1
|
Liu B, Sun B. Rsp promotes the transcription of virulence factors in an agr-independent manner in Staphylococcus aureus. Emerg Microbes Infect 2020; 9:796-812. [PMID: 32248753 PMCID: PMC7241556 DOI: 10.1080/22221751.2020.1752116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus is a major human pathogen that causes a great diversity of community- and hospital-acquired infections. Rsp, a member of AraC/XylS family of transcriptional regulators (AFTRs), has been reported to play an important role in the regulation of virulence determinants in S. aureus via an agr-dependent pathway. Here we demonstrated that Rsp could bind to the rsp promoter to positively regulate its own expression. We then constructed an isogenic rsp deletion strain and compared the haemolysis in the wild-type and rsp mutant strains. Our results indicated that the rsp mutant strain displayed decreased haemolytic activity, which was correlated with a dramatic decrease in the expression of hla and psm. Furthermore, we analysed the regulatory effects of Rsp in the agr mutant strain and found that they are agr-independent. Electrophoretic mobility shift assay indicated that Rsp can directly bind to the promoter regions of hla and psm. The mouse model of subcutaneous abscess showed that the rsp mutant strain displayed a significant defect in virulence compared to the wild-type strain. These findings reveal that Rsp positively regulates the virulence of S. aureus by promoting the expression of hla and psm through direct binding to their promoter regions.
Collapse
Affiliation(s)
- Banghui Liu
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People's Republic of China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People's Republic of China
| |
Collapse
|
2
|
Nakano K, Yamada Y, Takahashi E, Arimoto S, Okamoto K, Negishi K, Negishi T. E. coli mismatch repair enhances AT-to-GC mutagenesis caused by alkylating agents. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 815:22-27. [PMID: 28283089 DOI: 10.1016/j.mrgentox.2017.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/16/2017] [Accepted: 02/13/2017] [Indexed: 01/18/2023]
Abstract
Alkylating agents are known to induce the formation of O6-alkylguanine (O6-alkG) and O4-alkylthymine (O4-alkT) in DNA. These lesions have been widely investigated as major sources of mutations. We previously showed that mismatch repair (MMR) facilitates the suppression of GC-to-AT mutations caused by O6-methylguanine more efficiently than the suppression of GC-to-AT mutations caused by O6-ethylguanine. However, the manner by which O4-alkyT lesions are repaired remains unclear. In the present study, we investigated the repair pathway involved in the repair of O4-alkT. The E. coli CC106 strain, which harbors Δprolac in its genomic DNA and carries the F'CC106 episome, can be used to detect AT-to-GC reverse-mutation of the gene encoding β-galactosidase. Such AT-to-GC mutations should be induced through the formation of O4-alkT at AT base pairs. As expected, an O6-alkylguanine-DNA alkyltransferase (AGT) -deficient CC106 strain, which is defective in both ada and agt genes, exhibited elevated mutant frequencies in the presence of methylating agents and ethylating agents. However, in the UvrA-deficient strain, the methylating agents were less mutagenic than in wild-type, while ethylating agents were more mutagenic than in wild-type, as observed with agents that induce O6-alkylguanine modifications. Unexpectedly, the mutant frequencies decreased in a MutS-deficient strain, and a similar tendency was observed in MutL- or MutH-deficient strains. Thus, MMR appears to promote mutation at AT base pairs. Similar results were obtained in experiments employing double-mutant strains harboring defects in both MMR and AGT, or MMR and NER. E. coli MMR enhances AT-to-GC mutagenesis, such as that caused by O4-alkylthymine. We hypothesize that the MutS protein recognizes the O4-alkT:A base pair more efficiently than O4-alkT:G. Such a distinction would result in misincorporation of G at the O4-alkT site, followed by higher mutation frequencies in wild-type cells, which have MutS protein, compared to MMR-deficient strains.
Collapse
Affiliation(s)
- Kota Nakano
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Yoko Yamada
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Eizo Takahashi
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan; Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama, 362-0806, Japan
| | - Sakae Arimoto
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Keinosuke Okamoto
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Kazuo Negishi
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama, 362-0806, Japan
| | - Tomoe Negishi
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan; Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama, 362-0806, Japan.
| |
Collapse
|
3
|
Taira K, Kaneto S, Nakano K, Watanabe S, Takahashi E, Arimoto S, Okamoto K, Schaaper RM, Negishi K, Negishi T. Distinct pathways for repairing mutagenic lesions induced by methylating and ethylating agents. Mutagenesis 2013; 28:341-50. [PMID: 23446177 PMCID: PMC3630523 DOI: 10.1093/mutage/get010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
DNA alkylation damage can be repaired by nucleotide excision repair (NER), base excision repair (BER) or by direct removal of alkyl groups from modified bases by O(6)-alkylguanine DNA alkyltransferase (AGT; E.C. 2.1.1.63). DNA mismatch repair (MMR) is also likely involved in this repair. We have investigated alkylation-induced mutagenesis in a series of NER- or AGT-deficient Escherichia coli strains, alone or in combination with defects in the MutS, MutL or MutH components of MMR. All strains used contained the F'prolac from strain CC102 (F'CC102) episome capable of detecting specifically lac GC to AT reverse mutations resulting from O(6)-alkylguanine. The results showed the repair of O(6)-methylguanine to be performed by AGT ≫ MMR > NER in order of importance, whereas the repair of O(6)-ethylguanine followed the order NER > AGT > MMR. Studies with double mutants showed that in the absence of AGT or NER repair pathways, the lack of MutS protein generally increased mutant frequencies for both methylating and ethylating agents, suggesting a repair or mutation avoidance role for this protein. However, lack of MutL or MutH protein did not increase alkylation-induced mutagenesis under these conditions and, in fact, reduced mutagenesis by the N-alkyl-N-nitrosoureas MNU and ENU. The combined results suggest that little or no alkylation damage is actually corrected by the mutHLS MMR system; instead, an as yet unspecified interaction of MutS protein with alkylated DNA may promote the involvement of a repair system other than MMR to avoid a mutagenic outcome. Furthermore, both mutagenic and antimutagenic effects of MMR were detected, revealing a dual function of the MMR system in alkylation-exposed cells.
Collapse
Affiliation(s)
- Kentaro Taira
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530, Japan
- NIEHS, Research Triangle Park, NC 27709, USA and
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | - Satomi Kaneto
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530, Japan
- NIEHS, Research Triangle Park, NC 27709, USA and
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | - Kota Nakano
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530, Japan
- NIEHS, Research Triangle Park, NC 27709, USA and
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | - Shinji Watanabe
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530, Japan
- NIEHS, Research Triangle Park, NC 27709, USA and
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | - Eizo Takahashi
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530, Japan
- NIEHS, Research Triangle Park, NC 27709, USA and
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | - Sakae Arimoto
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530, Japan
- NIEHS, Research Triangle Park, NC 27709, USA and
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | - Keinosuke Okamoto
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530, Japan
- NIEHS, Research Triangle Park, NC 27709, USA and
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | | | - Kazuo Negishi
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | - Tomoe Negishi
- *To whom correspondence should be addressed. Tel: +81 86 251 7946; Fax: +81 86 251 7926; E-mail:
| |
Collapse
|
4
|
Caron PR, Grossman L. Potential role of proteolysis in the control of UvrABC incision. Nucleic Acids Res 2010; 16:9641-50. [PMID: 16617483 PMCID: PMC338769 DOI: 10.1093/nar/16.20.9641] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
UvrB is specifically proteolyzed in Escherichia coli cell extracts to UvrB*. UvrB* is capable of interacting with UvrA in an aparently similar manner to the UvrB, however UvrB* is defective in the DNA strand displacement activity normally displayed by UvrAB. Whereas the binding of UvrC to a UvrAB-DNA complex leads to DNA incision and persistence of a stable post-incision protein-DNA complex, the binding of UvrC to UvrAB* leads to dissociation of the protein complex and no DNA incision is seen. The factor which stimulates this proteolysis has been partially purified and its substrate specificity has been examined. The protease factor is induced by "stress" and is under control of the htpR gene. The potential role of this proteolysis in the regulation of levels of active repair enzymes in the cell is discussed.
