1
|
Wang C, Feng S, Xiao Y, Pan M, Zhao J, Zhang H, Zhai Q, Chen W. A new Illumina MiSeq high-throughput sequencing-based method for evaluating the composition of the Bacteroides community in the intestine using the rpsD gene sequence. Microb Biotechnol 2021; 14:577-586. [PMID: 32779862 PMCID: PMC7936310 DOI: 10.1111/1751-7915.13651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/27/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022] Open
Abstract
Bacteroides is a bacterial genus that is known to closely interact with the host. The potential role of this genus is associated with its ecological status and distribution in the intestine. However, the current 16S V3-V4 region sequencing method can only detect the abundance of this genus, revealing a need for a novel sequencing method that can elucidate the composition of Bacteroides in the human gut microbiota. In this study, a core gene, rpsD, was selected as a template for the design of a Bacteroides-specific primer set. We used this primer set to develop a novel assay based on the Illumina MiSeq sequencing platform that enabled an accurate assessment of the Bacteroides compositions in complex samples. Known amounts of genomic DNA from 10 Bacteroides species were mixed with a complex sample and used to evaluate the performance and detection limit of our assay. The results were highly consistent with those of direct sequencing with a low Bacteroides DNA detection threshold (0.01 ng), supporting the reliability of our assay. In addition, the assay could detect all the known Bacteroides species within the faecal sample. In summary, we provide a sensitive and specific approach to determining the Bacteroides species in complex samples.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
- School of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Saisai Feng
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
- School of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Yue Xiao
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
- School of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Mingluo Pan
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
- School of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
- School of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Hao Zhang
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
- School of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
- National Engineering Research Center for Functional FoodJiangnan UniversityWuxiJiangsu214122China
- Wuxi Translational Medicine Research CenterJiangsu Translational MedicineResearch Institute Wuxi BranchWuxiChina
- (Yangzhou) Institute of Food BiotechnologyJiangnan UniversityYangzhou225004China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
- School of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiJiangsu214122China
| | - Wei Chen
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
- School of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
- National Engineering Research Center for Functional FoodJiangnan UniversityWuxiJiangsu214122China
- Beijing Innovation Centre of Food Nutrition and Human HealthBeijing Technology and Business University (BTBU)Beijing100048China
| |
Collapse
|
2
|
Deiorio-Haggar K, Anthony J, Meyer MM. RNA structures regulating ribosomal protein biosynthesis in bacilli. RNA Biol 2013; 10:1180-4. [PMID: 23611891 PMCID: PMC3849166 DOI: 10.4161/rna.24151] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In Bacilli, there are three experimentally validated ribosomal-protein autogenous regulatory RNAs that are not shared with E. coli. Each of these RNAs forms a unique secondary structure that interacts with a ribosomal protein encoded by a downstream gene, namely S4, S15, and L20. Only one of these RNAs that interacts with L20 is currently found in the RNA Families Database. We created, or modified, existing structural alignments for these three RNAs and used them to perform homology searches. We have determined that each structure exhibits a narrow phylogenetic distribution, mostly relegated to the Firmicute class Bacilli. This work, in conjunction with other similar work, demonstrates that there are most likely many non-homologous RNA regulatory elements regulating ribosomal protein biosynthesis that still await discovery and characterization in other bacterial species.
Collapse
|
3
|
Reyes DY, Zuber P. Activation of transcription initiation by Spx: formation of transcription complex and identification of a Cis-acting element required for transcriptional activation. Mol Microbiol 2008; 69:765-79. [PMID: 18687074 DOI: 10.1111/j.1365-2958.2008.06330.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Spx protein of Bacillus subtilis interacts with RNA polymerase (RNAP) to activate transcription initiation in response to thiol-oxidative stress. Protein-DNA cross-linking analysis of reactions containing RNAP, Spx and trxA (thioredoxin) or trxB (thioredoxin reductase) promoter DNA was undertaken to uncover the organization of the Spx-activated transcription initiation complex. Spx induced contact between the RNAP sigma(A) subunit and the -10 promoter sequence of trxA and B, and contact of the betabeta' subunits with core promoter DNA. No Spx-DNA contact was detected. Spx mutants, Spx(C10A) and Spx(G52R.), or RNAP alpha C-terminal domain mutants that impair productive Spx-RNAP interaction did not induce heightened sigma and betabeta' contact with the core promoter. Deletion analysis and the activity of hybrid promoter constructs having upstream trxB DNA fused at positions -31, -36 and -41 of the srf (surfactin synthetase) promoter indicated that a cis-acting site between -50 and -36 was required for Spx activity. Mutations at -43 and -44 of trxB abolished Spx-dependent transcription and Spx-induced cross-linking between the sigma subunit and the -10 region. These data are consistent with a model that Spx activation requires contact between the Spx/RNAP complex and upstream promoter DNA, which allows Spx-induced engagement of the sigma and large subunits with the core promoter.
Collapse
Affiliation(s)
- Dindo Y Reyes
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, 20000 NW Walker Rd., Beaverton, OR 97006, USA.
| | | |
Collapse
|
4
|
Krásný L, Tiserová H, Jonák J, Rejman D, Sanderová H. The identity of the transcription +1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. Mol Microbiol 2008; 69:42-54. [PMID: 18433449 DOI: 10.1111/j.1365-2958.2008.06256.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We identify here a pattern in the transcription start sites (+1A or +1G) of sigma(A)-dependent promoters of genes that are up-/downregulated in response to amino acid starvation (stringent response) in Bacillus subtilis. Upregulated promoters initiate mostly with ATP and downregulated promoters with GTP. These promoters appear to be sensitive to changes in initiating nucleoside triphosphate concentrations. During the stringent response in B. subtilis, when ATP and GTP levels change reciprocally, the identity of the +1 position (A or G) of these promoters is a factor important in their regulation. Mutations that change the identity of position +1 (A for G and vice versa) change the response of the promoter to amino acid starvation.
