1
|
Cai W, Arias CR. Deciphering the Molecular Basis for Attenuation of Flavobacterium columnare Strain Fc1723 Used as Modified Live Vaccine against Columnaris Disease. Vaccines (Basel) 2021; 9:vaccines9111370. [PMID: 34835301 PMCID: PMC8622145 DOI: 10.3390/vaccines9111370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Vaccines are widely employed in aquaculture to prevent bacterial infections, but their use by the U.S. catfish industry is very limited. One of the main diseases affecting catfish aquaculture is columnaris disease, caused by the bacterial pathogen Flavobacterium columnare. In 2011, a modified-live vaccine against columnaris disease was developed by selecting mutants that were resistant to rifampin. The previous study has suggested that this vaccine is stable, safe, and effective, but the mechanisms that resulted in attenuation remained uncharacterized. To understand the molecular basis for attenuation, a comparative genomic analysis was conducted to identify specific point mutations. The PacBio RS long-read sequencing platform was used to obtain draft genomes of the mutant attenuated strain (Fc1723) and the parent virulent strain (FcB27). Sequence-based genome comparison identified 16 single nucleotide polymorphisms (SNP) unique to the mutant. Genes that contained mutations were involved in rifampin resistance, gliding motility, DNA transcription, toxin secretion, and extracellular protease synthesis. The results also found that the vaccine strain formed biofilm at a significantly lower rate than the parent strain. These observations suggested that the rifampin-resistant phenotype and the associated attenuation of the vaccine strain result from the altered activity of RNA polymerase (RpoB) and possible disrupted protein secretion systems.
Collapse
Affiliation(s)
- Wenlong Cai
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Correspondence:
| | - Covadonga R. Arias
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36832, USA;
| |
Collapse
|
2
|
SppI Forms a Membrane Protein Complex with SppA and Inhibits Its Protease Activity in Bacillus subtilis. mSphere 2020; 5:5/5/e00724-20. [PMID: 33028682 PMCID: PMC7568657 DOI: 10.1128/msphere.00724-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Our study presents new insights into the molecular mechanism that regulates the activity of SppA, a widely conserved bacterial membrane protease. We show that the membrane proteins SppA and SppI form a complex in the Gram-positive model bacterium B. subtilis and that SppI inhibits SppA protease activity in vitro and in vivo. Furthermore, we demonstrate that the C-terminal domain of SppI is involved in SppA inhibition. Since SppA, through its protease activity, contributes directly to resistance to lantibiotic peptides and cationic antibacterial peptides, we propose that the conserved SppA-SppI complex could play a major role in the evasion of bactericidal peptides, including those produced as part of human innate immune defenses. The membrane protease SppA of Bacillus subtilis was first described as a signal peptide peptidase and later shown to confer resistance to lantibiotics. Here, we report that SppA forms octameric complexes with YteJ, a membrane protein of thus-far-unknown function. Interestingly, sppA and yteJ deletion mutants exhibited no protein secretion defects. However, these mutant strains differed significantly in their resistance to antimicrobial peptides. In particular, sppA mutant cells displayed increased sensitivity to the lantibiotics nisin and subtilin and the human lysozyme-derived cationic antimicrobial peptide LP9. Importantly, YteJ was shown to antagonize SppA activity both in vivo and in vitro, and this SppA-inhibitory activity involved the C-terminal domain of YteJ, which was therefore renamed SppI. Most likely, SppI-mediated control is needed to protect B. subtilis against the potentially detrimental protease activity of SppA since a mutant overexpressing sppA by itself displayed defects in cell division. Altogether, we conclude that the SppA-SppI complex of B. subtilis has a major role in protection against antimicrobial peptides. IMPORTANCE Our study presents new insights into the molecular mechanism that regulates the activity of SppA, a widely conserved bacterial membrane protease. We show that the membrane proteins SppA and SppI form a complex in the Gram-positive model bacterium B. subtilis and that SppI inhibits SppA protease activity in vitro and in vivo. Furthermore, we demonstrate that the C-terminal domain of SppI is involved in SppA inhibition. Since SppA, through its protease activity, contributes directly to resistance to lantibiotic peptides and cationic antibacterial peptides, we propose that the conserved SppA-SppI complex could play a major role in the evasion of bactericidal peptides, including those produced as part of human innate immune defenses.
Collapse
|
3
|
Voss M, Schröder B, Fluhrer R. Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2828-39. [PMID: 24099004 DOI: 10.1016/j.bbamem.2013.03.033] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/25/2013] [Accepted: 03/29/2013] [Indexed: 01/09/2023]
Abstract
Signal peptide peptidase (SPP) and the homologous SPP-like (SPPL) proteases SPPL2a, SPPL2b, SPPL2c and SPPL3 belong to the family of GxGD intramembrane proteases. SPP/SPPLs selectively cleave transmembrane domains in type II orientation and do not require additional co-factors for proteolytic activity. Orthologues of SPP and SPPLs have been identified in other vertebrates, plants, and eukaryotes. In line with their diverse subcellular localisations ranging from the ER (SPP, SPPL2c), the Golgi (SPPL3), the plasma membrane (SPPL2b) to lysosomes/late endosomes (SPPL2a), the different members of the SPP/SPPL family seem to exhibit distinct functions. Here, we review the substrates of these proteases identified to date as well as the current state of knowledge about the physiological implications of these proteolytic events as deduced from in vivo studies. Furthermore, the present knowledge on the structure of intramembrane proteases of the SPP/SPPL family, their cleavage mechanism and their substrate requirements are summarised. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Matthias Voss
- Adolf Butenandt Institute for Biochemistry, Ludwig-Maximilians University Munich, Schillerstr. 44, 80336 Munich, Germany
| | | | | |
Collapse
|
4
|
A phylum level analysis reveals lipoprotein biosynthesis to be a fundamental property of bacteria. Protein Cell 2012; 3:163-70. [PMID: 22410786 DOI: 10.1007/s13238-012-2023-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bacterial lipoproteins are proteins that are post-translationally modified with a diacylglyceride at an N-terminal cysteine, which serves to tether these proteins to the outer face of the plasma membrane or to the outer membrane. This paper reviews recent insights into the enzymology of bacterial lipoprotein biosynthesis and localization. Moreover, we use bioinformatic analyses of bacterial lipoprotein signal peptide features and of the key biosynthetic enzymes to consider the distribution of lipoprotein biosynthesis at the phylum level. These analyses support the important conclusion that lipoprotein biosynthesis is a fundamental pathway utilized across the domain bacteria. Moreover, with the exception of a small number of sequences likely to derive from endosymbiont genomes, the enzymes of bacterial lipoprotein biosynthesis appear unique to bacteria, making this pathway an attractive target for the development of novel antimicrobials. Whilst lipoproteins with comparable signal peptide features are encoded in the genomes of Archaea, it is clear that these lipoproteins have a distinctive biosynthetic pathway that has yet to be characterized.