Collapse
Affiliation(s)
- P R Caron
- Department of Biochemistry, The Johns Hopkins University, School of Hygiene and Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
5
|
Baek JH, Han MJ, Lee SY, Yoo JS. Transcriptome and proteome analyses of adaptive responses to methyl methanesulfonate in Escherichia coli K-12 and ada mutant strains. BMC Microbiol 2009; 9:186. [PMID: 19728878 PMCID: PMC2753364 DOI: 10.1186/1471-2180-9-186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 09/03/2009] [Indexed: 12/03/2022] Open
Abstract
Background The Ada-dependent adaptive response system in Escherichia coli is important for increasing resistance to alkylation damage. However, the global transcriptional and translational changes during this response have not been reported. Here we present time-dependent global gene and protein expression profiles following treatment with methyl methanesulfonate (MMS) in E. coli W3110 and its ada mutant strains. Results Transcriptome profiling showed that 1138 and 2177 genes were differentially expressed in response to MMS treatment in the wild-type and mutant strains, respectively. A total of 81 protein spots representing 76 nonredundant proteins differentially expressed were identified using 2-DE and LC-MS/MS. In the wild-type strain, many genes were differentially expressed upon long-exposure to MMS, due to both adaptive responses and stationary phase responses. In the ada mutant strain, the genes involved in DNA replication, recombination, modification and repair were up-regulated 0.5 h after MMS treatment, indicating its connection to the SOS and other DNA repair systems. Interestingly, expression of the genes involved in flagellar biosynthesis, chemotaxis, and two-component regulatory systems related to drug or antibiotic resistance, was found to be controlled by Ada. Conclusion These results show in detail the regulatory components and pathways controlling adaptive response and how the related genes including the Ada regulon are expressed with this response.
Collapse
Affiliation(s)
- Jong Hwan Baek
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering (BK21 Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea.
| | | | | | | |
Collapse
|
6
|
Watanabe M. Threshold-like Dose-response Relationships in a Modified Linear-no-threshold Model: Application of Experimental Data and Risk Evaluation. Genes Environ 2008. [DOI: 10.3123/jemsge.30.17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
7
|
Kolin A, Jevtic V, Swint-Kruse L, Egan SM. Linker regions of the RhaS and RhaR proteins. J Bacteriol 2007; 189:269-71. [PMID: 17071764 PMCID: PMC1797203 DOI: 10.1128/jb.01456-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 10/13/2006] [Indexed: 11/20/2022] Open
Abstract
Substitutions within the interdomain linkers of the AraC/XylS family proteins RhaS and RhaR were tested to determine whether side chain identity or linker structure was required for function. Neither was found crucial, suggesting that the linkers do not play a direct role in activation, but rather simply connect the two domains.
Collapse
Affiliation(s)
- Ana Kolin
- Department of Molecular Biosciences, 1200 Sunnyside Ave., University of Kansas, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
8
|
Brown LR, Deng J, Clarke ND. Dominant sensitization variants of human O(6)-methylguanine-DNA-methyltransferase obtained by a mutational screen of surface residues. Mutat Res 2000; 459:81-7. [PMID: 10677686 DOI: 10.1016/s0921-8777(99)00062-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A scanning mutagenesis experiment was performed on human O(6)-methylguanine methyltransferase (hMGMT), directed largely at non-conserved surface residues that have not previously been studied. Variants typically contained two or more substitutions. Two of the 16 variants characterized in detail are inactive for methyltransfer, but increase the cytotoxicity and mutagenic effects of methylating agents. This phenotype is reminiscent of a variant (C145A) that has a mutation in the methyl-accepting cysteine. C145A is inactive, but reportedly binds methylated DNA and confers sensitivity to methylating agents. The sensitization phenotype of the two new variants is more striking in strains that are wild-type for DNA repair than in strains that are deficient for repair, suggesting that these proteins inhibit functional DNA repair proteins by competitively binding to methylated DNA. Both variants have multiple substitutions in the last helix of the protein. These results suggest that the C-terminal helix is necessary for methyltransfer activity, but not for methylguanine-specific binding.
Collapse
Affiliation(s)
- L R Brown
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, WBSB 708, 725 N. Wolfe Street, Baltimore, MD 21205-2185, USA
| | | | | |
Collapse
|
9
|
Abstract
RhaS, an AraC family protein, activates rhaBAD transcription by binding to rhaI, a site consisting of two 17-bp inverted repeat half-sites. In this work, amino acids in RhaS that make base-specific contacts with rhaI were identified. Sequence similarity with AraC suggested that the first contacting motif of RhaS was a helix-turn-helix. Assays of rhaB-lacZ activation by alanine mutants within this potential motif indicated that residues 201, 202, 205, and 206 might contact rhaI. The second motif was identified based on the hypothesis that a region of especially high amino acid similarity between RhaS and RhaR (another AraC family member) might contact the nearly identical DNA sequences in one major groove of their half-sites. We first made targeted, random mutations and then made alanine substitutions within this region of RhaS. Our analysis identified residues 247, 248, 250, 252, 253, and 254 as potentially important for DNA binding. A genetic loss-of-contact approach was used to identify whether any of the RhaS amino acids in the first or second contacting motif make base-specific DNA contacts. In motif 1, we found that Arg202 and Arg206 both make specific contacts with bp -65 and -67 in rhaI1, and that Arg202 contacts -46 and Arg206 contacts -48 in rhaI2. In motif 2, we found that Asp250 and Asn252 both contact the bp -79 in rhaI1. Alignment with the recently crystallized MarA protein suggest that both RhaS motifs are likely helix-turn-helix DNA-binding motifs.
Collapse
Affiliation(s)
- P M Bhende
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|
10
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
11
|
Verdemato PE, Moody PCE. Repair of Alkylated DNA by the E. coli Ada Protein. DNA Repair (Amst) 1998. [DOI: 10.1007/978-3-642-48770-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Gallegos MT, Schleif R, Bairoch A, Hofmann K, Ramos JL. Arac/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 1997; 61:393-410. [PMID: 9409145 PMCID: PMC232617 DOI: 10.1128/mmbr.61.4.393-410.1997] [Citation(s) in RCA: 366] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ArC/XylS family of prokaryotic positive transcriptional regulators includes more than 100 proteins and polypeptides derived from open reading frames translated from DNA sequences. Members of this family are widely distributed and have been found in the gamma subgroup of the proteobacteria, low- and high-G + C-content gram-positive bacteria, and cyanobacteria. These proteins are defined by a profile that can be accessed from PROSITE PS01124. Members of the family are about 300 amino acids long and have three main regulatory functions in common: carbon metabolism, stress response, and pathogenesis. Multiple alignments of the proteins of the family define a conserved stretch of 99 amino acids usually located at the C-terminal region of the regulator and connected to a nonconserved region via a linker. The conserved stretch contains all the elements required to bind DNA target sequences and to activate transcription from cognate promoters. Secondary analysis of the conserved region suggests that it contains two potential alpha-helix-turn-alpha-helix DNA binding motifs. The first, and better-fitting motif is supported by biochemical data, whereas existing biochemical data neither support nor refute the proposal that the second region possesses this structure. The phylogenetic relationship suggests that members of the family have recruited the nonconserved domain(s) into a series of existing domains involved in DNA recognition and transcription stimulation and that this recruited domain governs the role that the regulator carries out. For some regulators, it has been demonstrated that the nonconserved region contains the dimerization domain. For the regulators involved in carbon metabolism, the effector binding determinants are also in this region. Most regulators belonging to the AraC/XylS family recognize multiple binding sites in the regulated promoters. One of the motifs usually overlaps or is adjacent to the -35 region of the cognate promoters. Footprinting assays have suggested that these regulators protect a stretch of up to 20 bp in the target promoters, and multiple alignments of binding sites for a number of regulators have shown that the proteins recognize short motifs within the protected region.