Collapse
Affiliation(s)
- Libor Krásný
- Laboratory of Molecular Genetics of Bacteria, Institute of Microbiology ASCR, Vídenská 1083, Prague 142 20, Czech Republic.
| | | | | | | | | |
Collapse
|
5
|
Choi SY, Reyes D, Leelakriangsak M, Zuber P. The global regulator Spx functions in the control of organosulfur metabolism in Bacillus subtilis. J Bacteriol 2006; 188:5741-51. [PMID: 16885442 PMCID: PMC1540065 DOI: 10.1128/jb.00443-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spx is a global transcriptional regulator of the oxidative stress response in Bacillus subtilis. Its target is RNA polymerase, where it contacts the alpha subunit C-terminal domain. Recently, evidence was presented that Spx participates in sulfate-dependent control of organosulfur utilization operons, including the ytmI, yxeI, ssu, and yrrT operons. The yrrT operon includes the genes that function in cysteine synthesis from S-adenosylmethionine through intermediates S-adenosylhomocysteine, ribosylhomocysteine, homocysteine, and cystathionine. These operons are also negatively controlled by CymR, the repressor of cysteine biosynthesis operons. All of the operons are repressed in media containing cysteine or sulfate but are derepressed in medium containing the alternative sulfur source, methionine. Spx was found to negatively control the expression of these operons in sulfate medium, in part, by stimulating the expression of the cymR gene. In addition, microarray analysis, monitoring of yrrT-lacZ fusion expression, and in vitro transcription studies indicate that Spx directly activates yrrT operon expression during growth in medium containing methionine as sole sulfur source. These experiments have uncovered additional roles for Spx in the control of gene expression during unperturbed, steady-state growth.
Collapse
Affiliation(s)
- Soon-Yong Choi
- OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | | | | |
Collapse
|
6
|
Nakano S, Erwin KN, Ralle M, Zuber P. Redox-sensitive transcriptional control by a thiol/disulphide switch in the global regulator, Spx. Mol Microbiol 2005; 55:498-510. [PMID: 15659166 DOI: 10.1111/j.1365-2958.2004.04395.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Spx protein is indispensable for survival of Bacillus subtilis under disulphide stress. Its interaction with the alpha-subunit of RNA polymerase is required for transcriptional induction of genes that function in thiol homeostasis, such as thioredoxin (trxA) and thioredoxin reductase (trxB). The N-terminal end of Spx contains a Cys-X-X-Cys (CXXC) motif, which is a likely target for redox-sensitive control. We show here that Spx directly activates trxA and -B transcription by interacting with the RNA polymerase alpha-subunit, but it does so only under an oxidized condition. The transcriptional activation by Spx requires formation of an intramolecular disulphide bond between two cysteine residues that reside in the CXXC motif. The mechanism of Spx-dependent transcriptional activation is unique in that it does not involve initial Spx-DNA interaction.
Collapse
Affiliation(s)
- Shunji Nakano
- Department of Environmental & Biomolecular Systems, OGI School of Science & Engineering, Oregon Health & Science University, Beaverton, OR 97006, USA
| | | | | | | |
Collapse
|
7
|
Zuber P. Spx-RNA polymerase interaction and global transcriptional control during oxidative stress. J Bacteriol 2004; 186:1911-8. [PMID: 15028674 PMCID: PMC374421 DOI: 10.1128/jb.186.7.1911-1918.2004] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Peter Zuber
- Department of Environmental and Biomolecular Systems, OGI School of Science & Engineering, Oregon Health & Science University, Beaverton, Oregon 97006, USA.
| |
Collapse
|
8
|
Liu J, Zuber P. The ClpX protein of Bacillus subtilis indirectly influences RNA polymerase holoenzyme composition and directly stimulates sigma-dependent transcription. Mol Microbiol 2000; 37:885-97. [PMID: 10972809 DOI: 10.1046/j.1365-2958.2000.02053.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Bacillus subtilis, several processes associated with the onset of stationary phase, including the initiation of sporulation, require the activity of the minor sigmaH form of RNA polymerase (RNAP). The induction of sigmaH-dependent gene transcription requires the regulatory ATPase, ClpX. The ClpX-dependent post-exponential increase in sigmaH activity is not dependent on the activator of sporulation gene expression, Spo0A. By determining the level of sigmaH and sigmaA in whole-cell extracts and RNAP preparations, evidence is presented that clpX does not influence the concentration of sigma subunits, but is required for the stationary phase reduction in sigmaA-RNAP holoenzyme. This is probably an indirect consequence of ClpX activity, because the ClpX-dependent decrease in sigmaA-RNAP concentration does not occur in a spo0A abrB mutant. The addition of ClpX to in vitro transcription reactions resulted in the stimulation of RNAP holoenzyme activity, but sigmaH-RNAP was observed to be more sensitive to ClpX-dependent stimulation than sigmaA-RNAP. No difference in transcriptional activity was observed in single-cycle in vitro transcription reactions, suggesting that ClpX acted at a step in transcription initiation after closed- and open-promoter complex formation. ClpX is proposed to function indirectly in the displacement of sigmaA from core RNAP and to act directly in the stimulation of sigmaH-dependent transcription in sporulating B. subtilis cells.