Collapse
|
5
|
A targeted gene knockout method using a newly constructed temperature-sensitive plasmid mediated homologous recombination in Bifidobacterium longum. Appl Microbiol Biotechnol 2012; 95:499-509. [PMID: 22639142 DOI: 10.1007/s00253-012-4090-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/03/2012] [Accepted: 04/07/2012] [Indexed: 10/28/2022]
Abstract
Bifidobacteria are the main component of the human microflora. We constructed a temperature-sensitive (Ts) plasmid by random mutagenesis of the Bifidobacterium-Escherichia coli shuttle vector pKKT427 using error-prone PCR. Mutant plasmids were introduced into Bifidobacterium longum 105-A and, after screening approximately 3,000 colonies, candidate clones that grew at 30 °C but not at 42 °C were selected. According to DNA sequence analysis of the Ts plasmid, five silent and one missense mutations were found in the repB region. The site-directed mutagenesis showed only the missense mutation to be relevant to the Ts phenotype. We designated this plasmid pKO403. The Ts phenotype was also observed in B. longum NCC2705 and Bifidobacterium adolescentis ATCC15703. Single-crossover homologous-recombination experiments were carried out to determine the relationship between the length of homologous sequences encoded on the plasmid and recombination frequency: fragments greater than 1 kb gave an efficiency of more than 10(3) integrations per cell. We performed gene knockout experiments using this Ts plasmid. We obtained gene knockout mutants of the pyrE region of B. longum 105-A, and determined that double-crossover homologous recombination occurred at an efficiency of 1.8 %. This knockout method also worked for the BL0033 gene in B. longum NCC2705.
Collapse
|
6
|
Post-liberation cleavage of signal peptides is catalyzed by the site-2 protease (S2P) in bacteria. Proc Natl Acad Sci U S A 2011; 108:13740-5. [PMID: 21810987 DOI: 10.1073/pnas.1108376108] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A signal peptide (SP) is cleaved off from presecretory proteins by signal peptidase during or immediately after insertion into the membrane. In metazoan cells, the cleaved SP then receives proteolysis by signal peptide peptidase, an intramembrane-cleaving protease (I-CLiP). However, bacteria lack any signal peptide peptidase member I-CLiP, and little is known about the metabolic fate of bacterial SPs. Here we show that Escherichia coli RseP, an site-2 protease (S2P) family I-CLiP, introduces a cleavage into SPs after their signal peptidase-mediated liberation from preproteins. A Bacillus subtilis S2P protease, RasP, is also shown to be involved in SP cleavage. These results uncover a physiological role of bacterial S2P proteases and update the basic knowledge about the fate of signal peptides in bacterial cells.
Collapse
|
7
|
Heinrich J, Lundén T, Kontinen VP, Wiegert T. The Bacillus subtilis ABC transporter EcsAB influences intramembrane proteolysis through RasP. MICROBIOLOGY-SGM 2008; 154:1989-1997. [PMID: 18599827 DOI: 10.1099/mic.0.2008/018648-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Bacillus subtilis sigma(W) regulon is induced by different stresses that most probably affect integrity of the cell envelope. The activity of the extracytoplasmic function (ECF) sigma factor sigma(W) is modulated by the transmembrane anti-sigma factor RsiW, which undergoes stress-induced degradation in a process known as regulated intramembrane proteolysis, finally resulting in the release of sigma(W) and the transcription of sigma(W)-controlled genes. Mutations in the ecsA gene, which encodes an ATP binding cassette (ABC) of an ABC transporter of unknown function, block site-2 proteolysis of RsiW by the intramembrane cleaving protease RasP (YluC). In addition, degradation of the cell division protein FtsL, which represents a second RasP substrate, is blocked in an ecsA-negative strain. The defect in sigma(W) induction of an ecsA-knockout strain could be partly suppressed by overproducing RasP. A B. subtilis rasP-knockout strain displayed the same pleiotropic phenotype as an ecsA knockout, namely defects in processing alpha-amylase, in competence development, and in formation of multicellular structures known as biofilms.
Collapse
Affiliation(s)
- Janine Heinrich
- Institute of Genetics, University of Bayreuth, Bayreuth, Germany
| | - Tuula Lundén
- Infection Pathogenesis Laboratory, Department of Viral Diseases and Immunology, National Public Health Institute, Helsinki, Finland
| | - Vesa P Kontinen
- Infection Pathogenesis Laboratory, Department of Viral Diseases and Immunology, National Public Health Institute, Helsinki, Finland
| | - Thomas Wiegert
- Institute of Genetics, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
8
|
Tripathi LP, Sowdhamini R. Cross genome comparisons of serine proteases in Arabidopsis and rice. BMC Genomics 2006; 7:200. [PMID: 16895613 PMCID: PMC1560137 DOI: 10.1186/1471-2164-7-200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 08/09/2006] [Indexed: 12/24/2022] Open
Abstract
Background Serine proteases are one of the largest groups of proteolytic enzymes found across all kingdoms of life and are associated with several essential physiological pathways. The availability of Arabidopsis thaliana and rice (Oryza sativa) genome sequences has permitted the identification and comparison of the repertoire of serine protease-like proteins in the two plant species. Results Despite the differences in genome sizes between Arabidopsis and rice, we identified a very similar number of serine protease-like proteins in the two plant species (206 and 222, respectively). Nearly 40% of the above sequences were identified as potential orthologues. Atypical members could be identified in the plant genomes for Deg, Clp, Lon, rhomboid proteases and species-specific members were observed for the highly populated subtilisin and serine carboxypeptidase families suggesting multiple lateral gene transfers. DegP proteases, prolyl oligopeptidases, Clp proteases and rhomboids share a significantly higher percentage orthology between the two genomes indicating substantial evolutionary divergence was set prior to speciation. Single domain architectures and paralogues for several putative subtilisins, serine carboxypeptidases and rhomboids suggest they may have been recruited for additional roles in secondary metabolism with spatial and temporal regulation. The analysis reveals some domain architectures unique to either or both of the plant species and some inactive proteases, like in rhomboids and Clp proteases, which could be involved in chaperone function. Conclusion The systematic analysis of the serine protease-like proteins in the two plant species has provided some insight into the possible functional associations of previously uncharacterised serine protease-like proteins. Further investigation of these aspects may prove beneficial in our understanding of similar processes in commercially significant crop plant species.