Collapse
Affiliation(s)
- M T Gallegos
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaìdín, Granada, Spain
| | | | | | | | | |
Collapse
|
13
|
Paalman SR, Sung C, Clarke ND. Specificity of DNA repair methyltransferases determined by competitive inactivation with oligonucleotide substrates: evidence that Escherichia coli Ada repairs O6-methylguanine and O4-methylthymine with similar efficiency. Biochemistry 1997; 36:11118-24. [PMID: 9287154 DOI: 10.1021/bi970740t] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA repair methyltransferases (MTases) are stoichiometric acceptor molecules that are irreversibly inactivated in the course of removing a methyl group from O6-methylguanine (meG)-DNA or O4-methylthymine (meT)-DNA. A new assay has been developed to determine the relative efficiency of repair of meG and meT. The assay is based on the deprotection of methylated restriction sites in synthetic oligonucleotides and can be used to measure meG repair or meT repair directly. More importantly, relative repair efficiencies can be measured in competition experiments, using each of the methylated oligomers in turn as an inhibitor of repair for the other. Relative repair rates are determined by numerical solution of the coupled rate equations that describe this competition to the experimental data. We find that the human MTase repairs meT about 35-fold less well than meG, qualitatively similar to earlier studies. Contrary to previous reports, however, we find that Escherichia coli Ada repairs meG and meT with nearly equal efficiency. This finding, in conjunction with other recent reports, may indicate that low meT repair is a relatively unusual characteristic of the human homolog.
Collapse
Affiliation(s)
- S R Paalman
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
14
|
Sekiguchi M, Sakumi K. Roles of DNA repair methyltransferase in mutagenesis and carcinogenesis. THE JAPANESE JOURNAL OF HUMAN GENETICS 1997; 42:389-99. [PMID: 12503185 DOI: 10.1007/bf02766939] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alkylation of DNA at the O6-position of guanine is one of the most critical events leading to induction of mutation as well as cancer. An enzyme, O6-methylguanine-DNA methyltransferase, is present in various organisms, from bacteria to human cells, and appears to be responsible for preventing the occurrence of such mutations. The enzyme transfers methyl groups from O6-methylguanine and other methylated moieties of the DNA to its own molecule, thereby repairing DNA lesions in a single-step reaction. To elucidate the role of methyltransferase in preventing cancer, animal models with altered levels of enzyme activity were generated. Transgenic mice carrying extra copies of the foreign methyltransferase gene showed a decreased susceptibility to alkylating carcinogens, with regard to tumor formation. By means of gene targeting, mouse lines defective in both alleles of the methyltransferase gene were established. Administration of methylnitrosourea to these gene-targeted mice led to early death while normal mice treated in the same manner showed no untoward effects. Numerous tumors were formed in the gene-defective mice exposed to a low dose of methylnitrosourea, while none or only few tumors were induced in the methyltransferase-proficient mice. It seems apparent that the DNA repair methyltransferase plays an important role in lowering a risk of occurrence of cancer in organisms.
Collapse
Affiliation(s)
- M Sekiguchi
- Fukuoka Dental College, Fukuoka 814-01, Japan
| | | |
Collapse
|
15
|
Colombi D, Gomes SL. An alkB gene homolog is differentially transcribed during the Caulobacter crescentus cell cycle. J Bacteriol 1997; 179:3139-45. [PMID: 9150207 PMCID: PMC179090 DOI: 10.1128/jb.179.10.3139-3145.1997] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A Caulobacter crescentus alkB gene homolog was identified in a clone previously shown to contain the heat shock genes dnaK and dnaJ; the homolog is located upstream of dnaK and is transcribed in the opposite orientation. An analysis of the alkB gene has shown that the deduced amino acid sequence is that of a 21-kDa protein, which is 42% identical and 78% similar to Escherichia coli AlkB. Furthermore, an alkB-null mutant was constructed by gene disruption and was shown to be highly sensitive to the alkylating agent methyl methanesulfonate (MMS). However, the alkB gene of C. crescentus, unlike its E. coli counterpart, is not located downstream of the ada gene, and its transcription is not induced by alkylating agents. In addition, no acquired enhanced resistance to MMS toxicity by treatment with low MMS doses was observed, suggesting that no adaptive response occurs in C. crescentus. Nevertheless, transcription of the alkB gene is cell cycle controlled, with a pattern of expression similar to that of several Caulobacter genes involved in DNA replication.
Collapse
Affiliation(s)
- D Colombi
- Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, Brazil
| | | |
Collapse
|
16
|
Sekiguchi M, Nakabeppu Y, Sakumi K, Tuzuki T. DNA-repair methyltransferase as a molecular device for preventing mutation and cancer. J Cancer Res Clin Oncol 1996; 122:199-206. [PMID: 8601571 DOI: 10.1007/bf01209646] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alkylation of DNA at the 0(6) position of guanine is regarded as one o f the most critical events leading to induction of mutations and cancers in organisms. Once 0(6)-methylguanine is formed, it can pair with thymine during DNA replication, the result being a conversion of the guanine.cytosine to an adenine.thymine pair in DNA, and such mutations are often found in tumors induced by alkylating agents. To counteract such effects, organisms possess a mechanism to repair 0(6)-methylguanine in DNA. An enzyme, 0(6)-methylguanine-DNA methyltransferase, is present in various organism, from bacteria to human cells, and appears to be responsible for preventing the occurrence of such mutations. The enzyme transfers methyl groups from 0(6)-methylguanine and other methylated moieties of the DNA to its own molecule, thereby repairing DNA lesions in a single-step reaction. To elucidate the role of methyltransferase in preventing cancers, animal models with altered levels of enzyme activity were generated. Transgenic mice carrying the foreign methyltransferase gene with functional promoters had higher levels of methyltransferase activity and showed a decreased susceptibility to N-nitroso compounds in regard to liver carcinogenesis. Mouse lines deficient in the methyltransferase gene, which were established by gene targeting, exhibited an extraordinarily high sensitivity to an alkylating carcinogen.
Collapse
Affiliation(s)
- M Sekiguchi
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
17
|
Saget BM, Shevell DE, Walker GC. Alteration of lysine 178 in the hinge region of the Escherichia coli ada protein interferes with activation of ada, but not alkA, transcription. J Bacteriol 1995; 177:1268-74. [PMID: 7868601 PMCID: PMC176733 DOI: 10.1128/jb.177.5.1268-1274.1995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The ada gene of Escherichia coli K-12 encodes the 39-kDa Ada protein, which consists of two domains joined by a hinge region that is sensitive to proteolytic cleavage in vitro. The amino-terminal domain has a DNA methyltransferase activity that repairs the S-diastereoisomer of methylphosphotriesters while the carboxyl-terminal domain has a DNA methyltransferase activity that repairs O6-methylguanine and O4-methylthymine lesions. Transfer of a methyl group to Cys-69 by repair of a methylphosphotriester lesion converts Ada into a transcriptional activator of the ada and alkA genes. Activation of ada, but not alkA, requires elements contained within the carboxyl-terminal domain of Ada. In addition, physiologically relevant concentrations of the unmethylated form of Ada specifically inhibit methylated Ada-promoted ada transcription both in vitro and in vivo and it has been suggested that this phenomenon plays a pivotal role in the down-regulation of the adaptive response. A set of site-directed mutations were generated within the hinge region, changing the lysine residue at position 178 to leucine, valine, glycine, tyrosine, arginine, cysteine, proline, and serine. All eight mutant proteins have deficiencies in their ability to activate ada transcription in the presence or absence of a methylating agent but are proficient in alkA activation. AdaK178P (lysine 178 changed to proline) is completely defective for the transcriptional activation function of ada while it is completely proficient for transcriptional activation of alkA. In addition, AdaK178P possesses both classes of DNA repair activities both in vitro and in vivo. Transcriptional activation of ada does not occur if both the amino- and carboxyl-terminal domains are produced separately within the same cell. The mutation at position 178 might interfere with activation of ada transcription by changing a critical contact with RNA polymerase, by causing a conformational change of Ada, or by interfering with the communication of conformational information between the amino- and the carboxyl-terminal domains. These results indicate that the hinge region of Ada is important for ada but not alkA transcription and further support the notion that the mechanism(s) by which Ada activates ada transcription differs from that by which it activates transcription at alkA.
