1
|
Boyd JM, Ryan Kaler K, Esquilín-Lebrón K, Pall A, Campbell CJ, Foley ME, Rios-Delgado G, Mustor EM, Stephens TG, Bovermann H, Greco TM, Cristea IM, Carabetta VJ, Beavers WN, Bhattacharya D, Skaar EP, Shaw LN, Stemmler TL. Fpa (YlaN) is an iron(II) binding protein that functions to relieve Fur-mediated repression of gene expression in Staphylococcus aureus. mBio 2024; 15:e0231024. [PMID: 39440976 PMCID: PMC11559061 DOI: 10.1128/mbio.02310-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Iron (Fe) is a trace nutrient required by nearly all organisms. As a result of the demand for Fe and the toxicity of non-chelated cytosolic ionic Fe, regulatory systems have evolved to tightly balance Fe acquisition and usage while limiting overload. In most bacteria, including the mammalian pathogen Staphylococcus aureus, the ferric uptake regulator (Fur) is the primary transcriptional regulator controlling the transcription of genes that code for Fe uptake and utilization proteins. Fpa (formerly YlaN) was demonstrated to be essential in Bacillus subtilis unless excess Fe is added to the growth medium, suggesting a role in Fe homeostasis. Here, we demonstrate that Fpa is essential in S. aureus upon Fe deprivation. Null fur alleles bypassed the essentiality of Fpa. The absence of Fpa abolished the derepression of Fur-regulated genes during Fe limitation. Bioinformatic analyses suggest that fpa was recruited to Gram-positive bacteria and, once acquired, was maintained in the genome as it co-evolved with Fur. Consistent with a role for Fpa in alleviating Fur-dependent repression, Fpa and Fur interacted in vivo, and Fpa decreased the DNA-binding ability of Fur in vitro. Fpa bound Fe(II) in vitro using oxygen or nitrogen ligands with an association constant that is consistent with a physiological role in Fe homeostasis. These findings have led to a model wherein Fpa is an Fe(II) binding protein that influences Fur-dependent regulation through direct interaction.IMPORTANCEIron (Fe) is an essential nutrient for nearly all organisms. If Fe homeostasis is not maintained, Fe may accumulate in the cytosol, which can be toxic. Questions remain about how cells efficiently balance Fe uptake and usage to prevent overload. Iron uptake and proper metalation of proteins are essential processes in the mammalian bacterial pathogen Staphylococcus aureus. Understanding the gene products involved in the genetic regulation of Fe uptake and usage and the physiological adaptations that S. aureus uses to survive in Fe-depleted conditions provides insight into pathogenesis. Herein, we demonstrate that the DNA-binding activity of the ferric uptake regulator transcriptional repressor is alleviated under Fe limitation, but uniquely, in S. aureus, alleviation requires the presence of Fpa.
Collapse
Affiliation(s)
- Jeffrey M. Boyd
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Kylie Ryan Kaler
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Karla Esquilín-Lebrón
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Ashley Pall
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
| | - Courtney J. Campbell
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
| | - Mary E. Foley
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Gustavo Rios-Delgado
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Emilee M. Mustor
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Timothy G. Stephens
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Hannah Bovermann
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Todd M. Greco
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - William N. Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lindsey N. Shaw
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Timothy L. Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
2
|
Lilge L, Kuipers OP. A two-step regulatory circuit involving Spo0A-AbrB activates mersacidin biosynthesis in Bacillus subtilis. Int J Antimicrob Agents 2024; 63:107155. [PMID: 38527561 DOI: 10.1016/j.ijantimicag.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Due to intramolecular ring structures, the ribosomally produced and post-translationally modified peptide mersacidin shows antimicrobial properties comparable to those of vancomycin without exhibiting cross-resistance. Although the principles of mersacidin biosynthesis are known, there is no information on the molecular control processes for the initial stimulation of mersacidin bioproduction. By using Bacillus subtilis for heterologous biosynthesis, a considerable amount of mersacidin could be produced without the mersacidin-specific immune system and the mersacidin-activating secretory protease. By using the established laboratory strain Bacillus subtilis 168 and strain 3NA, which is used for high cell density fermentation processes, in combination with the construction of reporter strains to determine the promoter strengths within the mersacidin core gene cluster, the molecular regulatory circuit of Spo0A, a master regulator of cell differentiation including sporulation initiation, and the global transcriptional regulator AbrB, which is involved in cell adaptation processes in the transient growth phase, was identified to control the initial stimulation of the mersacidin core gene cluster. In a second downstream regulatory step, the activator MrsR1, encoded in the core gene cluster, acts as a stimulatory element for mersacidin biosynthesis. These findings are important to understand the mechanisms linking environmental conditions and microbial responses with respect to the bioproduction of bioactive metabolites including antimicrobials such as mersacidin. This information will also support the construction of production strains for bioactive metabolites with antimicrobial properties.
Collapse
Affiliation(s)
- Lars Lilge
- Department of Molecular Genetics, University of Groningen, AG Groningen, The Netherlands; Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany.
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, AG Groningen, The Netherlands
| |
Collapse
|
3
|
Danevčič T, Spacapan M, Dragoš A, Kovács ÁT, Mandic-Mulec I. DegQ is an important policing link between quorum sensing and regulated adaptative traits in Bacillus subtilis. Microbiol Spectr 2023; 11:e0090823. [PMID: 37676037 PMCID: PMC10581247 DOI: 10.1128/spectrum.00908-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/26/2023] [Indexed: 09/08/2023] Open
Abstract
Quorum sensing (QS) is a widespread bacterial communication system that controls important adaptive traits in a cell density-dependent manner. However, mechanisms by which QS-regulated traits are linked within the cell and mechanisms by which these links affect adaptation are not well understood. In this study, Bacillus subtilis was used as a model bacterium to investigate the link between the ComQXPA QS system, DegQ, surfactin and protease production in planktonic and biofilm cultures. The work tests two alternative hypotheses predicting that hypersensitivity of the QS signal-deficient mutant (comQ::kan) to exogenously added ComX, resulting in increased surfactin production, is linked to an additional genetic locus, or alternatively, to overexpression of the ComX receptor ComP. Results are in agreement with the first hypothesis and show that the P srfAA hypersensitivity of the comQ::kan mutant is linked to a 168 strain-specific mutation in the P degQ region. Hence, the markerless ΔcomQ mutant lacking this mutation is not overresponsive to ComX. Such hyper-responsiveness is specific for the P srfAA and not detected in another ComX-regulated promoter, the P aprE , which is under the positive control by DegQ. Our results suggest that DegQ by exerting differential effect on P srfAA and P aprE acts as a policing mechanism and the intracellular link, which guards the cell from an overinvestment into surfactin production. IMPORTANCE DegQ levels are known to regulate surfactin synthesis and extracellular protease production, and DegQ is under the control of the ComX-dependent QS. DegQ also serves as an important policing link between these QS-regulated processes, preventing overinvestment in these costly processes. This work highlights the importance of DegQ, which acts as the intracellular link between ComX production and the response by regulating extracellular degradative enzyme synthesis and surfactin production.
Collapse
Affiliation(s)
- Tjaša Danevčič
- Department of Microbiology, Chair of microbial ecology and physiology, University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | - Mihael Spacapan
- Department of Microbiology, Chair of microbial ecology and physiology, University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | - Anna Dragoš
- Department of Microbiology, Chair of microbial ecology and physiology, University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | - Ákos T. Kovács
- Department of Biotechnology and Biomedicine, Bacterial Interactions and Evolution Group, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ines Mandic-Mulec
- Department of Microbiology, Chair of microbial ecology and physiology, University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| |
Collapse
|
4
|
Huang Q, Zhu J, Qu C, Wang Y, Hao X, Chen W, Cai P, Huang Q. Dichotomous Role of Humic Substances in Modulating Transformation of Antibiotic Resistance Genes in Mineral Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:790-800. [PMID: 36516830 DOI: 10.1021/acs.est.2c06410] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Widespread antibiotic resistance genes (ARGs) have emerged as a focus of attention for public health. Transformation is essential for ARGs dissemination in soils and associated environments; however, the mechanisms of how soil components contribute to the transformation of ARGs remain elusive. Here we demonstrate that three representative mineral-humic acid (HA) composites exert contrasting influence on the transformation of plasmid-borne ARGs in Bacillus subtilis. Mineral surface-bound HA facilitated transformation in kaolinite and montmorillonite systems, while an inhibitory effect of HA was observed for goethite. The elevated transformation by HA-coated kaolinite was mainly attributed to the enhanced activity of competence-stimulating factor (CSF), while increased transformation by montmorillonite-HA composites was assigned to the weakened adsorption affinity of DNA and enhanced gene expression induced by flagella-driven cell motility. In goethite system, HA played an overriding role in suppressing transformation via alleviation of cell membrane damage. The results obtained offer insights into the divergent mechanisms of humic substances in modulating bacterial transformation by soil minerals. Our findings would help for a better understanding on the fate of ARGs in soil systems and provide potentials for the utilization of soil components, particularly organic matter, to mitigate the spread of ARGs in a range of settings.
Collapse
Affiliation(s)
- Qiong Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaojiao Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenchen Qu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunhao Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Shoemaker WR, Polezhaeva E, Givens KB, Lennon JT. Seed banks alter the molecular evolutionary dynamics of Bacillus subtilis. Genetics 2022; 221:iyac071. [PMID: 35511143 PMCID: PMC9157070 DOI: 10.1093/genetics/iyac071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/23/2022] [Indexed: 11/14/2022] Open
Abstract
Fluctuations in the availability of resources constrain the growth and reproduction of individuals, which subsequently affects the evolution of their respective populations. Many organisms contend with such fluctuations by entering a reversible state of reduced metabolic activity, a phenomenon known as dormancy. This pool of dormant individuals (i.e. a seed bank) does not reproduce and is expected to act as an evolutionary buffer, though it is difficult to observe this effect directly over an extended evolutionary timescale. Through genetic manipulation, we analyze the molecular evolutionary dynamics of Bacillus subtilis populations in the presence and absence of a seed bank over 700 days. The ability of these bacteria to enter a dormant state increased the accumulation of genetic diversity over time and altered the trajectory of mutations, findings that were recapitulated using simulations based on a mathematical model of evolutionary dynamics. While the ability to form a seed bank did not alter the degree of negative selection, we found that it consistently altered the direction of molecular evolution across genes. Together, these results show that the ability to form a seed bank can affect the direction and rate of molecular evolution over an extended evolutionary timescale.
