1
|
Archaea/eukaryote-specific ribosomal proteins - guardians of a complex structure. Comput Struct Biotechnol J 2023; 21:1249-1261. [PMID: 36817958 PMCID: PMC9932298 DOI: 10.1016/j.csbj.2023.01.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023] Open
Abstract
In three domains of life, proteins are synthesized by large ribonucleoprotein particles called ribosomes. All ribosomes are composed of ribosomal RNAs (rRNA) and numerous ribosomal proteins (r-protein). The three-dimensional shape of ribosomes is mainly defined by a tertiary structure of rRNAs. In addition, rRNAs have a major role in decoding the information carried by messenger RNAs and catalyzing the peptide bond formation. R-proteins are essential for shaping the network of interactions that contribute to a various aspects of the protein synthesis machinery, including assembly of ribosomes and interaction of ribosomal subunits. Structural studies have revealed that many key components of ribosomes are conserved in all life domains. Besides the core structure, ribosomes contain domain-specific structural features that include additional r-proteins and extensions of rRNA and r-proteins. This review focuses specifically on those r-proteins that are found only in archaeal and eukaryotic ribosomes. The role of these archaea/eukaryote specific r-proteins in stabilizing the ribosome structure is discussed. Several examples illustrate their functions in the formation of the internal network of ribosomal subunits and interactions between the ribosomal subunits. In addition, the significance of these r-proteins in ribosome biogenesis and protein synthesis is highlighted.
Collapse
|
2
|
Jiménez-Díaz A, Remacha M, Ballesta JPG, Berlanga JJ. Phosphorylation of initiation factor eIF2 in response to stress conditions is mediated by acidic ribosomal P1/P2 proteins in Saccharomyces cerevisiae. PLoS One 2013; 8:e84219. [PMID: 24391917 PMCID: PMC3877244 DOI: 10.1371/journal.pone.0084219] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/13/2013] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells contain an unusually large cytoplasmic pool of P1/P2 phosphoproteins, which form the highly flexible 60S subunit stalk that is required to interact with and activate soluble translation factors. In cells, cytoplasmic P1/P2 proteins are exchanged for ribosome-bound proteins in a process that can modulate ribosome function and translation. Here, we analysed different S. cerevisiae stalk mutants grown under stress conditions that result in eIF2α phosphorylation. These mutants either lack a cytoplasmic pool of stalk proteins or contain free but not ribosome-bound proteins. Only cells that contain free P1/P2 proteins induce eIF2 phosphorylation in vivo in response to glucose starvation or osmotic stress. Moreover, we show that free S. cerevisiae P1/P2 proteins can induce in vitro phosphorylation of the initiation factor eIF2 by stimulating the autophosphorylation and activation of GCN2 kinase. Indeed, these ribosomal proteins do not stimulate other eIF2α kinases, such as PKR and HRI. P1/P2 and the known GCN2 activator deacylated tRNA compete for stimulating the eIF2α kinase activity of GCN2, although the P1/P2 proteins are considerably more active. These findings reveal a capacity of free cytoplasmic ribosomal stalk components to stimulate eIF2α phosphorylation, which in turn would modulate translation in response to specific forms of stress that may be linked with the previously described regulatory function of the ribosomal stalk.
Collapse
Affiliation(s)
- Antonio Jiménez-Díaz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Miguel Remacha
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Juan P. G. Ballesta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- * E-mail: (JPGB); (JJB)
| | - Juan José Berlanga
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- * E-mail: (JPGB); (JJB)
| |
Collapse
|
3
|
Martín OA, Villegas ME, Aguilar CF. Three-dimensional studies of pathogenic peptides from the c-terminal of Trypanosoma cruzi ribosomal P proteins and their interaction with a monoclonal antibody structural model. PMC BIOPHYSICS 2009; 2:4. [PMID: 19473527 PMCID: PMC2704175 DOI: 10.1186/1757-5036-2-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 05/27/2009] [Indexed: 11/10/2022]
Abstract
The acidic C-terminal peptides from Trypanosoma cruzi ribosomal P proteins are the major target of the antibody response in patients suffering Chagas chronic heart disease. It has been proposed that the disease is triggered by the cross-reaction of these antibodies with the second extra cellular loop of the beta1-adrenoreceptor, brought about by the molecular mimicry between the acidic C-terminal peptides and the receptor's loop. To improve the understanding of the structural basis of the autoimmune response against heart receptors, the 3-dimensional structure of the C-terminal peptides of Trypanosoma cruzi ribosomal proteins P0 (EDDDDDFGMGALF) and P2beta (EEEDDDMGFGLFD) were solved using the Electrostaticaly Driven MonteCarlo method. Their structures were compared with the second extra-cellular loop of our homology model of human rhodopsin and the existing experimental NMR structures of the C-terminal peptides from human P0 (EESDDDMGFGLFD) and from Leishmania braziliensis P0 (EEADDDMGFGLFD). Docking of Trypanosoma cruzi peptides P0, P2beta and human rhodopsin loop into our anti-P2beta monoclonal antibody homology model allowed to explore their interactions.The solution structure of peptides P0 and P2beta can be briefly described as a bend. Although the global conformations of the peptides are not identical they shared a common region of four residues (3 to 6) that have a similar structure. The structural alignment of the five peptides also showed a surprising conformational similarity for the same residues. The antibody model and docking studies revealed a most remarkable feature in the active site, a positively charged, narrow and deep cavity where the acidic residues 3 to 6 were accommodated. These results suggest that the most important elements in the molecular peptide recognition by the antibody may be the shape of the loop and the presence of negative charges in positions 3-5 (P0, P2beta) or a negative charge in position 4 (rhodopsin loop). This work describes clearly the interactions of the structural elements involved in the autoimmune mechanism of anti-P auto-antibodies cross-reaction and stimulation of the beta1-adrenoreceptor and the visual pigment rhodopsin. Results from this study could lead eventually to the development of treatments to abolish receptor mediated symptoms in Chagas. PACS code: 87.15.-v.
Collapse
Affiliation(s)
- Osvaldo A Martín
- Instituto de Matemática Aplicada de San Luis, CONICET, Ejército de los Andes 950, primer piso, 5700, San Luis, Argentina.
| | | | | |
Collapse
|
4
|
Wentz AE, Shusta EV. A novel high-throughput screen reveals yeast genes that increase secretion of heterologous proteins. Appl Environ Microbiol 2006; 73:1189-98. [PMID: 17189442 PMCID: PMC1828678 DOI: 10.1128/aem.02427-06] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is an attractive host for the production of heterologous proteins. However, low-yield production of many proteins (from micrograms to milligrams/liter) leaves considerable room for optimization. By engineering the yeast cell via traceable genome-wide libraries, genes that can enhance protein expression level because of their roles in protein transcription, translation, folding, and trafficking processes can be readily identified. This report details a novel approach that combines yeast cDNA overexpression libraries with yeast surface display to allow the rapid flow cytometric screening of engineered yeast for gene products that improve the display of heterologous proteins. After optimization of the screening conditions, a genome-wide scan yielded five yeast gene products that promoted increased display levels of a single-chain T-cell receptor (scTCR). The display-enhancing genes included those coding for cell wall proteins (CCW12, CWP2, and SED1), a ribosomal subunit protein (RPP0), and an endoplasmic reticulum-resident protein (ERO1). Under the premise that yeast surface display levels could be used as a predictor of secretion efficiency, each display-enhancing gene product was tested for its ability to affect secretion levels of multiple scTCR and single-chain antibodies (scFv). All of the selected yeast gene products were shown to promote increased secretion of active protein (1.5-fold to 7.9-fold), with CCW12 and ERO1 being the most generalizable enhancers of scFv/scTCR secretion.