Collapse
Affiliation(s)
- B M Saget
- Biology Department,Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
18
|
Volkert MR, Hajec LI, Matijasevic Z, Fang FC, Prince R. Induction of the Escherichia coli aidB gene under oxygen-limiting conditions requires a functional rpoS (katF) gene. J Bacteriol 1994; 176:7638-45. [PMID: 8002588 PMCID: PMC197221 DOI: 10.1128/jb.176.24.7638-7645.1994] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Escherichia coli aidB gene is regulated by two different mechanisms, an ada-dependent pathway triggered by methyl damage to DNA and an ada-independent pathway triggered when cells are grown without aeration. In this report we describe our search for mutations affecting the ada-independent aidB induction pathway. The mutant strain identified carries two mutations affecting aidB expression. These mutations are named abrB (aidB regulator) and abrD. The abrB mutation is presently poorly characterized because of instability of the phenotype it imparts. The second mutation, abrD1, reduces the expression of aidB observed when aeration is ceased and oxygen becomes limiting. Genetic and phenotypic analysis of the abrD1 mutation demonstrates that it is an allele of rpoS. Thus, aidB is a member of the family of genes that are transcribed by a sigma S-directed RNA polymerase holoenzyme. Examination of aidB expression in an rpoS insertion mutant strain indicates that both rpoS13::Tn10 and abrD1 mutations reduce aidB expression under oxygen-limiting conditions that prevail in unaerated cultures, reduce aidB induction by acetate at a low pH, but have little or no effect on the ada-dependent alkylation induction of aidB.
Collapse
Affiliation(s)
- M R Volkert
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | | | |
Collapse
|
19
|
Landini P, Hajec LI, Volkert MR. Structure and transcriptional regulation of the Escherichia coli adaptive response gene aidB. J Bacteriol 1994; 176:6583-9. [PMID: 7961409 PMCID: PMC197013 DOI: 10.1128/jb.176.21.6583-6589.1994] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Expression of the Escherichia coli aidB gene is induced in vivo by alkylation damage in an ada-dependent pathway and by anaerobiosis or by acetate at pH 6.5 in an ada-independent fashion. In this report, we present data on aidB gene structure, function, and regulation. The aidB gene encodes a protein of ca. 60 kDa that is homologous to several mammalian acyl coenzyme A dehydrogenases. Accordingly, crude extracts from an aidB-overexpressing strain showed isovaleryl coenzyme A dehydrogenase activity. aidB overexpression also reduced N-methyl-N'-nitro-N-nitrosoguanidine-induced mutagenesis. Both ada- and acetate/pH-dependent induction of aidB are regulated at the transcriptional level, and the same transcriptional start point is used for both kinds of induction. Ada protein plays a direct role in aidB regulation: methylated Ada is able to bind to the aidB promoter region and to activate transcription from aidB in an in vitro transcription-translation system using crude E. coli extracts.
Collapse
Affiliation(s)
- P Landini
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| | | | | |
Collapse
|
20
|
Saget BM, Walker GC. The Ada protein acts as both a positive and a negative modulator of Escherichia coli's response to methylating agents. Proc Natl Acad Sci U S A 1994; 91:9730-4. [PMID: 7937881 PMCID: PMC44890 DOI: 10.1073/pnas.91.21.9730] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The adaptive response of Escherichia coli protects the cells against the toxic and mutagenic effects of certain alkylating agents. The major effector molecule regulating this response is the 39-kDa Ada protein, which functions as both a DNA repair protein and a transcriptional activator. Ada removes methyl groups from phosphotriester and O6-methylguanine lesions in DNA, irreversibly transferring them to cysteine residues at positions 69 and 321, respectively. When methylated at Cys-69, Ada is converted into a potent activator of ada and alkA transcription and binds to a sequence (Ada box) present in both promoters. We have found that physiologically relevant higher concentrations of unmethylated Ada are able to inhibit the activation of ada transcription by methylated Ada, both in vitro and in vivo. In contrast, the same concentrations of unmethylated Ada do not inhibit the activation of alkA transcription by methylated Ada, either in vitro or in vivo. Deletion of the carboxyl-terminal 67 amino acids of Ada abolished the ability of the unmethylated form of the protein to inhibit activation of ada transcription but not the ability of the methylated form to activate ada or alkA transcription. Our results suggest that the Ada protein plays a pivotal role in the negative modulation of its own synthesis and therefore in the down-regulation of the adaptive response. Elements present in the carboxyl terminus of Ada appear to be necessary for this negative regulatory function.
Collapse
Affiliation(s)
- B M Saget
- Biology Department, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
21
|
Hartman Z, Henrikson EN, Hartman PE, Cebula TA. Molecular models that may account for nitrous acid mutagenesis in organisms containing double-stranded DNA. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1994; 24:168-175. [PMID: 7957120 DOI: 10.1002/em.2850240305] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nitrous acid (NA) is often presumed to cause base substitutions in organisms with double-stranded DNA as a direct consequence of oxidative deamination of adenine and of cytosine residues. Here we summarize evidence indicating that other mechanisms are involved in the case of NA-induced G/C-->A/T transition mutations. We present several models for pathways of NA mutagenesis that may account for our experimental results and overlapping data noted in the literature. One model proposes that the base substitution mutations observed are due to DNA alkylation damage mediated via nitrosation of polyamines and/or other ubiquitous cellular molecules. Other models assume that predisposing lesions, such as G-to-G cross-links, are first formed. The cross-links are pictured as leading to perturbations in DNA structure that allow subsequent opportunity for NA-induced deaminations of cytosine residues in their immediate vicinity. The deaminations preferentially result in G/C-->A/T transition mutations at sites highly dependent on adjoining base sequence context (i.e., in NA "mutational hotspots"). A final model proposes that NA-induced G/C-->A/T transition mutations arise mainly from oxidative deamination of guanosine residues and not from deamination of cytosine residues in duplex DNA.
Collapse
Affiliation(s)
- Z Hartman
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2685
| | | | | | | |
Collapse
|
22
|
Yamada M, Hakura A, Sofuni T, Nohmi T. New method for gene disruption in Salmonella typhimurium: construction and characterization of an ada-deletion derivative of Salmonella typhimurium TA1535. J Bacteriol 1993; 175:5539-47. [PMID: 8366039 PMCID: PMC206610 DOI: 10.1128/jb.175.17.5539-5547.1993] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A new method for gene disruption in Salmonella typhimurium was developed. The key steps of this method are to produce restriction fragments with compatible ends, preligate to produce concatemers, and then transform by electrotransformation. We developed and used this method to construct a mutant of S. typhimurium TA1535 in which the resident ada-like (adaST) gene was replaced with a kanamycin resistance gene to produce an adaST-deletion mutant derivative. The S. typhimurium adaST-deletion strain did not exhibit a higher level of mutability upon treatment with N-methyl-N'-nitro-N-nitrosoguanidine than did its wild-type parent strain. However, it did exhibit a higher sensitivity with respect to killing by N-methyl-N'-nitro-N-nitrosoguanidine. The ability of AdaST to function as a transcriptional activator is discussed.
Collapse
Affiliation(s)
- M Yamada
- Division of Genetics and Mutagenesis, National Institute of Hygienic Sciences, Tokyo, Japan
| | | | | | | |
Collapse
|
23
|
Matijasević Z, Hajec LI, Volkert MR. Anaerobic induction of the alkylation-inducible Escherichia coli aidB gene involves genes of the cysteine biosynthetic pathway. J Bacteriol 1992; 174:2043-6. [PMID: 1312537 PMCID: PMC205813 DOI: 10.1128/jb.174.6.2043-2046.1992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Escherichia coli aidB gene is a component of the adaptive response to alkylation damage. This gene is subject to two different forms of induction: an ada-dependent alkylation induction and an ada-independent induction that occurs when cells are grown anaerobically (M. R. Volkert, L. I. Hajec, and D. C. Nguyen, J. Bacteriol. 171:1196-1198, 1989; M. R. Volkert, and D. C. Nguyen, Proc. Natl. Acad. Sci. USA 81:4110-4114, 1984). In this study, we isolated and characterized strains bearing mutations that specifically affect the anaerobic induction pathway. This pathway requires a functional cysA operon, which encodes sulfate permease. Mutations in cysA block this pathway of aidB induction. In contrast, mutations in either cysH, cysD, cysN, or cysC result in elevated levels of aidB expression during aerobic growth. These results indicate that the sulfate transport genes perform a role in anaerobic induction of the aidB gene and suggest that growth under anaerobic conditions may modify either the function or the expression of gene products encoded by the cysA operon.