Collapse
Affiliation(s)
- William R Shoemaker
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA 90095, USA
| | | | - Kenzie B Givens
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA 90095, USA
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN 47408, USA
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
6
|
Luu J, Mott CM, Schreiber OR, Giovinco HM, Betchen M, Carabetta VJ. Nε-Lysine Acetylation of the Histone-Like Protein HBsu Regulates the Process of Sporulation and Affects the Resistance Properties of Bacillus subtilis Spores. Front Microbiol 2022; 12:782815. [PMID: 35111139 PMCID: PMC8801598 DOI: 10.3389/fmicb.2021.782815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Bacillus subtilis produces dormant, highly resistant endospores in response to extreme environmental stresses or starvation. These spores are capable of persisting in harsh environments for many years, even decades, without essential nutrients. Part of the reason that these spores can survive such extreme conditions is because their chromosomal DNA is well protected from environmental insults. The α/β-type small acid-soluble proteins (SASPs) coat the spore chromosome, which leads to condensation and protection from such insults. The histone-like protein HBsu has been implicated in the packaging of the spore chromosome and is believed to be important in modulating SASP-mediated alterations to the DNA, including supercoiling and stiffness. Previously, we demonstrated that HBsu is acetylated at seven lysine residues, and one physiological function of acetylation is to regulate chromosomal compaction. Here, we investigate if the process of sporulation or the resistance properties of mature spores are influenced by the acetylation state of HBsu. Using our collection of point mutations that mimic the acetylated and unacetylated forms of HBsu, we first determined if acetylation affects the process of sporulation, by determining the overall sporulation frequencies. We found that specific mutations led to decreases in sporulation frequency, suggesting that acetylation of HBsu at some sites, but not all, is required to regulate the process of sporulation. Next, we determined if the spores produced from the mutant strains were more susceptible to heat, ultraviolet (UV) radiation and formaldehyde exposure. We again found that altering acetylation at specific sites led to less resistance to these stresses, suggesting that proper HBsu acetylation is important for chromosomal packaging and protection in the mature spore. Interestingly, the specific acetylation patterns were different for the sporulation process and resistance properties of spores, which is consistent with the notion that a histone-like code exists in bacteria. We propose that specific acetylation patterns of HBsu are required to ensure proper chromosomal arrangement, packaging, and protection during the process of sporulation.
Collapse
Affiliation(s)
- Jackson Luu
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Connor M. Mott
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Olivia R. Schreiber
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Holly M. Giovinco
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Melanie Betchen
- Department of Internal Medicine, Cooper University Hospital, Camden, NJ, United States
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
- *Correspondence: Valerie J. Carabetta,
| |
Collapse
|
7
|
Klausmann P, Lilge L, Aschern M, Hennemann K, Henkel M, Hausmann R, Morabbi Heravi K. Influence of B. subtilis 3NA mutations in spo0A and abrB on surfactin production in B. subtilis 168. Microb Cell Fact 2021; 20:188. [PMID: 34565366 PMCID: PMC8474915 DOI: 10.1186/s12934-021-01679-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background Bacillus subtilis is a well-established host for a variety of bioproduction processes, with much interest focused on the production of biosurfactants such as the cyclic lipopeptide surfactin. Surfactin production is tightly intertwined with quorum sensing and regulatory cell differentiation processes. As previous studies have shown, a non-sporulating B. subtilis strain 3NA encoding a functional sfp locus but mutations in the spo0A and abrB loci, called JABs32, exhibits noticeably increased surfactin production capabilities. In this work, the impacts of introducing JABs32 mutations in the genes spo0A, abrB and abh from 3NA into strain KM1016, a surfactin-forming derivative of B. subtilis 168, was investigated. This study aims to show these mutations are responsible for the surfactin producing performance of strain JABs32 in fed-batch bioreactor cultivations. Results Single and double mutant strains of B. subtilis KM1016 were constructed encoding gene deletions of spo0A, abrB and homologous abh. Furthermore, an elongated abrB version, called abrB*, as described for JABs32 was integrated. Single and combinatory mutant strains were analysed in respect of growth behaviour, native PsrfA promoter expression and surfactin production. Deletion of spo0A led to increased growth rates with lowered surfactin titers, while deletion or elongation of abrB resulted in lowered growth rates and high surfactin yields, compared to KM1016. The double mutant strains B. subtilis KM1036 and KM1020 encoding Δspo0A abrB* and Δspo0A ΔabrB were compared to reference strain JABs32, with KM1036 exhibiting similar production parameters and impeded cell growth and surfactin production for KM1020. Bioreactor fed-batch cultivations comparing a Δspo0A abrB* mutant of KM1016, KM681, with JABs32 showed a decrease of 32% in surfactin concentration. Conclusions The genetic differences of B. subtilis KM1016 and JABs32 give rise to new and improved fermentation methods through high cell density processes. Deletion of the spo0A locus was shown to be the reason for higher biomass concentrations. Only in combination with an elongation of abrB was this strain able to reach high surfactin titers of 18.27 g L−1 in fed-batch cultivations. This work shows, that a B. subtilis strain can be turned into a high cell density surfactin production strain by introduction of two mutations.
Collapse
Affiliation(s)
- Peter Klausmann
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Lars Lilge
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany.
| | - Moritz Aschern
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Katja Hennemann
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Marius Henkel
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Rudolf Hausmann
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Kambiz Morabbi Heravi
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| |
Collapse
|
8
|
Huang Q, Chen J, Zhu J, Hao X, Dao G, Chen W, Cai P, Huang Q. Divergent bacterial transformation exerted by soil minerals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147173. [PMID: 34088059 DOI: 10.1016/j.scitotenv.2021.147173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
As one of the horizontal gene transfer processes, transformation provides bacteria flexible adaptation to changing environmental conditions. Soil minerals have been shown to inhibit bacterial transformation efficiency due to their high adsorption affinity for DNA molecules. However, the intrinsic mechanisms in regulating genetic transformation by soil components remain elusive. Little is known whether bacterial exposure to minerals may influence competence development which is regarded as a prerequisite of bacterial transformation. In this study, we examined the effects of kaolinite, montmorillonite, and goethite on the transformation of B. subtilis via chemical adsorption, Live-Dead staining, β-galactosidase assay, and qPCR. Results showed that kaolinite and montmorillonite reduced the transformability of B. subtilis by strong adsorption of CSF (competence-stimulating factor), a signaling molecule of cell competence, and the down-regulated transcriptional genes resulting from suppressed competence development. Conversely, goethite depressed bacterial transformation only at low mineral content by DNA adsorption. The striking membrane damage on B. subtilis in presence of high content of goethite yielded a marked increase of bacterial transformation. This finding subverted our previous view regarding the impact of soil minerals on bacterial transformation. Three mechanisms were thus proposed governing bacterial transformation in mineral systems: adsorption of CSF, gene expression and membrane damage. This work has advanced our understanding on the genetic transformation of bacteria as influenced by minerals in a wide range of soils and associated environments.
Collapse
Affiliation(s)
- Qiong Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaojiao Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Guohua Dao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Torasso Kasem EJ, Angelov A, Werner E, Lichev A, Vanderhaeghen S, Liebl W. Identification of New Chromosomal Loci Involved in com Genes Expression and Natural Transformation in the Actinobacterial Model Organism Micrococcus luteus. Genes (Basel) 2021; 12:genes12091307. [PMID: 34573289 PMCID: PMC8467076 DOI: 10.3390/genes12091307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Historically, Micrococcus luteus was one of the first organisms used to study natural transformation, one of the main routes of horizontal gene transfer among prokaryotes. However, little is known about the molecular basis of competence development in M. luteus or any other representative of the phylum of high-GC Gram-positive bacteria (Actinobacteria), while this means of genetic exchange has been studied in great detail in Gram-negative and low-GC Gram-positive bacteria (Firmicutes). In order to identify new genetic elements involved in regulation of the comEA-comEC competence operon in M. luteus, we conducted random chemical mutagenesis of a reporter strain expressing lacZ under the control of the comEA-comEC promoter, followed by the screening of dysregulated mutants. Mutants with (i) upregulated com promoter under competence-repressing conditions and (ii) mutants with a repressed com promoter under competence-inducing conditions were isolated. After genotype and phenotype screening, the genomes of several mutant strains were sequenced. A selection of putative com-influencing mutations was reinserted into the genome of the M. luteus reporter strain as markerless single-nucleotide mutations to confirm their effect on com gene expression. This strategy revealed mutations affecting com gene expression at genetic loci different from previously known genes involved in natural transformation. Several of these mutations decreased transformation frequencies by several orders of magnitude, thus indicating significant roles in competence development or DNA acquisition in M. luteus. Among the identified loci, there was a new locus containing genes with similarity to genes of the tad clusters of M. luteus and other bacteria.
Collapse
Affiliation(s)
- Enzo Joaquin Torasso Kasem
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (E.J.T.K.); (A.A.); (E.W.); (A.L.); (S.V.)
| | - Angel Angelov
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (E.J.T.K.); (A.A.); (E.W.); (A.L.); (S.V.)
- Institute of Medical Microbiology and Hygiene, University Clinic Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Elisa Werner
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (E.J.T.K.); (A.A.); (E.W.); (A.L.); (S.V.)
| | - Antoni Lichev
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (E.J.T.K.); (A.A.); (E.W.); (A.L.); (S.V.)
| | - Sonja Vanderhaeghen
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (E.J.T.K.); (A.A.); (E.W.); (A.L.); (S.V.)
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (E.J.T.K.); (A.A.); (E.W.); (A.L.); (S.V.)
- Correspondence: ; Tel.: +49-81-6171-545
| |
Collapse
|
10
|
Abstract
Horizontal gene transfer (HGT) is an important factor in bacterial evolution that can act across species boundaries. Yet, we know little about rate and genomic targets of cross-lineage gene transfer and about its effects on the recipient organism's physiology and fitness. Here, we address these questions in a parallel evolution experiment with two Bacillus subtilis lineages of 7% sequence divergence. We observe rapid evolution of hybrid organisms: gene transfer swaps ∼12% of the core genome in just 200 generations, and 60% of core genes are replaced in at least one population. By genomics, transcriptomics, fitness assays, and statistical modeling, we show that transfer generates adaptive evolution and functional alterations in hybrids. Specifically, our experiments reveal a strong, repeatable fitness increase of evolved populations in the stationary growth phase. By genomic analysis of the transfer statistics across replicate populations, we infer that selection on HGT has a broad genetic basis: 40% of the observed transfers are adaptive. At the level of functional gene networks, we find signatures of negative, positive, and epistatic selection, consistent with hybrid incompatibilities and adaptive evolution of network functions. Our results suggest that gene transfer navigates a complex cross-lineage fitness landscape, bridging epistatic barriers along multiple high-fitness paths.
