1
|
Choi J, Salvail H, Groisman EA. RNA chaperone activates Salmonella virulence program during infection. Nucleic Acids Res 2021; 49:11614-11628. [PMID: 34751407 PMCID: PMC8599858 DOI: 10.1093/nar/gkab992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Organisms often harbor seemingly redundant proteins. In the bacterium Salmonella enterica serovar Typhimurium (S. Typhimurium), the RNA chaperones CspC and CspE appear to play redundant virulence roles because a mutant lacking both chaperones is attenuated, whereas mutants lacking only one exhibit wild-type virulence. We now report that CspC—but not CspE—is necessary to activate the master virulence regulator PhoP when S. Typhimurium experiences mildly acidic pH, such as inside macrophages. This CspC-dependent PhoP activation is specific to mildly acidic pH because a cspC mutant behaves like wild-type S. Typhimurium under other PhoP-activating conditions. Moreover, it is mediated by ugtL, a virulence gene required for PhoP activation inside macrophages. Purified CspC promotes ugtL translation by disrupting a secondary structure in the ugtL mRNA that occludes ugtL’s ribosome binding site. Our findings demonstrate that proteins that are seemingly redundant actually confer distinct and critical functions to the lifestyle of an organism.
Collapse
Affiliation(s)
- Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Hubert Salvail
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA
| |
Collapse
|
2
|
Andrews ESV, Arcus VL. PhoH2 proteins couple RNA helicase and RNAse activities. Protein Sci 2020; 29:883-892. [PMID: 31886915 DOI: 10.1002/pro.3814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/29/2023]
Abstract
PhoH2 proteins are found in a very diverse range of microorganisms that span bacteria and archaea. These proteins are composed of two domains: an N-terminal PIN-domain fused with a C-terminal PhoH domain. Collectively this fusion functions as an RNA helicase and ribonuclease. In other genomic contexts, PINdomains and PhoHdomains are separate but adjacent suggesting association to achieve similar function. Exclusively among the mycobacteria, PhoH2 proteins are encoded in the genome with an upstream gene, phoAT, which is thought to play the role of an antitoxin (in place of the traditional VapB antitoxin that lies upstream of the 47 other PINdomains in the mycobacterial genome). This review examines PhoH2 proteins as a whole and describes the bioinformatics, biochemical, structural, and biological properties of the two domains that make up PhoH2: PIN and PhoH. We review the transcriptional regulators of phoH2 from two mycobacterial species and speculate on the function of PhoH2 proteins in the context of a Type II toxin-antitoxin system which are thought to play a role in the stress response in bacteria.
Collapse
Affiliation(s)
- Emma S V Andrews
- School of Science, Division of Health, Engineering, Computing and Science, University of Waikato, Hamilton, New Zealand
| | - Vickery L Arcus
- School of Science, Division of Health, Engineering, Computing and Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
3
|
Abstract
Phosphorus is required for many biological molecules and essential functions, including DNA replication, transcription of RNA, protein translation, posttranslational modifications, and numerous facets of metabolism. In order to maintain the proper level of phosphate for these processes, many bacteria adapt to changes in environmental phosphate levels. The mechanisms for sensing phosphate levels and adapting to changes have been extensively studied for multiple organisms. The phosphate response of Escherichia coli alters the expression of numerous genes, many of which are involved in the acquisition and scavenging of phosphate more efficiently. This review shares findings on the mechanisms by which E. coli cells sense and respond to changes in environmental inorganic phosphate concentrations by reviewing the genes and proteins that regulate this response. The PhoR/PhoB two-component signal transduction system is central to this process and works in association with the high-affinity phosphate transporter encoded by the pstSCAB genes and the PhoU protein. Multiple models to explain how this process is regulated are discussed.
Collapse
Affiliation(s)
- Stewart G Gardner
- Department of Biological Sciences, Emporia State University, Emporia, KS 66801
| | - William R McCleary
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT 84602
| |
Collapse
|
4
|
Chen W, Mandali S, Hancock SP, Kumar P, Collazo M, Cascio D, Johnson RC. Multiple serine transposase dimers assemble the transposon-end synaptic complex during IS 607-family transposition. eLife 2018; 7:e39611. [PMID: 30289389 PMCID: PMC6188088 DOI: 10.7554/elife.39611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
IS607-family transposons are unusual because they do not have terminal inverted repeats or generate target site duplications. They encode two protein-coding genes, but only tnpA is required for transposition. Our X-ray structures confirm that TnpA is a member of the serine recombinase (SR) family, but the chemically-inactive quaternary structure of the dimer, along with the N-terminal location of the DNA binding domain, are different from other SRs. TnpA dimers from IS1535 cooperatively associate with multiple subterminal repeats, which together with additional nonspecific binding, form a nucleoprotein filament on one transposon end that efficiently captures a second unbound end to generate the paired-end complex (PEC). Formation of the PEC does not require a change in the dimeric structure of the catalytic domain, but remodeling of the C-terminal α-helical region is involved. We posit that the PEC recruits a chemically-active conformer of TnpA to the transposon end to initiate DNA chemistry.