Collapse
Affiliation(s)
- Alane E Wentz
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
5
|
Qiu D, Parada P, Marcos AG, Cárdenas D, Remacha M, Ballesta JPG. Different roles of P1 and P2 Saccharomyces cerevisiae ribosomal stalk proteins revealed by cross-linking. Mol Microbiol 2006; 62:1191-202. [PMID: 17040491 DOI: 10.1111/j.1365-2958.2006.05445.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The stalk is an essential domain of the large ribosomal subunit formed by a complex of a set of very acidic proteins bound to a core rRNA binding component. While in prokaryotes there is only one type acidic protein, L7/12, two protein families are found in eukaryotes, phosphoproteins P1 and P2, which presumably have different roles. To search for differences zero-length cross-linking by S-S bridge formation was applied using Saccharomyces cerevisiae mutant P1 and P2 proteins carrying single cysteine residues at various positions. The results show a more exposed location of the N-terminal domain of the P2 proteins, which in contrast to P1, can be found as dimers when the Cys is introduced in this domain. Similarly, the Cys containing C-terminal domain of mutant P2 proteins shows a notable capacity to form cross-links with other proteins, which is considerably lower in the P1 type. On the other hand, mutation at the conserved C-domain of protein P0, the eukaryotic stalk rRNA binding component, results in removal of about 14 terminal amino acids. Protein P2, but not P1, protects mutant P0 from this truncation. These results support a eukaryotic stalk structure in which P1 proteins are internally located with their C-terminals having a restricted reactivity while P2 proteins are more external and accessible to interact with other cellular components.
Collapse
Affiliation(s)
- Deyi Qiu
- Centro de Biología Molecular, C.S.I.C. and U.A.M., Canto Blanco, Madrid 28049, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Nomura T, Nakano K, Maki Y, Naganuma T, Nakashima T, Tanaka I, Kimura M, Hachimori A, Uchiumi T. In vitro reconstitution of the GTPase-associated centre of the archaebacterial ribosome: the functional features observed in a hybrid form with Escherichia coli 50S subunits. Biochem J 2006; 396:565-71. [PMID: 16594895 PMCID: PMC1482815 DOI: 10.1042/bj20060038] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We cloned the genes encoding the ribosomal proteins Ph (Pyrococcus horikoshii)-P0, Ph-L12 and Ph-L11, which constitute the GTPase-associated centre of the archaebacterium Pyrococcus horikoshii. These proteins are homologues of the eukaryotic P0, P1/P2 and eL12 proteins, and correspond to Escherichia coli L10, L7/L12 and L11 proteins respectively. The proteins and the truncation mutants of Ph-P0 were overexpressed in E. coli cells and used for in vitro assembly on to the conserved domain around position 1070 of 23S rRNA (E. coli numbering). Ph-L12 tightly associated as a homodimer and bound to the C-terminal half of Ph-P0. The Ph-P0.Ph-L12 complex and Ph-L11 bound to the 1070 rRNA fragments from the three biological kingdoms in the same manner as the equivalent proteins of eukaryotic and eubacterial ribosomes. The Ph-P0.Ph-L12 complex and Ph-L11 could replace L10.L7/L12 and L11 respectively, on the E. coli 50S subunit in vitro. The resultant hybrid ribosome was accessible for eukaryotic, as well as archaebacterial elongation factors, but not for prokaryotic elongation factors. The GTPase and polyphenylalanine-synthetic activity that is dependent on eukaryotic elongation factors was comparable with that of the hybrid ribosomes carrying the eukaryotic ribosomal proteins. The results suggest that the archaebacterial proteins, including the Ph-L12 homodimer, are functionally accessible to eukaryotic translation factors.
Collapse
Affiliation(s)
- Takaomi Nomura
- *Institute of High Polymer Research, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Kohji Nakano
- *Institute of High Polymer Research, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Yasushi Maki
- †Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Takao Naganuma
- †Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Takashi Nakashima
- †Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Isao Tanaka
- ‡Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Makoto Kimura
- §Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Akira Hachimori
- *Institute of High Polymer Research, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Toshio Uchiumi
- †Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
7
|
Zhang Z, Dietrich FS. Mapping of transcription start sites in Saccharomyces cerevisiae using 5' SAGE. Nucleic Acids Res 2005; 33:2838-51. [PMID: 15905473 PMCID: PMC1131933 DOI: 10.1093/nar/gki583] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 04/28/2005] [Accepted: 04/28/2005] [Indexed: 12/02/2022] Open
Abstract
A minimally addressed area in Saccharomyces cerevisiae research is the mapping of transcription start sites (TSS). Mapping of TSS in S.cerevisiae has the potential to contribute to our understanding of gene regulation, transcription, mRNA stability and aspects of RNA biology. Here, we use 5' SAGE to map 5' TSS in S.cerevisiae. Tags identifying the first 15-17 bases of the transcripts are created, ligated to form ditags, amplified, concatemerized and ligated into a vector to create a library. Each clone sequenced from this library identifies 10-20 TSS. We have identified 13,746 unique, unambiguous sequence tags from 2231 S.cerevisiae genes. TSS identified in this study are consistent with published results, with primer extension results described here, and are consistent with expectations based on previous work on transcription initiation. We have aligned the sequence flanking 4637 TSS to identify the consensus sequence A(A(rich))5NPyA(A/T)NN(A(rich))6, which confirms and expands the previous reported PyA(A/T)Pu consensus pattern. The TSS data allowed the identification of a previously unrecognized gene, uncovered errors in previous annotation, and identified potential regulatory RNAs and upstream open reading frames in 5'-untranslated region.
Collapse
Affiliation(s)
- Zhihong Zhang
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurham, NC 27710, USA
| | - Fred S. Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurham, NC 27710, USA
| |
Collapse
|
8
|
Abramczyk D, Tchórzewski M, Grankowski N. Non-AUG translation initiation of mRNA encoding acidic ribosomal P2A protein in Candida albicans. Yeast 2003; 20:1045-52. [PMID: 12961752 DOI: 10.1002/yea.1020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The eukaryotic 60S ribosomal subunit has a set of very acidic proteins (P-proteins), which form a distinct lateral protuberance called the stalk structure. This protein complex is directly involved in the elongation step of polypeptide synthesis. In our study on acidic ribosomal P-proteins from the human opportunistic pathogen Candida albicans, we isolated and characterized one of the genes, called CARP2A, and its product, the P2A protein. The CARP2A gene is intron-less, present in a single copy per haploid genome, and transcriptionally active. The open reading frame of the studied gene contains information for a sequence of 108 amino acids. Based on this, the molecular mass and isoelectric point of the P2A protein were theoretically calculated to be 10.85 kDa and 3.7, respectively. The characteristic feature of the CARP2A gene transcript is the presence of a GUG start codon, which is rare in eukaryotic organisms and not previously reported in yeast. To our knowledge this is the first report showing the presence of a naturally occurring non-AUG start codon on mRNA in yeast species.
Collapse
Affiliation(s)
- Dariusz Abramczyk
- Maria Curie-Skłodowska University, Institute of Microbiology and Biotechnology, Department of Molecular Biology, Akademicka Street 19, 20-033 Lublin, Poland
| | | | | |
Collapse
|
9
|
Abramczyk O, Zień P, Zieliński R, Pilecki M, Hellman U, Szyszka R. The protein kinase 60S is a free catalytic CK2alpha' subunit and forms an inactive complex with superoxide dismutase SOD1. Biochem Biophys Res Commun 2003; 307:31-40. [PMID: 12849977 DOI: 10.1016/s0006-291x(03)01126-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The 60S ribosomes from Saccharomyces cerevisiae contain a set of acidic P-proteins playing an important role in the ribosome function. Reversible phosphorylation of those proteins is a mechanism regulating translational activity of ribosomes. The key role in regulation of this process is played by specific, second messenger-independent protein kinases. The PK60S kinase was one of the enzymes phosphorylating P-proteins. The enzyme has been purified from yeast and characterised. Pure enzyme has properties similar to those reported for casein kinase type 2. Peptide mass fingerprinting (PMF) has identified the PK60S as a catalytic alpha(') subunit of casein kinase type 2 (CK2alpha(')). Protein kinase activity is inhibited by SOD1 and by highly specific CK2 inhibitor-4,5,6,7-tetrabromo-benzotriazole (TBBt). The possible mechanism of regulation of CK2alpha(') activity in stress conditions, by superoxide dismutase in regulation of 80S-ribosome activity, is discussed.