Collapse
|
11
|
Hahn J, DeSantis M, Dubnau D. Mechanisms of Transforming DNA Uptake to the Periplasm of Bacillus subtilis. mBio 2021; 12:e0106121. [PMID: 34126763 PMCID: PMC8262900 DOI: 10.1128/mbio.01061-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/05/2021] [Indexed: 11/20/2022] Open
Abstract
We demonstrate here that the acquisition of DNase resistance by transforming DNA, often assumed to indicate transport to the cytoplasm, reflects uptake to the periplasm, requiring a reevaluation of conclusions about the roles of several proteins in transformation. The new evidence suggests that the transformation pilus is needed for DNA binding to the cell surface near the cell poles and for the initiation of uptake. The cellular distribution of the membrane-anchored ComEA of Bacillus subtilis does not dramatically change during DNA uptake as does the unanchored ComEA of Vibrio and Neisseria. Instead, our evidence suggests that ComEA stabilizes the attachment of transforming DNA at localized regions in the periplasm and then mediates uptake, probably by a Brownian ratchet mechanism. Following that, the DNA is transferred to periplasmic portions of the channel protein ComEC, which plays a previously unsuspected role in uptake to the periplasm. We show that the transformation endonuclease NucA also facilitates uptake to the periplasm and that the previously demonstrated role of ComFA in the acquisition of DNase resistance derives from the instability of ComGA when ComFA is deleted. These results prompt a new understanding of the early stages of DNA uptake for transformation. IMPORTANCE Transformation is a widely distributed mechanism of bacterial horizontal gene transfer that plays a role in the spread of antibiotic resistance and virulence genes and more generally in evolution. Although transformation was discovered nearly a century ago and most, if not all the proteins required have been identified in several bacterial species, much remains poorly understood about the molecular mechanism of DNA uptake. This study uses epifluorescence microscopy to investigate the passage of labeled DNA into the compartment between the cell wall and the cell membrane of Bacillus subtilis, a necessary early step in transformation. The roles of individual proteins in this process are identified, and their modes of action are clarified.
Collapse
Affiliation(s)
- Jeanette Hahn
- Public Health Research Institute, Rutgers University, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Micaela DeSantis
- Public Health Research Institute, Rutgers University, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - David Dubnau
- Public Health Research Institute, Rutgers University, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
12
|
Danevčič T, Dragoš A, Spacapan M, Stefanic P, Dogsa I, Mandic-Mulec I. Surfactin Facilitates Horizontal Gene Transfer in Bacillus subtilis. Front Microbiol 2021; 12:657407. [PMID: 34054753 PMCID: PMC8160284 DOI: 10.3389/fmicb.2021.657407] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/07/2021] [Indexed: 11/14/2022] Open
Abstract
Genetic competence for the uptake and integration of extracellular DNA is a key process in horizontal gene transfer (HGT), one of the most powerful forces driving the evolution of bacteria. In several species, development of genetic competence is coupled with cell lysis. Using Bacillus subtilis as a model bacterium, we studied the role of surfactin, a powerful biosurfactant and antimicrobial lipopeptide, in genetic transformation. We showed that surfactin itself promotes cell lysis and DNA release, thereby promoting HGT. These results, therefore, provide evidence for a fundamental mechanism involved in HGT and significantly increase our understanding of the spreading of antibiotic resistance genes and diversification of microbial communities in the environment.
Collapse
Affiliation(s)
- Tjaša Danevčič
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anna Dragoš
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mihael Spacapan
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Polonca Stefanic
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Iztok Dogsa
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ines Mandic-Mulec
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
13
|
Peptide signaling without feedback in signal production operates as a true quorum sensing communication system in Bacillus subtilis. Commun Biol 2021; 4:58. [PMID: 33420264 PMCID: PMC7794433 DOI: 10.1038/s42003-020-01553-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023] Open
Abstract
Bacterial quorum sensing (QS) is based on signal molecules (SM), which increase in concentration with cell density. At critical SM concentration, a variety of adaptive genes sharply change their expression from basic level to maximum level. In general, this sharp transition, a hallmark of true QS, requires an SM dependent positive feedback loop, where SM enhances its own production. Some communication systems, like the peptide SM-based ComQXPA communication system of Bacillus subtilis, do not have this feedback loop and we do not understand how and if the sharp transition in gene expression is achieved. Based on experiments and mathematical modeling, we observed that the SM peptide ComX encodes the information about cell density, specific cell growth rate, and even oxygen concentration, which ensure power-law increase in SM production. This enables together with the cooperative response to SM (ComX) a sharp transition in gene expression level and this without the SM dependent feedback loop. Due to its ultra-sensitive nature, the ComQXPA can operate at SM concentrations that are 100-1000 times lower than typically found in other QS systems, thereby substantially reducing the total metabolic cost of otherwise expensive ComX peptide.
Collapse
|
14
|
Špacapan M, Danevčič T, Štefanic P, Porter M, Stanley-Wall NR, Mandic-Mulec I. The ComX Quorum Sensing Peptide of Bacillus subtilis Affects Biofilm Formation Negatively and Sporulation Positively. Microorganisms 2020; 8:E1131. [PMID: 32727033 PMCID: PMC7463575 DOI: 10.3390/microorganisms8081131] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023] Open
Abstract
Quorum sensing (QS) is often required for the formation of bacterial biofilms and is a popular target of biofilm control strategies. Previous studies implicate the ComQXPA quorum sensing system of Bacillus subtilis as a promoter of biofilm formation. Here, we report that ComX signaling peptide deficient mutants form thicker and more robust pellicle biofilms that contain chains of cells. We confirm that ComX positively affects the transcriptional activity of the PepsA promoter, which controls the synthesis of the major matrix polysaccharide. In contrast, ComX negatively controls the PtapA promoter, which drives the production of TasA, a fibrous matrix protein. Overall, the biomass of the mutant biofilm lacking ComX accumulates more monosaccharide and protein content than the wild type. We conclude that this QS phenotype might be due to extended investment into growth rather than spore development. Consistent with this, the ComX deficient mutant shows a delayed activation of the pre-spore specific promoter, PspoIIQ, and a delayed, more synchronous commitment to sporulation. We conclude that ComX mediated early commitment to sporulation of the wild type slows down biofilm formation and modulates the coexistence of multiple biological states during the early stages of biofilm development.
Collapse
Affiliation(s)
- Mihael Špacapan
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia; (M.Š.); (T.D.); (P.Š.)
| | - Tjaša Danevčič
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia; (M.Š.); (T.D.); (P.Š.)
| | - Polonca Štefanic
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia; (M.Š.); (T.D.); (P.Š.)
| | - Michael Porter
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; (M.P.); (N.R.S.-W.)
| | - Nicola R. Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; (M.P.); (N.R.S.-W.)
| | - Ines Mandic-Mulec
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia; (M.Š.); (T.D.); (P.Š.)
| |
Collapse
|
15
|
Abstract
Transformation is a widespread mechanism of horizontal gene transfer in bacteria. DNA uptake to the periplasmic compartment requires a DNA-uptake pilus and the DNA-binding protein ComEA. In the gram-negative bacteria, DNA is first pulled toward the outer membrane by retraction of the pilus and then taken up by binding to periplasmic ComEA, acting as a Brownian ratchet to prevent backward diffusion. A similar mechanism probably operates in the gram-positive bacteria as well, but these systems have been less well characterized. Transport, defined as movement of a single strand of transforming DNA to the cytosol, requires the channel protein ComEC. Although less is understood about this process, it may be driven by proton symport. In this review we also describe various phenomena that are coordinated with the expression of competence for transformation, such as fratricide, the kin-discriminatory killing of neighboring cells, and competence-mediated growth arrest.
Collapse
Affiliation(s)
- David Dubnau
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA;
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Direct cloning and heterologous expression of natural product biosynthetic gene clusters by transformation-associated recombination. Methods Enzymol 2019; 621:87-110. [PMID: 31128791 DOI: 10.1016/bs.mie.2019.02.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Heterologous expression of natural product biosynthetic gene clusters (BGCs) is a robust approach not only to decipher biosynthetic logic behind natural product (NP) biosynthesis, but also to discover new chemicals from uncharacterized BGCs. This approach largely relies on techniques used for cloning large BGCs into suitable expression vectors. Recently, several whole-pathway direct cloning approaches, including full-length RecE-mediated recombination in Escherichia coli, Cas9-assisted in vitro assembly, and transformation-associated recombination (TAR) in Saccharomyces cerevisiae, have been developed to accelerate BGC isolation. In this chapter, we summarize a protocol for TAR cloning large NP BGCs, detailing the process of choosing TAR plasmids, designing pathway-specific TAR vectors, generating yeast spheroplasts, performing yeast transformation, and heterologously expressing BGCs in various host strains. We believe that the established platforms can accelerate the process of discovering new NPs, understanding NP biosynthetic logic, and engineering biosynthetic pathways.
Collapse
|
17
|
YfmK is an N ε-lysine acetyltransferase that directly acetylates the histone-like protein HBsu in Bacillus subtilis. Proc Natl Acad Sci U S A 2019; 116:3752-3757. [PMID: 30808761 DOI: 10.1073/pnas.1815511116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nε-lysine acetylation is an abundant and dynamic regulatory posttranslational modification that remains poorly characterized in bacteria. In bacteria, hundreds of proteins are known to be acetylated, but the biological significance of the majority of these events remains unclear. Previously, we characterized the Bacillus subtilis acetylome and found that the essential histone-like protein HBsu contains seven previously unknown acetylation sites in vivo. Here, we investigate whether acetylation is a regulatory component of the function of HBsu in nucleoid compaction. Using mutations that mimic the acetylated and unacetylated forms of the protein, we show that the inability to acetylate key HBsu lysine residues results in a more compacted nucleoid. We further investigated the mechanism of HBsu acetylation. We screened deletions of the ∼50 putative GNAT domain-encoding genes in B. subtilis for their effects on DNA compaction, and identified five candidates that may encode acetyltransferases acting on HBsu. Genetic bypass experiments demonstrated that two of these, YfmK and YdgE, can acetylate Hbsu, and their potential sites of action on HBsu were identified. Additionally, purified YfmK was able to directly acetylate HBsu in vitro, suggesting that it is the second identified protein acetyltransferase in B. subtilis We propose that at least one physiological function of the acetylation of HBsu at key lysine residues is to regulate nucleoid compaction, analogous to the role of histone acetylation in eukaryotes.