Collapse
Affiliation(s)
- Lokesh P Tripathi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560 065, India
| | - R Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560 065, India
| |
Collapse
|
9
|
Matsumi R, Atomi H, Imanaka T. Identification of the amino acid residues essential for proteolytic activity in an archaeal signal peptide peptidase. J Biol Chem 2006; 281:10533-9. [PMID: 16484219 DOI: 10.1074/jbc.m513754200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal peptide peptidases (SPPs) are enzymes involved in the initial degradation of signal peptides after they are released from the precursor proteins by signal peptidases. In contrast to the eukaryotic enzymes that are aspartate peptidases, the catalytic mechanisms of prokaryotic SPPs had not been known. In this study on the SPP from the hyperthermophilic archaeon Thermococcus kodakaraensis (SppA(Tk)), we have identified amino acid residues that are essential for the peptidase activity of the enzyme. DeltaN54SppA(Tk), a truncated protein without the N-terminal 54 residues and putative transmembrane domain, exhibits high peptidase activity, and was used as the wild-type protein. Sixteen residues, highly conserved among archaeal SPP homologue sequences, were selected and replaced by alanine residues. The mutations S162A and K214A were found to abolish peptidase activity of the protein, whereas all other mutant proteins displayed activity to various extents. The results indicated the function of Ser(162) as the nucleophilic serine and that of Lys(214) as the general base, comprising a Ser/Lys catalytic dyad in SppA(Tk). Kinetic analyses indicated that Ser(184), His(191) Lys(209), Asp(215), and Arg(221) supported peptidase activity. Intriguingly, a large number of mutations led to an increase in activity levels of the enzyme. In particular, mutations in Ser(128) and Tyr(165) not only increased activity levels but also broadened the substrate specificity of SppA(Tk), suggesting that these residues may be present to prevent the enzyme from cleaving unintended peptide/protein substrates in the cell. A detailed alignment of prokaryotic SPP sequences strongly suggested that the majority of archaeal enzymes, along with the bacterial enzyme from Bacillus subtilis, adopt the same catalytic mechanism for peptide hydrolysis.
Collapse
Affiliation(s)
- Rie Matsumi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | |
Collapse
|
10
|
Matsumi R, Atomi H, Imanaka T. Biochemical properties of a putative signal peptide peptidase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 2005; 187:7072-80. [PMID: 16199578 PMCID: PMC1251612 DOI: 10.1128/jb.187.20.7072-7080.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have performed the first biochemical characterization of a putative archaeal signal peptide peptidase (SppA(Tk)) from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. SppA(Tk), comprised of 334 residues, was much smaller than its counterpart from Escherichia coli (618 residues) and harbored a single predicted transmembrane domain near its N terminus. A truncated mutant protein without the N-terminal 54 amino acid residues (deltaN54SppA(Tk)) was found to be stable against autoproteolysis and was examined further. DeltaN54SppA(Tk) exhibited peptidase activity towards fluorogenic peptide substrates and was found to be highly thermostable. Moreover, the enzyme displayed a remarkable stability and preference for alkaline pH, with optimal activity detected at pH 10. DeltaN54SppA(Tk) displayed a K(m) of 240 +/- 18 microM and a V(max) of 27.8 +/- 0.7 micromol min(-1) mg(-1) towards Ala-Ala-Phe-4-methyl-coumaryl-7-amide at 80 degrees C and pH 10. The substrate specificity of the enzyme was examined in detail with a FRETS peptide library. By analyzing the cleavage products with liquid chromatography-mass spectrometry, deltaN54SppA(Tk) was found to efficiently cleave peptides with a relatively small side chain at the P-1 position and a hydrophobic or aromatic residue at the P-3 position. The positively charged Arg residue was preferred at the P-4 position, while substrates with negatively charged residues at the P-2, P-3, or P-4 position were not cleaved. When predicted signal sequences from the T. kodakaraensis genome sequence were examined, we found that the substrate specificity of deltaN54SppA(Tk) was in good agreement with its presumed role as a signal peptide peptidase in this archaeon.
Collapse
Affiliation(s)
- Rie Matsumi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | |
Collapse
|
11
|
Abstract
Bacterial sigma (sigma) factors are an essential component of RNA polymerase and determine promoter selectivity. The substitution of one sigma factor for another can redirect some or all of the RNA polymerase in a cell to activate the transcription of genes that would otherwise be silent. As a class, alternative sigma factors play key roles in coordinating gene transcription during various stress responses and during morphological development. The extracytoplasmic function (ECF) sigma factors are small regulatory proteins that are quite divergent in sequence relative to most other sigma factors. Many bacteria, particularly those with more complex genomes, contain multiple ECF sigma factors and these regulators often outnumber all other types of sigma factor combined. Examples include Bacillus subtilis (7 ECF sigma factors), Mycobacterium tuberculosis (10), Caulobacter crescentus (13), Pseudomonas aeruginosa (approximately 19), and Streptomyces coelicolor (approximately 50). The roles and mechanisms of regulation for these various ECF sigma factors are largely unknown, but significant progress has been made in selected systems. As a general trend, most ECF sigma factors are cotranscribed with one or more negative regulators. Often, these include a transmembrane protein functioning as an anti-sigma factor that binds, and inhibits, the cognate sigma factor. Upon receiving a stimulus from the environment, the sigma factor is released and can bind to RNA polymerase to stimulate transcription. In many ways, these anti-sigma:sigma pairs are analogous to the more familiar two-component regulatory systems consisting of a transmembrane histidine protein kinase and a DNA-binding response regulator. Both are mechanisms of coordinating a cytoplasmic transcriptional response to signals perceived by protein domains external to the cell membrane. Here, I review current knowledge of some of the better characterized ECF sigma factors, discuss the variety of experimental approaches that have proven productive in defining the roles of ECF sigma factors, and present some unifying themes that are beginning to emerge as more systems are studied.
Collapse
Affiliation(s)
- John D Helmann
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA
| |
Collapse
|
12
|
Affiliation(s)
- Mark Paetzel
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
13
|
Jiang X, Oohira K, Iwasaki Y, Nakano H, Ichihara S, Yamane T. Reduction of protein degradation by use of protease-deficient mutants in cell-free protein synthesis system of Escherichia coli. J Biosci Bioeng 2002. [DOI: 10.1016/s1389-1723(02)80007-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Lensch M, Herrmann RG, Sokolenko A. Identification and characterization of SppA, a novel light-inducible chloroplast protease complex associated with thylakoid membranes. J Biol Chem 2001; 276:33645-51. [PMID: 11443110 DOI: 10.1074/jbc.m100506200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A new component of the chloroplast proteolytic machinery from Arabidopsis thaliana was identified as a SppA-type protease. The sequence of the mature protein, deduced from a full-length cDNA, displays 22% identity to the serine-type protease IV (SppA) from Escherichia coli and 27% identity to Synechocystis SppA1 (sll1703) but lacks the putative transmembrane spanning segments predicted from the E. coli sequence. The N-terminal sequence exhibits typical features of a cleavable chloroplast stroma-targeting sequence. The chloroplast localization of SppA was confirmed by in organello import experiments using an in vitro expression system and by immunodetection with antigen-specific antisera. Subfractionation of intact chloroplasts demonstrated that SppA is associated exclusively with thylakoid membranes, predominantly stroma lamellae, and is a part of some high molecular mass complex of about 270 kDa that exhibits proteolytic activity. Treatments with chaotropic salts and proteases showed that SppA is largely exposed to the stroma but that it behaves as an intrinsic membrane protein that may have an unusual monotopic arrangement in the thylakoids. We demonstrate that SppA is a light-inducible protease and discuss its possible involvement in the light-dependent degradation of antenna and photosystem II complexes that both involve serine-type proteases.