Collapse
Affiliation(s)
- Olga Abramczyk
- Department of Molecular Biology, Environmental Protection Institute, Catholic University of Lublin, Al. Kraśnicka 102, PL-20-718, Lublin, Poland
| | | | | | | | | | | |
Collapse
|
10
|
Lalioti VS, Pérez-Fernández J, Remacha M, Ballesta JPG. Characterization of interaction sites in the Saccharomyces cerevisiae ribosomal stalk components. Mol Microbiol 2002; 46:719-29. [PMID: 12410829 DOI: 10.1046/j.1365-2958.2002.03179.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The interactions among the yeast stalk components (P0, P1alpha, P1beta, P2alpha and P2beta) and with EF-2 have been explored using immunoprecipitation, affinity chromatography and the two-hybrid system. No stable association was detected between acidic proteins of the same type. In contrast, P1alpha and P1beta were found to interact with P2beta and P2alpha respectively. An interaction of P0 with P1 proteins, but not with P2 proteins, was also detected. This interaction is strongly increased with the P0 carboxyl end, which is able to form a pentameric complex with the four acidic proteins. The P1/P2 binding site has been located between residues 212 and 262 using different C-terminal P0 fragments. Immunoprecipitation shows the association of EF-2 with protein P0. However, the interaction is stronger with the P1/P2 proteins than with P0 in the two-hybrid assay. This interaction improves using the 100-amino-acid-long C-end of P0 and is even higher with the last 50 amino acids. The data indicate a specific association of P1alpha with P2beta and of P1beta with P2alpha rather than the dimerization of the acidic proteins found in prokaryotes. In addition, they suggest that stalk assembly begins by the interaction of the P1 proteins with P0. Moreover, as functional interactions of the complete P0 were found to increase using protein fragments, the data suggest that some active sites are exposed in the ribosome as a result of conformational changes that take place during stalk assembly and function.
Collapse
Affiliation(s)
- V S Lalioti
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid--CSIC, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
11
|
Zieliński R, Pilecki M, Kubiński K, Zień P, Hellman U, Szyszka R. Inhibition of yeast ribosomal stalk phosphorylation by Cu-Zn superoxide dismutase. Biochem Biophys Res Commun 2002; 296:1310-6. [PMID: 12207917 DOI: 10.1016/s0006-291x(02)02081-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reversible phosphorylation of acidic ribosomal proteins of Saccharomyces cerevisiae is an important mechanism, regulating the number of active ribosomes. The key role in regulation of this process is played by specific, second messenger-independent protein kinases. A new protein-inhibitor regulating activity of PK60S kinase has been purified from yeast extracts and characterised. Peptide mass fingerprinting (PMF) and amino-acid sequence analysis by Post Source Decay (PSD) have identified the inhibitor as a Cu-Zn superoxide dismutase (SOD). Inhibition by SOD is competitive with respect to protein substrates-P proteins and 80S ribosome-with K(i) values of 3.7 microM for P2A protein and 0.6 microM for 80S ribosomes. A close correlation was found between the state of phosphorylation of P proteins in diauxic shift and logarithmic growth yeast cells and activity of SOD. The possible mechanism of regulation of PK60S activity, and participation of SOD protein in regulation of 80S-ribosome activity in stress conditions, is discussed.
Collapse
Affiliation(s)
- Rafalz Zieliński
- Department of Molecular Biology, Environmental Protection Institute, Catholic University of Lublin, Al. Kraśnicka 102, 20-718, Lublin, Poland
| | | | | | | | | | | |
Collapse
|
12
|
Santos C, Ballesta JPG. Role of the ribosomal stalk components in the resistance of Aspergillus fumigatus to the sordarin antifungals. Mol Microbiol 2002; 43:227-37. [PMID: 11849550 DOI: 10.1046/j.1365-2958.2002.02736.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aspergillus fumigatus, an important human nosocomial pathogen, is resistant to sordarin derivatives, a new family of antifungals that inhibit protein synthesis by interaction with the EF-2-ribosomal stalk complex. To explore the role of the A. fumigatus ribosome in the resistance mechanism, the fungal stalk proteins were biochemically and genetically characterized and expressed in the sensitive Saccharomyces cerevisiae. Two acidic phosphoproteins homologous to the 12 kDa P1 and P2 proteins described in other organisms were found together with the 34 kDa P0 protein, the third stalk component. The genes encoding each fungal stalk protein were expressed in mutant S. cerevisiae strains lacking the equivalent proteins. Both AfP1 and AfP2 proteins interact with their yeast counterparts of the opposite type and bind to the ribosomal particles in the presence of either the S. cerevisiae or the A. fumigatus P0 protein. The A. fumigatus acidic phosphoproteins did not alter the yeast ribosome sordarin sensitivity. On the contrary, the presence of the fungal P0 induces in vivo and in vitro resistance to sordarin derivatives when present in the yeast ribosome. The mutations A117-->E, P122-->R and G124-->V in A. fumigatus P0 reduce the resistance capacity of the protein. An S. cerevisiae strain with the complete ribosomal stalk of A. fumigatus was obtained, which could be useful for the screening of new antifungals against this pathogenic fungus.
Collapse
Affiliation(s)
- Cruz Santos
- Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
13
|
Guarinos E, Remacha M, Ballesta JP. Asymmetric interactions between the acidic P1 and P2 proteins in the Saccharomyces cerevisiae ribosomal stalk. J Biol Chem 2001; 276:32474-9. [PMID: 11431471 DOI: 10.1074/jbc.m103229200] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae ribosomal stalk is made of five components, the 32-kDa P0 and four 12-kDa acidic proteins, P1alpha, P1beta, P2alpha, and P2beta. The P0 carboxyl-terminal domain is involved in the interaction with the acidic proteins and resembles their structure. Protein chimeras were constructed in which the last 112 amino acids of P0 were replaced by the sequence of each acidic protein, yielding four fusion proteins, P0-1alpha, P0-1beta, P0-2alpha, and P0-2beta. The chimeras were expressed in P0 conditional null mutant strains in which wild-type P0 is not present. In S. cerevisiae D4567, which is totally deprived of acidic proteins, the four fusion proteins can replace the wild-type P0 with little effect on cell growth. In other genetic backgrounds, the chimeras either reduce or increase cell growth because of their effect on the ribosomal stalk composition. An analysis of the stalk proteins showed that each P0 chimera is able to strongly interact with only one acidic protein. The following associations were found: P0-1alpha.P2beta, P0-1beta.P2alpha, P0-2alpha.P1beta, and P0-2beta.P1alpha. These results indicate that the four acidic proteins do not form dimers in the yeast ribosomal stalk but interact with each other forming two specific associations, P1alpha.P2beta and P1beta.P2alpha, which have different structural and functional roles.
Collapse
Affiliation(s)
- E Guarinos
- Centro de Biologia Molecular, Consejo Superior de Investigaciones Cientificas and Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
14
|
Gagou M, Ballesta JP, Kouyanou S. Cloning and characterization of the ribosomal protein CcP0 of the medfly Ceratitis capitata. INSECT MOLECULAR BIOLOGY 2000; 9:47-55. [PMID: 10672071 DOI: 10.1046/j.1365-2583.2000.00156.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The gene of the ribosomal protein CcP0, the third member of the ribosomal P-protein family of the medfly Ceratitis capitata, was identified by genomic and cDNA sequence analysis. It codes for a polypeptide of 317 amino acids and its predicted amino acid sequence shows great similarity to the P0 proteins of other eukaryotic organisms. The CcP0 gene was expressed in Escherichia coli and the 34-kDa recombinant protein was identical to the P0 protein of purified medfly ribosomes. Both proteins reacted positively with a specific monoclonal antibody against the highly conserved C terminus of eukaryotic ribosomal P proteins. Interestingly, the medfly CcP0 seems to be the only P0 protein of higher eukaryotic organisms with basic character (pI 8.5), as shown by electrofocusing of purified ribosomes.