Collapse
Affiliation(s)
- Z Matijasević
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| | | | | |
Collapse
|
24
|
Morohoshi F, Hayashi K, Munakata N. Molecular analysis of Bacillus subtilis ada mutants deficient in the adaptive response to simple alkylating agents. J Bacteriol 1991; 173:7834-40. [PMID: 1744039 PMCID: PMC212574 DOI: 10.1128/jb.173.24.7834-7840.1991] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previously, we isolated and characterized six Bacillus subtilis ada mutants that were hypersensitive to methylnitroso compounds and deficient in the adaptive response to alkylation. Cloning of the DNA complementing the defects revealed the presence of an ada operon consisting of two tandem and partially overlapping genes, adaA and adaB. The two genes encoded proteins with methylphosphotriester-DNA methyltransferase and O6-methylguanine-DNA methyltransferase activities, respectively. To locate the six mutations, the ada operon was divided into five overlapping regions of about 350 bp. The fragments of each region were amplified by polymerase chain reaction and analyzed by gel electrophoresis to detect single-strand conformation polymorphism. Nucleotide sequences of the fragments exhibiting mobility shifts were determined. Three of the mutants carried sequence alterations in the adaA gene: the adaA1 and adaA2 mutants had a one-base deletion and insertion, respectively, and the adaA5 mutant had a substitution of two consecutive bases causing changes of two amino acid residues next to the presumptive alkyl-accepting Cys-85 residue. Three mutants carried sequence alterations in the adaB gene: the adaB3 mutant contained a rearrangement, the adaB6 mutant contained a base substitution causing a change of the presumptive alkyl-accepting Cys-141 to Tyr, and the adaB4 mutant contained a base substitution changing Leu-167 to Pro. The adaB mutants produced ada transcripts upon treatment with low doses of alkylating agents, whereas the adaA mutant did not. We conclude that the AdaA protein functions as the transcriptional activator of this operon, while the AdaB protein specializes in repair of alkylated residues in DNA.
Collapse
Affiliation(s)
- F Morohoshi
- Radiobiology Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | |
Collapse
|
25
|
Shevell DE, Walker GC. A region of the Ada DNA-repair protein required for the activation of ada transcription is not necessary for activation of alkA. Proc Natl Acad Sci U S A 1991; 88:9001-5. [PMID: 1924363 PMCID: PMC52639 DOI: 10.1073/pnas.88.20.9001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The adaptive response of Escherichia coli protects cells against the mutagenic and toxic effects of alkylating agents. This response is controlled by the Ada protein, which not only functions as the transcriptional activator of the ada and alkA genes but also possesses two DNA methyltransferae activities. Ada is converted into an efficient transcriptional activator by transferring a methyl group from a DNA methylphosphotriester to its own Cys-69 residue and then binds to a DNA sequence (the Ada box) present in both the ada and alkA promoters. Although the Ada protein initially appeared to regulate the ada and alkA genes in a similar fashion, our studies show that the wild-type Ada protein and its truncated derivatives can differentially regulate ada and alkA transcription. In vivo, lower levels of wild-type methylated Ada are needed to activate ada transcription than alkA transcription. In cells exposed to alkylating agents, the N-terminal half of Ada, which contains the DNA-binding domain, is sufficient for efficient activation of alkA, but not ada, transcription. Moreover, truncated derivatives containing 80-90% of Ada are extremely strong constitutive activators of ada but are only inducible activators of alkA transcription. These results suggest that the mechanism by which Ada activates ada transcription differs from that by which it activates alkA transcription.
Collapse
Affiliation(s)
- D E Shevell
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
26
|
Volkert MR, Hajec LI. Molecular analysis of the aidD6::Mu d1 (bla lac) fusion mutation of Escherichia coli K12. MOLECULAR & GENERAL GENETICS : MGG 1991; 229:319-23. [PMID: 1921981 DOI: 10.1007/bf00272173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this report we present genetic and biochemical evidence indicating that the aidD6::Mu d1 (bla lac) fusion is an insertion of Mu d1 (bla lac) into the alkB coding sequence. We describe the phenotypic effects resulting from this mutation and compare them with the effects of alkB22, alkA and ada mutations. We also constructed an alkA alkB double mutant and compared its phenotype with that of the single mutant strains. The observation that the methyl methanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) resistance of the double mutant is approximately at the level predicted from the additive sensitivity of each of the single mutants suggests that these two gene products act in different pathways of DNA repair.
Collapse
Affiliation(s)
- M R Volkert
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| | | |
Collapse
|
27
|
Hakura A, Morimoto K, Sofuni T, Nohmi T. Cloning and characterization of the Salmonella typhimurium ada gene, which encodes O6-methylguanine-DNA methyltransferase. J Bacteriol 1991; 173:3663-72. [PMID: 1904855 PMCID: PMC207993 DOI: 10.1128/jb.173.12.3663-3672.1991] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The ada gene of Escherichia coli encodes O6-methylguanine-DNA methyltransferase, which serves as a positive regulator of the adaptive response to alkylating agents and as a DNA repair enzyme. The gene which can make an ada-deficient strain of E. coli resistant to the cell-killing and mutagenic effects of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) has been cloned from Salmonella typhimurium TA1538. DNA sequence analysis indicated that the gene potentially encoded a protein with a calculated molecular weight of 39,217. Since the nucleotide sequence of the cloned gene shows 70% similarity to the ada gene of E. coli and there is an ada box-like sequence (5'-GAATTAAAACGCA-3') in the promoter region, we tentatively refer to this cloned DNA as the adaST gene. The gene encodes Cys-68 and Cys-320, which are potential acceptor sites for the methyl group from the damaged DNA. The multicopy plasmid carrying the adaST gene significantly reduced the frequency of mutation induced by MNNG both in E. coli and in S. typhimurium. The AdaST protein encoded by the plasmid increased expression of the ada'-lacZ chromosome fusion about 5-fold when an E. coli strain carrying both the fusion operon and the plasmid was exposed to a low concentration of MNNG, whereas the E. coli Ada protein encoded by a low-copy-number plasmid increased it about 40-fold under the same conditions. The low ability of AdaST to function as a positive regulator could account for the apparent lack of an adaptive response to alkylation damage in S. typhimurium.
Collapse
Affiliation(s)
- A Hakura
- Division of Genetics and Mutagenesis, National Institute of Hygienic Sciences, Tokyo, Japan
| | | | | | | |
Collapse
|
28
|
Quiñones A, Jüterbock WR, Messer W. Expression of the dnaA gene of Escherichia coli is inducible by DNA damage. MOLECULAR & GENERAL GENETICS : MGG 1991; 227:9-16. [PMID: 1904539 DOI: 10.1007/bf00260699] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The DnaA protein is the key DNA initiation protein in Escherichia coli. Using transcriptional and translational fusions, comparative S1 nuclease mapping and immunoblot analysis, the regulation of dnaA in relation to inducible responses to DNA damage was studied. We found that DNA damage caused by mitomycin C (MC) and methyl methanesulfonate (MMS) led to a significant induction of the dnaA gene. These results strongly suggest that in response to DNA damage which inhibits DNA replication, an increased initiation capacity is induced at oriC and that, in addition to the known auto-repression, a new regulatory mechanism may be involved in the control of dnaA gene expression. Furthermore, this mechanism might be indirectly related to the SOS regulon, because lexA and recA mutants, which block the induction of the SOS response, prevent dnaA induction by MMS and MC.
Collapse
Affiliation(s)
- A Quiñones
- Wissenschaftsbereich Genetik, Martin-Luther-Universität, Halle, Saale, FRG
| | | | | |
Collapse
|
29
|
Increased spontaneous mutation and alkylation sensitivity of Escherichia coli strains lacking the ogt O6-methylguanine DNA repair methyltransferase. J Bacteriol 1991; 173:2068-76. [PMID: 2002008 PMCID: PMC207742 DOI: 10.1128/jb.173.6.2068-2076.1991] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Escherichia coli expresses two DNA repair methyltransferases (MTases) that repair the mutagenic O6-methylguanine (O6MeG) and O4-methylthymine (O4MeT) DNA lesions; one is the product of the inducible ada gene, and here we confirm that the other is the product of the constitutive ogt gene. We have generated various ogt disruption mutants. Double mutants (ada ogt) do not express any O6MeG/O4MeT DNA MTases, indicating that Ada and Ogt are probably the only two O6MeG/O4MeT DNA MTases in E. coli. ogt mutants were more sensitive to alkylation-induced mutation, and mutants arose linearly with dose, unlike ogt+ cells, which had a threshold dose below which no mutants accumulated; this ogt(+)-dependent threshold was seen in both ada+ and ada strains. ogt mutants were also more sensitive to alkylation-induced killing (in an ada background), and overexpression of the Ogt MTase from a plasmid provided ada, but not ada+, cells with increased resistance to killing by alkylating agents. The induction of the adaptive response was normal in ogt mutants. We infer from these results that the Ogt MTase prevents mutagenesis by low levels of alkylating agents and that, in ada cells, the Ogt MTase also protects cells from killing by alkylating agents. We also found that ada ogt E. coli had a higher rate of spontaneous mutation than wild-type, ada, and ogt cells and that this increased mutation occurred in nondividing cells. We infer that there is an endogenous source of O6MeG or O4MeT DNA damage in E. coli that is prevalent in nondividing cells.