Collapse
Affiliation(s)
- M Lensch
- Botanisches Institut der Ludwig-Maximilians-Universität, Menzingerstrasse 67, D-80638 München, Germany
| | | | | |
Collapse
|
15
|
Temenak JJ, Anderson BE, McDonald GA. Molecular cloning, sequence and characterization of cjsT, a putative protease from Rickettsia rickettsii. Microb Pathog 2001; 30:221-8. [PMID: 11312615 DOI: 10.1006/mpat.2000.0428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cloning and sequencing of a gene from Rickettsia rickettsii which confers haemolytic activity on Escherichia coli strain TB1 is described. The open reading frame of the haemolysis-promoting gene, cjsT, is 1041 bp and encodes a putative protein with a molecular mass of 33 825 Da. CjsT has high sequence similarity to several bacterial proteases, particularly type IV signal peptidases. Cell lysates from an E. coli clone containing cjsT in pUC19 (pJON1) exhibited greater protease activity in functional assays than found in E. coli containing pUC19 alone. Disruption of the cjsT gene by insertional inactivation with a kanamycin cassette reduced both the protease and haemolytic activities conferred by cjsT. The protease inhibitors antipain and diisopropylfluorophosphate (DFP) both reduced the proteolytic activity of pJON1. The mechanism by which the R. rickettsii cjsT promotes haemolysis in E. coli remains unclear.
Collapse
Affiliation(s)
- J J Temenak
- Viral and Rickettsial Diseases Program, Naval Medical Research Center and Virus Diseases Program, Silver Spring, MD 20910, USA.
| | | | | |
Collapse
|
16
|
Cooper KW, Baneyx F. Escherichia coli FtsH (HflB) degrades a membrane-associated TolAI-II-beta-lactamase fusion protein under highly denaturing conditions. Protein Expr Purif 2001; 21:323-32. [PMID: 11237695 DOI: 10.1006/prep.2000.1378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TolAI--II--beta-lactamase, a fusion protein consisting of the inner membrane and transperiplasmic domains of TolA followed by TEM--beta-lactamase associated with the inner membrane but remained confined to the cytoplasm when expressed at high level in Escherichia coli. Although the fusion protein was resistant to proteolysis in vivo, it was hydrolyzed during preparative SDS-polyacrylamide electrophoresis and when insoluble cellular fractions unfolded with 5 M urea were subjected to microdialysis. Inhibitor profiling studies revealed that both a metallo- and serine protease were involved in TolAI--II--beta-lactamase degradation under denaturing conditions. The in vitro degradation rates of the fusion protein were not affected when insoluble fractions were harvested from a strain lacking protease IV, but were significantly reduced when microdialysis experiments were conducted with material isolated from an isogenic ftsH1 mutant. Adenine nucleotides were not required for degradation, and ATP supplementation did not accelerate the apparent rate of TolAI--II--beta-lactamase hydrolysis under denaturing conditions. Our results indicate that the metalloprotease active site of FtsH remains functional in the presence of 3--5 M urea and suggest that the ATPase and proteolytic activities of FtsH can be uncoupled if the substrate is sufficiently unstructured. Thus, a key role of the FtsH AAA module appears to be the net unfolding of bound substrates so that they can be efficiently engaged by the protease active site.
Collapse
Affiliation(s)
- K W Cooper
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
17
|
Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 2000; 64:515-47. [PMID: 10974125 PMCID: PMC99003 DOI: 10.1128/mmbr.64.3.515-547.2000] [Citation(s) in RCA: 602] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
One of the most salient features of Bacillus subtilis and related bacilli is their natural capacity to secrete a variety of proteins into their environment, frequently to high concentrations. This has led to the commercial exploitation of bacilli as major "cell factories" for secreted enzymes. The recent sequencing of the genome of B. subtilis has provided major new impulse for analysis of the molecular mechanisms underlying protein secretion by this organism. Most importantly, the genome sequence has allowed predictions about the composition of the secretome, which includes both the pathways for protein transport and the secreted proteins. The present survey of the secretome describes four distinct pathways for protein export from the cytoplasm and approximately 300 proteins with the potential to be exported. By far the largest number of exported proteins are predicted to follow the major "Sec" pathway for protein secretion. In contrast, the twin-arginine translocation "Tat" pathway, a type IV prepilin-like export pathway for competence development, and ATP-binding cassette transporters can be regarded as "special-purpose" pathways, through which only a few proteins are transported. The properties of distinct classes of amino-terminal signal peptides, directing proteins into the various protein transport pathways, as well as the major components of each pathway are discussed. The predictions and comparisons in this review pinpoint important differences as well as similarities between protein transport systems in B. subtilis and other well-studied organisms, such as Escherichia coli and the yeast Saccharomyces cerevisiae. Thus, they may serve as a lead for future research and applications.
Collapse
Affiliation(s)
- H Tjalsma
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, 9750 AA Haren, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Bolhuis A, Matzen A, Hyyryläinen HL, Kontinen VP, Meima R, Chapuis J, Venema G, Bron S, Freudl R, van Dijl JM. Signal peptide peptidase- and ClpP-like proteins of Bacillus subtilis required for efficient translocation and processing of secretory proteins. J Biol Chem 1999; 274:24585-92. [PMID: 10455123 DOI: 10.1074/jbc.274.35.24585] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal peptides direct the export of secretory proteins from the cytoplasm. After processing by signal peptidase, they are degraded in the membrane and cytoplasm. The resulting fragments can have signaling functions. These observations suggest important roles for signal peptide peptidases. The present studies show that the Gram-positive eubacterium Bacillus subtilis contains two genes for proteins, denoted SppA and TepA, with similarity to the signal peptide peptidase A of Escherichia coli. Notably, TepA also shows similarity to ClpP proteases. SppA of B. subtilis was only required for efficient processing of pre-proteins under conditions of hyper-secretion. In contrast, TepA depletion had a strong effect on pre-protein translocation across the membrane and subsequent processing, not only under conditions of hyper-secretion. Unlike SppA, which is a typical membrane protein, TepA appears to have a cytosolic localization, which is consistent with the observation that TepA is involved in early stages of the secretion process. Our observations demonstrate that SppA and TepA have a role in protein secretion in B. subtilis. Based on their similarity to known proteases, it seems likely that SppA and TepA are specifically required for the degradation of proteins or (signal) peptides that are inhibitory to protein translocation.