Collapse
|
18
|
Villa TG, Feijoo-Siota L, Sánchez-Pérez A, Rama JLR, Sieiro C. Horizontal Gene Transfer in Bacteria, an Overview of the Mechanisms Involved. HORIZONTAL GENE TRANSFER 2019:3-76. [DOI: 10.1007/978-3-030-21862-1_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
19
|
Klotz M, Kretschmer M, Goetz A, Ezendam S, Lieleg O, Opitz M. Importance of the biofilm matrix for the erosion stability of Bacillus subtilis NCIB 3610 biofilms. RSC Adv 2019; 9:11521-11529. [PMID: 35520264 PMCID: PMC9063333 DOI: 10.1039/c9ra01955c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022] Open
Abstract
Erosion of bacterial biofilms is dependent on the composition of the biofilm matrix and the surrounding chemical environment.
Collapse
Affiliation(s)
- M. Klotz
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| | - M. Kretschmer
- Munich School of BioEngineering and Department of Mechanical Engineering
- Technische Universität München
- Garching
- Germany
| | - A. Goetz
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| | - S. Ezendam
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| | - O. Lieleg
- Munich School of BioEngineering and Department of Mechanical Engineering
- Technische Universität München
- Garching
- Germany
| | - M. Opitz
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| |
Collapse
|
20
|
Mirouze N, Ferret C, Cornilleau C, Carballido-López R. Antibiotic sensitivity reveals that wall teichoic acids mediate DNA binding during competence in Bacillus subtilis. Nat Commun 2018; 9:5072. [PMID: 30498236 PMCID: PMC6265299 DOI: 10.1038/s41467-018-07553-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 10/22/2018] [Indexed: 12/02/2022] Open
Abstract
Despite decades of investigation of genetic transformation in the model Gram-positive bacterium Bacillus subtilis, the factors responsible for exogenous DNA binding at the surface of competent cells remain to be identified. Here, we report that wall teichoic acids (WTAs), cell wall-anchored anionic glycopolymers associated to numerous critical functions in Gram-positive bacteria, are involved in this initial step of transformation. Using a combination of cell wall-targeting antibiotics and fluorescence microscopy, we show that competence-specific WTAs are produced and specifically localized in the competent cells to mediate DNA binding at the proximity of the transformation apparatus. Furthermore, we propose that TuaH, a putative glycosyl transferase induced during competence, modifies competence-induced WTAs in order to promote (directly or indirectly) DNA binding. On the basis of our results and previous knowledge in the field, we propose a model for DNA binding and transport during genetic transformation in B. subtilis. Natural genetic transformation in bacteria requires DNA binding at the surface of competent cells. Here, Mirouze et al. show that wall teichoic acids are specifically produced or modified during competence in Bacillus subtilis and promote (directly or indirectly) DNA binding at the cell surface.
Collapse
Affiliation(s)
- Nicolas Mirouze
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France. .,Institute for Integrative Biology of the Cell (I2BC), INSERM, CEA, CNRS, Université Paris-Sud, Orsay, 91190, Gif sur Yvette, France.
| | - Cécile Ferret
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Charlène Cornilleau
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Inovarion, 75013, Paris, France
| | - Rut Carballido-López
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
21
|
Tanner AW, Carabetta VJ, Dubnau D. ClpC and MecA, components of a proteolytic machine, prevent Spo0A-P-dependent transcription without degradation. Mol Microbiol 2018; 108:178-186. [PMID: 29446505 PMCID: PMC5897911 DOI: 10.1111/mmi.13928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2018] [Indexed: 01/23/2023]
Abstract
In Bacillus subtilis, a proteolytic machine composed of MecA, ClpC and ClpP degrades the transcription factor ComK, controlling its accumulation during growth. MecA also inhibits sporulation and biofilm formation by down-regulating spoIIG and sinI, genes that are dependent for their transcription on the phosphorylated protein Spo0A-P. Additionally, MecA has been shown to interact in vitro with Spo0A. Although the inhibitory effect on transcription requires MecA's binding partner ClpC, inhibition is not accompanied by the degradation of Spo0A, pointing to a previously unsuspected regulatory mechanism involving these proteins. Here, we further investigate the MecA and ClpC effects on Spo0A-P-dependent transcription. We show that MecA inhibits the transcription of several Spo0A-P activated genes, but fails to de-repress several Spo0A-P repressed promoters. This demonstrates that MecA and ClpC do not act by preventing the binding of Spo0A-P to its target promoters. Consistent with this, MecA by itself has no effect in vitro on the transcription from PspoIIG while the addition of both MecA and ClpC has a strong inhibitory effect. A complex of MecA and ClpC likely binds to Spo0A-P on its target promoters, preventing the activation of transcription. Thus, components of a degradative machine have been harnessed to directly repress transcription.
Collapse
Affiliation(s)
- Andrew W. Tanner
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Valerie J. Carabetta
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - David Dubnau
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
22
|
Salter I. Seasonal variability in the persistence of dissolved environmental DNA (eDNA) in a marine system: The role of microbial nutrient limitation. PLoS One 2018; 13:e0192409. [PMID: 29474423 PMCID: PMC5825020 DOI: 10.1371/journal.pone.0192409] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/22/2018] [Indexed: 11/19/2022] Open
Abstract
Environmental DNA (eDNA) can be defined as the DNA pool recovered from an environmental sample that includes both extracellular and intracellular DNA. There has been a significant increase in the number of recent studies that have demonstrated the possibility to detect macroorganisms using eDNA. Despite the enormous potential of eDNA to serve as a biomonitoring and conservation tool in aquatic systems, there remain some important limitations concerning its application. One significant factor is the variable persistence of eDNA over natural environmental gradients, which imposes a critical constraint on the temporal and spatial scales of species detection. In the present study, a radiotracer bioassay approach was used to quantify the kinetic parameters of dissolved eDNA (d-eDNA), a component of extracellular DNA, over an annual cycle in the coastal Northwest Mediterranean. Significant seasonal variability in the biological uptake and turnover of d-eDNA was observed, the latter ranging from several hours to over one month. Maximum uptake rates of d-eDNA occurred in summer during a period of intense phosphate limitation (turnover <5 hrs). Corresponding increases in bacterial production and uptake of adenosine triphosphate (ATP) demonstrated the microbial utilization of d-eDNA as an organic phosphorus substrate. Higher temperatures during summer may amplify this effect through a general enhancement of microbial metabolism. A partial least squares regression (PLSR) model was able to reproduce the seasonal cycle in d-eDNA persistence and explained 60% of the variance in the observations. Rapid phosphate turnover and low concentrations of bioavailable phosphate, both indicative of phosphate limitation, were the most important parameters in the model. Abiotic factors such as pH, salinity and oxygen exerted minimal influence. The present study demonstrates significant seasonal variability in the persistence of d-eDNA in a natural marine environment that can be linked to the metabolic response of microbial communities to nutrient limitation. Future studies should consider the effect of natural environmental gradients on the seasonal persistence of eDNA, which will be of particular relevance for time-series biomonitoring programs.
Collapse
Affiliation(s)
- Ian Salter
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d’Océanographie Microbienne (LOMIC) Observatoire Océanologique, Banyuls/mer, France
- Faroe Marine Research Institute, Torshavn, Faroe Islands
- * E-mail:
| |
Collapse
|
23
|
Spacapan M, Danevčič T, Mandic-Mulec I. ComX-Induced Exoproteases Degrade ComX in Bacillus subtilis PS-216. Front Microbiol 2018; 9:105. [PMID: 29449835 PMCID: PMC5799266 DOI: 10.3389/fmicb.2018.00105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/17/2018] [Indexed: 11/13/2022] Open
Abstract
Gram-positive bacteria use peptides as auto-inducing (AI) signals to regulate the production of extracellular enzymes (e.g., proteases). ComX is an AI peptide, mostly known for its role in the regulation of bacterial competence and surfactant production in Bacillus subtilis. These two traits are regulated accordingly to the bacterial population size, thus classifying ComX as a quorum sensing signal. ComX also indirectly regulates exoprotease production through the intermediate transcriptional regulator DegQ. We here use this peptide-based AI system (the ComQXPA system) as a model to address exoprotease regulation by ComX in biofilms. We also investigate the potential of ComX regulated proteases to degrade the ComX AI peptide. Results indicate that ComX indeed induces the expression of aprE, the gene for the major serine protease subtilisin, and stimulates overall exoprotease production in biofilms of B. subtilis PS-216 and several other B. subtilis soil isolates. We also provide evidence that these exoproteases can degrade ComX. The ComX biological activity decay is reduced in the spent media of floating biofilms with low proteolytic activity found in the comP and degQ mutants. ComX biological activity decay can be restored by the addition of subtilisin to such media. In contrast, inhibition of metalloproteases by EDTA reduces ComX biological activity decay. This suggests that both serine and metalloproteases, which are induced by ComX, are ultimately capable of degrading this signaling peptide. This work brings novel information on regulation of exoproteases in B. subtilis floating biofilms and reveals that these proteolytic enzymes degrade the AI signaling peptide ComX, which is also a major determinant of their expression in biofilms.
Collapse
Affiliation(s)
- Mihael Spacapan
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tjaša Danevčič
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ines Mandic-Mulec
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
24
|
Ahmadpour F, Yakhchali B. Development of an asporogenic Bacillus cereus strain to improve keratinase production in exponential phase by switching sigmaH on and sigmaF off. FEMS Microbiol Lett 2017; 364:4582915. [DOI: 10.1093/femsle/fnx216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/30/2017] [Indexed: 11/13/2022] Open
|
25
|
Diethmaier C, Chawla R, Canzoneri A, Kearns DB, Lele PP, Dubnau D. Viscous drag on the flagellum activates Bacillus subtilis entry into the K-state. Mol Microbiol 2017; 106:367-380. [PMID: 28800172 DOI: 10.1111/mmi.13770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2017] [Indexed: 12/23/2022]
Abstract
Bacillus subtilis flagella are not only required for locomotion but also act as sensors that monitor environmental changes. Although how the signal transmission takes place is poorly understood, it has been shown that flagella play an important role in surface sensing by transmitting a mechanical signal to control the DegS-DegU two-component system. Here we report a role for flagella in the regulation of the K-state, which enables transformability and antibiotic tolerance (persistence). Mutations impairing flagellar synthesis are inferred to increase DegU-P, which inhibits the expression of ComK, the master regulator for the K-state, and reduces transformability. Tellingly, both deletion of the flagellin gene and straight filament (hagA233V ) mutations increased DegU phosphorylation despite the fact that both mutants had wild type numbers of basal bodies and the flagellar motors were functional. We propose that higher viscous loads on flagellar motors result in lower DegU-P levels through an unknown signaling mechanism. This flagellar-load based mechanism ensures that cells in the motile subpopulation have a tenfold enhanced likelihood of entering the K-state and taking up DNA from the environment. Further, our results suggest that the developmental states of motility and competence are related and most commonly occur in the same epigenetic cell type.