Collapse
|
30
|
|
31
|
Shevell DE, Friedman BM, Walker GC. Resistance to alkylation damage in Escherichia coli: role of the Ada protein in induction of the adaptive response. Mutat Res 1990; 233:53-72. [PMID: 2233813 DOI: 10.1016/0027-5107(90)90151-s] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- D E Shevell
- Massachusetts Institute of Technology, Department of Biology, Cambridge 02139
| | | | | |
Collapse
|
32
|
Morohoshi F, Hayashi K, Munakata N. Bacillus subtilis ada operon encodes two DNA alkyltransferases. Nucleic Acids Res 1990; 18:5473-80. [PMID: 2120677 PMCID: PMC332226 DOI: 10.1093/nar/18.18.5473] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
By prophage transformation and subcloning, we have obtained Bacillus subtilis DNA fragments that could complement the hypersensitivity of ada (adaptive response deficient) mutants to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). The nucleotide sequence contained two open reading frames that were assigned to the genes adaA and adaB, encoding methylphosphotriester-DNA methyltransferase and O6-methylguanine-DNA methyltransferase, respectively. These two genes overlap by 11 bp and comprise a small operon. The 1.6 Kb transcripts derived from the operon were detected in ada+ cells cultured in the presence of MNNG but not in control ada+ cells. From analysis of the syntheses of DNA alkyltransferases in the ada mutant cells harboring the plasmid carrying the complete or partial fragment, we conclude that the adaA gene product functions as a transcriptional activator of the ada operon, while the adaB gene product specializes in repair of mutagenic O6-methylguanine residues. Comparison with Escherichia coli ada operon showed that the two genes correspond to portions of the E. coli ada gene, implicating gene fusion or splitting as the origin of the difference in the organizations of the genes.
Collapse
Affiliation(s)
- F Morohoshi
- Radiobiology Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | |
Collapse
|
33
|
Purification, structure, and biochemical properties of human O6-methylguanine-DNA methyltransferase. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77177-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
Affiliation(s)
- K Sakumi
- Department of Biochemistry, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
35
|
Abstract
We have identified a DNA methyltransferase activity of the nitrogen-fixing bacterium, Rhizobium meliloti, that repairs O6-methylguanine lesions. Repair of the O6-methylguanine residue results in transfer of the methyl group to a cysteine residue of a 28,000-dalton protein. The O6-methyltransferase activity is expressed constitutively and R. meliloti does not exhibit an adaptive response to alkylating agents.
Collapse
Affiliation(s)
- A Kaufman
- Biology Department, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
36
|
Watanabe K, Ohta T, Watanabe M, Kato T, Shirasu Y. Inhibition of induction of adaptive response by o-vanillin in Escherichia coli B. Mutat Res 1990; 243:273-80. [PMID: 2109194 DOI: 10.1016/0165-7992(90)90143-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mutations induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) were strongly enhanced in the presence of o-vanillin in E. coli B. The enhancement was also observed in uvrA, umuC, recA, polA, or alkB mutants. This effect was lower in an alkA mutant, but was restored in an alkA umuC double mutant. By contrast, the enhancing effect was almost blocked in an ada and ada umuC double mutant. It was necessary to add simultaneously MNNG and o-vanillin to the growth medium. Further investigations were conducted on the induction of ada and umuC genes using ada'-lacZ' and umuC'-lacZ' plasmids. o-Vanillin suppressed the induction of the ada gene by MNNG treatment, but not that of the umuC gene. In fact expression of the umuC gene was induced by lower concentrations of MNNG in the presence of o-vanillin. The results suggest that o-vanillin inhibits induction of the adaptive response, and consequently, the MNNG-induced mutation frequency is increased due to unrepaired O6-methylguanine.
Collapse
Affiliation(s)
- K Watanabe
- Institute of Environmental Toxicology, Tokyo, Japan
| | | | | | | | | |
Collapse
|
37
|
Wilkinson MC, Cooper DP, Southan C, Potter PM, Margison GP. Purification to apparent homogeneity and partial amino acid sequence of rat liver O6-alkylguanine-DNA-alkyltransferase. Nucleic Acids Res 1990; 18:13-6. [PMID: 2308819 PMCID: PMC330197 DOI: 10.1093/nar/18.1.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
O6-alkylguanine-DNA-alkyltransferase (ATase) activity was increased in rat liver from 80 to 320 fmoles/mg total protein 48 h after administration of 2-acetylaminofluorene at 60 mg/kg body weight. This tissue was used as a source of ATase which was purified by ammonium sulphate precipitation and DNA-cellulose, molecular exclusion and ion exchange chromatography (IEC). IEC purified material showed a major 24 kDa band after polyacrylamide gel electrophoresis (PAGE) with silver staining. Fluorography of purified ATase following incubation with [3H]-methylated substrate DNA and PAGE showed a single band at 24 kDa suggesting that, as with bacterial ATases, the protein itself accepts the alkyl group from O6-alkylguanine in substrate DNA during the repair reaction. Further purification of the protein using reverse phase HPLC resulted in a single peak representing approximately 125,000 fold purification. This was subjected to amino-terminal sequencing and it was found that the protein was blocked at the amino-terminal end: it was cleaved using trypsin or cyanogen bromide and the amino acid sequence of several reverse phase HPLC purified fragments was determined.
Collapse
Affiliation(s)
- M C Wilkinson
- Department of Carcinogenesis, Paterson Institute for Cancer Research, Christie Hospital, Manchester, UK
| | | | | | | | | |
Collapse
|
38
|
Potter PM, Kleibl K, Cawkwell L, Margison GP. Expression of the ogt gene in wild-type and ada mutants of E. coli. Nucleic Acids Res 1989; 17:8047-60. [PMID: 2682522 PMCID: PMC334946 DOI: 10.1093/nar/17.20.8047] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
O6-alkylguanine (O6-AlkG) DNA alkyltransferase (ATase) and alkylphosphotriester (AlkP) ATase activity have been quantitated individually in extracts of various E. coli strains by means of ATase specific DNA substrates. O6-AlkG ATase activity was higher than AlkP ATase activity in the wild-type strains F26, AB1157 and SB229 and in the ada- mutants PJ1, PJ3, PJ5 and PJ6 indicating a 5-70 times higher level of expression of the ogt gene than the ada gene. The ada- mutant strains BS23, BS73 and GW5352 expressed O6-AlkG ATase but not AlkP ATase activity indicating expression only of the ogt gene. Southern analysis of DNA from F26, BS23, BS73, PJ1 and GW5352 showed a consistent pattern of hybridisation to an ogt probe but not to an ada probe. Exposure of E. coli to adaptive doses of N-methyl-N-nitro-N-nitroso-guanidine (MeNNG) caused an increase in AlkP ATase activity in F26, AB1156, SB229, PJ1, PJ3, PJ5 and PJ6. O6-AlkG ATase activity also increased in F26, AB1157 and SB229 but decreased to almost undetectable levels in all other strains examined except PJ3 where it remained constant. MeNNG increased ada mRNA abundance in F26 but no ada mRNA was detected in BS23, BS73 or GW5352: there was no evidence for increased ogt mRNA in any of the strains examined. In a limited survey, other bacterial strains have been shown to possess an ogt-like ATase activity.