Collapse
Affiliation(s)
- J Liu
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton 97006, USA. Health Sciences Cen
| | | |
Collapse
|
9
|
Grundy FJ, Collins JA, Rollins SM, Henkin TM. tRNA determinants for transcription antitermination of the Bacillus subtilis tyrS gene. RNA (NEW YORK, N.Y.) 2000; 6:1131-41. [PMID: 10943892 PMCID: PMC1369987 DOI: 10.1017/s1355838200992100] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transcriptional regulation of the T box family of aminoacyl-tRNA synthetase and amino acid biosynthesis genes in Gram-positive bacteria is mediated by a conserved transcription antitermination system, in which readthrough of a termination site in the leader region of the mRNA is directed by a specific interaction with the cognate uncharged tRNA. The specificity of this interaction is determined in part by pairing of the anticodon of the tRNA with a "specifier sequence" in the leader, a codon representing the appropriate amino acid, as well as by pairing of the acceptor end of the tRNA with an unpaired region of the antiterminator. Previous studies have indicated that although these interactions are necessary for antitermination, they are unlikely to be sufficient. In the current study, the effect of multiple mutations in tRNA(Tyr) on readthrough of the tyrS leader region terminator, independent of other tRNA functions, was assessed using a system for in vivo expression of pools of tRNA variants; this system may be generally useful for in vivo expression of RNAs with defined end points. Although alterations in helical regions of tRNA(Tyr) that did not perturb base pairing were generally permitted, substitutions affecting conserved features of tRNAs were not. The long variable arm of tRNA(Tyr) could be replaced by either a short variable arm or a long insertion of a stable stem-loop structure. These results indicate that the tRNA-leader RNA interaction is highly constrained, and is likely to involve recognition of the overall tertiary structure of the tRNA.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/genetics
- Amino Acyl-tRNA Synthetases/metabolism
- Bacillus subtilis/genetics
- Base Sequence
- Blotting, Northern
- Endoribonucleases/metabolism
- Escherichia coli/genetics
- Escherichia coli Proteins
- Gene Expression Regulation, Bacterial
- HIV Long Terminal Repeat/genetics
- Lac Operon
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mutation
- Peptide Chain Termination, Translational
- Plasmids/metabolism
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Catalytic/metabolism
- RNA, Transfer/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Ribonuclease P
- Transcription, Genetic
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- F J Grundy
- Department of Microbiology, The Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
10
|
Allen T, Shen P, Samsel L, Liu R, Lindahl L, Zengel JM. Phylogenetic analysis of L4-mediated autogenous control of the S10 ribosomal protein operon. J Bacteriol 1999; 181:6124-32. [PMID: 10498727 PMCID: PMC103642 DOI: 10.1128/jb.181.19.6124-6132.1999] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the regulation of the S10 ribosomal protein (r-protein) operon among members of the gamma subdivision of the proteobacteria, which includes Escherichia coli. In E. coli, this 11-gene operon is autogenously controlled by r-protein L4. This regulation requires specific determinants within the untranslated leader of the mRNA. Secondary structure analysis of the S10 leaders of five enterobacteria (Salmonella typhimurium, Citrobacter freundii, Yersinia enterocolitica, Serratia marcescens, and Morganella morganii) and two nonenteric members of the gamma subdivision (Haemophilus influenzae and Vibrio cholerae) shows that these foreign leaders share significant structural homology with the E. coli leader, particularly in the region which is critical for L4-mediated autogenous control in E. coli. Moreover, these heterologous leaders produce a regulatory response to L4 oversynthesis in E. coli. Our results suggest that an E. coli-like L4-mediated regulatory mechanism may operate in all of these species. However, the mechanism is not universally conserved among the gamma subdivision members, since at least one, Pseudomonas aeruginosa, does not contain the required S10 leader features, and its leader cannot provide the signals for regulation by L4 in E. coli. We speculate that L4-mediated autogenous control developed during the evolution of the gamma branch of proteobacteria.
Collapse
Affiliation(s)
- T Allen
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| | | | | | | | | | | |
Collapse
|
11
|
Waldo RH, Popham PL, Romero-Arroyo CE, Mothershed EA, Lee KK, Krause DC. Transcriptional analysis of the hmw gene cluster of Mycoplasma pneumoniae. J Bacteriol 1999; 181:4978-85. [PMID: 10438770 PMCID: PMC93987 DOI: 10.1128/jb.181.16.4978-4985.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma pneumoniae adherence to host cells is a multifactorial process that requires the cytadhesin P1 and additional accessory proteins. The hmw gene cluster consists of the genes p30, hmw3, and hmw1, the products of which are known to be essential for cytadherence, the rpsD gene, and six open reading frames of unknown function. Putative transcriptional terminators flank this locus, raising the possibility that these genes are expressed as a single transcriptional unit. However, S1 nuclease protection and primer extension experiments identified probable transcriptional start sites upstream of the p32, p21, p50, and rpsD genes. Each was preceded at the appropriate spacing by the -10-like sequence TTAAAATT, but the -35 regions were not conserved. Analysis of the M. pneumoniae genome sequence indicated that this promoter-like sequence is found upstream of only a limited number of open reading frames, including the genes for P65 and P200, which are structurally related to HMW1 and HMW3. Promoter deletion studies demonstrated that the promoter-like region upstream of p21 was necessary for the expression of p30 and an hmw3-cat fusion in M. pneumoniae, while deletion of the promoter-like region upstream of p32 had no apparent effect. Analysis by reverse transcription-PCR confirmed transcriptional linkage of all the open reading frames in the hmw gene cluster. Taken together, these findings suggest that the genes of this locus constitute an operon expressed from overlapping transcripts.