Collapse
Affiliation(s)
- M Gagou
- University of Athens, Department of Biology, Division of Genetics and Biotechnology, Panepistimiopolis, Athens, Greece
| | | | | |
Collapse
|
15
|
Szyszka R. Protein kinases phosphorylating acidic ribosomal proteins from yeast cells. Folia Microbiol (Praha) 1999; 44:142-52. [PMID: 10588049 DOI: 10.1007/bf02816233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phosphorylation of ribosomal acidic proteins of Saccharomyces cerevisiae is an important mechanism regulating a number of active ribosomes. The key role in the regulatory mechanism is played by specific phosphoprotein kinases and phosphoprotein phosphatases. Three different cAMP-independent protein kinases phosphorylating acidic ribosomal proteins have been identified and characterized. The protein kinase 60S (PK60S), RAP kinase, and casein kinase type 2 (CK2). All three protein kinases phosphorylate serine residues which are localized in the C-terminal end of phosphoproteins. Synthetic peptides were used to determinate the amino acid sequence of phosphoacceptor site for PK60S. Peptide AAEESDDD derived from phosphoproteins YP1 beta/beta' and YP2 alpha turned out to be the best substrate for PK60S. A number of halogenated benzimidazoles and 2-azabenzimidazoles were tested as inhibitors of the three protein kinases. 4,5,6,7-Tetrabromo-2-azabenzimidazole inhibits phosphorylation only of these polypeptides phosphorylated by protein kinase 60S, namely YP1 beta/beta' and YP2 alpha, but not the other, YP1 alpha and YP2 beta phosphorylated by protein kinases RAP and CK2. RAP kinase has been found in an active form in the soluble fraction of S. cerevisiae. The enzyme uses ATP as a phosphate donor and is less sensitive to heparin than casein kinase 2. RAP kinase monophosphorylates the four acidic proteins. The ribosome-bound proteins are a better substrate for the enzyme. Multifunctional CK2 kinase phosphorylate all four acidic proteins. The kinase phosphorylates preferentially serine or threonine residues surrounded by cluster of acidic residues. The enzyme activity is stimulated in vitro by the presence of polylysine and inhibited by heparin.
Collapse
Affiliation(s)
- R Szyszka
- Department of Molecular Biology, Faculty of Mathematics and Natural Science, Catholic University of Lublin, Poland
| |
Collapse
|
16
|
Ballesta JP, Rodriguez-Gabriel MA, Bou G, Briones E, Zambrano R, Remacha M. Phosphorylation of the yeast ribosomal stalk. Functional effects and enzymes involved in the process. FEMS Microbiol Rev 1999; 23:537-50. [PMID: 10525165 DOI: 10.1111/j.1574-6976.1999.tb00412.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ribosomal stalk is directly involved in the interaction of the elongation factors with the ribosome during protein synthesis. The stalk is formed by a complex of five proteins, four small acidic polypeptides and a larger protein which directly interacts with the rRNA at the GTPase center. In eukaryotes the acidic components correspond to the 12-kDa P1 and P2 proteins, and the RNA binding component is the P0 protein. All these proteins are found phosphorylated in eukaryotic organisms, and previous in vitro data suggested this modification was involved in the activity of this structure. Results from mutational studies have shown that phosphorylation takes place at a serine residue close to the carboxy end of the P proteins. Modification of this serine residue does not affect the formation of the stalk and the activity of the ribosome in standard conditions but induces an osmoregulation-related phenotype at 37 degrees C. The phosphorylatable serine is part of a consensus casein kinase II phosphorylation site. However, although CKII seems to be responsible for part of the stalk phosphorylation in vivo, it is probably not the only enzyme in the cell able to perform this modification. Five protein kinases, RAPI, RAPII and RAPIII, in addition to the previously reported CKII and PK60 kinases, are able to phosphorylate the stalk proteins. A comparison of the five enzymes shows differences among them that suggest some specificity regarding the phosphorylation of the four yeast acidic proteins. It has been found that some typical effectors of the PKC kinase stimulate the in vitro phosphorylation of the stalk proteins. All the data suggest that although phosphorylation is not involved in the interaction of the acidic P proteins with the ribosome, it can affect the ribosome activity and might participate in a possible ribosome regulatory mechanism.
Collapse
Affiliation(s)
- J P Ballesta
- Centro de Biología Molecular, CSIC and UAM, Canto Blanco, 28049, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
17
|
Justice MC, Ku T, Hsu MJ, Carniol K, Schmatz D, Nielsen J. Mutations in ribosomal protein L10e confer resistance to the fungal-specific eukaryotic elongation factor 2 inhibitor sordarin. J Biol Chem 1999; 274:4869-75. [PMID: 9988728 DOI: 10.1074/jbc.274.8.4869] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The natural product sordarin, a tetracyclic diterpene glycoside, selectively inhibits fungal protein synthesis by impairing the function of eukaryotic elongation factor 2 (eEF2). Sordarin and its derivatives bind to the eEF2-ribosome-nucleotide complex in sensitive fungi, stabilizing the post-translocational GDP form. We have previously described a class of Saccharomyces cerevisiae mutants that exhibit resistance to varying levels of sordarin and have identified amino acid substitutions in yeast eEF2 that confer sordarin resistance. We now report on a second class of sordarin-resistant mutants. Biochemical and molecular genetic analysis of these mutants demonstrates that sordarin resistance is dependent on the essential large ribosomal subunit protein L10e in S. cerevisiae. Five unique L10e alleles were characterized and sequenced, and several nucleotide changes that differ from the wild-type sequence were identified. Changes that result in the resistance phenotype map to 4 amino acid substitutions and 1 amino acid deletion clustered in a conserved 10-amino acid region of L10e. Like the previously identified eEF2 mutations, the mutant ribosomes show reduced sordarin-conferred stabilization of the eEF2-nucleotide-ribosome complex. To our knowledge, this report provides the first description of ribosomal protein mutations affecting translocation. These results and our previous observations with eEF2 suggest a functional linkage between L10e and eEF2.
Collapse
Affiliation(s)
- M C Justice
- Department of Basic Animal Science Research, Merck Research Laboratories, Rahway, New Jersey 07065, USA
| | | | | | | | | | | |
Collapse
|
18
|
Tchórzewski M, Boguszewska A, Abramczyk D, Grankowski N. Overexpression in Escherichia coli, purification, and characterization of recombinant 60S ribosomal acidic proteins from Saccharomyces cerevisiae. Protein Expr Purif 1999; 15:40-7. [PMID: 10024468 DOI: 10.1006/prep.1998.0997] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 60S ribosomal subunits from Saccharomyces cerevisiae contain a set of four acidic proteins named YP1alpha, YP1beta, YP2alpha, and YP2beta. The genes for each were PCR amplified from a yeast cDNA library, sequenced, and expressed in Escherichia coli cells using two expression systems. The first system, pLM1, was used for YP1beta, YP2alpha, and YP2beta. The second one, pT7-7, was used for YP1alpha. Expression in both cases was under the control of a strong inducible T7 promoter. The amount of induced recombinant proteins in the host cells was around 10 to 20% of the total soluble bacterial proteins. A new protocol for purification of all four recombinant proteins was established. The preliminary steps of purification were done by ammonium sulfate precipitation (YP1alpha, YP1beta) or NH4Cl/ethanol extraction (YP2alpha, YP2beta). The recombinant proteins were then purified to apparent homogeneity by only two steps of classical chromatographies, ion exchange (DEAE-cellulose) and gel filtration (Sephacryl S-200). Isoelectrofocusing analysis of YP2alpha and YP2beta showed the pIs of the recombinant proteins are the same as that of the native yeast ribosomal P2 proteins. The pI of YP1alpha is changed due to the addition of five amino acids attached to the N-terminus of recombinant polypeptide from the expression vector. YP1beta was obtained as a truncated form of polypeptide, similar to its ribosomal counterpart, YP1beta'. This was proved by isoelectrofocusing gel analysis.