Collapse
Affiliation(s)
- Wenyang Chen
- Department of Biological ChemistryDavid Geffen School of Medicine, University of California at Los AngelesLos AngelesUnited States
| | - Sridhar Mandali
- Department of Biological ChemistryDavid Geffen School of Medicine, University of California at Los AngelesLos AngelesUnited States
| | - Stephen P Hancock
- Department of Biological ChemistryDavid Geffen School of Medicine, University of California at Los AngelesLos AngelesUnited States
| | - Pramod Kumar
- Department of Biological ChemistryDavid Geffen School of Medicine, University of California at Los AngelesLos AngelesUnited States
| | - Michael Collazo
- Department of Energy Institute of Genomics and ProteomicsUniversity of California at Los AngelesLos AngelesUnited States
| | - Duilio Cascio
- Department of Energy Institute of Genomics and ProteomicsUniversity of California at Los AngelesLos AngelesUnited States
| | - Reid C Johnson
- Department of Biological ChemistryDavid Geffen School of Medicine, University of California at Los AngelesLos AngelesUnited States
- Molecular Biology InstituteUniversity of California at Los AngelesLos AngelesUnited States
| |
Collapse
|
5
|
Mendez J, Cascales D, Garcia-Torrico AI, Guijarro JA. Temperature-Dependent Gene Expression in Yersinia ruckeri: Tracking Specific Genes by Bioluminescence During in Vivo Colonization. Front Microbiol 2018; 9:1098. [PMID: 29887855 PMCID: PMC5981175 DOI: 10.3389/fmicb.2018.01098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/08/2018] [Indexed: 11/26/2022] Open
Abstract
Yersinia ruckeri is a bacterium causing fish infection processes at temperatures below the optimum for growth. A derivative Tn5 transposon was used to construct a library of Y. ruckeri mutants with transcriptional fusions between the interrupted genes and the promoterless luxCDABE and lacZY operons. In vitro analysis of β-galactosidase activity allowed the identification of 168 clones having higher expression at 18°C than at 28°C. Among the interrupted genes a SAM-dependent methyltransferase, a diguanylated cyclase, three genes involved in legionaminic acid synthesis and three transcriptional regulators were defined. In order to determine, via bioluminescence emission, the in vivo expression of some of these genes, two of the selected mutants were studied. In one of them, the acrR gene coding a repressor involved in regulation of the AcrAB-TolC expulsion pump was interrupted. This mutant was found to be highly resistant to compounds such as chloramphenicol, tetracycline, and ciprofloxacin. Although acrR mutation was not related to virulence in Y. ruckeri, this mutant was useful to analyze acrR expression in fish tissues in vivo. The other gene studied was osmY which is activated under osmotic stress and is involved in virulence. In this case, complemented mutant was used for experiments with fish. In vivo analysis of bioluminescence emission by these two strains showed higher values for acrR in gut, liver and adipose tissue, whereas osmY showed higher luminescence in gut and, at the end of the infection process, in muscle tissue. Similar results were obtained in ex vivo assays using rainbow trout tissues. The results indicated that this kind of approach was useful for the identification of genes related to virulence in Y. ruckeri and also for the in vivo and in vitro studies of each of the selected genes.
Collapse
Affiliation(s)
- Jessica Mendez
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Instituto de Biotecnología de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Desirée Cascales
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Instituto de Biotecnología de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Ana I Garcia-Torrico
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Instituto de Biotecnología de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Jose A Guijarro
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Instituto de Biotecnología de Asturias, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
6
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
7
|
Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock" Reveal Generic and Specific Metal Responses. Appl Environ Microbiol 2016; 82:4613-4627. [PMID: 27208114 DOI: 10.1128/aem.01176-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The extremely thermoacidophilic archaeon Metallosphaera sedula mobilizes metals by novel membrane-associated oxidase clusters and, consequently, requires metal resistance strategies. This issue was examined by "shocking" M. sedula with representative metals (Co(2+), Cu(2+), Ni(2+), UO2 (2+), Zn(2+)) at inhibitory and subinhibitory levels. Collectively, one-quarter of the genome (554 open reading frames [ORFs]) responded to inhibitory levels, and two-thirds (354) of the ORFs were responsive to a single metal. Cu(2+) (259 ORFs, 106 Cu(2+)-specific ORFs) and Zn(2+) (262 ORFs, 131 Zn(2+)-specific ORFs) triggered the largest responses, followed by UO2 (2+) (187 ORFs, 91 UO2 (2+)-specific ORFs), Ni(2+) (93 ORFs, 25 Ni(2+)-specific ORFs), and Co(2+) (61 ORFs, 1 Co(2+)-specific ORF). While one-third of the metal-responsive ORFs are annotated as encoding hypothetical proteins, metal challenge also impacted ORFs responsible for identifiable processes related to the cell cycle, DNA repair, and oxidative stress. Surprisingly, there were only 30 ORFs that responded to at least four metals, and 10 of these responded to all five metals. This core transcriptome indicated induction of Fe-S cluster assembly (Msed_1656-Msed_1657), tungsten/molybdenum transport (Msed_1780-Msed_1781), and decreased central metabolism. Not surprisingly, a metal-translocating P-type ATPase (Msed_0490) associated with a copper resistance system (Cop) was upregulated in response to Cu(2+) (6-fold) but also in response to UO2 (2+) (4-fold) and Zn(2+) (9-fold). Cu(2+) challenge uniquely induced assimilatory sulfur metabolism for cysteine biosynthesis, suggesting a role for this amino acid in Cu(2+) resistance or issues in sulfur metabolism. The results indicate that M. sedula employs a range of physiological and biochemical responses to metal challenge, many of which are specific to a single metal and involve proteins with yet unassigned or definitive functions. IMPORTANCE The mechanisms by which extremely thermoacidophilic archaea resist and are negatively impacted by metals encountered in their natural environments are important to understand so that technologies such as bioleaching, which leverage microbially based conversion of insoluble metal sulfides to soluble species, can be improved. Transcriptomic analysis of the cellular response to metal challenge provided both global and specific insights into how these novel microorganisms negotiate metal toxicity in natural and technological settings. As genetics tools are further developed and implemented for extreme thermoacidophiles, information about metal toxicity and resistance can be leveraged to create metabolically engineered strains with improved bioleaching characteristics.