Collapse
Affiliation(s)
- A Bolhuis
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Huang X, Gaballa A, Cao M, Helmann JD. Identification of target promoters for the Bacillus subtilis extracytoplasmic function sigma factor, sigma W. Mol Microbiol 1999; 31:361-71. [PMID: 9987136 DOI: 10.1046/j.1365-2958.1999.01180.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bacillus subtilis sigW gene encodes an extracytoplasmic function (ECF) sigma factor that is expressed in early stationary phase from a sigW-dependent autoregulatory promoter, PW. Using a consensus-based search procedure, we have identified 15 operons preceded by promoters similar in sequence to PW. At least 14 of these promoters are dependent on sigma W both in vivo and in vitro as judged by lacZ reporter fusions, run-off transcription assays and nucleotide resolution start site mapping. We conclude that sigma W controls a regulon of more than 30 genes, many of which encode membrane proteins of unknown function. The sigma W regulon includes a penicillin binding protein (PBP4*) and a co-transcribed amino acid racemase (RacX), homologues of signal peptide peptidase (YteI), flotillin (YuaG), ABC transporters (YknXYZ), non-haem bromoperoxidase (YdjP), epoxide hydrolase (YfhM) and three small peptides with structural similarities to bacteriocin precursor polypeptides. We suggest that sigma W activates a large stationary-phase regulon that functions in detoxification, production of anti-microbial compounds or both.
Collapse
Affiliation(s)
- X Huang
- Section of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | | | |
Collapse
|
20
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
21
|
Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 1998; 62:597-635. [PMID: 9729602 PMCID: PMC98927 DOI: 10.1128/mmbr.62.3.597-635.1998] [Citation(s) in RCA: 1062] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Proteases represent the class of enzymes which occupy a pivotal position with respect to their physiological roles as well as their commercial applications. They perform both degradative and synthetic functions. Since they are physiologically necessary for living organisms, proteases occur ubiquitously in a wide diversity of sources such as plants, animals, and microorganisms. Microbes are an attractive source of proteases owing to the limited space required for their cultivation and their ready susceptibility to genetic manipulation. Proteases are divided into exo- and endopeptidases based on their action at or away from the termini, respectively. They are also classified as serine proteases, aspartic proteases, cysteine proteases, and metalloproteases depending on the nature of the functional group at the active site. Proteases play a critical role in many physiological and pathophysiological processes. Based on their classification, four different types of catalytic mechanisms are operative. Proteases find extensive applications in the food and dairy industries. Alkaline proteases hold a great potential for application in the detergent and leather industries due to the increasing trend to develop environmentally friendly technologies. There is a renaissance of interest in using proteolytic enzymes as targets for developing therapeutic agents. Protease genes from several bacteria, fungi, and viruses have been cloned and sequenced with the prime aims of (i) overproduction of the enzyme by gene amplification, (ii) delineation of the role of the enzyme in pathogenecity, and (iii) alteration in enzyme properties to suit its commercial application. Protein engineering techniques have been exploited to obtain proteases which show unique specificity and/or enhanced stability at high temperature or pH or in the presence of detergents and to understand the structure-function relationships of the enzyme. Protein sequences of acidic, alkaline, and neutral proteases from diverse origins have been analyzed with the aim of studying their evolutionary relationships. Despite the extensive research on several aspects of proteases, there is a paucity of knowledge about the roles that govern the diverse specificity of these enzymes. Deciphering these secrets would enable us to exploit proteases for their applications in biotechnology.
Collapse
Affiliation(s)
- M B Rao
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008, India
| | | | | | | |
Collapse
|
22
|
Kimata K, Inada T, Tagami H, Aiba H. A global repressor (Mlc) is involved in glucose induction of the ptsG gene encoding major glucose transporter in Escherichia coli. Mol Microbiol 1998; 29:1509-19. [PMID: 9781886 DOI: 10.1046/j.1365-2958.1998.01035.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glucose stimulates the expression of ptsG encoding the major glucose transporter in Escherichia coli. We isolated Tn 10 insertion mutations that confer constitutive expression of ptsG. The mutated gene was identified as mlc, encoding a protein that is known to be a repressor for transcription of several genes involved in carbohydrate utilization. Expression of ptsG was eliminated in a mlc crp double-negative mutant. The Mlc protein was overproduced and purified. In vitro transcription studies demonstrated that transcription of ptsG is stimulated by CRP-cAMP and repressed by Mlc. The action of Mlc is dominant over that of CRP-cAMP. DNase I footprinting experiments revealed that CRP-cAMP binds at two sites centred at -40.5 and -95.5 and that Mlc binds at two regions centred around -8 and -175. The binding of CRP-cAMP stimulated the binding of RNA polymerase to the promoter while Mlc inhibited the binding of RNA polymerase but not the binding of CRP-cAMP. Gel-mobility shift assay indicated that glucose does not affect the Mlc binding to the ptsG promoter. Our results suggest that Mlc is responsible for the repression of ptsG transcription and that glucose modulates the Mlc activity by unknown mechanism.
Collapse
Affiliation(s)
- K Kimata
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Chikusa, Japan
| | | | | | | |
Collapse
|
23
|
Howard SP, Lindsay L. In vivo analysis of sequence requirements for processing and degradation of the colicin A lysis protein signal peptide. J Bacteriol 1998; 180:3026-30. [PMID: 9620949 PMCID: PMC107800 DOI: 10.1128/jb.180.12.3026-3030.1998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The lipid modification and processing of a number of colicin lysis proteins take place exceedingly slowly and result in the release of a stable signal peptide. It is possible that this peptide or the presence of lipid-modified precursors which result from the slow processing plays a role in the release of colicins and in the quasilysis that occurs in induced colicinogenic cultures. We used in vitro mutagenesis and pulse-chase radiolabeling and immunoprecipitation to examine the reasons for the slow processing and signal peptide degradation reactions for the colicin A lysis protein (Cal). In one mutant, isoleucine 13 was replaced with serine, and in another, alanine 18, the last residue of the signal peptide, was replaced with glycine. In each case, the mutation caused a striking increase in the rate of maturation of the precursor, and in the case of the serine 13 derivative, the mutation also destabilized the signal peptide. A precursor containing both of these mutations was completely matured and its signal sequence degraded within seconds of its synthesis. The release of colicin A and the quasilysis of producing cultures were unchanged for each of these mutants, indicating that neither the stable signal peptide nor lipid-modified processing intermediates of Cal are required for either of these events in wild-type cells.