Collapse
Affiliation(s)
- M Tchórzewski
- Department of Molecular Biology, Maria Curie-Sklodowska University, Institute of Microbiology and Biotechnology, Akademicka 19 Street, Lublin, 20-033, Poland
| | | | | | | |
Collapse
|
19
|
Bailey-Serres J, Vangala S, Szick K, Lee CH. Acidic phosphoprotein complex of the 60S ribosomal subunit of maize seedling roots. Components and changes in response to flooding. PLANT PHYSIOLOGY 1997; 114:1293-305. [PMID: 9276949 PMCID: PMC158422 DOI: 10.1104/pp.114.4.1293] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We determined that ribosomes of seedling roots of maize (Zea mays L.) contain the acidic phosphoproteins (P-proteins) known to form a flexible lateral stalk structure of the 60S subunit of eukaryotic ribosomes. The P-protein stalk, composed of P0, P1, and P2, interacts with elongation factors, mRNA, and tRNA during translation. Acidic proteins of 13 to 15.5 kD were released as a complex from ribosomes with 0.4 M NH4Cl/50% ethanol. Protein and cDNA sequence analysis confirmed that maize ribosomes contain one type of P1, two types of P2, and a fourth and novel P1/P2-type protein. This novel P-protein, designated P3, has the conserved C terminus of P1 and P2. P1, P2, and P3 are similar in deduced mass (11.4-12.2 kD) and isoelectric point (4.1-4.3). A 35.5- to 36-kD acidic protein was released at low levels from ribosomes with 1.0 M NH4Cl/50% ethanol and identified as P0. Labeling of roots with [32P]inorganic phosphate confirmed the in vivo phosphorylation of the P-proteins. Flooding caused dynamic changes in the P-protein complex, which affected the potential of ribosome-associated kinases and casein kinase II to phosphorylate the P-proteins. We discuss possible alterations of the ribosomal P-protein complex and consider that these changes may be involved in the selective translation of mRNA in flooded roots.
Collapse
Affiliation(s)
- J Bailey-Serres
- Department of Botany and Plant Sciences, University of California, Riverside 92521-0124, USA.
| | | | | | | |
Collapse
|
20
|
Rad MR, Habbig B, Jansen G, Hattenhorst U, Kroll M, Hollenberg CP. Analysis of the DNA sequence of a 34,038 bp region on the left arm of yeast chromosome XV. Yeast 1997; 13:281-6. [PMID: 9090058 DOI: 10.1002/(sici)1097-0061(19970315)13:3<281::aid-yea74>3.0.co;2-e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We report the DNA sequence of a 34,038 bp segment of Saccharomyces cerevisiae chromosome XV. Subsequent analysis revealed 20 open reading frames (ORFs) longer than 300 bp and two tRNA genes. Five ORFs correspond to genes previously identified in S. cerevisiae, including RPLA2, PRE6, MSE1, IFM1 and SCM2 (TAT2, TAP2, LTG3). Two putative proteins share considerable homology with other proteins in the current data libraries. ORF O2145 shows 41.2% identity with the glycophospholipid-anchored surface glycoprotein Gas1p of S. cerevisiae and ORF O2197 has 53.2% identity to chromosome segregation protein Dis3p of Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- M R Rad
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldor, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Szyszka R, Bou G, Ballesta JP. RAP kinase, a new enzyme phosphorylating the acidic P proteins from Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1293:213-21. [PMID: 8620032 DOI: 10.1016/0167-4838(95)00246-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A new protein kinase, showing a high specificity for the ribosomal acidic P proteins (RAP kinase) has been purified and characterized from Saccharomyces cerevisiae extracts. Purification was carried out by four chromatographic steps, including DEAE-cellulose, phosphocellulose, heparin-Sepharose and P protein-Sepharose. The purified enzyme preparation contains only one polypeptide of around 55 kDa as determined by SDS gel electrophoresis and gradient centrifugation. RAP kinase is different from all previous well-characterized kinases and does not show cross-reaction with antibodies to the 71 kDa 60S ribosomal subunit-specific kinase PK60 previously reported. The enzyme uses ATP as a better phosphate donor and is less sensitive to heparin than casein kinase II but is moderately affected by salt. Among the different substrates tested, ribosomal acidic proteins are preferentially modified by RAP kinase, which phosphorylates only serine residues in the four P proteins as well as the related ribosomal protein P0. Casein is phosphorylated at a much lower level. All the data indicate that RAP kinase might be the enzyme responsible for the phosphorylation of the P proteins, and in this way may also participate in a possible translational regulatory mechanism.
Collapse
Affiliation(s)
- R Szyszka
- Centro de Biologia Molecular, UAM, Madrid, Spain
| | | | | |
Collapse
|
22
|
Ballesta JP, Remacha M. The large ribosomal subunit stalk as a regulatory element of the eukaryotic translational machinery. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 55:157-93. [PMID: 8787610 DOI: 10.1016/s0079-6603(08)60193-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J P Ballesta
- Centro de Biología Molecular "Severo Ochoa" Canto Blanco, Madrid, Spain
| | | |
Collapse
|
23
|
Zoladek T, Vaduva G, Hunter LA, Boguta M, Go BD, Martin NC, Hopper AK. Mutations altering the mitochondrial-cytoplasmic distribution of Mod5p implicate the actin cytoskeleton and mRNA 3' ends and/or protein synthesis in mitochondrial delivery. Mol Cell Biol 1995; 15:6884-94. [PMID: 8524255 PMCID: PMC230943 DOI: 10.1128/mcb.15.12.6884] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Saccharomyces cerevisiae MOD5 gene encodes proteins that function in three subcellular locations: mitochondria, the cytoplasm, and nuclei (M. Boguta, L.A. Hunter, W.-C. Shen, E. C. Gillman, N. C. Martin, and A. K. Hopper, Mol. Cell. Biol. 14:2298-2306, 1994; E. C. Gillman, L. B. Slusher, N. C. Martin, and A. K. Hopper, Mol. Cell. Biol. 11:2382-2390, 1991). A mutant allele of MOD5 encoding a protein (Mod5p-I,KR6) located predominantly in mitochondria was constructed. Mutants defective in delivering Mod5p-I,KR6 to mitochondria were sought by selecting cells with increased cytosolic activity of this protein. Twenty-five mutants defining four complementation groups, mdp1, mdp2, mdp3, and mdp4, were found. They are unable to respire at 34 degrees C or to grow on glucose medium at 38 degrees C. Cell fractionation studies showed that mdp1, mdp2, and mdp3 mutants have an altered mitochondrial-cytoplasmic distribution of Mod5p. mdp2 can be suppressed by ACT1, the actin-encoding gene. The actin cytoskeleton organization is also aberrant in mdp2 cells. MDP2 is the same as VRP1 (S. F. H. Donnelly, M. J. Picklington, D. Pallotta, and E. Orr, Mol. Microbiol. 10:585-596, 1993). MDP3 is identical to PAN1, which encodes a protein that interacts with mRNA 3' ends and affects initiation of protein synthesis (A. B. Sachs and J. A. Deardoff, Cell 70:961-973, 1992). These results implicate the actin cytoskeleton and mRNA 3' ends and/or protein synthesis as being as important for protein distribution in S. cerevisiae as they are for distribution of cytosolic proteins in higher eukaryotes. This provides the potential to apply genetic and molecular approaches to study gene products and mechanisms involved in this type of protein distribution. The selection strategy also offers a new approach for identifying gene products involved in the distribution of proteins to their subscellular destinations.