Collapse
|
8
|
Identification of the PhoB Regulon and Role of PhoU in the Phosphate Starvation Response of Caulobacter crescentus. J Bacteriol 2015; 198:187-200. [PMID: 26483520 DOI: 10.1128/jb.00658-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/09/2015] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED An ability to sense and respond to changes in extracellular phosphate is critical for the survival of most bacteria. For Caulobacter crescentus, which typically lives in phosphate-limited environments, this process is especially crucial. Like many bacteria, Caulobacter responds to phosphate limitation through a conserved two-component signaling pathway called PhoR-PhoB, but the direct regulon of PhoB in this organism is unknown. Here we used chromatin immunoprecipitation-DNA sequencing (ChIP-Seq) to map the global binding patterns of the phosphate-responsive transcriptional regulator PhoB under phosphate-limited and -replete conditions. Combined with genome-wide expression profiling, our work demonstrates that PhoB is induced to regulate nearly 50 genes under phosphate-starved conditions. The PhoB regulon is comprised primarily of genes known or predicted to help Caulobacter scavenge for and import inorganic phosphate, including 15 different membrane transporters. We also investigated the regulatory role of PhoU, a widely conserved protein proposed to coordinate phosphate import with expression of the PhoB regulon by directly modulating the histidine kinase PhoR. However, our studies show that it likely does not play such a role in Caulobacter, as PhoU depletion has no significant effect on PhoB-dependent gene expression. Instead, cells lacking PhoU exhibit striking accumulation of large polyphosphate granules, suggesting that PhoU participates in controlling intracellular phosphate metabolism. IMPORTANCE The transcription factor PhoB is widely conserved throughout the bacterial kingdom, where it helps organisms respond to phosphate limitation by driving the expression of a battery of genes. Most of what is known about PhoB and its target genes is derived from studies of Escherichia coli. Our work documents the PhoB regulon in Caulobacter crescentus, and comparison to the regulon in E. coli reveals significant differences, highlighting the evolutionary plasticity of transcriptional responses driven by highly conserved transcription factors. We also demonstrated that the conserved protein PhoU, which is implicated in bacterial persistence, does not regulate PhoB activity, as previously suggested. Instead, our results favor a model in which PhoU affects intracellular phosphate accumulation, possibly through the high-affinity phosphate transporter.
Collapse
|
9
|
Abstract
UNLABELLED Uropathogenic Escherichia coli (UPEC) is the primary cause of community-acquired urinary tract infections (UTIs). UPEC bind the bladder using type 1 pili, encoded by the fim operon in nearly all E. coli. Assembled type 1 pili terminate in the FimH adhesin, which specifically binds to mannosylated glycoproteins on the bladder epithelium. Expression of type 1 pili is regulated in part by phase-variable inversion of the genomic element containing the fimS promoter, resulting in phase ON (expressing) and OFF (nonexpressing) orientations. Type 1 pili are essential for virulence in murine models of UTI; however, studies of urine samples from human UTI patients demonstrate variable expression of type 1 pili. We provide insight into this paradox by showing that human urine specifically inhibits both expression and function of type 1 pili. Growth in urine induces the fimS phase OFF orientation, preventing fim expression. Urine also contains inhibitors of FimH function, and this inhibition leads to a further bias in fimS orientation toward the phase OFF state. The dual effect of urine on fimS regulation and FimH binding presents a potential barrier to type 1 pilus-mediated colonization and invasion of the bladder epithelium. However, FimH-mediated attachment to human bladder cells during growth in urine reverses these effects such that fim expression remains ON and/or turns ON. Interestingly, FimH inhibitors called mannosides also induce the fimS phase OFF orientation. Thus, the transduction of FimH protein attachment or inhibition into epigenetic regulation of type 1 pilus expression has important implications for the development of therapeutics targeting FimH function. IMPORTANCE Urinary tract infections (UTIs) are extremely common infections, frequently caused by uropathogenic Escherichia coli (UPEC), that are treated with antibiotics but often recur. Therefore, UTI treatment both is complicated by and contributes to bacterial antibiotic resistance. Thus, it is important to understand UTI pathogenesis to devise novel strategies and targets for prevention and treatment. Based on evidence from disease epidemiology and mouse models of infection, UPEC relies heavily on type 1 pili to attach to and invade the bladder epithelium during initial stages of UTI. Here, we demonstrate that the negative effect of planktonic growth in human urine on both the function and expression of type 1 pili is overcome by attachment to bladder epithelial cells, representing a strategy to subvert this alternative innate defense mechanism. Furthermore, this dually inhibitory action of urine is a mechanism shared with recently developed anti-type 1 pilus molecules, highlighting the idea that further development of antivirulence strategies targeting pili may be particularly effective for UPEC.