Collapse
Affiliation(s)
- Christine Diethmaier
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Ravi Chawla
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station Texas, TX, USA
| | | | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station Texas, TX, USA
| | - David Dubnau
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
26
|
Kesel S, von Bronk B, Falcón García C, Götz A, Lieleg O, Opitz M. Matrix composition determines the dimensions of Bacillus subtilis NCIB 3610 biofilm colonies grown on LB agar. RSC Adv 2017. [DOI: 10.1039/c7ra05559e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Exopolymeric substances secreted by biofilm formingBacillus subtilisNCIB 3610 bacteria influence the growth and final dimensions of these biofilms.
Collapse
Affiliation(s)
- Sara Kesel
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| | - Benedikt von Bronk
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| | - Carolina Falcón García
- Institute of Medical Engineering IMETUM
- Department of Mechanical Engineering
- Technische Universität München
- Garching
- Germany
| | - Alexandra Götz
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| | - Oliver Lieleg
- Institute of Medical Engineering IMETUM
- Department of Mechanical Engineering
- Technische Universität München
- Garching
- Germany
| | - Madeleine Opitz
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| |
Collapse
|
27
|
Ribbe J, Maier B. Density-Dependent Differentiation of Bacteria in Spatially Structured Open Systems. Biophys J 2016; 110:1648-1660. [PMID: 27074689 DOI: 10.1016/j.bpj.2016.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/09/2016] [Accepted: 03/08/2016] [Indexed: 10/21/2022] Open
Abstract
Bacterial quorum sensing is usually studied in well-mixed populations residing within closed systems. The latter do not exchange mass with their surroundings; however, in their natural environment, such as the rhizosphere, bacteria live in spatially structured open systems. Here, we tested the hypothesis that trapping of bacteria within microscopic pockets of an open system triggers density-dependent differentiation. We designed a microfluidic device that trapped swimming bacteria within microscopic compartments. The geometry of the traps controlled their diffusive coupling to fluid flow that played a dual role as nutrient source and autoinducer sink. Bacillus subtilis differentiates into a state of competence in response to quorum sensing and nutrient limitation. Using a mutant strain with a high differentiation rate and fluorescent reporters for competence, we found that the cell density required for differentiation was 100-fold higher than that required in closed systems. A direct comparison of strongly and moderately coupled reservoirs showed that strong coupling supported early differentiation but required a higher number of bacteria for its initiation. Weak coupling resulted in retardation of growth and differentiation. We conclude that spatial heterogeneity can promote density-dependent differentiation in open systems, and propose that the minimal quorum is determined by diffusive coupling to the environment through a trade-off between retaining autoinducers and accessing nutrients.
Collapse
Affiliation(s)
- Jan Ribbe
- Department of Physics, University of Cologne, Cologne, Germany
| | - Berenike Maier
- Department of Physics, University of Cologne, Cologne, Germany.
| |
Collapse
|
28
|
Miras M, Dubnau D. A DegU-P and DegQ-Dependent Regulatory Pathway for the K-state in Bacillus subtilis. Front Microbiol 2016; 7:1868. [PMID: 27920766 PMCID: PMC5118428 DOI: 10.3389/fmicb.2016.01868] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/07/2016] [Indexed: 12/04/2022] Open
Abstract
The K-state in the model bacterium Bacillus subtilis is associated with transformability (competence) as well as with growth arrest and tolerance for antibiotics. Entry into the K-state is determined by the stochastic activation of the transcription factor ComK and occurs in about ∼15% of the population in domesticated strains. Although the upstream mechanisms that regulate the K-state have been intensively studied and are well understood, it has remained unexplained why undomesticated isolates of B. subtilis are poorly transformable compared to their domesticated counterparts. We show here that this is because fewer cells enter the K-state, suggesting that a regulatory pathway limiting entry to the K-state is missing in domesticated strains. We find that loss of this limitation is largely due to an inactivating point mutation in the promoter of degQ. The resulting low level of DegQ decreases the concentration of phosphorylated DegU, which leads to the de-repression of the srfA operon and ultimately to the stabilization of ComK. As a result, more cells reach the threshold concentration of ComK needed to activate the auto-regulatory loop at the comK promoter. In addition, we demonstrate that the activation of srfA transcription in undomesticated strains is transient, turning off abruptly as cells enter the stationary phase. Thus, the K-state and transformability are more transient and less frequently expressed in the undomesticated strains. This limitation is more extreme than appreciated from studies of domesticated strains. Selection has apparently limited both the frequency and the duration of the bistably expressed K-state in wild strains, likely because of the high cost of growth arrest associated with the K-state. Future modeling of K-state regulation and of the fitness advantages and costs of the K-state must take these features into account.
Collapse
Affiliation(s)
- Mathieu Miras
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, NewarkNJ, USA; Laboratoire de Microbiologie et Génétique Moléculaires, Université de ToulouseToulouse, France
| | - David Dubnau
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark NJ, USA
| |
Collapse
|
29
|
Yüksel M, Power JJ, Ribbe J, Volkmann T, Maier B. Fitness Trade-Offs in Competence Differentiation of Bacillus subtilis. Front Microbiol 2016; 7:888. [PMID: 27375604 PMCID: PMC4896167 DOI: 10.3389/fmicb.2016.00888] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/25/2016] [Indexed: 11/15/2022] Open
Abstract
In the stationary phase, Bacillus subtilis differentiates stochastically and transiently into the state of competence for transformation (K-state). The latter is associated with growth arrest, and it is unclear how the ability to develop competence is stably maintained, despite its cost. To quantify the effect differentiation has on the competitive fitness of B. subtilis, we characterized the competition dynamics between strains with different probabilities of entering the K-state. The relative fitness decreased with increasing differentiation probability both during the stationary phase and during outgrowth. When exposed to antibiotics inhibiting cell wall synthesis, transcription, and translation, cells that differentiated into the K-state showed a selective advantage compared to differentiation-deficient bacteria; this benefit did not require transformation. Although beneficial, the K-state was not induced by sub-MIC concentrations of antibiotics. Increasing the differentiation probability beyond the wt level did not significantly affect the competition dynamics with transient antibiotic exposure. We conclude that the competition dynamics are very sensitive to the fraction of competent cells under benign conditions but less sensitive during antibiotic exposure, supporting the picture of stochastic differentiation as a fitness trade-off.
Collapse
Affiliation(s)
- Melih Yüksel
- Department of Physics, University of Cologne Köln, Germany
| | | | - Jan Ribbe
- Department of Physics, University of Cologne Köln, Germany
| | | | - Berenike Maier
- Department of Physics, University of Cologne Köln, Germany
| |
Collapse
|
30
|
Dubnau EJ, Carabetta VJ, Tanner AW, Miras M, Diethmaier C, Dubnau D. A protein complex supports the production of Spo0A-P and plays additional roles for biofilms and the K-state in Bacillus subtilis. Mol Microbiol 2016; 101:606-24. [PMID: 27501195 DOI: 10.1111/mmi.13411] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2016] [Indexed: 01/19/2023]
Abstract
Bacillus subtilis can enter three developmental pathways to form spores, biofilms or K-state cells. The K-state confers competence for transformation and antibiotic tolerance. Transition into each of these states requires a stable protein complex formed by YlbF, YmcA and YaaT. We have reported that this complex acts in sporulation by accelerating the phosphorylation of the response regulator Spo0A. Phosphorelay acceleration was also predicted to explain their involvement in biofilm formation and the K-state. This view has been challenged in the case of biofilms, by the suggestion that the three proteins act in association with the mRNA degradation protein RNaseY (Rny) to destabilize the sinR transcript. Here, we reaffirm the roles of the three proteins in supporting the phosphorylation of Spo0A for all three developmental pathways and show that in their absence sinR mRNA is not stabilized. We demonstrate that the three proteins also play unknown Spo0A-P-independent roles in the expression of biofilm matrix and in the production of ComK, the master transcription factor for competence. Finally, we show that domesticated strains of B. subtilis carry a mutation in sigH, which influences the expression kinetics of the early spore gene spoIIG, thereby increasing the penetrance of the ylbF, ymcA and yaaT sporulation phenotypes.
Collapse
Affiliation(s)
- Eugenie J Dubnau
- Public Health Research Institute Center.,Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Valerie J Carabetta
- Public Health Research Institute Center.,Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Andrew W Tanner
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | | | | | - David Dubnau
- Public Health Research Institute Center.,Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| |
Collapse
|
31
|
Temporal Regulation of the Bacillus subtilis Acetylome and Evidence for a Role of MreB Acetylation in Cell Wall Growth. mSystems 2016; 1. [PMID: 27376153 PMCID: PMC4927096 DOI: 10.1128/msystems.00005-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The past decade highlighted Nε-lysine acetylation as a prevalent posttranslational modification in bacteria. However, knowledge regarding the physiological importance and temporal regulation of acetylation has remained limited. To uncover potential regulatory roles for acetylation, we analyzed how acetylation patterns and abundances change between growth phases in B. subtilis. To demonstrate that the identification of cell growth-dependent modifications can point to critical regulatory acetylation events, we further characterized MreB, the cell shape-determining protein. Our findings led us to propose a role for MreB acetylation in controlling cell width by restricting cell wall growth. Nε-Lysine acetylation has been recognized as a ubiquitous regulatory posttranslational modification that influences a variety of important biological processes in eukaryotic cells. Recently, it has been realized that acetylation is also prevalent in bacteria. Bacteria contain hundreds of acetylated proteins, with functions affecting diverse cellular pathways. Still, little is known about the regulation or biological relevance of nearly all of these modifications. Here we characterize the cellular growth-associated regulation of the Bacillus subtilis acetylome. Using acetylation enrichment and quantitative mass spectrometry, we investigate the logarithmic and stationary growth phases, identifying over 2,300 unique acetylation sites on proteins that function in essential cellular pathways. We determine an acetylation motif, EK(ac)(D/Y/E), which resembles the eukaryotic mitochondrial acetylation signature, and a distinct stationary-phase-enriched motif. By comparing the changes in acetylation with protein abundances, we discover a subset of critical acetylation events that are temporally regulated during cell growth. We functionally characterize the stationary-phase-enriched acetylation on the essential shape-determining protein MreB. Using bioinformatics, mutational analysis, and fluorescence microscopy, we define a potential role for the temporal acetylation of MreB in restricting cell wall growth and cell diameter. IMPORTANCE The past decade highlighted Nε-lysine acetylation as a prevalent posttranslational modification in bacteria. However, knowledge regarding the physiological importance and temporal regulation of acetylation has remained limited. To uncover potential regulatory roles for acetylation, we analyzed how acetylation patterns and abundances change between growth phases in B. subtilis. To demonstrate that the identification of cell growth-dependent modifications can point to critical regulatory acetylation events, we further characterized MreB, the cell shape-determining protein. Our findings led us to propose a role for MreB acetylation in controlling cell width by restricting cell wall growth.