Collapse
Affiliation(s)
- T Zoladek
- Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Remacha M, Jimenez-Diaz A, Santos C, Briones E, Zambrano R, Rodriguez Gabriel MA, Guarinos E, Ballesta JP. Proteins P1, P2, and P0, components of the eukaryotic ribosome stalk. New structural and functional aspects. Biochem Cell Biol 1995; 73:959-68. [PMID: 8722011 DOI: 10.1139/o95-103] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The eukaryoic ribosomal stalk is thought to consist of the phosphoproteins P1 and P2, which form a complex with protein PO. This complex interacts at the GTPase domain in the large subunit rRNA, overlapping the binding site of the protein L11-like eukaryotic counterpart (Saccharomyces cerevisiae protein L15 and mammalian protein L12). An unusual pool of the dephosphorylated forms of proteins P1 and P2 is detected in eukaryotic cytoplasm, and an exchange between the proteins in the pool and on the ribosome takes place during translation. Quadruply disrupted yeast strains, carrying four inactive acidic protein genes and, therefore, containing ribosomes totally depleted of acidic proteins, are viable but grow with a doubling time threefold higher than wild-type cells. The in vitro translation systems derived from these stains are active but the two-dimensional gel electrophoresis pattern of proteins expressed in vivo and in vitro is partially different. These results indicate that the P1 and P2 proteins are not essential for ribosome activity but are able to affect the translation of some specific mRNAs. Protein PO is analogous to bacterial ribosomal protein L10 but carries an additional carboxyl domain showing a high sequence homology to the acidic proteins P1 and P2, including the terminal peptide DDDMGFGLFD. Successive deletions of the PO carboxyl domain show that removal of the last 21 amino acids from the PO carboxyl domain only slightly affects the ribosome activity in a wild-type genetic background; however, the same deletion is lethal in a quadruple disruptant deprived of acidic P1/P2 proteins. Additional deletions affect the interaction of PO with the P1 and P2 proteins and with the rRNA. The experimental data available support the implication of the eukaryotic stalk components in some regulatory process that modulates the ribosomal activity.
Collapse
Affiliation(s)
- M Remacha
- Centro de Biologia Molecular, C.S.I.C. and U.A.M., Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Santos C, Ballesta JP. The highly conserved protein P0 carboxyl end is essential for ribosome activity only in the absence of proteins P1 and P2. J Biol Chem 1995; 270:20608-14. [PMID: 7657639 DOI: 10.1074/jbc.270.35.20608] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Protein P0 together with proteins P1 and P2 form the stalk in eukaryotic ribosomes. P0 has a carboxyl-terminal domain about 100 amino acids long that has high sequence similar to the ribosomal proteins P1 and P2. By sequential deletion of this region, a series of Saccharomyces cerevisiae truncated P0 genes have been constructed that encode proteins lacking 21, 87, and 132 amino acids from the carboxyl terminus, respectively. These constructions have been used to transform yeast P0 conditional null mutants to test their capacity to restore cell growth. Removal of only the last 21 amino acids causes a small effect on cell growth in wild-type strains; however, this deletion is lethal in strains having P protein-deficient ribosomes. A P0 lacking 87 amino acids allows cell growth at a low rate, and ribosomes bind P proteins with much less affinity. Lastly, removal of 132 amino acids totally inactivates P0; this deleted protein is unable to bind to the particles, causing a deficiency in active 60 S subunits and making the cell nonviable. These results indicate that at least one out of the five protein P-like carboxyl termini present in the ribosome has to be firmly bound to the particle for protein synthesis and cell viability, and this structure can be provided by protein P0. The part of P0 from around positions 230-290 is important for the interaction of proteins P1/P2 with the ribosome, but it is not essential for protein synthesis. Finally, the region including from residues 185 to 230 is required for the interaction of P0 with the rRNA.
Collapse
Affiliation(s)
- C Santos
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Canto Blanco, Madrid, Spain
| | | |
Collapse
|
26
|
Jose MP, Santana-Roman H, Remacha M, Ballesta JP, Zinker S. Eukaryotic acidic phosphoproteins interact with the ribosome through their amino-terminal domain. Biochemistry 1995; 34:7941-8. [PMID: 7794906 DOI: 10.1021/bi00024a019] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Variable-size fragments of the four yeast acidic ribosomal protein genes rpYP1 alpha, rpYP1 beta, rpYP2 alpha and rpYP2 beta were fused to the LacZ gene in the vector series YEp356-358. The constructs were used to transform wild-type Saccharomyces cerevisiae and several gene-disrupted strains lacking different acidic ribosomal protein genes. The distribution of the chimeric proteins between the cytoplasm and the ribosomes, tested as beta-galactosidase activity, was estimated. Hybrid proteins containing around a minimum of 65-75 amino acids from their amino-terminal domain are able to bind to the ribosomes in the presence of the complete native proteins. Hybrid proteins containing no more than 36 amino terminal amino acids bind to the ribosomes in the absence of a competing native protein. The fused YP1-beta-galactosidase proteins are also able to form a complex with the native YP2 type proteins, promoting their binding to the ribosome. The stability of the hybrid polypeptides seems to be inversely proportional to the size of their P protein fragment. These results indicate that only the amino-terminal domain of the eukaryotic P proteins is needed for the P1-P2 complex formation required for interaction with the ribosome. The highly conserved P protein carboxyl end is not implicated in the binding to the particles and is exposed to the medium.
Collapse
Affiliation(s)
- M P Jose
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Canto Blanco, Madrid
| | | | | | | | | |
Collapse
|
27
|
Vater CA, Bartle LM, Leszyk JD, Lambert JM, Goldmacher VS. Ricin A chain can be chemically cross-linked to the mammalian ribosomal proteins L9 and L10e. J Biol Chem 1995; 270:12933-40. [PMID: 7759553 DOI: 10.1074/jbc.270.21.12933] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Indirect immunofluorescence studies revealed that when fixed, permeabilized cultured human cells were incubated with ricin A chain, the toxin molecule localized in a staining pattern indicative of binding to the endoplasmic reticulum and to nucleoli. Chemical cross-linking experiments were performed to identify the cellular components that mediated the binding of ricin A chain. Conjugates were formed between 125I-labeled ricin A chain and two proteins present in preparations of total cell membranes and in samples of purified mammalian ribosomes. Specificity of the ricin A chain-ribosome interaction was demonstrated by inhibition of formation of the complexes by excess unlabeled ricin A chain, but not by excess unlabeled gelonin, another ribosome-inactivating protein. Complexes of ricin A chain cross-linked to the ribosomal proteins were purified and subjected to proteolytic digestion with trypsin. Amino acid sequencing of internal tryptic peptides enabled identification of the ricin A chain-binding proteins as L9 and L10e of the mammalian large ribosomal subunit.
Collapse
Affiliation(s)
- C A Vater
- ImmunoGen, Inc., Cambridge, Massachusetts 02139-4239, USA
| | | | | | | | | |
Collapse
|
28
|
Identification of potential target genes for Adr1p through characterization of essential nucleotides in UAS1. Mol Cell Biol 1994. [PMID: 8196627 DOI: 10.1128/mcb.14.6.3842] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adr1p is a regulatory protein in the yeast Saccharomyces cerevisiae that binds to and activates transcription from two sites in a perfect 22-bp inverted repeat, UAS1, in the ADH2 promoter. Binding requires two C2H2 zinc fingers and a region amino terminal to the fingers. The importance for DNA binding of each position within UAS1 was deduced from two types of assays. Both methods led to an identical consensus sequence containing only four essential base pairs: GG(A/G)G. The preferred sequence, TTGG(A/G)GA, is found in both halves of the inverted repeat. The region of Adr1p amino terminal to the fingers is important for phosphate contacts in the central region of UAS1. However, no base-specific contacts in this portion of UAS1 are important for DNA binding or for ADR1-dependent transcription in vivo. When the central 6 bp were deleted, only a single monomer of Adr1p was able to bind in vitro and activation in vivo was severely reduced. On the basis of these results and previous knowledge about the DNA binding site requirements, including constraints on the spacing and orientation of sites that affect activation in vivo, a consensus binding site for Adr1p was derived. By using this consensus site, potential Adr1p binding sites were located in the promoters of genes known to show ADR1-dependent expression. In addition, this consensus allowed the identification of new potential target genes for Adr1p.