Collapse
|
10
|
Ohyama H, Sakai T, Agari Y, Fukui K, Nakagawa N, Shinkai A, Masui R, Kuramitsu S. The role of ribonucleases in regulating global mRNA levels in the model organism Thermus thermophilus HB8. BMC Genomics 2014; 15:386. [PMID: 24884843 PMCID: PMC4229858 DOI: 10.1186/1471-2164-15-386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 05/08/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA metabolism, including RNA synthesis and RNA degradation, is one of the most conserved biological systems and has been intensively studied; however, the degradation network of ribonucleases (RNases) and RNA substrates is not fully understood. RESULTS The genome of the extreme thermophile, Thermus thermophilus HB8 includes 15 genes that encode RNases or putative RNases. Using DNA microarray analyses, we examined the effects of disruption of each RNase on mRNA abundance. Disruption of the genes encoding RNase J, RecJ-like protein and RNase P could not be isolated, indicating that these RNases are essential for cell viability. Disruption of the TTHA0252 gene, which was not previously considered to be involved in mRNA degradation, affected mRNA abundance, as did disruption of the putative RNases, YbeY and PhoH-like proteins, suggesting that they have RNase activity. The effects on mRNA abundance of disruption of several RNase genes were dependent on the phase of cell growth. Disruption of the RNase Y and RNase HII genes affected mRNA levels only during the log phase, whereas disruption of the PhoH-like gene affected mRNA levels only during the stationary phase. Moreover, disruption of the RNase R and PNPase genes had a greater impact on mRNA abundance during the stationary phase than the log phase, whereas the opposite was true for the TTHA0252 gene disruptant. Similar changes in mRNA levels were observed after disruption of YbeY or PhoH-like genes. The changes in mRNA levels in the bacterial Argonaute disruptant were similar to those in the RNase HI and RNase HII gene disruptants, suggesting that bacterial Argonaute is a functional homolog of RNase H. CONCLUSION This study suggests that T. thermophilus HB8 has 13 functional RNases and that each RNase has a different function in the cell. The putative RNases, TTHA0252, YbeY and PhoH-like proteins, are suggested to have RNase activity and to be involved in mRNA degradation. In addition, PhoH-like and YbeY proteins may act cooperatively in the stationary phase. This study also suggests that endo-RNases function mainly during the log phase, whereas exo-RNases function mainly during the stationary phase. RNase HI and RNase HII may have similar substrate selectivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Seiki Kuramitsu
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
11
|
Distinct transcriptional profiles and phenotypes exhibited by Escherichia coli O157:H7 isolates related to the 2006 spinach-associated outbreak. Appl Environ Microbiol 2011; 78:455-63. [PMID: 22081562 DOI: 10.1128/aem.06251-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 2006, a large outbreak of Escherichia coli O157:H7 was linked to the consumption of ready-to-eat bagged baby spinach in the United States. The likely sources of preharvest spinach contamination were soil and water that became contaminated via cattle or feral pigs in the proximity of the spinach fields. In this study, we compared the transcriptional profiles of 12 E. coli O157:H7 isolates that possess the same two-enzyme pulsed-field gel electrophoresis (PFGE) profile and are related temporally or geographically to the above outbreak. These E. coli O157:H7 isolates included three clinical isolates, five isolates from separate bags of spinach, and single isolates from pasture soil, river water, cow feces, and a feral pig. The three clinical isolates and two spinach bag isolates grown in cultures to stationary phase showed decreased expression of many σ(S)-regulated genes, including gadA, osmE, osmY, and katE, compared with the soil, water, cow, feral pig, and the other three spinach bag isolates. The decreased expression of these σ(S)-regulated genes was correlated with the decreased resistance of the isolates to acid stress, osmotic stress, and oxidative stress but increases in scavenging ability. We also observed that intraisolate variability was much more pronounced among the clinical and spinach isolates than among the environmental isolates. Together, the transcriptional and phenotypic differences of the spinach outbreak isolates of E. coli O157:H7 support the hypothesis that some variants within the spinach bag retained characteristics of the preharvest isolates, whereas other variants with altered gene expression and phenotypes infected the human host.
Collapse
|
12
|
Constitutive expression of the maltoporin LamB in the absence of OmpR damages the cell envelope. J Bacteriol 2010; 193:842-53. [PMID: 21131484 DOI: 10.1128/jb.01004-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells experience multiple environmental stimuli simultaneously. To survive, they must respond accordingly. Unfortunately, the proper response to one stress easily could make the cell more susceptible to a second coexistent stress. To deal with such a problem, a cell must possess a mechanism that balances the need to respond simultaneously to both stresses. Our recent studies of ompR malT(Con) double mutants show that elevated expression of LamB, the outer membrane porin responsible for maltose uptake, causes cell death when the osmoregulator OmpR is disabled. To obtain insight into the nature of the death experienced by ompR malT(Con) mutants, we described the death process. On the basis of microscopic and biochemical approaches, we conclude that death results from a loss of membrane integrity. On the basis of an unbiased genome-wide search for suppressor mutations, we conclude that this loss of membrane integrity results from a LamB-induced envelope stress that the cells do not sufficiently perceive and thus do not adequately accommodate. Finally, we conclude that this envelope stress involves an imbalance in the lipopolysaccharide/porin composition of the outer membrane and an increased requirement for inorganic phosphate.