Collapse
|
32
|
Danevčič T, Borić Vezjak M, Tabor M, Zorec M, Stopar D. Prodigiosin Induces Autolysins in Actively Grown Bacillus subtilis Cells. Front Microbiol 2016; 7:27. [PMID: 26858704 PMCID: PMC4729933 DOI: 10.3389/fmicb.2016.00027] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/11/2016] [Indexed: 01/06/2023] Open
Abstract
Prodigiosin produced by marine bacterium Vibrio ruber DSM 14379 exhibits a potent antimicrobial activity against a broad range of Gram positive and Gram negative bacteria. The mechanism of prodigiosin antimicrobial action, however, is not known. In this work, the effect of prodigiosin on Bacillus subtilis growth, cell membrane leakage, and induction of autolysins was studied. Treating B. subtilis with prodigiosin resulted in rapid decline of optical density and increased cell membrane leakage measured by β-galactosidase activity. Cell lysis was initiated immediately after treatment with prodigiosin in the middle exponential phase and was completed within 2 h. Lytic activity of prodigiosin in mutant strains with impaired autolysin genes lytABCD decreased for 80% compared to the wild type strain, while in lytABCDEF mutant strain prodigiosin had no bacteriolytic but only bacteriostatic effect. Fast prodigiosin lytic activity on individual B. subtilis cells was confirmed by a modified comet assay. The results indicate that prodigiosin autolysin induction in B. subtilis is growth phase dependent.
Collapse
Affiliation(s)
- Tjaša Danevčič
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Maja Borić Vezjak
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Maja Tabor
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Maša Zorec
- Chair of Microbiology and Microbial Biotechnology, Department of Animal Science, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - David Stopar
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| |
Collapse
|
33
|
Rahmer R, Morabbi Heravi K, Altenbuchner J. Construction of a Super-Competent Bacillus subtilis 168 Using the P mtlA -comKS Inducible Cassette. Front Microbiol 2015; 6:1431. [PMID: 26732353 PMCID: PMC4685060 DOI: 10.3389/fmicb.2015.01431] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/01/2015] [Indexed: 11/16/2022] Open
Abstract
Competence is a physiological state that enables Bacillus subtilis 168 to take up and internalize extracellular DNA. In practice, only a small subpopulation of B. subtilis 168 cells becomes competent when they enter stationary phase. In this study, we developed a new transformation method to improve the transformation efficiency of B. subtilis 168, specially in rich media. At first, different competence genes, namely comK, comS, and dprA, were alone or together integrated into the chromosome of B. subtilis 168 under control of mannitol-inducible PmtlA promoter. Overexpression of both comK and comS increased the transformation efficiency of B. subtilis REG19 with plasmid DNA by 6.7-fold compared to the wild type strain 168. This transformation efficiency reached its maximal level after 1.5 h of induction by mannitol. Besides, transformability of the REG19 cells was saturated in the presence of 100 ng dimeric plasmid or 3000 ng chromosomal DNA. Studying the influence of global regulators on the development of competence pointed out that important competence development factors, such as Spo0A, ComQXPA, and DegU, could be removed in REG19. On the other hand, efficient REG19 transformation remained highly dependent on the original copies of comK and comS regardless of the presence of PmtlA-comKS. Finally, novel plasmid-free strategies were used for transformation of REG19 based on Gibson assembly.
Collapse
Affiliation(s)
- Regine Rahmer
- Institut für Industrielle Genetik, Universität Stuttgart Stuttgart, Germany
| | | | - Josef Altenbuchner
- Institut für Industrielle Genetik, Universität Stuttgart Stuttgart, Germany
| |
Collapse
|
34
|
Abstract
Bacillus subtilis is an important model bacterium for the study of developmental adaptations that enhance survival in the face of fluctuating environmental challenges. These adaptations include sporulation, biofilm formation, motility, cannibalism, and competence. Remarkably, not all the cells in a given population exhibit the same response. The choice of fate by individual cells is random but is also governed by complex signal transduction pathways and cross talk mechanisms that reinforce decisions once made. The interplay of stochastic and deterministic mechanisms governing the selection of developmental fate on the single-cell level is discussed in this article.
Collapse
|
35
|
MreB-Dependent Inhibition of Cell Elongation during the Escape from Competence in Bacillus subtilis. PLoS Genet 2015; 11:e1005299. [PMID: 26091431 PMCID: PMC4474612 DOI: 10.1371/journal.pgen.1005299] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/26/2015] [Indexed: 02/02/2023] Open
Abstract
During bacterial exponential growth, the morphogenetic actin-like MreB proteins form membrane-associated assemblies that move processively following trajectories perpendicular to the long axis of the cell. Such MreB structures are thought to scaffold and restrict the movement of peptidoglycan synthesizing machineries, thereby coordinating sidewall elongation. In Bacillus subtilis, this function is performed by the redundant action of three MreB isoforms, namely MreB, Mbl and MreBH. mreB and mbl are highly transcribed from vegetative promoters. We have found that their expression is maximal at the end of exponential phase, and rapidly decreases to a low basal level upon entering stationary phase. However, in cells developing genetic competence, a stationary phase physiological adaptation, expression of mreB was specifically reactivated by the central competence regulator ComK. In competent cells, MreB was found in complex with several competence proteins by in vitro pull-down assays. In addition, it co-localized with the polar clusters formed by the late competence peripheral protein ComGA, in a ComGA-dependent manner. ComGA has been shown to be essential for the inhibition of cell elongation characteristic of cells escaping the competence state. We show here that the pathway controlling this elongation inhibition also involves MreB. Our findings suggest that ComGA sequesters MreB to prevent cell elongation and therefore the escape from competence. In bacterial cells, like in their eukaryotic counterparts, precise spatiotemporal localization of proteins is critical for their cellular function. This study shows that the expression and the localization of the bacterial actin-like MreB protein are growth phase-dependent. During exponential growth, we previously showed that MreB, together with other morphogenetic factors, forms discrete assemblies that move in a directed manner along peripheral tracks. Here, we demonstrate that in cells that develop genetic competence during stationary phase, transcription of mreB is specifically activated and MreB relocalizes to the cell poles. Our findings suggest a model in which MreB sequestration by the late competence protein ComGA prevents cell elongation during the escape from competence.
Collapse
|
36
|
Hahn J, Tanner AW, Carabetta VJ, Cristea IM, Dubnau D. ComGA-RelA interaction and persistence in the Bacillus subtilis K-state. Mol Microbiol 2015; 97:454-71. [PMID: 25899641 DOI: 10.1111/mmi.13040] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2015] [Indexed: 01/17/2023]
Abstract
The bistably expressed K-state of Bacillus subtilis is characterized by two distinct features; transformability and arrested growth when K-state cells are exposed to fresh medium. The arrest is manifested by a failure to assemble replisomes and by decreased rates of cell growth and rRNA synthesis. These phenotypes are all partially explained by the presence of the AAA(+) protein ComGA, which is also required for the binding of transforming DNA to the cell surface and for the assembly of the transformation pilus that mediates DNA transport. We have discovered that ComGA interacts with RelA and that the ComGA-dependent inhibition of rRNA synthesis is largely bypassed in strains that cannot synthesize the alarmone (p)ppGpp. We propose that the interaction of ComGA with RelA prevents the hydrolysis of (p)ppGpp in K-state cells, which are thus trapped in a non-growing state until ComGA is degraded. We show that some K-state cells exhibit tolerance to antibiotics, a form of type 1 persistence, and we propose that the bistable expression of both transformability and the growth arrest are bet-hedging adaptations that improve fitness in the face of varying environments, such as those presumably encountered by B. subtilis in the soil.
Collapse
Affiliation(s)
- Jeanette Hahn
- Public Health Research Institute Center of New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Andrew W Tanner
- Public Health Research Institute Center of New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Valerie J Carabetta
- Public Health Research Institute Center of New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - David Dubnau
- Public Health Research Institute Center of New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| |
Collapse
|
37
|
Oslizlo A, Stefanic P, Vatovec S, Beigot Glaser S, Rupnik M, Mandic-Mulec I. Exploring ComQXPA quorum-sensing diversity and biocontrol potential of Bacillus spp. isolates from tomato rhizoplane. Microb Biotechnol 2015; 8:527-40. [PMID: 25757097 PMCID: PMC4408185 DOI: 10.1111/1751-7915.12258] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/20/2014] [Accepted: 12/03/2014] [Indexed: 01/06/2023] Open
Abstract
Bacillus subtilis is a widespread and diverse bacterium t exhibits a remarkable intraspecific diversity of the ComQXPA quorum-sensing (QS) system. This manifests in the existence of distinct communication groups (pherotypes) that can efficiently communicate within a group, but not between groups. Similar QS diversity was also found in other bacterial species, and its ecological and evolutionary meaning is still being explored. Here we further address the ComQXPA QS diversity among isolates from the tomato rhizoplane, a natural habitat of B. subtilis, where these bacteria likely exist in their vegetative form. Because this QS system regulates production of anti-pathogenic and biofilm-inducing substances such as surfactins, knowledge on cell-cell communication of this bacterium within rhizoplane is also important from the biocontrol perspective. We confirm the presence of pherotype diversity within B. subtilis strains isolated from a rhizoplane of a single plant. We also show that B. subtilis rhizoplane isolates show a remarkable diversity of surfactin production and potential plant growth promoting traits. Finally, we discover that effects of surfactin deletion on biofilm formation can be strain specific and unexpected in the light of current knowledge on its role it this process.
