1
|
Miyakoshi M, Okayama H, Lejars M, Kanda T, Tanaka Y, Itaya K, Okuno M, Itoh T, Iwai N, Wachi M. Mining RNA-seq data reveals the massive regulon of GcvB small RNA and its physiological significance in maintaining amino acid homeostasis in Escherichia coli. Mol Microbiol 2022; 117:160-178. [PMID: 34543491 PMCID: PMC9299463 DOI: 10.1111/mmi.14814] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022]
Abstract
Bacterial small RNAs regulate the expression of multiple genes through imperfect base-pairing with target mRNAs mediated by RNA chaperone proteins such as Hfq. GcvB is the master sRNA regulator of amino acid metabolism and transport in a wide range of Gram-negative bacteria. Recently, independent RNA-seq approaches identified a plethora of transcripts interacting with GcvB in Escherichia coli. In this study, the compilation of RIL-seq, CLASH, and MAPS data sets allowed us to identify GcvB targets with high accuracy. We validated 21 new GcvB targets repressed at the posttranscriptional level, raising the number of direct targets to >50 genes in E. coli. Among its multiple seed sequences, GcvB utilizes either R1 or R3 to regulate most of these targets. Furthermore, we demonstrated that both R1 and R3 seed sequences are required to fully repress the expression of gdhA, cstA, and sucC genes. In contrast, the ilvLXGMEDA polycistronic mRNA is targeted by GcvB through at least four individual binding sites in the mRNA. Finally, we revealed that GcvB is involved in the susceptibility of peptidase-deficient E. coli strain (Δpeps) to Ala-Gln dipeptide by regulating both Dpp dipeptide importer and YdeE dipeptide exporter via R1 and R3 seed sequences, respectively.
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- Department of Biomedical ScienceFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Haruna Okayama
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Maxence Lejars
- Department of Biomedical ScienceFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Takeshi Kanda
- Department of Biomedical ScienceFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Yuki Tanaka
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Kaori Itaya
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Miki Okuno
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
- Present address:
School of MedicineKurume UniversityKurumeJapan
| | - Takehiko Itoh
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Noritaka Iwai
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Masaaki Wachi
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
2
|
Rangannan V, Bansal M. Relative stability of DNA as a generic criterion for promoter prediction: whole genome annotation of microbial genomes with varying nucleotide base composition. MOLECULAR BIOSYSTEMS 2009; 5:1758-69. [DOI: 10.1039/b906535k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Fu H, Leng W, Wang J, Zhang W, Peng J, Wang L, Jin Q. Transcriptional profile induced by furazolidone treatment of Shigella flexneri. Appl Microbiol Biotechnol 2007; 77:657-67. [PMID: 17851659 DOI: 10.1007/s00253-007-1180-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 08/08/2007] [Accepted: 08/23/2007] [Indexed: 10/22/2022]
Abstract
Shigella flexneri is a facultative intracellular pathogen responsible for endemic shigellosis especially in developing countries. Furazolidone, a nitrofuran derivative, is very effective against the infection with S. flexneri. To examine potential effects of furazolidone on this germ, a whole-genome DNA microarray was constructed and transcriptional profiles of the responses to furazolidone were determined. The expressing data revealed adaptive responses of S. flexneri to oxidative stress induced by furazolidone treatment. Iron metabolism was found to be disturbed by furazolidone through derepression of the iron uptake regulon. In addition, energy metabolism, amino acid metabolism, cofactors metabolism, and DNA repair system were also affected by the drug. These data establish a potential for furazolidone to enhance free radical reactions through reductive activation by oxygen-sensitive nitroreductase. Moreover, we provide evidence that furazolidone is able to cause metabolic dysfunction, which cannot always be attributed to oxidative stress, and interactions between reductive metabolites of furazolidone and S. flexneri should be considered.