Collapse
|
13
|
Cardemil CV, Smulski DR, Larossa RA, Vollmer AC. Bioluminescent Escherichia coli strains for the quantitative detection of phosphate and ammonia in coastal and suburban watersheds. DNA Cell Biol 2010; 29:519-31. [PMID: 20491581 DOI: 10.1089/dna.2009.0984] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Accumulation of phosphate and ammonia in estuarine systems and subsequent dinoflagellate and algal blooms has been implicated in fish kills and in health risks for fishermen. Analytic chemistry kits are used to measure phosphate and ammonia levels in water samples, but their sensitivity is limited due to specificity for inorganic forms of these moieties. An Escherichia coli bioluminescent reporter system measured the bioavailability of inorganic nutrients through fusion of E. coli promoters (phoA or glnAp2) to the luxCDABE operon of Vibrio fischeri carried either on the chromosome or on a multicopy plasmid vector, resulting in emission of light in response to phosphate or ammonia starvation. Responses were shown to be under the control of expected physiological regulators, phoB and glnFG, respectively. Standard curves were used to determine the phosphate and ammonia levels in water samples from diverse watersheds located in the northeastern United States. Bioluminescence produced in response to nutrient starvation correlated with concentrations of phosphate (1-24 ppm) and ammonia (0.1-1.6 ppm). While the ammonia biosensor measured nutrient concentrations in tested water samples that were comparable to the amounts reported by a commercial kit, the phosphate biosensor reported higher levels of phosphate in Chesapeake water samples than did the kit.
Collapse
|
14
|
Evolution of the RpoS regulon: origin of RpoS and the conservation of RpoS-dependent regulation in bacteria. J Mol Evol 2010; 70:557-71. [PMID: 20506020 DOI: 10.1007/s00239-010-9352-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
Abstract
The RpoS sigma factor in proteobacteria regulates genes in stationary phase and in response to stress. Although of conserved function, the RpoS regulon may have different gene composition across species due to high genomic diversity and to known environmental conditions that select for RpoS mutants. In this study, the distribution of RpoS homologs in prokaryotes and the differential dependence of regulon members on RpoS for expression in two gamma-proteobacteria (Escherichia coli and Pseudomonas aeruginosa) were examined. Using a maximum-likelihood phylogeny and reciprocal best hits analysis, we show that the RpoS sigma factor is conserved within gamma-, beta-, and delta-proteobacteria. Annotated RpoS of Borrelia and the enteric RpoS are postulated to have separate evolutionary origins. To determine the conservation of RpoS-dependent gene expression across species, reciprocal best hits analysis was used to identify orthologs of the E. coli RpoS regulon in the RpoS regulon of P. aeruginosa. Of the 186 RpoS-dependent genes of E. coli, 50 proteins have an ortholog within the P. aeruginosa genome. Twelve genes of the 50 orthologs are RpoS-dependent in both species, and at least four genes are regulated by RpoS in other gamma-proteobacteria. Despite RpoS conservation in gamma-, beta-, and delta-proteobacteria, RpoS regulon composition is subject to modification between species. Environmental selection for RpoS mutants likely contributes to the evolutionary divergence and specialization of the RpoS regulon within different bacterial genomes.
Collapse
|
15
|
Hartley LE, Kaakoush NO, Ford JL, Korolik V, Mendz GL. Characterisation of Campylobacter jejuni genes potentially involved in phosphonate degradation. Gut Pathog 2009; 1:13. [PMID: 19555480 PMCID: PMC2715421 DOI: 10.1186/1757-4749-1-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 06/25/2009] [Indexed: 11/12/2022] Open
Abstract
Potential biological roles of the Campylobacter jejuni genes cj0641, cj0774c and cj1663 were investigated. The proteins encoded by these genes showed sequence similarities to the phosphonate utilisation PhnH, K and L gene products of Escherichia coli. The genes cj0641, cj0774c and cj1663 were amplified from the pathogenic C. jejuni strain 81116, sequenced, and cloned into pGEM-T Easy vectors. Recombinant plasmids were used to disrupt each one of the genes by inserting a kanamycin resistance (KmR) cassette employing site-directed mutagenesis or inverse PCR. Campylobacter jejuni 81116 isogenic mutants were generated by integration of the mutated genes into the genome of the wild-type strain. The C. jejuni mutants grew on primary isolation plates, but they could not be purified by subsequent passages owing to cell death. The mutant C. jejuni strains survived and proliferated in co-cultures with wild-type bacteria or in media in which wild-type C. jejuni had been previously grown. PCR analyses of mixed wild-type/mutant cultures served to verify the presence of the mutated gene in the genome of a fraction of the total bacterial population. The data suggested that each mutation inactivated a gene essential for survival. Rates of phosphonate catabolism in lysates of E. coli strain DH5α were determined using proton nuclear magnetic resonance spectroscopy. Whole-cell lysates of the wild-type degraded phosphonoacetate, phenylphosphonate and aminomethylphosphonate. Significant differences in the rates of phosphonate degradation were observed between lysates of wild-type E. coli, and of bacteria transformed with each one of the vectors carrying one of the C. jejuni genes, suggesting that these genes were involved in phosphonate catabolism.