Collapse
Affiliation(s)
- P M Potter
- Department of Carcinogenesis, Paterson Institute for Cancer Research, Christie Hospital and Holt Radium Institute, Manchester, UK
| | | | | | | |
Collapse
|
39
|
Kaasch M, Kaasch J, Quiñones A. Expression of the dnaN and dnaQ genes of Escherichia coli is inducible by mitomycin C. MOLECULAR & GENERAL GENETICS : MGG 1989; 219:187-92. [PMID: 2515428 DOI: 10.1007/bf00261175] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The dnaN and dnaQ genes encode the beta subunit and the epsilon subunit of the DNA polymerase III holoenzyme. Using translational fusions to lacZ we found that DNA damage caused by mitomycin C induces expression of the dnaA and dnaQ genes. This induction was not observed in lexA and recA mutants which block the induction of the SOS response, suggesting a relationship between the mechanism(s) of genetic control of DNA polymerase III holoenzyme and the SOS regulatory network. Nevertheless, there is evidence that the mitomycin C induction of dnaN and dnaQ is not a simple lexA-regulated process, because nalidixic acid (an excellent SOS inducer) does not increase dnaN and dnaQ gene expression, and the time course of induction is abnormally slow.
Collapse
Affiliation(s)
- M Kaasch
- Wissenschaftsbereich Genetik, Martin-Luther-Universität, Halle/Saale, German Democratic Republic
| | | | | |
Collapse
|
40
|
Murphy KE, Guzder SN, Braymer HD. Evidence for unique DNA repair activity encoded by a cloned Serratia marcescens gene: suppression of Escherichia coli mutations that reduce repair of alkylated DNA. J Bacteriol 1989; 171:5179-82. [PMID: 2670906 PMCID: PMC210336 DOI: 10.1128/jb.171.9.5179-5182.1989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A recombinant plasmid containing a Serratia marcescens DNA repair gene has been analyzed biochemically and genetically in Escherichia coli mutants deficient for repair of alkylated DNA. The cloned gene suppressed sensitivity to methyl methanesulfonate of an E. coli strain deficient in 3-methyladenine DNA glycosylases I and II (i.e., E. coli tag alkA) and two different E. coli recA mutants. Attempts to suppress the methyl methanesulfonate sensitivity of the E. coli recA mutant by using the cloned E. coli tag and alkA genes were not successful. Southern blot analysis did not reveal any homology between the S. marcescens gene and various known E. coli DNA repair genes. Biochemical analysis with the S. marcescens gene showed that the encoded DNA repair protein liberated 3-methyladenine from alkylated DNA, indicating that the DNA repair molecular is an S. marcescens 3-methyladenine DNA glycosylase. The ability to suppress both types of E. coli DNA repair mutations, however, suggests that the S. marcescens gene is a unique bacterial DNA repair gene.
Collapse
Affiliation(s)
- K E Murphy
- Program in Genetics, Louisiana State University, Baton Rouge 70803-1715
| | | | | |
Collapse
|
41
|
Rebeck GW, Smith CM, Goad DL, Samson L. Characterization of the major DNA repair methyltransferase activity in unadapted Escherichia coli and identification of a similar activity in Salmonella typhimurium. J Bacteriol 1989; 171:4563-8. [PMID: 2670886 PMCID: PMC210251 DOI: 10.1128/jb.171.9.4563-4568.1989] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Escherichia coli has two DNA repair methyltransferases (MTases): the 39-kilodalton (kDa) Ada protein, which can undergo proteolysis to an active 19-kDa fragment, and the 19-kDa DNA MTase II. We characterized DNA MTase II in cell extracts of an ada deletion mutant and compared it with the purified 19-kDa Ada fragment. Like Ada, DNA MTase II repaired O6-methylguanine (O6MeG) lesions via transfer of the methyl group from DNA to a cysteine residue in the MTase. Substrate competition experiments indicated that DNA MTase II repaired O4-methylthymine lesions by transfer of the methyl group to the same active site within the DNA MTase II molecule. The repair kinetics of DNA MTase II were similar to those of Ada; both repaired O6MeG in double-stranded DNA much more efficiently than O6MeG in single-stranded DNA. Chronic pretreatment of ada deletion mutants with sublethal (adapting) levels of two alkylating agents resulted in the depletion of DNA MTase II. Thus, unlike Ada, DNA MTase II did not appear to be induced in response to chronic DNA alkylation at least in this ada deletion strain. DNA MTase II was much more heat labile than Ada. Heat lability studies indicated that more than 95% of the MTase in unadapted E. coli was DNA MTase II. We discuss the possible implications of these results for the mechanism of induction of the adaptive response. A similarly active 19-kDa O6MeG-O4-methylthymine DNA MTase was identified in Salmonella typhimurium.
Collapse
Affiliation(s)
- G W Rebeck
- Charles A. Dana Laboratory of Toxicology, Harvard School of Public Health, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
42
|
Tano K, Bhattacharyya D, Foote RS, Mural RJ, Mitra S. Site-directed mutation of the Escherichia coli ada gene: effects of substitution of methyl acceptor cysteine-321 by histidine in Ada protein. J Bacteriol 1989; 171:1535-43. [PMID: 2493448 PMCID: PMC209778 DOI: 10.1128/jb.171.3.1535-1543.1989] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Oligodeoxynucleotide-mediated mutagenesis of the ada gene of Escherichia coli was used to produce two mutant Ada proteins. In mutant I the methyl acceptor Cys-321 for O6-methylguanine was replaced by histidine; and in mutant II the positions of Cys-321 and His-322 of the wild-type protein were inverted. Neither mutant protein had O6-methylguanine-DNA methyltransferase activity, but both retained the phosphotriester-DNA methyltransferase activity involving methyl group transfer to Cys-69. Under the control of the endogenous promoter, synthesis of mutant I protein was undetectable before or after adaptation treatment with promoter, synthesis of mutant I protein was undetectable before or after adaptation treatment with N-methyl-N'-nitro-N-nitrosoguanidine. This appeared to be due to both inhibition of transcription of the mutant gene and degradation of the synthesized protein. On the other hand, mutant II protein was inducible by N-methyl-N'-nitro-N-nitrosoguanidine, although to a smaller extent than the wild-type protein was, and the phosphotriester-DNA methyltransferase activity appeared to reside in 24- to 30-kilodalton cleavage products. Mutant I protein could be produced under lac promoter control, and its cleavage products, unlike those of mutant II protein, tended to aggregate. These results indicate that (i) Cys-321 cannot be replaced or transposed with the nucleophilic amino acid histidine for O6-methylguanine-DNA methyltransferase function, (ii) single amino acid replacement or transposition at the O6-methylguanine methyl acceptor site can have a profound effect on the in vivo stability and regulatory function of the Ada protein, and (iii) the integrity of the protein may not be absolutely needed for its transcription-activation function.
Collapse
Affiliation(s)
- K Tano
- School of Biomedical Sciences, Oak Ridge National Laboratory, Tennessee 37831
| | | | | | | | | |
Collapse
|
43
|
Murphy KE, Braymer HD. Molecular cloning and characterization of a genetic region from Serratia marcescens involved in DNA repair. Mol Microbiol 1989; 3:249-55. [PMID: 2668689 DOI: 10.1111/j.1365-2958.1989.tb01814.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report here the molecular isolation of a DNA fragment which encodes Tag-like activity from the Gram-negative bacterium Serratia marcescens. A recombinant plasmid encoding Tag-like activity was isolated from a S. marcescens plasmid gene library by complementation of an Escherichia coli tag mutant, which is deficient in 3-methyladenine DNA glycosylase I. The clone complements E. coli tag, recA, alkA, but not alkB, mutants for resistance to the DNA-damaging agent methyl methanesulphonate (MMS). The coding region of the Tag activity, initially isolated on a 6.5kb BamHI fragment, was defined to a 1.8kb BglII-SmaI fragment. Labelling of plasmid-encoded proteins using maxicells revealed that the 1.8kb fragment encodes two proteins of molecular weights 42,000 and 16,000. Data presented here suggest that the cloned fragment encodes a DNA repair protein(s) that has similar activity to the 3-methyladenine DNA glycosylase I of E. coli.