Collapse
Affiliation(s)
- Hua Fu
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100176, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Segatori L, Murphy L, Arredondo S, Kadokura H, Gilbert H, Beckwith J, Georgiou G. Conserved role of the linker alpha-helix of the bacterial disulfide isomerase DsbC in the avoidance of misoxidation by DsbB. J Biol Chem 2005; 281:4911-9. [PMID: 16280324 DOI: 10.1074/jbc.m505453200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the bacterial periplasm the co-existence of a catalyst of disulfide bond formation (DsbA) that is maintained in an oxidized state and of a reduced enzyme that catalyzes the rearrangement of mispaired cysteine residues (DsbC) is important for the folding of proteins containing multiple disulfide bonds. The kinetic partitioning of the DsbA/DsbB and DsbC/DsbD pathways partly depends on the ability of DsbB to oxidize DsbA at rates >1000 times greater than DsbC. We show that the resistance of DsbC to oxidation by DsbB is abolished by deletions of one or more amino acids within the alpha-helix that connects the N-terminal dimerization domain with the C-terminal thioredoxin domain. As a result, mutant DsbC carrying alpha-helix deletions could catalyze disulfide bond formation and complemented the phenotypes of dsbA cells. Examination of DsbC homologues from Haemophilus influenzae, Pseudomonas aeruginosa, Erwinia chrysanthemi, Yersinia pseudotuberculosis, Vibrio cholerae (30-70% sequence identity with the Escherichia coli enzyme) revealed that the mechanism responsible for avoiding oxidation by DsbB is a general property of DsbC family enzymes. In addition we found that deletions in the linker region reduced, but did not abolish, the ability of DsbC to assist the formation of active vtPA and phytase in vivo, in a DsbD-dependent manner, revealing that interactions between DsbD and DsbC are also conserved.
Collapse
Affiliation(s)
- Laura Segatori
- Department of Chemical Engineering, Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712-1095, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Segatori L, Paukstelis PJ, Gilbert HF, Georgiou G. Engineered DsbC chimeras catalyze both protein oxidation and disulfide-bond isomerization in Escherichia coli: Reconciling two competing pathways. Proc Natl Acad Sci U S A 2004; 101:10018-23. [PMID: 15220477 PMCID: PMC454158 DOI: 10.1073/pnas.0403003101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In the Escherichia coli periplasm, the formation of protein disulfide bonds is catalyzed by DsbA and DsbC. DsbA is a monomer that is maintained in a fully oxidized state by the membrane enzyme DsbB, whereas DsbC is a dimer that is kept reduced by a second membrane protein, DsbD. Although the catalytic regions of DsbA and DsbC are composed of structurally homologous thioredoxin motif domains, DsbA serves only as an oxidase in vivo, whereas DsbC catalyzes disulfide reduction and isomerization and also exhibits significant chaperone activity. To reconcile the distinct catalytic activities of DsbC and DsbA, we constructed a series of chimeras comprising of the dimerization domain of DsbC, with or without the adjacent alpha-helical linker region, fused either to the first, second, third, or fifth residue of intact DsbA or to thioredoxin. The chimeras fully substituted for DsbC in disulfide-bond rearrangement and also were able to restore protein oxidation in a dsbA background. Remarkably, the chimeras could serve as a single catalyst for both disulfide-bond formation and rearrangement, thus reconciling the kinetically competing DsbB-DsbA and DsbD-DsbC pathways. This property appeared to depend on the orientation of the DsbA active-site cysteines with respect to the DsbC dimerization domain. In vitro, the chimeras had high chaperone activity and significant reductase activity but only 15-22% of the disulfide-isomerization activity of DsbC, suggesting that rearrangement of nonnative disulfides may be mediated primarily by cycles of random reduction and reoxidation.
Collapse
Affiliation(s)
- Laura Segatori
- Department of Chemical Engineering, University of Texas, Austin, 78712, USA
| | | | | | | |
Collapse
|
6
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
7
|
Huang F, Coppola G, Calhoun DH. Multiple transcripts encoded by the ilvGMEDA gene cluster of Escherichia coli K-12. J Bacteriol 1992; 174:4871-7. [PMID: 1629149 PMCID: PMC206297 DOI: 10.1128/jb.174.15.4871-4877.1992] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We report here that, using Northern (RNA) blots, we identified two relatively stable transcripts of 4.6 and 1.1 kb that correspond to the products of the ilvEDA and ilvE genes and two relatively unstable transcripts of 6.7 and 3.6 kb that correspond to the products of the ilvGMEDA and ilvDA genes. The transcripts were identified by the use of eight probes derived from segments of the ilvGMEDA cluster. In addition, we used two strains with deletions of ilvG or ilvDA and observed the expected decrease in transcript size in Northern blots. Primer extension with reverse transcriptase generated a 169-nucleotide product corresponding to a 5' end within the ilvED intercistronic region, 37 nucleotides from the AUG codon of the ilvD gene. This primer extension product presumably indicates the 5' end of the ilvDA transcript that we detected in Northern blots. The stability of the transcripts was monitored, and RNase E was found to play a major role in ilv transcript degradation. Transcript levels varied in response to growth in the presence of the end product amino acids and in response to the presence of the polar frameshift site in ilvG. Although there have been speculations about the identities and numbers of transcripts derived from the ilvGMEDA cluster on the basis of the identification of some of the sites of transcription initiation and termination, this is the first report of the use of Northern blots to determine the actual sizes and distribution of mRNAs present in vivo.