Collapse
Affiliation(s)
- S P Howard
- University of Regina, Saskatchewan, Canada.
| | | |
Collapse
|
24
|
Okada K, Minehira M, Zhu X, Suzuki K, Nakagawa T, Matsuda H, Kawamukai M. The ispB gene encoding octaprenyl diphosphate synthase is essential for growth of Escherichia coli. J Bacteriol 1997; 179:3058-60. [PMID: 9139929 PMCID: PMC179075 DOI: 10.1128/jb.179.9.3058-3060.1997] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Escherichia coli ispB gene encoding octaprenyl diphosphate synthase is responsible for the synthesis of the side chain of isoprenoid quinones. We tried to construct an E. coli ispB-disrupted mutant but could not isolate the chromosomal ispB disrupted mutant unless the ispB gene or its homolog was supplied on a plasmid. The chromosomal ispB disruptants that harbored plasmids carrying the ispB homologs from Haemophilus influenzae and Synechocystis sp. strain PCC6803 produced mainly ubiquinone 7 and ubiquinone 9, respectively. Our results indicate that the function of the ispB gene is essential for normal growth and that this function can be substituted for by homologs of the ispB gene from other organisms that produce distinct forms of ubiquinone.
Collapse
Affiliation(s)
- K Okada
- Department of Applied Bioscience and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Proteolysis in Escherichia coli serves to rid the cell of abnormal and misfolded proteins and to limit the time and amounts of availability of critical regulatory proteins. Most intracellular proteolysis is initiated by energy-dependent proteases, including Lon, ClpXP, and HflB; HflB is the only essential E. coli protease. The ATPase domains of these proteases mediate substrate recognition. Recognition elements in target are not well defined, but are probably not specific amino acid sequences. Naturally unstable protein substrates include the regulatory sigma factors for heat shock and stationary phase gene expression, sigma 32 and RpoS. Other cellular proteins serve as environmental sensors that modulate the availability of the unstable proteins to the proteases, resulting in rapid changes in sigma factor levels and therefore in gene transcription. Many of the specific proteases found in E. coli are well-conserved in both prokaryotes and eukaryotes, and serve critical functions in developmental systems.
Collapse
Affiliation(s)
- S Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892-4255, USA.
| |
Collapse
|
26
|
Fricke B, Betz R, Friebe S. A periplasmic insulin-cleaving proteinase (ICP) from Acinetobacter calcoaceticus sharing properties with protease III from Escherichia coli and IDE from eucaryotes. J Basic Microbiol 1995; 35:21-31. [PMID: 7738784 DOI: 10.1002/jobm.3620350107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A periplasmic insulin-cleaving proteinase (ICP), purified to its electrophoretic homogeneity in the SDS-PAGE from the Gram-negative bacterium Acinetobacter calcoaceticus, was examined and compared in its properties with the protease III (protease Pi, pitrilysin, EC 3.4.99.44) of Escherichia coli and the insulin-destroying proteinase (IDE, insulinase, EC 3.4.99.45) from eucaryotes. The enzyme was proven to be a metalloprotease like protease III and IDE, as was shown by the inhibitory effects exerted by EDTA and o-phenanthroline. Furthermore, dialysis against EDTA and o-phenanthroline led to a complete loss of activity, which could be restored by addition of Co2+, and, to a lesser extent, but at a lower metal ion concentration by Zn2+. Similar to protease III and IDE, ICP prefers the cleavage of small polypeptides (insulin, insulin B-chain, glucagon) to the cleavage of proteins (casein, human serum albumin, globin) and was inactive against synthetic amino acid derivates (esters, p-nitranilides, and furoylacroleyl substrates) of subtilisin, thermolysin, trypsin, and chymotrypsin. The peptide-bond-specificity of the ICP in the cleavage of the oxidized insulin B-chain was investigated and the results were compared to the specificity of protease III of E. coli, IDE, protease-24,11, and thermolysin. Cleavage sites in the oxidized insulin B-chain generated by ICP are Asn3-Gln4, His10-Leu11, Ala14-Leu15, Leu17-Val18, Gly23-Phe24, Phe24-Phe25, and Phe25-Tyr26. Principally, ICP cleaves between hydrophobic amino acids and amides. The ICP shares one of the only two cleavage sites with the protease III and four sites with the IDE.
Collapse
Affiliation(s)
- B Fricke
- Department of Medicine, Martin-Luther-University, Halle (Saale), FRG
| | | | | |
Collapse
|
27
|
Biochemical analyses of components comprising the protein translocation machinery of Escherichia coli. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1874-5172(06)80007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
28
|
Abstract
A list of currently identified gene products of Escherichia coli is given, together with a bibliography that provides pointers to the literature on each gene product. A scheme to categorize cellular functions is used to classify the gene products of E. coli so far identified. A count shows that the numbers of genes concerned with small-molecule metabolism are on the same order as the numbers concerned with macromolecule biosynthesis and degradation. One large category is the category of tRNAs and their synthetases. Another is the category of transport elements. The categories of cell structure and cellular processes other than metabolism are smaller. Other subjects discussed are the occurrence in the E. coli genome of redundant pairs and groups of genes of identical or closely similar function, as well as variation in the degree of density of genetic information in different parts of the genome.
Collapse
Affiliation(s)
- M Riley
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
29
|
Aiba H, Nagaya M, Mizuno T. Sensor and regulator proteins from the cyanobacterium Synechococcus species PCC7942 that belong to the bacterial signal-transduction protein families: implication in the adaptive response to phosphate limitation. Mol Microbiol 1993; 8:81-91. [PMID: 8497200 DOI: 10.1111/j.1365-2958.1993.tb01205.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A 1.2kb DNA fragment was cloned from Synechococcus sp. PCC7942, which is able phenotypically to complement a phoR creC Escherichia coli mutant for the expression of alkaline phosphatase. A 2.5 kb DNA fragment encompassing the putative gene was then cloned and its complete nucleotide sequence determined. Nucleotide sequencing revealed that the intact gene encodes a protein of 46,389 Da, and that the deduced amino acid sequence shows a high degree of homology to those of the bacterial sensory kinase family. In the determined nucleotide sequence, another gene was adjacently located, which encodes a protein of 29,012 Da. This protein shows a high degree of homology to those of the response regulator family. Thus, we succeeded in the cloning of a pair of genes encoding the sensory kinase and response regulator, respectively, in a cyanobacterium. Mutant strains that lack these genes were constructed, and demonstrated to be defective in their ability to produce alkaline phosphatase and some inducible proteins in response to phosphate-limitation in the medium. These results are probably involved, either directly or indirectly, in the signal-transduction mechanism underlying regulation of the phosphate regulon in Synechococcus sp. PCC7942. Hence, the genes encoding the sensory kinase and response regulator were designated as sphS and sphR, respectively (Synechococcus phosphate regulon). The SphS protein was demonstrated in vitro to undergo phosphorylation in the presence of ATP.