Collapse
Affiliation(s)
- Lauren E Hartley
- Institute for Glycomics, Griffith University, Gold Coast, Australia.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO(3)(2-)), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks.
Collapse
Affiliation(s)
- Matthew A. Pasek
- National Aeronautics and Space Administration (NASA) Astrobiology Institute (NAI) LaPlace Center, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85719
| |
Collapse
|
17
|
The BaeSR two-component regulatory system mediates resistance to condensed tannins in Escherichia coli. Appl Environ Microbiol 2007; 74:535-9. [PMID: 18039828 DOI: 10.1128/aem.02271-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The gene expression profiles of Escherichia coli strains grown anaerobically with or without Acacia mearnsii (black wattle) extract were compared to identify tannin resistance strategies. The cell envelope stress protein gene spy and the multidrug transporter-encoding operon mdtABCD, both under the control of the BaeSR two-component regulatory system, were significantly up-regulated in the presence of tannins. BaeSR mutants were more tannin sensitive than their wild-type counterparts.
Collapse
|
18
|
Wright KJ, Seed PC, Hultgren SJ. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol 2007; 9:2230-41. [PMID: 17490405 DOI: 10.1111/j.1462-5822.2007.00952.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Uropathogenic Escherichia coli, the predominant causative agent of urinary tract infections, use type 1 pili to bind and invade bladder epithelial cells. Upon entry, the bacteria rapidly replicate and enter a complex developmental pathway ultimately forming intracellular bacterial communities (IBCs), a niche with biofilm-like properties protected from innate defences and antibiotics. Paradoxically, bacteria within IBCs produce type 1 pili, an organelle thought only to be an extracellular colonization factor. Thus, we investigated the function of type 1 pili in IBC development. The cystitis isolate, UTI89, was genetically manipulated for conditional fim expression under control of the tet promoter. In this strain, UTI89-tetR/P(tet) fim, piliation is constitutively inhibited by the tetracycline repressor, TetR. Repression is relieved by anhydrotetracycline (AHT) treatment. UTI89-tetR/P(tet) fim and the isogenic control strain, UTI89-tetR, grown in the presence of AHT, colonized the bladder and invaded the superficial umbrella cells at similar levels at early times in a murine model of infection. However, after invasion UTI89-tetR/P(tet) fim became non-piliated and was unable to form typical IBCs comprised of tightly packed, coccoid-shaped bacteria in contrast to the control strain, UTI89-tetR. Thus, this work changes the extracellular colonization functional paradigm of pili by demonstrating their intracellular role in biofilm formation.
Collapse
Affiliation(s)
- Kelly J Wright
- Department of Molecular Microbiology, Box 8230, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
19
|
Rizk SS, Cuneo MJ, Hellinga HW. Identification of cognate ligands for the Escherichia coli phnD protein product and engineering of a reagentless fluorescent biosensor for phosphonates. Protein Sci 2006; 15:1745-51. [PMID: 16751609 PMCID: PMC2242554 DOI: 10.1110/ps.062135206] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The Escherichia coli phnD gene is hypothesized to code for the periplasmic binding component of a phosphonate uptake system. Here we report the characterization of the phosphonate-binding properties of the phnD protein product. We find that PhnD exhibits high affinity for 2-aminoethylphosphonate (5 nM), the most commonly occurring natural phosphonate produced by lower eukaryotes, but also binds several other phosphonates with micromolar affinities. A significant number of man-made phosphonates, such as insecticides and chemical warfare agents, are chemical threats and environmental pollutants. Consequently, there is an interest in developing methods for the detection and bioremediation of phosphonates. Bacterial periplasmic-binding proteins have been utilized for developing reagentless biosensors that report analytes by coupling ligand-binding events to changes in the emission properties of a covalently conjugated environmentally-sensitive fluorophore. Several PhnD conjugates described here show large changes in fluorescence upon binding to methylphosphonate (MP), with two conjugates exhibiting up to 50% decrease in emission intensity. Since MP is the final degradation product of many nerve agents, these PhnD conjugates can function as components in a biosensor system for chemical warfare agents.
