible gene product levels have been selected.
Collapse
Affiliation(s)
- L S Folley
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309
| | | |
Collapse
|
36
|
Smith D, Yarus M. Transfer RNA structure and coding specificity. I. Evidence that a D-arm mutation reduces tRNA dissociation from the ribosome. J Mol Biol 1989; 206:489-501. [PMID: 2469803 DOI: 10.1016/0022-2836(89)90496-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mutation G to A24 in the D-arm of Escherichia coli tRNA(Trp) or its UAG suppressor derivative Su7 has two known phenotypes: (1) an altered or relaxed coding specificity at the codon third position; and (2) partial rescue of an anticodon loop mutation. In order to study the mechanism responsible for these effects we constructed, by in vitro mutagenesis, a series of tRNAs with alterations in the anticodon loop or at the third position of the anticodon. Evaluation of the effects of the A24 mutation on the in vivo ribosomal activity of these tRNAs leads us to conclude that the mutation reduces the rate at which the ribosome is able to reject tRNAs that are structurally defective or non-cognate. The apparent interaction of the D-arm mutation with the anticodon and anticodon loop is thus primarily kinetic, rather than through the structure of the tRNA. The Appendix describes the calculation of tRNA ribosomal activity from in vivo measurement of suppression efficiency.
Collapse
Affiliation(s)
- D Smith
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309
| | | |
Collapse
|
37
|
Abstract
In Escherichia coli, nonsense suppression at UAA codons is governed by the competition between a suppressor tRNA and the translational release factors RF1 and RF2. We have employed plasmids carrying the genes for RF1 and RF2 to measure release factor preference at UAA codons at 13 different sites in the lacI gene. We show here that the activity of RF1 and RF2 varies according to messenger context. RF1 is favored at UAA codons which are efficiently suppressed. RF2 is preferred at poorly suppressed sites.
Collapse
Affiliation(s)
- R Martin
- Department of Genetics, University of Washington, Seattle 98195
| | | | | |
Collapse
|
38
|
Abstract
It has been suggested that Escherichia coli release factor 2 (RF-2) translation is autoregulated. Mature RF-2 protein can terminate its own nascent synthesis at an intragenic, in-phase UGA codon, or alternatively, a +1 frameshift can occur that leads to completion of the RF-2 polypeptide. Translational termination presumably increases with RF-2 concentration, providing negative regulatory feedback. We now show, in lacZ/RF-2 fusions, that translation of a UAG codon at the position of the UGA competes with frameshifting, which proves one postulate of the translational autoregulatory model. We also identify a nearby sequence that is required for high-frequency frameshifting and suggest a constraint for the codon preceding the shift point. Both these sequences are incorporated into a model for frameshifting. Our measurements allow us to compute the relative rates in vivo of these reactions: release factor action, frameshifting and tRNA selection at an amber codon.
Collapse
Affiliation(s)
- J F Curran
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309
| | | |
Collapse
|
39
|
Eggertsson G, Söll D. Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli. Microbiol Rev 1988; 52:354-74. [PMID: 3054467 PMCID: PMC373150 DOI: 10.1128/mr.52.3.354-374.1988] [Citation(s) in RCA: 107] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Martin R, Hearn M, Jenny P, Gallant J. Release factor competition is equivalent at strong and weakly suppressed nonsense codons. MOLECULAR & GENERAL GENETICS : MGG 1988; 213:144-9. [PMID: 3065609 DOI: 10.1007/bf00333411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have compared the competition between strong or weak suppressor tRNAs and translational release factors (RF) at nonsense codons in the lacI gene of Escherichia coli. Using the F'lacIZ fusions developed by Miller and coworkers, UAG, UAA, and UGA codons at positions 189 and 220 were efficiently suppressed by plasmid-borne tRNA(trp) suppressors cognate to each nonsense triplet. Introduction of a compatible RF 1 plasmid competed at UAG and UAA but not UGA codons. An RF2 expressing plasmid competed at UAA and UGA but had little effect at UAG. Release factor competition against weak suppressors was measured using combinations of noncognate suppressors and nonsense codons. In each case, release factor plasmids behaved identically towards poorly suppressed codons as they did when the same codons were efficiently suppressed. The implications for these studies on the role of release factors in nonsense suppression context effects are discussed.
Collapse
Affiliation(s)
- R Martin
- Department of Genetics, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
41
|
Abstract
Fusions of the gene for tyrosine suppressor tRNA, tyrT(Sup3), and the lacZ gene of Escherichia coli were constructed such that the tRNA gene could be expressed from either its own promoter or that of the lac operon. These chimeras, carried on phage M13 vectors, were tested for the expression of the tRNA in E. coli. The tRNA gene was expressed on the order of 10-fold more weakly from the lac promoter than from its own promoter. To examine whether pausing or premature termination of transcription played a role in determining the relative strength, the fusions were tested in a variety of genetic backgrounds and under different physiological conditions that uncouple transcription and translation. The expression of the tRNA was not enhanced in backgrounds in which polarity was weakened or under the other conditions tested, although a dependence on nusB function was observed when the tRNA was transcribed from the lac promoter. These results indicate that pausing or premature termination of transcription did not play a role in the weak expression of the gene fusions. The results further suggest that the transcription of the tyrT gene does not normally require relief from polarity as imposed by any of the known transcriptional termination systems, in contrast to the antitermination system thought to be involved in the expression of the rRNAs.