Collapse
Affiliation(s)
- K E Murphy
- Programme in Genetics, Louisiana State University, Baton Rouge 70803
| | | |
Collapse
|
44
|
Sakumi K, Sekiguchi M. Regulation of expression of the ada gene controlling the adaptive response. Interactions with the ada promoter of the Ada protein and RNA polymerase. J Mol Biol 1989; 205:373-85. [PMID: 2648001 DOI: 10.1016/0022-2836(89)90348-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Ada protein of Escherichia coli catalyzes transfer of methyl groups from methylated DNA to its own molecule, and the methylated form of Ada protein promotes transcription of its own gene, ada. Using an in vitro reconstituted system, we found that both the sigma factor and the methylated Ada protein are required for transcription of the ada gene. To elucidate molecular mechanisms involved in the regulation of the ada transcription, we investigated interactions of the non-methylated and methylated forms of Ada protein and the RNA polymerase holo enzyme (the core enzyme and sigma factor) with a DNA fragment carrying the ada promoter region. Footprinting analyses revealed that the methylated Ada protein binds to a region from positions -63 to -31, which includes the ada regulatory sequence AAAGCGCA. No firm binding was observed with the non-methylated Ada protein, although some DNase I-hypersensitive sites were produced in the promoter by both types of Ada protein. RNA polymerase did bind to the promoter once the methylated Ada protein had bound to the upstream sequence. To correlate these phenomena with the process in vivo, we used the DNAs derived from promoter-defective mutants. No binding of Ada protein nor of RNA polymerase occurred with a mutant DNA having a C to G substitution at position -47 within the ada regulatory sequence. In the case of a -35 box mutant with a T to A change at position -34, the methylated Ada protein did bind to the ada regulatory sequence, yet there was no RNA polymerase binding. Thus, the binding of the methylated Ada protein to the upstream region apparently facilitates binding of the RNA polymerase to the proper region of the promoter. The Ada protein possesses two known methyl acceptor sites, Cys69 and Cys321. The role of methylation of each cysteine residue was investigated using mutant forms of the Ada protein. The Ada protein with the cysteine residue at position 69 replaced by alanine was incapable of binding to the ada promoter even when the cysteine residue at position 321 of the protein was methylated. When the Ada protein with alanine at position 321 was methylated, it acquired the potential to bind to the ada promoter. These results are compatible with the notion that methylation of the cysteine residue at position 69 causes a conformational change of the Ada protein, thereby facilitating binding of the protein to the upstream regulatory sequence.
Collapse
Affiliation(s)
- K Sakumi
- Department of Biochemistry, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
45
|
Volkert MR. Altered induction of the adaptive response to alkylation damage in Escherichia coli recF mutants. J Bacteriol 1989; 171:99-103. [PMID: 2536670 PMCID: PMC209560 DOI: 10.1128/jb.171.1.99-103.1989] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Escherichia coli recF mutants are hypermutable when treated with methyl methanesulfonate (G. C. Walker, Mol. Gen. Genet. 152:93-103, 1977). In this study, methylation hypermutability of recF mutant strains was examined, and it was found that recF+ is required for normal induction of the adaptive response to alkylation damage. Although this regulatory effect of recF mutations results in reduced levels of enzymes that specifically repair methyl lesions in DNA, it only partially explains the hypermutability. Further examination showed that methylation hypermutability of recF mutant strains required a functional umuDC operon, a component of the SOS response. These results lead to the hypothesis that methylation hypermutability results from the effects of recF mutations on the induction of both the SOS response and the adaptive response.
Collapse
Affiliation(s)
- M R Volkert
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| |
Collapse
|
46
|
Janion C, Plewako S, Bebenek K, Sledziewska-Gojska E. Influence of dam and mismatch repair system on mutagenic and SOS-inducing activity of methyl methanesulfonate in Escherichia coli. Mutat Res 1989; 210:15-22. [PMID: 2642600 DOI: 10.1016/0027-5107(89)90039-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In contrast to earlier reports (Mohn et al., 1980; Glickman, 1982), we show that E. coli dam- cells are able to mutate following MMS treatment. Since the mutagenicity of MMS has been regarded as largely dependent on induction of the SOS functions, E. coli strains bearing the recA::lacZ or umuC::lacZ fusions were used to determine the ability of MMS to induce the SOS functions in the various dam+ and dam- strains. The mutagenicity of MMS was also tested in several of these strains. The results show that (i) there is no direct correlation between SOS-inducing ability and mutagenicity potency of MMS; and (ii) most of the premutagenic lesions induced by MMS are removed from DNA of dam+ or dam- cells by the mismatch repair system. The role of strand breaks in repair of mismatches induced by alkylating agents is discussed.
Collapse
Affiliation(s)
- C Janion
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw
| | | | | | | |
Collapse
|
47
|
Yoshikai T, Nakabeppu Y, Sekiguchi M. Proteolytic cleavage of Ada protein that carries methyltransferase and transcriptional regulator activities. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37406-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Abstract
UvrB is specifically proteolyzed in Escherichia coli cell extracts to UvrB*. UvrB* is capable of interacting with UvrA in an apparently similar manner to the UvrB, however UvrB* is defective in the DNA strand displacement activity normally displayed by UvrAB. Whereas the binding of UvrC to a UvrAB-DNA complex leads to DNA incision and persistence of a stable post-incision protein-DNA complex, the binding of UvrC to UvrAB* leads to dissociation of the protein complex and no DNA incision is seen. The factor which stimulates this proteolysis has been partially purified and its substrate specificity has been examined. The protease factor is induced by "stress" and is under control of the htpR gene. The potential role of this proteolysis in the regulation of levels of active repair enzymes in the cell is discussed.
Collapse
Affiliation(s)
- P R Caron
- Department of Biochemistry, Johns Hopkins University, School of Hygiene and Public Health, Baltimore, MD 21205
| | | |
Collapse
|
49
|
Shevell DE, LeMotte PK, Walker GC. Alteration of the carboxyl-terminal domain of Ada protein influences its inducibility, specificity, and strength as a transcriptional activator. J Bacteriol 1988; 170:5263-71. [PMID: 3141384 PMCID: PMC211600 DOI: 10.1128/jb.170.11.5263-5271.1988] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The ada gene of Escherichia coli K-12 encodes the regulatory protein for the adaptive response to alkylating agents. A set of plasmids carrying ordered deletions from the 3' end of the ada gene were isolated and characterized. These ada deletions encode fusion proteins that derive their amino termini from ada and their carboxyl termini from the downstream vector sequence that occurs before an in-frame stop codon. Several of these ada deletions encode Ada derivatives that constitutively activate ada transcription to very high levels. A second class of ada deletions encode Ada derivatives that are dominant inhibitors of the inducible transcription of ada but are inducible activators of alkA transcription. In addition, we found that two Ada derivatives containing the same ada sequences but fused to different vector-derived tails have strikingly different properties. One Ada derivative constitutively activates both ada and alkA expression to very high levels. In contrast, the other Ada derivative is an inducible activator of ada expression, like the wild-type Ada protein, but is not an inducible activator of alkA transcription. Our data suggest that the carboxyl terminus of the Ada protein plays a key role in modulating the ability of the Ada protein to function as a transcriptional activator.
Collapse
Affiliation(s)
- D E Shevell
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
50
|
Bhattacharyya D, Tano K, Bunick GJ, Uberbacher EC, Behnke WD, Mitra S. Rapid, large-scale purification and characterization of 'Ada protein' (O6 methylguanine-DNA methyltransferase) of E. coli. Nucleic Acids Res 1988; 16:6397-410. [PMID: 3041376 PMCID: PMC338304 DOI: 10.1093/nar/16.14.6397] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The E. coli Ada protein (O6-methylguanine-DNA methyltransferase) has been purified using a high-level expression vector with a yield of about 3 mg per liter of E. coli culture. The 39-kDa protein has an extinction coefficient (E280 nm (1%)) of 5.3. Its isoelectric point of 7.1 is lower than that predicted from the amino acid content. The homogeneous Ada protein is fully active as a methyl acceptor from O6-methylguanine in DNA. Its reaction with O6-methylguanine in a synthetic DNA has a second-order rate constant of 1.1 x 10(9) M-1 min-1 at O degree C. Both the native form and the protein methylated at Cys-69 are monomeric. The CD spectrum suggests a low alpha-helical content and the radius of gyration of 23 A indicates a compact, globular shape. The middle region of the protein is sensitive to a variety of proteases, including an endogenous activity in E. coli, suggesting that the protein is composed of N-terminal and C-terminal domains connected by a hinge region. E. coli B has a higher level of this protease than does K12.
Collapse
Affiliation(s)
- D Bhattacharyya
- University of Tennessee Graduate School of Biomedical Sciences, Oak Ridge 37831
| | | | | | | | | | | |
Collapse
|