Collapse
|
29
|
Cheng C, Kacherovsky N, Dombek KM, Camier S, Thukral SK, Rhim E, Young ET. Identification of potential target genes for Adr1p through characterization of essential nucleotides in UAS1. Mol Cell Biol 1994; 14:3842-52. [PMID: 8196627 PMCID: PMC358751 DOI: 10.1128/mcb.14.6.3842-3852.1994] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Adr1p is a regulatory protein in the yeast Saccharomyces cerevisiae that binds to and activates transcription from two sites in a perfect 22-bp inverted repeat, UAS1, in the ADH2 promoter. Binding requires two C2H2 zinc fingers and a region amino terminal to the fingers. The importance for DNA binding of each position within UAS1 was deduced from two types of assays. Both methods led to an identical consensus sequence containing only four essential base pairs: GG(A/G)G. The preferred sequence, TTGG(A/G)GA, is found in both halves of the inverted repeat. The region of Adr1p amino terminal to the fingers is important for phosphate contacts in the central region of UAS1. However, no base-specific contacts in this portion of UAS1 are important for DNA binding or for ADR1-dependent transcription in vivo. When the central 6 bp were deleted, only a single monomer of Adr1p was able to bind in vitro and activation in vivo was severely reduced. On the basis of these results and previous knowledge about the DNA binding site requirements, including constraints on the spacing and orientation of sites that affect activation in vivo, a consensus binding site for Adr1p was derived. By using this consensus site, potential Adr1p binding sites were located in the promoters of genes known to show ADR1-dependent expression. In addition, this consensus allowed the identification of new potential target genes for Adr1p.
Collapse
Affiliation(s)
- C Cheng
- Department of Biochemistry, University of Washington, Seattle 98195
| | | | | | | | | | | | | |
Collapse
|
30
|
Ribosomal protein P0, contrary to phosphoproteins P1 and P2, is required for ribosome activity and Saccharomyces cerevisiae viability. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40736-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
Vazquez MP, Schijman AG, Levin MJ. A short interspersed repetitive element provides a new 3' acceptor site for trans-splicing in certain ribosomal P2 beta protein genes of Trypanosoma cruzi. Mol Biochem Parasitol 1994; 64:327-36. [PMID: 7935610 DOI: 10.1016/0166-6851(94)00026-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Four Trypanosoma cruzi genomic DNA fragments carrying different TcP2 beta genes have been isolated and sequenced. Three of them had a single TcP2 beta gene, while the 3.8-kb-long DNA segment encoding the TcP2 beta-H1.8 locus showed two TcP2 beta genes arranged in tandem. These genes were physically connected by a 428-bp-long DNA sequence that was also located immediately 5' to the first gene and immediately 3' to the second. Comparison of the 4 TcP2 beta gene loci, suggested that the insertion of this repeated element originated the duplication of its target sequence, a poly(dT) stretch. Approximately 1200 copies of this short sequence, named short interspersed repetitive element (SIRE), were found scattered in the genome. Analysis of the 5' non-coding regions of different TcP2 beta mRNAs, and RNA-PCR experiments suggested that the insertion of a SIRE upstream of a TcP2 beta-H1.8 gene introduced a new 3' spliced leader (SL) acceptor site in the TcP2 beta-H1.8 pre-mRNAs, encoded within the SIRE. Consequently, in the mature H1.8 mRNA the SL sequence is followed by 38 bases directly transcribed from the SIRE. Structural and functional features of this repeated element reveal similarity to the short interspersed repetitive DNA sequences detected in the genomes of several microorganisms.
Collapse
Affiliation(s)
- M P Vazquez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina
| | | | | |
Collapse
|
32
|
Liao D, Dennis PP. Molecular phylogenies based on ribosomal protein L11, L1, L10, and L12 sequences. J Mol Evol 1994; 38:405-19. [PMID: 8007008 DOI: 10.1007/bf00163157] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Available sequences that correspond to the E. coli ribosomal proteins L11, L1, L10, and L12 from eubacteria, archaebacteria, and eukaryotes have been aligned. The alignments were analyzed qualitatively for shared structural features and for conservation of deletions or insertions. The alignments were further subjected to quantitative phylogenetic analysis, and the amino acid identity between selected pairs of sequences was calculated. In general, eubacteria, archaebacteria, and eukaryotes each form coherent and well-resolved nonoverlapping phylogenetic domains. The degree of diversity of the four proteins between the three groups is not uniform. For L11, the eubacterial and archaebacterial proteins are very similar whereas the eukaryotic L11 is clearly less similar. In contrast, in the case of the L12 proteins and to a lesser extent the L10 proteins, the archaebacterial and eukaryotic proteins are similar whereas the eubacterial proteins are different. The eukaryotic L1 equivalent protein has yet to be identified. If the root of the universal tree is near or within the eubacterial domain, our ribosomal protein-based phylogenies indicate that archaebacteria are monophyletic. The eukaryotic lineage appears to originate either near or within the archaebacterial domain.
Collapse
Affiliation(s)
- D Liao
- Canadian Institute for Advanced Research, University of British Columbia, Vancouver
| | | |
Collapse
|
33
|
Soto M, Requena J, Garcia M, Gómez L, Navarrete I, Alonso C. Genomic organization and expression of two independent gene arrays coding for two antigenic acidic ribosomal proteins of Leishmania. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80617-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
Soto M, Requena JM, Alonso C. Isolation, characterization and analysis of the expression of the Leishmania ribosomal PO protein genes. Mol Biochem Parasitol 1993; 61:265-74. [PMID: 8264730 DOI: 10.1016/0166-6851(93)90072-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two tandemly linked genes are present in the Leishmania infantum genome that code for the acidic ribosomal PO protein. The genes are identical in the coding region, although a striking lack of nucleotide sequence conservation is observed when the boundaries of the coding regions between both genes are compared. The 3' untranslated regions of the two genes are, moreover, different in size. The deduced amino acid sequence of the L. infantum PO protein (LiPO) shows a high degree of sequence conservation, including the highly charged conserved C-terminal domain, with the ribosomal PO proteins of other eukaryotic organisms. Northern blot experiments showed that two different size class transcripts are expressed in the gene cluster and that the steady state level of each of the transcripts in logarithmic phase promastigotes is markedly different. The abundance of both transcripts is down-regulated in parasite cultures on reaching stationary phase. Since it seems that the two Leishmania ribosomal PO genes are expressed in a single polycistronic transcript, it is likely that the different levels of PO mRNAs observed in cultured cells is due to a postranscriptional regulatory mechanism.
Collapse
Affiliation(s)
- M Soto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
35
|
Levin MJ, Vazquez M, Kaplan D, Schijman AG. The Trypanosoma cruzi ribosomal P protein family: Classification and antigenicity. ACTA ACUST UNITED AC 1993; 9:381-4. [PMID: 15463674 DOI: 10.1016/0169-4758(93)90088-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The multi-copy ribosomal P proteins have been identified on the ribosomes of prokaryotic and eukaryotic cells, and their antigenicity is an important feature of human Trypanosoma cruzi infection. In this review, Mariano Levin, Martin Vazquez, Dan Kaplan and Alejandro Schijman give a rational basis for the classification of these proteins, and discuss their inter-relationship.
Collapse
Affiliation(s)
- M J Levin
- Instituto de Investigaciones en Ingenieria Genética y Biologia Molecular (INGEBI), Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
36
|
Naranda T, Remacha M, Ballesta J. The activity-controlling phosphorylation site is not the same in the four acidic ribosomal proteins from Saccharomyces cerevisiae. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53797-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
37
|
Liao D, Dennis P. The organization and expression of essential transcription translation component genes in the extremely thermophilic eubacterium Thermotoga maritima. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)50016-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
38
|
Pascolo S, Ghazvini M, Boyer J, Colleaux L, Thierry A, Dujon B. The sequence of a 9.3 kb segment located on the left arm of the yeast chromosome XI reveals five open reading frames including the CCE1 gene and putative products related to MYO2 and to the ribosomal protein L10. Yeast 1992; 8:987-95. [PMID: 1481574 DOI: 10.1002/yea.320081109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We report here the sequence of a 9.3 kb DNA segment of chromosome XI of Saccharomyces cerevisiae, located between the MAK11 locus and the centromere. This sequence contains four long open reading frames (ORFs), YKL160, YKL162, YKL164, YKL165 and part of another ORF, YKL166, covering altogether 90% of the entire sequence. One of these ORFs, YKL164, corresponds to CCE1. Translation products of two other ORFs, YKL160 and YKL165, exhibit homology with previously known S. cerevisiae proteins: the ribosomal protein L10, and the MYO2 gene product, respectively.