Collapse
Affiliation(s)
- R H Waldo
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
12
|
Davies C, Gerstner RB, Draper DE, Ramakrishnan V, White SW. The crystal structure of ribosomal protein S4 reveals a two-domain molecule with an extensive RNA-binding surface: one domain shows structural homology to the ETS DNA-binding motif. EMBO J 1998; 17:4545-58. [PMID: 9707415 PMCID: PMC1170785 DOI: 10.1093/emboj/17.16.4545] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We report the 1.7 A crystal structure of ribosomal protein S4 from Bacillus stearothermophilus. To facilitate the crystallization, 41 apparently flexible residues at the N-terminus of the protein have been deleted (S4Delta41). S4Delta41 has two domains; domain 1 is completely alpha-helical and domain 2 comprises a five-stranded antiparallel beta-sheet with three alpha-helices packed on one side. Domain 2 is an insertion within domain 1, and it shows significant structural homology to the ETS domain of eukaryotic transcription factors. A phylogenetic analysis of the S4 primary structure shows that the likely RNA interaction surface is predominantly on one side of the protein. The surface is extensive and highly positively charged, and is centered on a distinctive canyon at the domain interface. The latter feature contains two arginines that are totally conserved in all known species of S4 including eukaryotes, and are probably crucial in binding RNA. As has been shown for other ribosomal proteins, mutations within S4 that affect ribosome function appear to disrupt the RNA-binding sites. The structure provides a framework with which to probe the RNA-binding properties of S4 by site-directed mutagenesis.
Collapse
Affiliation(s)
- C Davies
- Department of Structural Biology, St Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA
| | | | | | | | | |
Collapse
|
13
|
Li X, Lindahl L, Sha Y, Zengel JM. Analysis of the Bacillus subtilis S10 ribosomal protein gene cluster identifies two promoters that may be responsible for transcription of the entire 15-kilobase S10-spc-alpha cluster. J Bacteriol 1997; 179:7046-54. [PMID: 9371452 PMCID: PMC179646 DOI: 10.1128/jb.179.22.7046-7054.1997] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have sequenced a previously uncharacterized region of the Bacillus subtilis S10 ribosomal protein gene cluster. The new segment includes genes for S10, L3, L4, L23, L2, S19, L22, S3, and part of L16. These B. subtilis genes map in the same order as the genes in the Escherichia coli S10 ribosomal protein operon. Two potential promoter sequences were identified, one approximately 200 bases and the other approximately 140 bases upstream of the S10 gene. The activities of the two promoters were demonstrated by primer extension analysis, in vitro transcription experiments, and in vivo promoter fusion plasmid studies. In agreement with previous reports, our Northern analysis of exponentially growing cells failed to identify terminators or other active promoters within the S10-spc-alpha region. Our observations suggest that the two S10 promoters reported here are responsible for transcribing a 15-kb-long transcript for all of the genes in the B. subtilis S10, spc, and alpha clusters.
Collapse
Affiliation(s)
- X Li
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore 21250, USA
| | | | | | | |
Collapse
|
14
|
Lapidus A, Galleron N, Sorokin A, Ehrlich SD. Sequencing and functional annotation of the Bacillus subtilis genes in the 200 kb rrnB-dnaB region. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 11):3431-3441. [PMID: 9387221 DOI: 10.1099/00221287-143-11-3431] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The 200 kb region of the Bacillus subtilis chromosome spanning from 255 to 275 degrees on the genetic map was sequenced. The strategy applied, based on use of yeast artificial chromosomes and multiplex Long Accurate PCR, proved to be very efficient for sequencing a large bacterial chromosome area. A total of 193 genes of this part of the chromosome was classified by level of knowledge and biological category of their functions. Five levels of gene function understanding are defined. These are: (i) experimental evidence is available of gene product or biological function; (ii) strong homology exists for the putative gene product with proteins from other organisms; (iii) some indication of the function can be derived from homologies with known proteins; (iv) the gene product can be clustered with hypothetical proteins; (v) no indication on the gene function exists. The percentage of detected genes in each category was: 20, 28, 20, 15 and 17, respectively. In the sequenced region, a high percentage of genes are implicated in transport and metabolic linking of glycolysis and the citric acid cycle. A functional connection of several genes from this region and the genes close to 140 degrees in the chromosome was also observed.
Collapse
Affiliation(s)
- Alia Lapidus
- Laboratoire de Genetique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France
| | - Nathalie Galleron
- Laboratoire de Genetique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France
| | - Alexei Sorokin
- Laboratoire de Genetique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France
| | - S Dusko Ehrlich
- Laboratoire de Genetique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France
| |
Collapse
|
15
|
Hilbert H, Himmelreich R, Plagens H, Herrmann R. Sequence analysis of 56 kb from the genome of the bacterium Mycoplasma pneumoniae comprising the dnaA region, the atp operon and a cluster of ribosomal protein genes. Nucleic Acids Res 1996; 24:628-39. [PMID: 8604303 PMCID: PMC145699 DOI: 10.1093/nar/24.4.628] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To sequence the entire 800 kilobase pair genome of the bacterium Mycoplasma pneumoniae, a plasmid library was established with contained the majority of the EcoR1 fragments from M.pneumoniae. The EcoR1 fragments were subcloned from an ordered cosmid library comprising the complete M.pneumoniae genome. Individual plasmid clones were sequenced in an ordered fashion mainly by primer walking. We report here the initial results from the sequence analysis of -56 kb comprising the dnaA region as a potential origin of replication, the ATPase operon and a region coding for a cluster of ribosomal protein genes. The data were compared with the corresponding genes/operons from Bacillus subtilis, Escherichia coli, Mycoplasma capricolum and Mycoplasma gallisepticum.