Collapse
Affiliation(s)
- F Huang
- Department of Chemistry, City College of New York, New York 10031
| | | | | |
Collapse
|
8
|
Harms EH, Umbarger HE. The absence of branched-chain amino acid and growth rate control at the internal ilvEp promoter of the ilvGMEDA operon. J Bacteriol 1991; 173:6446-52. [PMID: 1917871 PMCID: PMC208979 DOI: 10.1128/jb.173.20.6446-6452.1991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The question of whether the promoter ilvEp, located in the coding region of ilvM, the second structural gene in the ilvGMEDA operon, is subject to either amino acid- or growth rate-mediated regulation is examined. The experiments described here were performed with ilvEp-cat and ilvEp-lac fusions carried as single copies on the chromosome. The activity of the ilvEp promoter was found to respond neither to the availability of branched-chain amino acids nor to a wide range of growth rates between 35 to 390 min. In the absence of any known role for the products of the ilvGMEDA operon when repressing levels of branched-chain amino acids are present, there appears to be only a gratuitous role for the transcription at ilvEp.
Collapse
Affiliation(s)
- E H Harms
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
9
|
Abstract
The linkage map of Escherichia coli K-12 depicts the arrangement of genes on the circular chromosome of this organism. The basic units of the map are minutes, determined by the time-of-entry of markers from Hfr into F- strains in interrupted-conjugation experiments. The time-of-entry distances have been refined over the years by determination of the frequency of cotransduction of loci in transduction experiments utilizing bacteriophage P1, which transduces segments of DNA approximately 2 min in length. In recent years, the relative positions of many genes have been determined even more precisely by physical techniques, including the mapping of restriction fragments and the sequencing of many small regions of the chromosome. On the whole, the agreement between results obtained by genetic and physical methods has been remarkably good considering the different levels of accuracy to be expected of the methods used. There are now few regions of the map whose length is still in some doubt. In some regions, genetic experiments utilizing different mutant strains give different map distances. In other regions, the genetic markers available have not been close enough to give accurate cotransduction data. The chromosome is now known to contain several inserted elements apparently derived from lambdoid phages and other sources. The nature of the region in which the termination of replication of the chromosome occurs is now known to be much more complex than the picture given in the previous map. The present map is based upon the published literature through June of 1988. There are now 1,403 loci placed on the linkage group, which may represent between one-third and one-half of the genes in this organism.
Collapse
Affiliation(s)
- B J Bachmann
- Department of Biology, Yale University, New Haven, Connecticut 06511-7444
| |
Collapse
|
10
|
Lopes JM, Soliman N, Smith PK, Lawther RP. Transcriptional polarity enhances the contribution of the internal promoter, ilvEp, in the expression of the ilvGMEDA operon in wild-type Escherichia coli K12. Mol Microbiol 1989; 3:1039-51. [PMID: 2691839 DOI: 10.1111/j.1365-2958.1989.tb00254.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The ilvG gene of Escherichia coli K12 produces a cryptic peptide as a result of a frameshift mutation located approximately halfway through the coding sequence of the gene. This mutation is polar on expression of the downstream genes (ilvEDA) because transcription terminates within the translationally barren region that results from the mutation. Contrary to this, Salmonella typhimurium produces a full-length functional ilvG protein and is therefore unlikely to manifest this polarity event. E. coli K12 strains with mutations either in the ilvG gene (which restores a full-length protein) or in the rho gene, relieve this polarity suggesting that this event couples transcription and translation in a manner analogous to attenuation. This paper describes experiments designed to determine the molecular nature and location of the polarity event. Most significantly, this work establishes the contribution of the internal promoter (ilvEp, located downstream of the polar site) to the expression of the downstream genes in E. coli K12 wild-type and mutant strains (ilvG) and by extension to the role of this promoter in S. typhimurium. This analysis suggests that ilvEp contributes as much as 90% of ilvEDA expression in wild-type E. coli K12 and only 15% in wild-type S. typhimurium when grown under non-repressing conditions.