Collapse
|
42
|
Ryden M, Murphy J, Martin R, Isaksson L, Gallant J. Mapping and complementation studies of the gene for release factor 1. J Bacteriol 1986; 168:1066-9. [PMID: 3782033 PMCID: PMC213603 DOI: 10.1128/jb.168.3.1066-1069.1986] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In Escherichia coli the release factor 1 protein (RF1) recognizes and terminates translation at UAG and UAA codons. Using the technique of ColE1 plasmid integration in polA strains, we have mapped the cloned gene for RF1 to 27 min on the E. coli chromosome. This is the same location as that of the uar gene in which temperature-sensitive mutations increase the suppression of UAG and UAA alleles. In this study we proved that the uar mutation lies in the gene for RF1 by complementation of the uar phenotype with plasmids carrying the RF1 gene and by cloning the uar allele onto the RF1 plasmid by means of homologous recombination. In addition, complementation and P1 mapping data suggest that sueB is also a mutation in the same position as the RF1 gene. We propose that the gene for RF1 be named prfA after protein release factor.
Collapse
|
43
|
Curran JF, Yarus M. Base substitutions in the tRNA anticodon arm do not degrade the accuracy of reading frame maintenance. Proc Natl Acad Sci U S A 1986; 83:6538-42. [PMID: 2428035 PMCID: PMC386539 DOI: 10.1073/pnas.83.17.6538] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have examined the activities of a set of 34 site-directed mutants of tRNA Su7 for their ability to shift reading frame during translation of amber codons in vivo. The set includes variants at every position in the distal three base pairs of the anticodon stem and saturates the anticodon loop, with the exception of the anticodon itself. Most anticodon-stem mutations were made pairwise to preserve the secondary structure of that region. Variants of the Hirsh (A24) coding alteration were also tested. The mutations have varied and often dramatic effects on the ability of Su7 to act in translation, which indicates that they cause distortions of the codon-anticodon complex. However, none of the tested mutations affects the intrinsic accuracy of translocation, which we show to be very high. These results suggest that translocation must be independent of the conformational detail of the codon-anticodon complex and stand in contrast to frameshifts that occur when tRNAs misread codons. We suggest that when the tRNA is properly paired to the codon, translocation proceeds normally. Thus, we conclude that selection of a cognate tRNA ensures highly accurate reading frame maintenance. As a corollary, inefficient amber suppressors are not inefficient because they frameshift. Instead, they are likely to fail because a release factor translates the amber codon.
Collapse
|
44
|
Raftery LA, Bermingham JR, Yarus M. Mutation in the D arm enables a suppressor with a CUA anticodon to read both amber and ochre codons in Escherichia coli. J Mol Biol 1986; 190:513-7. [PMID: 2431155 DOI: 10.1016/0022-2836(86)90020-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Su9 of Escherichia coli differs from tRNATrp by only a G to A transition in the D arm, yet has an enhanced ability to translate UGA by an unusual C X A wobble pairing. In order to examine the effects of this mutation on translation of the complementary and wobble codons in vivo, we constructed the gene for an amber (UAG) suppressing variant of Su9, trpT179, by making the additional nucleotide change required for an amber suppressor anticodon. The resultant suppressor tRNA, Su79, is a very strong amber suppressor. Furthermore, the D arm mutation enables Su79 to suppress ochre (UAA) codons by C X A wobble pairing. These data demonstrate that the effect of the D arm mutation on wobble pairing is not restricted to a CCA anticodon. The effect extends to the CUA anticodon of Su79, thereby creating a new type of ochre suppressor. The new coding activity of Su79 cannot be explained by alterations in the level of aminoacylation, steady-state tRNA concentration, or nucleotide modification. The A24 mutation could permit unorthodox wobble pairings by generally enhancing tRNA efficiency at all codons or by altering codon specificity.
Collapse
|
45
|
Yarus M, Cline S, Raftery L, Wier P, Bradley D. The translational efficiency of tRNA is a property of the anticodon arm. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67412-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
46
|
Rice JB, Seyer JJ, Reeve JN. Identification of sites of cysteine misincorporation during in vivo synthesis of bacteriophage T7 0.3 protein. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 867:57-66. [PMID: 3518801 DOI: 10.1016/0167-4781(86)90029-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The 0.3 protein encoded by coliphage T7 does not normally contain cysteine residues. Incorporation of [35S]cysteine can therefore be used to assay mistranslation. We have purified 0.3 protein, synthesized in the presence of [35S]cysteine, from T7 infected cells of E. coli and determined the locations of misincorporated cysteine residues. Analysis of the molecular weights (Mr) of [35S]cysteine-labeled tryptic peptides of 0.3 protein demonstrated that cysteine (encoded by UGU or UGC) is not extensively misincorporated, as might be predicted by substitution for arginine residues (encoded by CGU or CGC). Edman degradation of the amino-terminal 50 residues of [35S]cysteine-labeled 0.3 protein determined that cysteine was most frequently misincorporated at position 15, which is correctly occupied by a tyrosine residue (encoded by UAC). There are four other tyrosine codons (1 UAU; 3 UAC) in the region of the 0.3 protein studied, but these were not mistranslated. The context in which a codon is located must therefore be more important in causing mistranslation than the sequence of the codon itself. Misincorporation of [35S]cysteine was also found at positions 9 (ACC, asparagine), 16 (GAA, glutamic acid), 41 (GCC, alanine) and 42 (GAU, aspartic acid). One mistranslation event appears to increase the likelihood that the following codon will also be mistranslated. This clustering of misincorporated [35S]cysteine residues was accentuated in 0.3 protein synthesized in the presence of streptomycin.