Collapse
Affiliation(s)
- H Hilbert
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, Germany
| | | | | | | |
Collapse
|
16
|
Zengel JM, Vorozheikina D, Li X, Lindahl L. Regulation of the Escherichia coli S10 ribosomal protein operon by heterologous L4 ribosomal proteins. Biochem Cell Biol 1995; 73:1105-12. [PMID: 8722027 DOI: 10.1139/o95-119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have cloned the L4 ribosomal protein genes from Morganella morganii and Haemophilus influenza. The sequences of these genes were compared with published sequences for Escherichia coli, Yersinia pseudotuberculosis, and Bacillus stearothermophilus. All five of these L4 genes were expressed in E. coli and shown to function as repressors of both transcription and translation of the E. coli S10 operon. Possible implications for regulation of r-protein synthesis in species other E. coli are discussed.
Collapse
Affiliation(s)
- J M Zengel
- Department of Biology, University of Rochester, NY 14627, USA
| | | | | | | |
Collapse
|
17
|
Helmann JD. Compilation and analysis of Bacillus subtilis sigma A-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res 1995; 23:2351-60. [PMID: 7630711 PMCID: PMC307037 DOI: 10.1093/nar/23.13.2351] [Citation(s) in RCA: 304] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sequence analysis of 236 promoters recognized by the Bacillus subtilis sigma A-RNA polymerase reveals an extended promoter structure. The most highly conserved bases include the -35 and -10 hexanucleotide core elements and a TG dinucleotide at position -15, -14. In addition, several weakly conserved A and T residues are present upstream of the -35 region. Analysis of dinucleotide composition reveals A2- and T2-rich sequences in the upstream promoter region (-36 to -70) which are phased with the DNA helix: An tracts are common near -43, -54 and -65; Tn tracts predominate at the intervening positions. When compared with larger regions of the genome, upstream promoter regions have an excess of An and Tn sequences for n > 4. These data indicate that an RNA polymerase binding site affects DNA sequence as far upstream as -70. This sequence conservation is discussed in light of recent evidence that the alpha subunits of the polymerase core bind DNA and that the promoter may wrap around RNA polymerase.
Collapse
Affiliation(s)
- J D Helmann
- Section of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| |
Collapse
|
18
|
Randolph-Anderson BL, Boynton JE, Gillham NW, Huang C, Liu XQ. The chloroplast gene encoding ribosomal protein S4 in Chlamydomonas reinhardtii spans an inverted repeat--unique sequence junction and can be mutated to suppress a streptomycin dependence mutation in ribosomal protein S12. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:295-305. [PMID: 7770034 DOI: 10.1007/bf00293197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The ribosomal protein gene rps4 was cloned and sequenced from the chloroplast genome of Chlamydomonas reinhardtii. The N-terminal 213 amino acid residues of the S4 protein are encoded in the single-copy region (SCR) of the genome, while the C-terminal 44 amino acid residues are encoded in the inverted repeat (IR). The deduced 257 amino acid sequence of C. reinhardtii S4 is considerably longer (by 51-59 residues) than S4 proteins of other photosynthetic species and Escherichia coli, due to the presence of two internal insertions and a C-terminal extension. A short conserved C-terminal motif found in all other S4 proteins examined is missing from the C. reinhardtii protein. In E. coli, mutations in the S4 protein suppress the streptomycin-dependent (sd) phenotype of mutations in the S12 protein. Because we have been unable to identify similar S4 mutations among suppressors of an sd mutation in C. reinhardtii S12 obtained using UV mutagenesis, we made site-directed mutations [Arg68 (CGT) to Leu (CTG and CTT)] in the wild-type rps4 gene equivalent to an E. coli Gln53 to Leu ribosomal ambiguity mutation (ram), which suppresses the sd phenotype and decreases translational accuracy. These mutants were tested for their ability to transform the sd S12 mutation of C. reinhardtii to streptomycin independence. The streptomycin-independent isolates obtained by biolistic transformation all possessed the original sd mutation in rps12, but none had the expected donor Leu68 mutations in rps4. Instead, six of 15 contained a Gln73 (CAA) to Pro (CCA) mutation five amino acids downstream from the predicted mutant codon, irrespective of rps4 donor DNA. Two others contained six- and ten-amino acid, in-frame insertions at S4 positions 90 and 92 that appear to have been induced by the biolistic process itself. Eight streptomycin-independent isolates analyzed had wild-type rps4 genes and may possess mutations identical to previously isolated suppressors of sd that define at least two additional chloroplast loci. Cloned rps4 genes from streptomycin-independent isolates containing the Gln73 to Pro mutation and the 6-amino acid insertion in r-protein S4 transform the sd strain to streptomycin independence.
Collapse
|
19
|
Zengel JM, Lindahl L. Diverse mechanisms for regulating ribosomal protein synthesis in Escherichia coli. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 47:331-70. [PMID: 7517053 DOI: 10.1016/s0079-6603(08)60256-1] [Citation(s) in RCA: 180] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- J M Zengel
- Department of Biology, University of Rochester, New York 14627
| | | |
Collapse
|
20
|
Grundy FJ, Waters DA, Takova TY, Henkin TM. Identification of genes involved in utilization of acetate and acetoin in Bacillus subtilis. Mol Microbiol 1993; 10:259-71. [PMID: 7934817 DOI: 10.1111/j.1365-2958.1993.tb01952.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Bacillus subtilis ccpA gene has previously been shown to be involved in repression of amyE expression when cells are grown in excess glucose. The region of the B. subtilis chromosome downstream from ccpA was characterized to determine if additional genes involved in carbohydrate metabolism were present. Two open reading frames that exhibited sequence similarity to the Escherichia coli and B. subtilis motA and motB motility genes were found immediately downstream from ccpA; disruption of this region had no effect on growth, sporulation or motility. Two divergent transcriptional units containing the acsA and acuABC genes were also found in this region. The acsA gene encodes acetyl-CoA synthetase, and inactivation of this gene resulted in loss of the ability to utilize acetate as a carbon source for growth or sporulation. Disruption of the acuABC genes resulted in poor growth or sporulation on acetoin or butanediol. The acsA and acuABC promoter sequences were identified by primer extension, and are in close proximity. Two sequences resembling the amyO regulatory target site necessary for glucose repression of amyE were identified in the acsA-acuABC promoter regions.