Collapse
Affiliation(s)
- J M Lopes
- Biology Department, University of South Carolina, Columbia 29208
| | | | | | | |
Collapse
|
11
|
Lawther RP, Wek RC, Lopes JM, Pereira R, Taillon BE, Hatfield GW. The complete nucleotide sequence of the ilvGMEDA operon of Escherichia coli K-12. Nucleic Acids Res 1987; 15:2137-55. [PMID: 3550695 PMCID: PMC340622 DOI: 10.1093/nar/15.5.2137] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this report we present the complete nucleotide sequence of the ilvGMEDA operon of Escherichia coli. This operon contains five genes encoding four of the five enzymes required for the biosynthesis of isoleucine and valine. We identify and describe the coding regions for these five structural genes and the structural and functional features of the flanking and internal regulatory regions of this operon. This new information contributes to a more complete understanding of the overall control of the biosynthesis of isoleucine and valine.
Collapse
|
12
|
Abstract
We used the prokaryotic expression vector, ptrpL1, for the expression in Escherichia coli K-12 of a cDNA clone specific for the human lysosomal hydrolase, alpha-galactosidase A. The 5' terminus of the cDNA clone was engineered so that an ATG codon precedes the first codon of the mature form of the enzyme. A clone with elevated expression of this human enzyme was constructed by increasing the distance between the Shine-Dalgarno site and the ATG start codon from 6 to 8 bp. Clones with alpha-galactosidase A specific cDNA encoding the proenzyme produce a protein of 45 kDa, the size expected for the intact proenzyme. The 45-kDa protein is specifically precipitated by antibody to alpha-galactosidase A, and its expression is repressed by tryptophan and induced by 3-beta-indoleacrylic acid as expected for this expression vector. The human enzyme is produced in E. coli in a catalytically active form at levels sufficient to support the growth of cells using alpha-galactosides as sole sources of carbon and energy. In addition, bacterial colonies that produce the human enzyme turn blue in the presence of 5-bromo-4-chloro-3-indolyl-alpha-D-galactopyranoside.
Collapse
Affiliation(s)
- P A Hantzopoulos
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029
| | | |
Collapse
|
13
|
Wek RC, Hatfield GW. Examination of the internal promoter, PE, in the ilvGMEDA operon of E. coli K-12. Nucleic Acids Res 1986; 14:2763-77. [PMID: 2421252 PMCID: PMC339697 DOI: 10.1093/nar/14.6.2763] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ilvGMEDA operon of Escherichia coli K-12 contains an internal promoter, PE, in the distal portion of the ilvM gene immediately upstream from the ilvE gene. The location of this promoter was determined using S1 nuclease protection analyses of in vivo and in vitro transcripts. The transcriptional activity of the internal promoter was compared to the transcriptional activity of the operon-proximal promoter P1P2 using transcriptional fusion vectors and plasmid copy number determinations. These measurements showed that the P1P2 promoter is 52-fold stronger than the internal PE promoter. Estimates of the transcriptional role of the internal promoter on ilvE gene expression during growth conditions in excess and limiting branch chain amino acids is presented.
Collapse
|
14
|
Lopes JM, Lawther RP. Analysis and comparison of the internal promoter, pE, of the ilvGMEDA operons from Escherichia coli K-12 and Salmonella typhimurium. Nucleic Acids Res 1986; 14:2779-98. [PMID: 3008097 PMCID: PMC339698 DOI: 10.1093/nar/14.6.2779] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It was previously determined that the distal portion of the ilvGMEDA operon was expressed despite the insertion of transposons into ilvG and ilvE. This observation suggested the existence of internal promoters upstream of ilvE (pE) and ilvD (pD). The internal promoter pE, responsible for part of ilvEDA expression, has been analyzed both in vivo and in vitro. Our results indicate that: pE exists in both E. coli K-12 and S. typhimurium; pE is located in the distal end of the ilvM coding sequence; the pE sequence is highly conserved in the two bacteria; the amino acid sequence of the ilvM gene product is 93% homologous between the two bacteria; transcription from pE can be demonstrated both in vivo and in vitro; the efficiency of pE is essentially equivalent in the two bacteria.
Collapse
|