Collapse
Affiliation(s)
- H Aiba
- Laboratory of Microbiology, School of Agriculture, Nagoya University, Japan
| | | | | |
Collapse
|
30
|
Ichihara S, Matsubara Y, Kato C, Akasaka K, Mizushima S. Molecular cloning, sequencing, and mapping of the gene encoding protease I and characterization of proteinase and proteinase-defective Escherichia coli mutants. J Bacteriol 1993; 175:1032-7. [PMID: 8432696 PMCID: PMC193016 DOI: 10.1128/jb.175.4.1032-1037.1993] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Clones carrying the gene encoding a proteinase were isolated from Clarke and Carbon's collection, using a chromogenic substrate, N-benzyloxycarbonyl-L-phenylalanine beta-naphthyl ester. The three clones isolated, pLC6-33, pLC13-1, and pLC36-46, shared the same chromosomal DNA region. A 0.9-kb Sau3AI fragment within this region was found to be responsible for the overproduction of the proteinase, and the nucleotide sequence of the region was then determined. The proteinase was purified to homogeneity from the soluble fraction of an overproducing strain possessing the cloned gene. N-terminal amino acid sequencing of the purified protein revealed that the cloned gene is the structural gene for the protein, with the protein being synthesized in precursor form with a signal peptide. On the basis of its molecular mass (20 kDa), periplasmic localization, and substrate specificity, we conclude this protein to be protease I. By using the gene cloned on a plasmid, a deletion mutant was constructed in which the gene was replaced by the kanamycin resistance gene (Kmr) on the chromosome. The Kmr gene was mapped at 11.8 min, the gene order being dnaZ-adk-ush-Kmr-purE, which is consistent with the map position of apeA, the gene encoding protease I in Salmonella typhimurium. Therefore, the gene was named apeA. Deletion of the apeA gene, either with or without deletion of other proteinases (protease IV and aminopeptidase N), did not have any effect on cell growth in the various media tested.
Collapse
Affiliation(s)
- S Ichihara
- Laboratory of Microbiology, School of Agriculture, Nagoya University, Japan
| | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- F Baneyx
- Department of Chemical Engineering, University of Texas, Austin 78712
| | | |
Collapse
|
32
|
Baird L, Lipinska B, Raina S, Georgopoulos C. Identification of the Escherichia coli sohB gene, a multicopy suppressor of the HtrA (DegP) null phenotype. J Bacteriol 1991; 173:5763-70. [PMID: 1885549 PMCID: PMC208308 DOI: 10.1128/jb.173.18.5763-5770.1991] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We cloned and sequenced the sohB gene of Escherichia coli. The temperature-sensitive phenotype of bacteria that carry a Tn10 insertion in the htrA (degP) gene is relieved when the sohB gene is present in the cell on a multicopy plasmid (30 to 50 copies per cell). The htrA gene encodes a periplasmic protease required for bacterial viability only at high temperature, i.e., above 39 degrees C. The sohB gene maps to 28 min on the E. coli chromosome, precisely between the topA and btuR genes. The gene encodes a 39,000-Mr precursor protein which is processed to a 37,000-Mr mature form. Sequencing of a DNA fragment containing the gene revealed an open reading frame which could encode a protein of Mr 39,474 with a predicted signal sequence cleavage site between amino acids 22 and 23. Cleavage at this site would reduce the size of the processed protein to 37,474 Mr. The predicted protein encoded by the open reading frame has homology with the inner membrane enzyme protease IV of E. coli, which digests cleaved signal peptides. Therefore, it is possible that the sohB gene encodes a previously undiscovered periplasmic protease in E. coli that, when overexpressed, can partially compensate for the missing HtrA protein function.
Collapse
Affiliation(s)
- L Baird
- Department of Cellular, Viral and Molecular Biology, University of Utah School of Medicine, Salt Lake City 84132
| | | | | | | |
Collapse
|
33
|
Baneyx F, Georgiou G. Construction and characterization of Escherichia coli strains deficient in multiple secreted proteases: protease III degrades high-molecular-weight substrates in vivo. J Bacteriol 1991; 173:2696-703. [PMID: 2013581 PMCID: PMC207839 DOI: 10.1128/jb.173.8.2696-2703.1991] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protease III, the product of the ptr gene, is a 110-kDa periplasmic protease with specificity towards insulin and other low-molecular-weight substrates (less than 7,000 molecular weight) in vitro (Y.-S.E. Cheng and D. Zipser, J. Biol. Chem. 254:4698-4706, 1979). Escherichia coli strains deficient in protease III were constructed by insertional inactivation of the ptr gene. This mutation did not appear to affect the function of the adjoining recB and recC genes. Expression of protein A-beta-lactamase, a protease-sensitive secreted polypeptide, was increased approximately twofold in ptr cells. A comparable increase in the half-life of protein A-beta-lactamase was observed by pulse-chase experiments, suggesting that protease III is involved in the catabolism of high-molecular-weight substrates in vivo, ptr mutants exhibited no detectable phenotypic alterations except for a slight reduction in growth rate. When the ptr mutation was transferred to a strain deficient in the secreted protease DegP, a further decrease in growth rate, as well as an additive increase in the expression of the fusion protein, was observed. A ptr degP ompT mutant strain resulted in a further increase in expression in minimal medium but not in rich medium.
Collapse
Affiliation(s)
- F Baneyx
- Department of Chemical Engineering, University of Texas, Austin 78712
| | | |
Collapse
|
34
|
Helling RB. The glutamate dehydrogenase structural gene of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1990; 223:508-12. [PMID: 2270089 DOI: 10.1007/bf00264460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The glutamate dehydrogenase structural gene, gdhA, was mapped at 38.6 min on the genetic map and at 1860 kb on the physical map. A detailed map of this region is presented.
Collapse
Affiliation(s)
- R B Helling
- Department of Biology, University of Michigan, Ann Arbor 48109
| |
Collapse
|
35
|
Adams MD, Wagner LM, Graddis TJ, Landick R, Antonucci TK, Gibson AL, Oxender DL. Nucleotide sequence and genetic characterization reveal six essential genes for the LIV-I and LS transport systems of Escherichia coli. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38417-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Abstract
Covalent modification of membrane proteins with lipids appears to be ubiquitous in all living cells. The major outer membrane (Braun's) lipoprotein of E. coli, the prototype of bacterial lipoproteins, is first synthesized as a precursor protein. Analysis of signal sequences of 26 distinct lipoprotein precursors has revealed a consensus sequence of lipoprotein modification/processing site of Leu-(Ala, Ser)-(Gly, Ala)-Cys at -3 to +1 positions which would represent the cleavage region of about three-fourth of all lipoprotein signal sequences in bacteria. Unmodified prolipoprotein with the putative consensus sequence undergoes sequential modification and processing reactions catalyzed by glyceryl transferase, O-acyl transferase(s), prolipoprotein signal peptidase (signal peptidase II), and N-acyl transferase to form mature lipoprotein. Like all exported proteins, the export of lipoprotein requires functional SecA, SecY, and SecD proteins. Thus all precursor proteins are exported through a common pathway accessible to both signal peptidase I and signal peptidase II. The rapidly increasing list of lipid-modified proteins in both prokaryotic as well as eukaryotic cells indicates that lipoproteins comprise a diverse group of structurally and functionally distinct proteins. They share a common structural feature which is derived from a common biosynthetic pathway.