Collapse
Affiliation(s)
- F J Grundy
- Department of Biochemistry and Molecular Biology, Albany Medical College, New York 12208
| | | | | | | |
Collapse
|
21
|
Abstract
The Bacillus subtilis rpsD gene, which encodes ribosomal protein S4, is subject to autogenous regulation. Repression of rpsD expression by excess S4 protein was previously shown to be affected by mutations in the leader region of the gene. A large number of deletion and point mutations in the leader region were generated, and their effect on repression by S4 in vivo was tested. These studies indicated that the required region was within positions +30 to +190 relative to the transcription start point. Replacement of the rpsD promoter with a lac promoter derivative which is expressed in B. subtilis had no effect, indicating that repression by S4 occurs at a level subsequent to transcription initiation. The rpsD leader region was isolated from several Bacillus species. Members of the B. subtilis group, as defined by analysis of 16S rRNA sequence, contained a leader region target site very closely related in structure to that of B. subtilis, despite considerable primary sequence variation; the B. brevis rpsD leader contained some but not all of the structural features found in the regulatory target sites of the other Bacillus species. Very little similarity to the Escherichia coli alpha operon S4 target site was found at either the primary-sequence or the secondary-structure level. Mutagenic and phylogenetic data indicate that the secondary structure of the leader region regulatory target site contains two large stem-loop domains. The first of these helices has a side loop which is essential for autoregulation, is highly conserved among Bacillus rpsD genes, and is similar to a region of 16S rRNA important in S4 binding.
Collapse
Affiliation(s)
- F J Grundy
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130
| | | |
Collapse
|
22
|
Craven MG, Henner DJ, Alessi D, Schauer AT, Ost KA, Deutscher MP, Friedman DI. Identification of the rph (RNase PH) gene of Bacillus subtilis: evidence for suppression of cold-sensitive mutations in Escherichia coli. J Bacteriol 1992; 174:4727-35. [PMID: 1624460 PMCID: PMC206269 DOI: 10.1128/jb.174.14.4727-4735.1992] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A shotgun cloning of Bacillus subtilis DNA into pBR322 yielded a 2-kb fragment that suppresses the cold-sensitive defect of the nusA10(Cs) Escherichia coli mutant. The responsible gene encodes an open reading frame that is greater than 50% identical at the amino acid level to the E. coli rph gene, which was formerly called orfE. This B. subtilis gene is located at 251 degrees adjacent to the gerM gene on the B. subtilis genetic map. It has been named rph because, like its E. coli analog, it encodes a phosphate-dependent exoribonuclease activity, RNase PH, that removes the 3' nucleotides from precursor tRNAs. The cloned B. subtilis rph gene also suppresses the cold-sensitive phenotype of other unrelated cold-sensitive mutants of E. coli, but not the temperature-sensitive phenotype of three temperature-sensitive mutants, including the nusA11(Ts) mutant, that were tested.
Collapse
Affiliation(s)
- M G Craven
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620
| | | | | | | | | | | | | |
Collapse
|
23
|
Nakano MM, Corbell N, Besson J, Zuber P. Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. MOLECULAR & GENERAL GENETICS : MGG 1992; 232:313-21. [PMID: 1557038 DOI: 10.1007/bf00280011] [Citation(s) in RCA: 201] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The sfp gene is required for cells of Bacillus subtilis to become producers of the lipopeptide antibiotic surfactin. sfp was isolated and its nucleotide sequence was determined. sfp was expressed in Escherichia coli and its putative product was purified for use in antibody production and in amino acid sequence analysis. The gene was plasmid-amplified in B. subtilis, where it conferred a Srf+ phenotype on sfp0 (surfactin non-producing) cells. Overproduction of Sfp in B. subtilis did not cause production of an increased amount of surfactin and resulted in the repression of a lacZ transcriptional fusion of the srfA operon, which encodes enzymes that catalyze surfactin synthesis. We propose that sfp represents an essential component of peptide synthesis systems and also plays a role, either directly or indirectly, in the regulation of surfactin biosynthesis gene expression.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130-3932
| | | | | | | |
Collapse
|
24
|
NAM9 nuclear suppressor of mitochondrial ochre mutations in Saccharomyces cerevisiae codes for a protein homologous to S4 ribosomal proteins from chloroplasts, bacteria, and eucaryotes. Mol Cell Biol 1992. [PMID: 1729612 DOI: 10.1128/mcb.12.1.402] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the genetic characterization, molecular cloning, and sequencing of a novel nuclear suppressor, the NAM9 gene from Saccharomyces cerevisiae, which acts on mutations of mitochondrial DNA. The strain NAM9-1 was isolated as a respiration-competent revertant of a mitochondrial mit mutant which carries the V25 ochre mutation in the oxi1 gene. Genetic characterization of the NAM9-1 mutation has shown that it is a nuclear dominant omnipotent suppressor alleviating several mutations in all four mitochondrial genes tested and has suggested its informational, and probably ribosomal, character. The NAM9 gene was cloned by transformation of the recipient oxi1-V25 mutant to respiration competence by using a gene bank from the NAM9-1 rho o strain. Orthogonal-field alternation gel electrophoresis analysis and genetic mapping localized the NAM9 gene on the right arm of chromosome XIV. Sequence analysis of the NAM9 gene showed that it encodes a basic protein of 485 amino acids with a presequence that could target the protein to the mitochondrial matrix. The N-terminal sequence of 200 amino acids of the deduced NAM9 product strongly resembles the S4 ribosomal proteins from chloroplasts and bacteria. Significant although less extensive similarity was found with ribosomal cytoplasmic proteins from lower eucaryotes, including S. cerevisiae. Chromosomal inactivation of the NAM9+ gene is not lethal to the cell but leads to respiration deficiency and loss of mitochondrial DNA integrity. We conclude that the NAM9 gene product is a mitochondrial ribosomal counterpart of S4 ribosomal proteins found in other systems and that the suppressor acts through decreasing the fidelity of translation.