Collapse
Affiliation(s)
- Shahir S Rizk
- Duke University Medical Center, Department of Biochemistry, Durham, NC 27710, USA
| | | | | |
Collapse
|
20
|
Wright KJ, Seed PC, Hultgren SJ. Uropathogenic Escherichia coli flagella aid in efficient urinary tract colonization. Infect Immun 2005; 73:7657-68. [PMID: 16239570 PMCID: PMC1273872 DOI: 10.1128/iai.73.11.7657-7668.2005] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In the murine model of urinary tract infections (UTI), cystitis by uropathogenic Escherichia coli (UPEC) occurs through an intimate relationship with the bladder superficial umbrella cell entailing cycles of adherence, invasion, intracellular bacterial community (IBC) formation, and dispersal (fluxing) from the intracellular environment. IBC dispersal is a key step that results in the spread of bacteria over the epithelial surface to initiate additional rounds of IBC formation. We investigated the role of flagella in mediating adherence and motility during UTI, hypothesizing that the dispersion of the IBC would be incomplete in the absence of motility, thus interrupting the IBC pathway and attenuating the infection. Using gfp reporter fusions, the expression of the flagellar class I flhDC and class III fliC genes was monitored to track key points of regulation throughout the pathogenic cascade. In vitro, growth under conditions promoting motility resulted in the robust expression of both fusions. In contrast, only the class I fusion produced significant expression throughout early stages of IBC development including the dispersion stage. Thus, unlike in vitro modeling of motility, the regulatory cascade appeared incomplete in vivo. Throughout IBC formation, nonmotile DeltafliC mutants achieved the same number of IBCs as the wild-type (wt) strain, demonstrating that flagella are neither essential nor required for first- or second-generation IBC formation. However, in competition experiments between wt and DeltafliC strains, the wt was shown to have a fitness advantage in persisting throughout the urinary tract for 2 weeks, demonstrating a subtle but measurable role for flagella in virulence.
Collapse
Affiliation(s)
- Kelly J Wright
- Department of Molecular Microbiology, Box 8230, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | |
Collapse
|
21
|
Ryu KS, Kim JI, Cho SJ, Park D, Park C, Cheong HK, Lee JO, Choi BS. Structural Insights into the Monosaccharide Specificity of Escherichia coli Rhamnose Mutarotase. J Mol Biol 2005; 349:153-62. [PMID: 15876375 DOI: 10.1016/j.jmb.2005.03.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 03/15/2005] [Accepted: 03/16/2005] [Indexed: 11/17/2022]
Abstract
The crystal structure of Escherichia coli rhamnose mutarotase (YiiL) is completely different from the previously reported structures of the Lactococcus lactis galactose mutarotase and the Bacillus subtilis RbsD (pyranase). YiiL exists as a locally asymmetric dimer, which is stabilized by an intermolecular beta-sheet, various hydrophobic interactions, and a cation-pi interaction with a salt-bridge. The protein folds of YiiL are similar to those of a Streptomyces coelicolor mono-oxygenase and a hypothetical Arabidopsis thaliana protein At3g17210. By assaying the enzymatic activity of six active-site mutants and by comparing the crystal structure-derived active site conformations of YiiL, RbsD, and a galactose mutarotase, we were able to define the amino acid residues required for catalysis and suggest a possible catalytic mechanism for YiiL. Although the active-site amino acid residues of YiiL (His, Tyr, and Trp) differ greatly from those of galactose mutarotase (His, Glu, and Asp), their geometries, which determine the structures of the preferred monosaccharide substrates, are conserved. In addition, the in vivo function of YiiL was assessed by constructing a mutant E.coli strain that carries a yiiL deletion. The presence of the yiiL gene is critical for efficient cell growth only when concentrations of l-rhamnose are limited.
Collapse
Affiliation(s)
- Kyoung-Seok Ryu
- Yusong-Gu, Yeoeun-Dong 52, Magnetic Resonance Team, Korea Basic Science Institute, Daejon 305-333, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Runyen-Janecky LJ, Boyle AM, Kizzee A, Liefer L, Payne SM. Role of the Pst system in plaque formation by the intracellular pathogen Shigella flexneri. Infect Immun 2005; 73:1404-10. [PMID: 15731038 PMCID: PMC1064976 DOI: 10.1128/iai.73.3.1404-1410.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to the host cell environment, the intracellular pathogen Shigella flexneri induces the expression of numerous genes, including those in the pst operon which is predicted to encode a high-affinity phosphate acquisition system that is expressed under reduced phosphate conditions. An S. flexneri pst mutant forms smaller plaques in Henle cell monolayers than does the parental strain. This mutant exhibited normal production and localization of the S. flexneri IcsA protein. The pst mutant had the same growth rate as the parental strain in both phosphate-reduced and phosphate-replete media in vitro and during the first 3 h of growth in Henle cells in vivo. During growth in phosphate-replete media, the PhoB regulon was constitutively expressed in the pst mutant but not the parental strain. This suggested that the inability of the S. flexneri pst mutant to form wild-type plaques in Henle cell monolayers may be due to aberrant expression of the PhoB regulon. A mutation in phoB was constructed in the S. flexneri pst mutant, and the phoB mutation suppressed the small plaque phenotype of the pst mutant. Additionally, a specific mutation (R220Q) was constructed in the pstA gene of the pst operon that was predicted to eliminate Pst-mediated phosphate transport but allow normal PhoB-regulated gene expression, based on the phenotype of an Escherichia coli strain harboring the same mutation. Addition of this pstA(R220Q) mutation to a S. flexneri pst mutant, as part of the pst operon, restored normal plaque formation and regulation of phoA expression.