Collapse
Affiliation(s)
- A Oslizlo
- Department of Food Science and Technology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - P Stefanic
- Department of Food Science and Technology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - S Vatovec
- Department of Food Science and Technology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - S Beigot Glaser
- National Laboratory for Health, Environment and FoodMaribor, Slovenia
| | - M Rupnik
- National Laboratory for Health, Environment and FoodMaribor, Slovenia
- Faculty of Medicine, University of MariborMaribor, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of ProteinsLjubljana, Slovenia
| | - I Mandic-Mulec
- Department of Food Science and Technology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| |
Collapse
|
38
|
Carbohydrate coating reduces adhesion of biofilm-forming Bacillus subtilis to gold surfaces. Appl Environ Microbiol 2014; 80:5911-7. [PMID: 25038098 DOI: 10.1128/aem.01600-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The growth of bacterial biofilms in pipes and food tanks causes severe problems in industry. Biofilms growing on medical implants or catheters are of great concern, as they can cause serious infections and decrease the functionality of the medical device. The prevention of bacterial adhesion--the first step in colonization and biofilm formation--is therefore very important. Current research comprises alterations in surface properties, the prevention of adhesin biosynthesis, inhibition with receptor analogs, or the development of anti-adhesive vaccines. We present a new approach that allows us to study bacterial adhesion with high sensitivity in real-time while testing several different surfaces in parallel. Using the cantilever-array technique we demonstrate that coating of gold surfaces with mono- or disaccharides results in a reduction of the bacterial adhesion of the biofilm-forming bacterium Bacillus subtilis NCIB 3610 to these gold surfaces. This reduction in bacterial adhesion is independent of the studied carbohydrate. Using several mutant strains, we investigate the underlying molecular interactions, and our results suggest that adhesion to gold surfaces is mediated by thiol groups present in proteins of the bacterial cell membrane or biofilm matrix proteins expressed at low levels by the wild-type strain. Furthermore, our data indicate that the adhesion of B. subtilis NCIB 3610 to carbohydrate-coated gold surfaces is facilitated by interactions between carbohydrates installed on the cantilever gold surface and an exopolysaccharide expressed by this strain. Understanding general and specific contributions of molecular interactions mediating bacterial adhesion will enable its prevention in the future.
Collapse
|
39
|
|
40
|
Oslizlo A, Stefanic P, Dogsa I, Mandic-Mulec I. Private link between signal and response in Bacillus subtilis quorum sensing. Proc Natl Acad Sci U S A 2014; 111:1586-91. [PMID: 24425772 PMCID: PMC3910598 DOI: 10.1073/pnas.1316283111] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria coordinate their behavior using quorum sensing (QS), whereby cells secrete diffusible signals that generate phenotypic responses associated with group living. The canonical model of QS is one of extracellular signaling, where signal molecules bind to cognate receptors and cause a coordinated response across many cells. Here we study the link between QS input (signaling) and QS output (response) in the ComQXPA QS system of Bacillus subtilis by characterizing the phenotype and fitness of comQ null mutants. These lack the enzyme to produce the ComX signal and do not activate the ComQXPA QS system in other cells. In addition to the activation effect of the signal, however, we find evidence of a second, repressive effect of signal production on the QS system. Unlike activation, which can affect other cells, repression acts privately: the de-repression of QS in comQ cells is intracellular and only affects mutant cells lacking ComQ. As a result, the QS signal mutants have an overly responsive QS system and overproduce the secondary metabolite surfactin in the presence of the signal. This surfactin overproduction is associated with a strong fitness cost, as resources are diverted away from primary metabolism. Therefore, by acting as a private QS repressor, ComQ may be protected against evolutionary competition from loss-of-function mutations. Additionally, we find that surfactin participates in a social selection mechanism that targets signal null mutants in coculture with signal producers. Our study shows that by pleiotropically combining intracellular and extracellular signaling, bacteria may generate evolutionarily stable QS systems.
Collapse
Affiliation(s)
- Anna Oslizlo
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Polonca Stefanic
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Iztok Dogsa
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Ines Mandic-Mulec
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
41
|
Mann JM, Carabetta VJ, Cristea IM, Dubnau D. Complex formation and processing of the minor transformation pilins of Bacillus subtilis. Mol Microbiol 2013; 90:1201-15. [PMID: 24164455 PMCID: PMC5687075 DOI: 10.1111/mmi.12425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2013] [Indexed: 01/06/2023]
Abstract
Transformation in most bacteria is dependent on orthologues of Type 2 secretion and Type 4 pilus system proteins. In each system, pilin proteins (major and minor) are required to make the pilus structure and are essential to the process, although the precise roles of the minor pilins remain unclear. We have explored protein-protein interactions among the competence minor pilins of Bacillus subtilis through in vitro binding studies, immunopurification and mass spectrometry. We demonstrate that the minor pilins directly interact, and the minor pilin ComGG interacts with most of the known proteins required for transformation. We find that ComGG requires other ComG proteins for its stabilization and for processing by the pre-pilin peptidase. These observations, C-terminal mutations in ComGG that prevent processing and the inaccessibility of pre-ComGG to externally added protease suggest a model in which pre-ComGG must be associated with other minor pilins for processing to take place. We propose that ComGG does not become a transmembrane protein until after processing. These behaviours contrast with that of pre-ComGC, the major pilin, which is accessible to externally added protease and requires only the peptidase to be processed. The roles of the pilins and of the pilus in transformation are discussed.
Collapse
Affiliation(s)
- Jessica M. Mann
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 07103, USA
| | - Valerie J. Carabetta
- Public Health Research Institute, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 07103, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - David Dubnau
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 07103, USA
- Public Health Research Institute, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 07103, USA
| |
Collapse
|
42
|
Carabetta VJ, Tanner AW, Greco TM, Defrancesco M, Cristea IM, Dubnau D. A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A. Mol Microbiol 2013; 88:283-300. [PMID: 23490197 PMCID: PMC3781937 DOI: 10.1111/mmi.12186] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2013] [Indexed: 11/27/2022]
Abstract
Bacillus subtilis has adopted a bet-hedging strategy to ensure survival in changing environments. From a clonal population, numerous sub-populations can emerge, expressing different sets of genes that govern the developmental processes of sporulation, competence and biofilm formation. The master transcriptional regulator Spo0A controls the entry into all three fates and the production of the phosphorylated active form of Spo0A is precisely regulated via a phosphorelay, involving at least four proteins. Two proteins, YmcA and YlbF were previously shown to play an unidentified role in the regulation of biofilm formation, and in addition, YlbF was shown to regulate competence and sporulation. Using an unbiased proteomics screen, we demonstrate that YmcA and YlbF interact with a third protein, YaaT to form a tripartite complex. We show that all three proteins are required for proper establishment of the three above-mentioned developmental states. We show that the complex regulates the activity of Spo0A in vivo and, using in vitro reconstitution experiments, determine that they stimulate the phosphorelay, probably by interacting with Spo0F and Spo0B. We propose that the YmcA-YlbF-YaaT ternary complex is required to increase Spo0A~P levels above the thresholds needed to induce development.
Collapse
Affiliation(s)
- Valerie J. Carabetta
- Public Health Research Center at New Jersey Medical School, 225 Warren Street, Newark, NJ 07103
| | - Andrew W. Tanner
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, 225 Warren Street, Newark NJ 07103
| | - Todd M. Greco
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Melissa Defrancesco
- Public Health Research Center at New Jersey Medical School, 225 Warren Street, Newark, NJ 07103
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - David Dubnau
- Public Health Research Center at New Jersey Medical School, 225 Warren Street, Newark, NJ 07103
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, 225 Warren Street, Newark NJ 07103
| |
Collapse
|
43
|
A plasmid-encoded phosphatase regulates Bacillus subtilis biofilm architecture, sporulation, and genetic competence. J Bacteriol 2013; 195:2437-48. [PMID: 23524609 DOI: 10.1128/jb.02030-12] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacillus subtilis biofilm formation is tightly regulated by elaborate signaling pathways. In contrast to domesticated lab strains of B. subtilis which form smooth, essentially featureless colonies, undomesticated strains such as NCIB 3610 form architecturally complex biofilms. NCIB 3610 also contains an 80-kb plasmid absent from laboratory strains, and mutations in a plasmid-encoded homolog of a Rap protein, RapP, caused a hyperrugose biofilm phenotype. Here we explored the role of rapP phrP in biofilm formation. We found that RapP is a phosphatase that dephosphorylates the intermediate response regulator Spo0F. RapP appears to employ a catalytic glutamate to dephosphorylate the Spo0F aspartyl phosphate, and the implications of the RapP catalytic glutamate are discussed. In addition to regulating B. subtilis biofilm formation, we found that RapP regulates sporulation and genetic competence as a result of its ability to dephosphorylate Spo0F. Interestingly, while rap phr gene cassettes routinely form regulatory pairs; i.e., the mature phr gene product inhibits the activity of the rap gene product, the phrP gene product did not inhibit RapP activity in our assays. RapP activity was, however, inhibited by PhrH in vivo but not in vitro. Additional genetic analysis suggests that RapP is directly inhibited by peptide binding. We speculate that PhrH could be subject to posttranslational modification in vivo and directly inhibit RapP activity or, more likely, PhrH upregulates the expression of a peptide that, in turn, directly binds to RapP and inhibits its Spo0F phosphatase activity.
Collapse
|
44
|
Kovács ÁT, Eckhardt TH, van Kranenburg R, Kuipers OP. Functional analysis of the ComK protein of Bacillus coagulans. PLoS One 2013; 8:e53471. [PMID: 23301076 PMCID: PMC3536758 DOI: 10.1371/journal.pone.0053471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/29/2012] [Indexed: 11/27/2022] Open
Abstract
The genes for DNA uptake and recombination in Bacilli are commonly regulated by the transcriptional factor ComK. We have identified a ComK homologue in Bacillus coagulans, an industrial relevant organism that is recalcitrant for transformation. Introduction of B. coagulans comK gene under its own promoter region into Bacillus subtilis comK strain results in low transcriptional induction of the late competence gene comGA, but lacking bistable expression. The promoter regions of B. coagulans comK and the comGA genes are recognized in B. subtilis and expression from these promoters is activated by B. subtilis ComK. Purified ComK protein of B. coagulans showed DNA-binding ability in gel retardation assays with B. subtilis- and B. coagulans-derived probes. These experiments suggest that the function of B. coagulans ComK is similar to that of ComK of B. subtilis. When its own comK is overexpressed in B. coagulans the comGA gene expression increases 40-fold, while the expression of another late competence gene, comC is not elevated and no reproducible DNA-uptake could be observed under these conditions. Our results demonstrate that B. coagulans ComK can recognize several B.subtilis comK-responsive elements, and vice versa, but indicate that the activation of the transcription of complete sets of genes coding for a putative DNA uptake apparatus in B. coagulans might differ from that of B. subtilis.