Collapse
|
47
|
Cline SW, Yarus M, Wier P. Construction of a systematic set of tRNA mutants by ligation of synthetic oligonucleotides into defined single-stranded gaps. DNA (MARY ANN LIEBERT, INC.) 1986; 5:37-51. [PMID: 3514184 DOI: 10.1089/dna.1986.5.37] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A series of mutant tRNA genes has been constructed by site-directed mutagenesis in pOP203, a colE1 derivative carrying a transcription unit under control of the lacUV5 promoter. These mutant genes include all possible amber suppressing variants of tRNATrp with single nucleotide substitutions at anticodon loop positions 32, 37, and 38 (numbered from the 5' end), and all possible paired base substitutions in the three base pairs nearest the anticodon loop. G at position 38 was not recovered as a single mutation, but rather in conjunction with an undirected mutation to T at position 32. The singly mutated G38 tRNA may not be active, though all the other tRNA derivatives are functional in the translation of amber codons. To construct the mutants, we ligated a synthetic deoxyoligonucleotide into a precisely formed single-stranded gap covering the anticodon arm region DNA, in an otherwise double-stranded fragment containing the tRNATrp gene. The resulting heteroduplex was then ligated into the plasmid and introduced into Escherichia coli. This method of mutagenesis is simple, reproducible, and highly tolerant of varying degrees of heteroduplex in the gap, variations in temperature of ligation, and changes in the oligonucleotide concentration. Mutagenesis does not require a 5'-phosphorylated oligonucleotide. These qualities suit the gap method for intensive study of a region by site-directed mutagenesis.
Collapse
|
48
|
Abstract
The translational activity of a transfer RNA at a codon varies at different message sites, although the codon does not vary. The source of this effect, which may help to determine the level of gene expression, is generally agreed to be in nearby message sequences. By making every possible nucleotide combination between position 33 of the transfer RNA and the major context nucleotide of the message, it was shown that base-pairing between the two nucleotides is not the source of this context effect on translation in vivo.
Collapse
|
49
|
Stewart V, Yanofsky C. Evidence for transcription antitermination control of tryptophanase operon expression in Escherichia coli K-12. J Bacteriol 1985; 164:731-40. [PMID: 3902796 PMCID: PMC214313 DOI: 10.1128/jb.164.2.731-740.1985] [Citation(s) in RCA: 106] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tryptophanase, encoded by the gene tnaA, is a catabolic enzyme distinct from the enzymes of tryptophan biosynthesis. Tryptophanase synthesis is induced by tryptophan and is subject to catabolite repression. We studied the mechanism of tna operon induction. Mutants with altered rho factor were partially constitutive for tna expression, implicating rho-dependent transcription termination in the control of tna expression. Measurements of mRNA synthesis from the transcribed leader region preceeding the tna operon suggested that the tna promoter was constitutive and that in the absence of inducer, transcription terminated in the leader region. Upon induction, this transcription termination was relieved. Cis-acting constitutive mutants had genetic alterations in the tna leader region. These lesions defined a site that is homologous to the bacteriophage lambda boxA sequence, which is thought to play a role in antitermination control of lambda lytic gene expression. We propose that tna expression is subject to transcription antitermination control. We hypothesize that a tryptophan-activated antiterminator protein mediates induction by suppressing the rho-dependent termination sites in the leader region, thus allowing transcription to proceed into the tna operon structural gene region.
Collapse
|
50
|
Raftery LA, Yarus M. Site-specific mutagenesis of Escherichia coli gltT yields a weak, glutamic acid-inserting ochre suppressor. J Mol Biol 1985; 184:343-5. [PMID: 2863381 DOI: 10.1016/0022-2836(85)90385-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Of all the Escherichia coli tRNA genes that can give rise to an amber or an ochre suppressor by a single-nucleotide mutation, only the tRNAGlu genes have not been observed to do so. A study of the relationship between the sequences of tRNAs and the codons they translate predicts that the ochre suppressor derived from tRNAGlu would function very poorly on the ribosome. We have used site-specific mutagenesis to create the gene for such a tRNA in order to test this prediction. We cloned the tRNAGlu-Suoc gene into a high copy number plasmid, under control of the lacUV5 promoter. The mutant tRNA suppresses both amber and ochre nonsense mutations. As predicted, it is less efficient than other suppressors expressed under similar conditions.
Collapse
|