Collapse
|
25
|
Henkin TM, Glass BL, Grundy FJ. Analysis of the Bacillus subtilis tyrS gene: conservation of a regulatory sequence in multiple tRNA synthetase genes. J Bacteriol 1992; 174:1299-306. [PMID: 1735721 PMCID: PMC206425 DOI: 10.1128/jb.174.4.1299-1306.1992] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Bacillus subtilis tyrS gene, which encodes tyrosyl-tRNA synthetase (TyrTS), was isolated, and its nucleotide sequence was determined. The cloned gene was shown to complement an Escherichia coli tyrS (Ts) mutant. The predicted amino acid sequence exhibited 70% identity to that of Bacillus stearothermophilus TyrTS and 55% identity to that of E. coli TyrTS, while identity to a second cryptic B. subtilis TyrTS gene, designated tyrZ, was only 27%. Primer extension analysis indicated that tyrS transcription initiated at a vegetative promoter sequence located 300 nucleotides upstream of the AUG start codon. The mRNA leader region was found to contain an inverted repeat sequence resembling a transcriptional terminator. Expression of a transcriptional tyrS-lacZ fusion was found to be induced by starvation for tyrosine in a tyrosine auxotroph (tyrA1). Transcription initiation was unaffected by tyrosine starvation. Deletion of the terminator region in a tyrS-lacZ fusion resulted in high-level constitutive expression. Immediately preceding the putative terminator was sequence element found to be conserved in the upstream region of a number of Bacillus tRNA synthetase genes as well as in the ilv-leu biosynthetic operon; mutation of this element in tyrS resulted in low-level uninducible expression. The conservation of this sequence element suggests that aminoacyl-tRNA synthetase genes and the ilv-leu operon may be regulated by a common mechanism in Bacillus spp.
Collapse
Affiliation(s)
- T M Henkin
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130-3932
| | | | | |
Collapse
|
26
|
Buchnera aphidicola, the endosymbiont of aphids, contains genes for four ribosomal RNA proteins, initiation factor-3, and the α-subunit of RNA polymerase. Curr Microbiol 1992. [DOI: 10.1007/bf01570095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Boguta M, Dmochowska A, Borsuk P, Wrobel K, Gargouri A, Lazowska J, Slonimski PP, Szczesniak B, Kruszewska A. NAM9 nuclear suppressor of mitochondrial ochre mutations in Saccharomyces cerevisiae codes for a protein homologous to S4 ribosomal proteins from chloroplasts, bacteria, and eucaryotes. Mol Cell Biol 1992; 12:402-12. [PMID: 1729612 PMCID: PMC364135 DOI: 10.1128/mcb.12.1.402-412.1992] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We report the genetic characterization, molecular cloning, and sequencing of a novel nuclear suppressor, the NAM9 gene from Saccharomyces cerevisiae, which acts on mutations of mitochondrial DNA. The strain NAM9-1 was isolated as a respiration-competent revertant of a mitochondrial mit mutant which carries the V25 ochre mutation in the oxi1 gene. Genetic characterization of the NAM9-1 mutation has shown that it is a nuclear dominant omnipotent suppressor alleviating several mutations in all four mitochondrial genes tested and has suggested its informational, and probably ribosomal, character. The NAM9 gene was cloned by transformation of the recipient oxi1-V25 mutant to respiration competence by using a gene bank from the NAM9-1 rho o strain. Orthogonal-field alternation gel electrophoresis analysis and genetic mapping localized the NAM9 gene on the right arm of chromosome XIV. Sequence analysis of the NAM9 gene showed that it encodes a basic protein of 485 amino acids with a presequence that could target the protein to the mitochondrial matrix. The N-terminal sequence of 200 amino acids of the deduced NAM9 product strongly resembles the S4 ribosomal proteins from chloroplasts and bacteria. Significant although less extensive similarity was found with ribosomal cytoplasmic proteins from lower eucaryotes, including S. cerevisiae. Chromosomal inactivation of the NAM9+ gene is not lethal to the cell but leads to respiration deficiency and loss of mitochondrial DNA integrity. We conclude that the NAM9 gene product is a mitochondrial ribosomal counterpart of S4 ribosomal proteins found in other systems and that the suppressor acts through decreasing the fidelity of translation.