Collapse
Affiliation(s)
- S Pascolo
- Unité de Génétique Moléculaire des Levures (URA 1149 du C.N.R.S.), Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
39
|
Vazquez MP, Schijman AG, Panebra A, Levin MJ. Nucleotide sequence of a cDNA encoding another Trypanosoma cruzi acidic ribosomal P2 type protein (TcP2b). Nucleic Acids Res 1992; 20:2893. [PMID: 1614880 PMCID: PMC336945 DOI: 10.1093/nar/20.11.2893] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- M P Vazquez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
40
|
Schijman AG, Levitus G, Levin MJ. Characterization of the C-terminal region of a Trypanosoma cruzi 38-kDa ribosomal P0 protein that does not react with lupus anti-P autoantibodies. Immunol Lett 1992; 33:15-20. [PMID: 1385317 DOI: 10.1016/0165-2478(92)90087-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A Trypanosoma cruzi cDNA lambda gt11 recombinant, C-P0, encoding the carboxyterminus of a highly antigenic ribosomal P protein, was isolated. Sequence comparisons and immunological evidence allowed its identification as the C-terminal region of the T. cruzi 38-kDa ribosomal P0 protein. This recombinant failed to react with systemic lupus erythematosus (SLE) anti-P antibodies. The T. cruzi ribosomal P0 protein is the first reported eukaryotic ribosomal P protein presenting this immunological property, probably due to its peculiar C-terminal-amino-acid sequence, FGMGALF, which differs from the conserved eukaryotic ribosomal P protein C-terminal consensus, MGFGLFD.
Collapse
Affiliation(s)
- A G Schijman
- Instituto de Investigaciones en Ingeniería Genética y Biologia Molecular, Buenos Aires, Argentina
| | | | | |
Collapse
|
41
|
Vazquez MP, Schijman AG, Levin MJ. Nucleotide sequence of a cDNA encoding a Trypanosoma cruzi acidic ribosomal P1 type protein. Nucleic Acids Res 1992; 20:2599. [PMID: 1598221 PMCID: PMC312400 DOI: 10.1093/nar/20.10.2599] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- M P Vazquez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina
| | | | | |
Collapse
|
42
|
Dalrymple BP, Peters JM. Identification of L10e/L12e ribosomal protein genes in Babesia bovis. Nucleic Acids Res 1992; 20:2376. [PMID: 1594456 PMCID: PMC312359 DOI: 10.1093/nar/20.9.2376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- B P Dalrymple
- CSIRO Division of Tropical Animal Production, Indooroopilly, Qld, Australia
| | | |
Collapse
|
43
|
Yee J, Dennis P. Isolation and characterization of a NADP-dependent glutamate dehydrogenase gene from the primitive eucaryote Giardia lamblia. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42550-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
44
|
Naranda T, Ballesta JP. Phosphorylation controls binding of acidic proteins to the ribosome. Proc Natl Acad Sci U S A 1991; 88:10563-7. [PMID: 1961721 PMCID: PMC52969 DOI: 10.1073/pnas.88.23.10563] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The replacement of each one of the eight serine residues present in the amino acid sequence of the Saccharomyces cerevisiae acidic ribosomal phosphoprotein YP2 beta (L45) by different amino acids has been performed by heteroduplex site-directed mutagenesis in the cloned gene. The mutated DNA was used to transform a yeast strain previously deprived of the original protein YP2 beta (L45) by gene disruption. The replacement of serine in position 19 by either alanine, aspartic acid, or threonine prevents in vivo phosphorylation of the protein and its interaction with the ribosome. The serine-19 mutated gene is unable to rescue the negative effect on the growth rate caused by elimination of the original protein in YP2 beta (L45) gene disrupted strains. The mutation of any one of the other seven serine residues has no effect on either the phosphorylation or the ribosome binding capacity of the protein, although replacement of serine-72 seems to increase the sensitivity of the polypeptide to degradation. These results provide strong evidence indicating that ribosomal protein phosphorylation plays an important part in the activity of the particle and that it supports the existence of a control mechanism of protein synthesis, which would regulate the level of phosphorylation of acidic proteins.
Collapse
Affiliation(s)
- T Naranda
- Centro de Biologia Molecular, Consejo Superior de Investigaciones Científicas, Canto Blanco, Madrid, Spain
| | | |
Collapse
|
45
|
Hansen TS, Andreasen PH, Dreisig H, Højrup P, Nielsen H, Engberg J, Kristiansen K. Tetrahymena thermophila acidic ribosomal protein L37 contains an archaebacterial type of C-terminus. Gene 1991; 105:143-50. [PMID: 1937011 DOI: 10.1016/0378-1119(91)90144-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have cloned and characterized a Tetrahymena thermophila macronuclear gene (L37) encoding the acidic ribosomal protein (A-protein) L37. The gene contains a single intron located in the 3'-part of the coding region. Two major and three minor transcription start points (tsp) were mapped 39 to 63 nucleotides upstream from the translational start codon. The uppermost tsp mapped to the first T in a putative T. thermophila RNA polymerase II initiator element, TATAA. The coding region of L37 predicts a protein of 109 amino acid (aa) residues. A substantial part of the deduced aa sequence was verified by protein sequencing. The T. thermophila L37 clearly belongs to the P1-type family of eukaryotic A-proteins, but the C-terminal region has the hallmarks of archaebacterial A-proteins.
Collapse
Affiliation(s)
- T S Hansen
- Department of Molecular Biology, University of Odense, Denmark
| | | | | | | | | | | | | |
Collapse
|
46
|
Wool IG, Chan YL, Glück A, Suzuki K. The primary structure of rat ribosomal proteins P0, P1, and P2 and a proposal for a uniform nomenclature for mammalian and yeast ribosomal proteins. Biochimie 1991; 73:861-70. [PMID: 1742361 DOI: 10.1016/0300-9084(91)90127-m] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The covalent structures of rat ribosomal proteins P0, P1, and P2 were deduced from the sequences of nucleotides in recombinant cDNAs. P0 contains 316 amino acids and has a molecular weight of 34,178; P1 has 114 residues and a molecular weight of 11,490: and P2 has 115 amino acids and a molecular weight of 11,684. The rat P-proteins have a near identical (16 of 17 residues) sequence of amino acids at their carboxyl termini and are related to analogous proteins in other eukaryotic species. A proposal is made for a uniform nomenclature for rat and yeast ribosomal proteins.
Collapse
Affiliation(s)
- I G Wool
- Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637
| | | | | | | |
Collapse
|
47
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1991; 19:1731-6. [PMID: 2027787 PMCID: PMC333972 DOI: 10.1093/nar/19.7.1731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
48
|
Vilella MD, Remacha M, Ortiz BL, Mendez E, Ballesta JP. Characterization of the yeast acidic ribosomal phosphoproteins using monoclonal antibodies. Proteins L44/L45 and L44' have different functional roles. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 196:407-14. [PMID: 1706664 DOI: 10.1111/j.1432-1033.1991.tb15831.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In order to characterize the acidic ribosomal proteins immunologically and functionally, a battery of monoclonal antibodies specific for L44, L44' and L45, the three acidic proteins detected in Saccharomyces cerevisiae, were obtained. Eight monoclonal antibodies were obtained specific for L45, three for L44' and one for L44. In addition, two mAbs recognizing only the phosphorylated forms of the three proteins were obtained. The specific immunogenic determinants are located in the middle region of the protein structure and are differently exposed in the ribosomal surface. The common determinants are present in the carboxyl end of the three proteins. An estimation of the acidic proteins by ELISA indicated that, in contrast to L44 and L45, L44' is practically absent from the cell supernatant; this suggests that protein L44' does not intervene in the exchange that has been shown to take place between the acidic proteins in the ribosome and in the cytoplasmic pool. It has also been found that, while IgGs specific for L44 and L45 do not inhibit the ribosome activity, the anti-L44' effectively blocks the polymerizing activity of the particles. These results show for the first time that the different eukaryotic acidic ribosomal proteins play a different functional role.
Collapse
Affiliation(s)
- M D Vilella
- Centro de Biologia Molecular, Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- J L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
50
|
Occurrence in the archaebacterium Sulfolobus solfataricus of a ribosomal protein complex corresponding to Escherichia coli (L7/L12)4.L10 and eukaryotic (P1)2/(P2)2.P0. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30576-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|