Collapse
Affiliation(s)
- S Hayashi
- Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | | |
Collapse
|
37
|
Abstract
Signal peptidases, the endoproteases that remove the amino-terminal signal sequence from many secretory proteins, have been isolated from various sources. Seven signal peptidases have been purified, two from E. coli, two from mammalian sources, and three from mitochondrial matrix. The mitochondrial enzymes are soluble and function as a heterogeneous dimer. The mammalian enzymes are isolated as a complex and share a common glycosylated subunit. The bacterial enzymes are isolated as monomers and show no sequence homology with each other or the mammalian enzymes. The membrane-bound enzymes seem to require a substrate containing a consensus sequence following the -3, -1 rule of von Heijne at the cleavage site; however, processing of the substrate is strongly influenced by the hydrophobic region of the signal peptide. The enzymes appear to recognize an unknown three-dimensional motif rather than a specific amino acid sequence around the cleavage site. The matrix mitochondrial enzymes are metallo-endopeptidases; however, the other signal peptidases may belong to a unique class of proteases as they are resistant to chelators and most protease inhibitors. There are no data concerning the substrate binding site of these enzymes. In vivo, the signal peptide is rapidly degraded. Three different enzymes in Escherichia coli that can degrade a signal peptide in vitro have been identified. The intact signal peptide is not accumulated in mutants lacking these enzymes, which suggests that these peptidases individually are not responsible for the degradation of an intact signal peptide in vivo. It is speculated that signal peptidases and signal peptide hydrolases are integral components of the secretory pathway and that inhibition of the terminal steps can block translocation.
Collapse
Affiliation(s)
- I K Dev
- Division of Molecular Genetics and Microbiology, Burroughs Wellcome Co., Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
38
|
Herd JK, Wagner DH, LeClair IO. Abnormal protein translocation as the elusive cause of cystic fibrosis: an hypothesis. Med Hypotheses 1990; 31:177-87. [PMID: 2189062 DOI: 10.1016/0306-9877(90)90090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite the recent rapid advances in isolation of the abnormal gene responsible for cystic fibrosis, there remains the need to explain the mechanism by which a single gene mutation causes the widespread clinical effects seen in this disease. Careful review of the otherwise unexplained abnormalities of cystic fibrosis from the perspective of cell biology reveals the following common features: (1) all these abnormalities involve proteins which are either (A) inserted into cell membranes in the RER and arrested after partial translocation or (B) inserted into RER membranes and fully translocated to be compartmentalized away from the cytosol in secretory vacuoles, lysosomes or peroxisomes; (2) all the involved proteins have minor abnormalities in their physicochemical properties or activity functions; (3) none of the involved proteins are missing or totally deficient in function; (4) final compartmentalization of the involved proteins is unaffected. These observations have directed our attention to the process by which most proteins are inserted into and translocated across lipid bilayer membranes, namely the signal peptide mechanism. This mechanism, not previously examined in cystic fibrosis, is reviewed in detail. Of the major proteins controlling signal peptide translocation, deficiencies in the function of signal peptidase activity appear most capable of causing the effects seen in cystic fibrosis.
Collapse
Affiliation(s)
- J K Herd
- Department of Pediatrics, Quillen-Dishner College of Medicine, East Tennessee State University, Johnson City 37614-0002
| | | | | |
Collapse
|
39
|
Chen L, Tai PC. Effects of inhibitors of membrane signal peptide peptidase on protein translocation into membrane vesicles. Arch Microbiol 1989; 153:90-4. [PMID: 2692535 DOI: 10.1007/bf00277547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effect of the removal of signal peptides after cleavage of precursor molecules by the signal peptidase I was examined in an in vitro translocation system with Escherichia coli membrane vesicles. The translocation of periplasmic alkaline phosphatase precursors was significantly inhibited by the protease inhibitors antipain, elastatinal and leupeptin. Antipain and leupeptin enhanced the translocation of precursors of outer membrane protein OmpA, but inhibited the processing. However, antipain did not inhibit the processing of precursors mediated by signal peptidase I in the soluble form. Moreover, the inhibition by antipain was not due to the disruption of membrane integrity, but occurred during the process of protein translocation. Since these small peptide inhibitors are known to inhibit membrane protease IV, a signal peptide peptidase, these results suggest that the hydrolysis of signal peptides is an important step in the recycles of the overall translocation process, and that the prevention of degradation of signal peptides feedback inhibits the preceding steps in the translocation pathway.
Collapse
Affiliation(s)
- L Chen
- Department of Fine Structure, Boston Biomedical Research Institute, MA 02114
| | | |
Collapse
|
40
|
|
41
|
Abstract
The degradation of the prolipoprotein signal peptide in vitro by membranes, cytoplasmic fraction, and two purified major signal peptide peptidases from Escherichia coli was followed by reverse-phase liquid chromatography (RPLC). The cytoplasmic fraction hydrolyzed the signal peptide completely into amino acids. In contrast, many peptide fragments accumulated as final products during the cleavage by a membrane fraction. Most of the peptides were similar to the peptides formed during the cleavage of the signal peptide by the purified membrane-bound signal peptide peptidase, protease IV. Peptide fragments generated during the cleavage of the signal peptide by protease IV and a cytoplasmic enzyme, oligopeptidase A, were identified from their amino acid compositions, their retention times during RPLC, and knowledge of the amino acid sequence of the signal peptide. Both enzymes were endopeptidases, as neither dipeptides nor free amino acids were formed during the cleavage reactions. Protease IV cleaved the signal peptide predominantly in the hydrophobic segment (residues 7 to 14). Protease IV required substrates with hydrophobic amino acids at the primary and the adjacent substrate-binding sites, with a minimum of three amino acids on either side of the scissile bond. Oligopeptidase A cleaved peptides (minimally five residues) that had either alanine or glycine at the P'1 (primary binding site) or at the P1 (preceding P'1) site of the substrate. These results support the hypothesis that protease IV is the major signal peptide peptidase in membranes that initiates the degradation of the signal peptide by making endoproteolytic cuts; oligopeptidase A and other cytoplasmic enzymes further degrade the partially degraded portions of the signal peptide that may be diffused or transported back into the cytoplasm from the membranes.
Collapse
Affiliation(s)
- P Novak
- Department of Microbiology, Wellcome Research Laboratories, Research Triangle Park, North Carolina 27709
| | | |
Collapse
|