Collapse
Affiliation(s)
- M Boguta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Theisen M, Potter AA. Cloning, sequencing, expression, and functional studies of a 15,000-molecular-weight Haemophilus somnus antigen similar to Escherichia coli ribosomal protein S9. J Bacteriol 1992; 174:17-23. [PMID: 1729207 PMCID: PMC205670 DOI: 10.1128/jb.174.1.17-23.1992] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Haemophilus somnus is a gram-negative bacterium capable of causing a number of disease syndromes in cattle. This article describes the cloning and characterization of a gene coding for a 15,000-molecular-weight (15K) polypeptide which reacts strongly with antiserum against H. somnus. Analysis of plasmid-encoded polypeptides by polyacrylamide gel electrophoresis showed that the corresponding gene is the second in a transcriptional unit. The first gene codes for a protein with a molecular weight of approximately 17,000. Using antiserum against the two recombinant proteins, we could show that the natural proteins are predominantly present in purified ribosomes from H. somnus. The nucleotide sequence of both genes and flanking regions has been determined, and the deduced amino acid sequence of the two polypeptides was used to search for sequence homology in the GenBank data base. The 15K polypeptide showed 89% similarity to the Escherichia coli ribosomal protein S9, and the 17K polypeptide showed 94% similarity to the E. coli ribosomal protein L13. In E. coli, the corresponding genes constitute a bicistronic operon, with the same gene order as that found in H. somnus. A plasmid expressing the 15K protein was found to complement an E. coli rpsI mutation. When a frameshift mutation was introduced into the 15K protein gene, the resulting plasmid failed to complement this rpsI mutation, demonstrating functional homology between the 15K protein and S9 from E. coli. Downstream from the 15K protein gene is located another open reading frame, which could code for a polypeptide with a predicted molecular weight of 24,427. A protein with a similar molecular weight was detected in minicells containing the recombinant clone. This polypeptide is 69% similar to the stringent starvation protein (Ssp) of E. coli.
Collapse
Affiliation(s)
- M Theisen
- Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
29
|
Abstract
The results obtained during the first year of the project involving the sequencing of the Bacillus subtilis genome are presented. Different gene libraries using a yeast artificial chromosome vector and bacteriophage vectors, lambda FixII and phi 105J124, have been constructed. A total of 300 kbp have been cloned using the lambda FixII vector, 68 kbp of which have been fully sequenced. Several open reading frames showing homologies with genes of other organisms were found. Two genes, previously unknown in this organism, have been identified.
Collapse
Affiliation(s)
- F Kunst
- Unité de Biochimie Microbienne, URA 1300, Institut Pasteur, Paris
| | | |
Collapse
|
30
|
Grundy FJ, Henkin TM. The rpsD gene, encoding ribosomal protein S4, is autogenously regulated in Bacillus subtilis. J Bacteriol 1991; 173:4595-602. [PMID: 1906866 PMCID: PMC208134 DOI: 10.1128/jb.173.15.4595-4602.1991] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although the mechanisms for regulation of ribosomal protein gene expression have been established for gram-negative bacteria such as Escherichia coli, the regulation of these genes in gram-positive bacteria such as Bacillus subtilis has not yet been characterized. In this study, the B. subtilis rpsD gene, encoding ribosomal protein S4, was found to be subject to autogenous control. In E. coli, rpsD is located in the alpha operon, and S4 acts as the translational regulator for alpha operon expression, binding to a target site in the alpha operon mRNA. The target site for repression of B. subtilis rpsD by protein S4 was localized by deletion and oligonucleotide-directed mutagenesis to the leader region of the monocistronic rpsD gene. The B. subtilis rpsD leader exhibits little sequence homology to the E. coli alpha operon leader but may be able to form a pseudoknotlike structure similar to that found in E. coli.
Collapse
Affiliation(s)
- F J Grundy
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130
| | | |
Collapse
|
31
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1991; 19:4025-42. [PMID: 1862010 PMCID: PMC328534 DOI: 10.1093/nar/19.14.4025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
32
|
Henkin TM, Grundy FJ, Nicholson WL, Chambliss GH. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol Microbiol 1991; 5:575-84. [PMID: 1904524 DOI: 10.1111/j.1365-2958.1991.tb00728.x] [Citation(s) in RCA: 259] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Expression of the alpha-amylase gene of Bacillus subtilis is controlled at the transcriptional level, and responds to the growth state of the cell as well as the availability of rapidly metabolizable carbon sources. Glucose-mediated repression has previously been shown to involve a site near the transcriptional start-point of the amyE gene. In this study, a transposon insertion mutation was characterized which resulted in loss of glucose repression of amyE gene expression. The gene affected by this mutation, which was localized near 263 degrees on the B. subtilis chromosomal map, was isolated and its DNA sequence was determined. This gene, designated ccpA, exhibited striking homology to repressor genes of the lac and gal repressor family. The ccpA gene was found to be allelic to alsA, previously identified as a regulator of acetoin biosynthesis, and may be involved in catabolite regulation of other systems as well.
Collapse
Affiliation(s)
- T M Henkin
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130
| | | | | | | |
Collapse
|
33
|
Henkin TM, Chambliss GH, Grundy FJ. Bacillus subtilis mutants with alterations in ribosomal protein S4. J Bacteriol 1990; 172:6380-5. [PMID: 2121712 PMCID: PMC526823 DOI: 10.1128/jb.172.11.6380-6385.1990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Two mutants with different alterations in the electrophoretic mobility of ribosomal protein S4 were isolated as spore-plus revertants of a streptomycin-resistant, spore-minus strain of Bacillus subtilis. The mutations causing the S4 alterations, designated rpsD1 and rpsD2, were located between the argGH and aroG genes, at 263 degrees on the B. subtilis chromosome, distant from the major ribosomal protein gene cluster at 12 degrees. The mutant rpsD alleles were isolated by hybridization using a wild-type rpsD probe, and their DNA sequences were determined. The two mutants contained alterations at the same position within the S4-coding sequence, in a region containing a 12-bp tandem duplication; the rpsD1 allele corresponded to an additional copy of this repeated segment, resulting in the insertion of four amino acids, whereas the rpsD2 allele corresponded to deletion of one copy of this segment, resulting in the loss of four amino acids. The effects of these mutations, alone and in combination with streptomycin resistance mutations, on growth, sporulation, and streptomycin resistance were analyzed.
Collapse
Affiliation(s)
- T M Henkin
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130
| | | | | |
Collapse
|