Collapse
Affiliation(s)
- Ákos T. Kovács
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Tom H. Eckhardt
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | - Oscar P. Kuipers
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
45
|
Reder A, Albrecht D, Gerth U, Hecker M. Cross-talk between the general stress response and sporulation initiation inBacillus subtilis- the σBpromoter ofspo0Erepresents an AND-gate. Environ Microbiol 2012; 14:2741-56. [DOI: 10.1111/j.1462-2920.2012.02755.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Schmid S, Bevilacqua C, Crutz-Le Coq AM. Alternative sigma factor σH activates competence gene expression in Lactobacillus sakei. BMC Microbiol 2012; 12:32. [PMID: 22409597 PMCID: PMC3364868 DOI: 10.1186/1471-2180-12-32] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 03/12/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Alternative sigma factors trigger various adaptive responses. Lactobacillus sakei, a non-sporulating meat-borne bacterium, carries an alternative sigma factor seemingly orthologous to σ(H) of Bacillus subtilis, best known for its contribution to the initiation of a large starvation response ultimately leading to sporulation. As the role of σ(H)-like factors has been little studied in non-sporulating bacteria, we investigated the function of σ(H) in L. sakei. RESULTS Transcription of sigH coding for σ(H) was hardly affected by entry into stationary phase in our laboratory conditions. Twenty-five genes potentially regulated by σ(H) in L. sakei 23 K were revealed by genome-wide transcriptomic profiling of sigH overexpression and/or quantitative PCR analysis. More than half of them are involved in the synthesis of a DNA uptake machinery linked to genetic competence, and in DNA metabolism; however, σ(H) overproduction did not allow detectable genetic transformation. σ(H) was found to be conserved in the L. sakei species. CONCLUSION Our results are indicative of the existence of a genetic competence state activated by σ(H) in L. sakei, and sustain the hypothesis that σ(H)-like factors in non sporulating Firmicutes share this common function with the well-known ComX of naturally transformable streptococci.
Collapse
Affiliation(s)
- Solveig Schmid
- UMR1319 Micalis, INRA F-78350, Jouy-en-Josas, France
- UMR Micalis, AgroParisTech, INRA F-78350, Jouy-en-Josas, France
- Conceptus SAS, 50 avenue de Saint Cloud, F-78000 Versailles, France
| | - Claudia Bevilacqua
- UMR1313 Génétique Animale et Biologie Intégrative, plateforme ICE, INRA F-78350, Jouy-en-Josas, France
| | | |
Collapse
|
47
|
Spo0A~P imposes a temporal gate for the bimodal expression of competence in Bacillus subtilis. PLoS Genet 2012; 8:e1002586. [PMID: 22412392 PMCID: PMC3297582 DOI: 10.1371/journal.pgen.1002586] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/24/2012] [Indexed: 11/25/2022] Open
Abstract
ComK transcriptionally controls competence for the uptake of transforming DNA in Bacillus subtilis. Only 10%–20% of the cells in a clonal population are randomly selected for competence. Because ComK activates its own promoter, cells exceeding a threshold amount of ComK trigger a positive feedback loop, transitioning to the competence ON state. The transition rate increases to a maximum during the approach to stationary phase and then decreases, with most cells remaining OFF. The average basal rate of comK transcription increases transiently, defining a window of opportunity for transitions and accounting for the heterogeneity of competent populations. We show that as the concentration of the response regulator Spo0A∼P increases during the entry to stationary phase it first induces comK promoter activity and then represses it by direct binding. Spo0A∼P activates by antagonizing the repressor, Rok. This amplifies an inherent increase in basal level comK promoter activity that takes place during the approach to stationary phase and is a general feature of core promoters, serving to couple the probability of competence transitions to growth rate. Competence transitions are thus regulated by growth rate and temporally controlled by the complex mechanisms that govern the formation of Spo0A∼P. On the level of individual cells, the fate-determining noise for competence is intrinsic to the comK promoter. This overall mechanism has been stochastically simulated and shown to be plausible. Thus, a deterministic mechanism modulates an inherently stochastic process. Populations of bacterial cells sometimes bifurcate into subpopulations with different patterns of gene expression. The soil bacterium B. subtilis becomes “competent” for the uptake of environmental DNA, thus acquiring new genetic information. About 15% of the cells are chosen for expression of the competence genes by stochastic fluctuations in the transcription of comK. When the concentration of ComK exceeds a critical threshold, it activates its own expression, a molecular switch is thrown, and competence ensues in that cell. Here we ask why all of the cells do not eventually throw the switch. We show that the basal level expression of comK increases and then decreases as nutrients are exhausted, so that the number of cells exceeding the ComK threshold rises and falls, opening and closing a window of opportunity for competence. Two factors responsible for this “uptick” in comK expression are: 1) a global increase in transcription as cell division slows, and 2) a continual rise in the concentration of the master regulatory protein Spo0A-P, which activates and then represses comK as it accumulates. The global increase transmits growth rate information and the increase in Spo0A∼P encodes multiple signals, including the nutritional, replication, and population density status of the culture.
Collapse
|
48
|
Integration of σB activity into the decision-making process of sporulation initiation in Bacillus subtilis. J Bacteriol 2011; 194:1065-74. [PMID: 22210769 DOI: 10.1128/jb.06490-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spo0A∼P is the master regulator of sporulation in Bacillus subtilis. Activity of Spo0A is regulated by a phosphorelay integrating multiple positive and negative signals by the action of kinases and phosphatases. The phosphatase Spo0E specifically inactivates the response regulator Spo0A∼P by dephosphorylation. We identified a σ(B)-type promoter adjacent to spo0E that is activated by the general stress response sigma factor σ(B) and is responsible for spo0E induction in vivo. Ectopic expression of σ(B) and subsequent induction of spo0E cause a σ(B)-dependent block of sporulation-specific transcription of the spo0A and spoIIE genes and produces a sporulation-deficient phenotype. This effect could be erased by a deletion of the σ(B) promoter of spo0E and thus solely addresses σ(B) activity. Here, a molecular mechanism is shown that integrates σ(B) activity into the decision-making process of sporulation and provides a link to interconnect these two dominant and probably mutually exclusive adaptive responses in the regulatory network of B. subtilis.
Collapse
|
49
|
Baker MD, Neiditch MB. Structural basis of response regulator inhibition by a bacterial anti-activator protein. PLoS Biol 2011; 9:e1001226. [PMID: 22215984 PMCID: PMC3246441 DOI: 10.1371/journal.pbio.1001226] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 11/14/2011] [Indexed: 01/26/2023] Open
Abstract
The complex interplay between the response regulator ComA, the anti-activator RapF, and the signaling peptide PhrF controls competence development in Bacillus subtilis. More specifically, ComA drives the expression of genetic competence genes, while RapF inhibits the interaction of ComA with its target promoters. The signaling peptide PhrF accumulates at high cell density and upregulates genetic competence by antagonizing the interaction of RapF and ComA. How RapF functions mechanistically to inhibit ComA activity and how PhrF in turn antagonizes the RapF-ComA interaction were unknown. Here we present the X-ray crystal structure of RapF in complex with the ComA DNA binding domain. Along with biochemical and genetic studies, the X-ray crystal structure reveals how RapF mechanistically regulates ComA function. Interestingly, we found that a RapF surface mimics DNA to block ComA binding to its target promoters. Furthermore, RapF is a monomer either alone or in complex with PhrF, and it undergoes a conformational change upon binding to PhrF, which likely causes the dissociation of ComA from the RapF-ComA complex. Finally, we compare the structure of RapF complexed with the ComA DNA binding domain and the structure of RapH complexed with Spo0F. This comparison reveals that RapF and RapH have strikingly similar overall structures, and that they have evolved different, non-overlapping surfaces to interact with diverse cellular targets. To our knowledge, the data presented here reveal the first atomic level insight into the inhibition of response regulator DNA binding by an anti-activator. Compounds that affect the interaction of Rap and Rap-like proteins with their target domains could serve to regulate medically and commercially important phenotypes in numerous Bacillus species, such as sporulation in B. anthracis and sporulation and the production of Cry protein endotoxin in B. thuringiensis.
Collapse
Affiliation(s)
- Melinda D. Baker
- Department of Microbiology and Molecular Genetics, UMDNJ–New Jersey Medical School, Newark, New Jersey, United States of America
| | - Matthew B. Neiditch
- Department of Microbiology and Molecular Genetics, UMDNJ–New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
50
|
Abstract
Under conditions of nutrient limitation and high population density, the bacterium Bacillus subtilis can initiate a variety of developmental pathways. The signaling systems regulating B. subtilis differentiation are tightly controlled by switch proteins called Raps, named after the founding members of the family, which were shown to be response regulator aspartate phosphatases. A phr gene encoding a secreted pentapeptide that regulates the activity of its associated Rap protein was previously identified downstream of 8 of the chromosomally encoded rap genes. We identify and validate here the sequence of an atypical Phr peptide, PhrH, by in vivo and in vitro analyses. Using a luciferase reporter bioassay combined with in vitro experiments, we found that PhrH is a hexapeptide (TDRNTT), in contrast to the other characterized Phr pentapeptides. We also determined that phrH expression is driven by a promoter lying within rapH. Unlike the previously identified dedicated σ(H)-driven phr promoters, it appears that phrH expression most likely requires σ(A). Furthermore, we show that PhrH can antagonize both of the known activities of RapH: the dephosphorylation of Spo0F and the sequestration of ComA, thus promoting the development of spores and the competent state. Finally, we propose that PhrH is the prototype of a newly identified class of Phr signaling molecules consisting of six amino acids. This class likely includes PhrI, which regulates RapI and the expression, excision, and transfer of the mobile genetic element ICEBs1.
Collapse
|