Collapse
|
23
|
Reitzer L. Biosynthesis of Glutamate, Aspartate, Asparagine, L-Alanine, and D-Alanine. EcoSal Plus 2004; 1. [PMID: 26443364 DOI: 10.1128/ecosalplus.3.6.1.3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Indexed: 06/05/2023]
Abstract
Glutamate, aspartate, asparagine, L-alanine, and D-alanine are derived from intermediates of central metabolism, mostly the citric acid cycle, in one or two steps. While the pathways are short, the importance and complexity of the functions of these amino acids befit their proximity to central metabolism. Inorganic nitrogen (ammonia) is assimilated into glutamate, which is the major intracellular nitrogen donor. Glutamate is a precursor for arginine, glutamine, proline, and the polyamines. Glutamate degradation is also important for survival in acidic environments, and changes in glutamate concentration accompany changes in osmolarity. Aspartate is a precursor for asparagine, isoleucine, methionine, lysine, threonine, pyrimidines, NAD, and pantothenate; a nitrogen donor for arginine and purine synthesis; and an important metabolic effector controlling the interconversion of C3 and C4 intermediates and the activity of the DcuS-DcuR two-component system. Finally, L- and D-alanine are components of the peptide of peptidoglycan, and L-alanine is an effector of the leucine responsive regulatory protein and an inhibitor of glutamine synthetase (GS). This review summarizes the genes and enzymes of glutamate, aspartate, asparagine, L-alanine, and D-alanine synthesis and the regulators and environmental factors that control the expression of these genes. Glutamate dehydrogenase (GDH) deficient strains of E. coli, K. aerogenes, and S. enterica serovar Typhimurium grow normally in glucose containing (energy-rich) minimal medium but are at a competitive disadvantage in energy limited medium. Glutamate, aspartate, asparagine, L-alanine, and D-alanine have multiple transport systems.
Collapse
|
24
|
Henke JM, Bassler BL. Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. J Bacteriol 2004; 186:3794-805. [PMID: 15175293 PMCID: PMC419960 DOI: 10.1128/jb.186.12.3794-3805.2004] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a process known as quorum sensing, bacteria communicate with one another by producing, releasing, detecting, and responding to signal molecules called autoinducers. Vibrio harveyi, a marine pathogen, uses two parallel quorum-sensing circuits, each consisting of an autoinducer-sensor pair, to control the expression of genes required for bioluminescence and a number of other target genes. Genetic screens designed to discover autoinducer-regulated targets in V. harveyi have revealed genes encoding components of a putative type III secretion (TTS) system. Using transcriptional reporter fusions and TTS protein localization studies, we show that the TTS system is indeed functional in V. harveyi and that expression of the genes encoding the secretion machinery requires an intact quorum-sensing signal transduction cascade. The newly completed genome of the closely related marine bacterium Vibrio parahaemolyticus, which is a human pathogen, shows that it possesses the genes encoding both of the V. harveyi-like quorum-sensing signaling circuits and that it also has a TTS system similar to that of V. harveyi. We show that quorum sensing regulates TTS in V. parahaemolyticus. Previous reports connecting quorum sensing to TTS in enterohemorrhagic and enteropathogenic Escherichia coli show that quorum sensing activates TTS at high cell density. Surprisingly, we find that at high cell density (in the presence of autoinducers), quorum sensing represses TTS in V. harveyi and V. parahaemolyticus.
Collapse
Affiliation(s)
- Jennifer M Henke
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | |
Collapse
|
25
|
Krol E, Becker A. Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. Mol Genet Genomics 2004; 272:1-17. [PMID: 15221452 DOI: 10.1007/s00438-004-1030-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 05/21/2004] [Indexed: 01/16/2023]
Abstract
The global response to phosphate starvation was analysed at the transcriptional level in two closely related strains of Sinorhizobium meliloti, Rm1021 and Rm2011. The Pho regulon is known to be induced by PhoB under conditions of phosphate limitation. Ninety-eight genes were found to be significantly induced (more than three-fold) in a phoB -dependent manner in phosphate-stressed cells, and phoB -independent repression of 86 genes was observed. Possible roles of these genes in the phosphate stress response are discussed. Twenty new putative PHO box sequences were identified in regions upstream of 17 of the transcriptional units that showed phoB -dependent, or partially phoB -dependent, regulation, indicating direct regulation of these genes by PhoB. Despite the overall similarity between the phosphate stress responses in Rm1021 and Rm2011, lower induction rates were found for a set of phoB -dependent genes in Rm1021. Moreover, Rm1021 exhibited moderate constitutive activation of 12 phosphate starvation-inducible, phoB -dependent genes when cells were grown in a complex medium. A 1-bp deletion was observed in the pstC ORF in Rm1021, which results in truncation of the protein product. This mutation is probably responsible for the expression of phosphate starvation-inducible genes in Rm1021 in the absence of phosphate stress.
Collapse
Affiliation(s)
- E Krol
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Postfach 100131, 33501, Bielefeld, Germany
| | | |
Collapse
|
26
|
Yang K, Metcalf WW. A new activity for an old enzyme: Escherichia coli bacterial alkaline phosphatase is a phosphite-dependent hydrogenase. Proc Natl Acad Sci U S A 2004; 101:7919-24. [PMID: 15148399 PMCID: PMC419532 DOI: 10.1073/pnas.0400664101] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Genetic analysis indicates that Escherichia coli possesses two independent pathways for oxidation of phosphite (Pt) to phosphate. One pathway depends on the 14-gene phn operon, which encodes the enzyme C-P lyase. The other pathway depends on the phoA locus, which encodes bacterial alkaline phosphatase (BAP). Transposon mutagenesis studies strongly suggest that BAP is the only enzyme involved in the phoA-dependent pathway. This conclusion is supported by purification and biochemical characterization of the Pt-oxidizing enzyme, which was proven to be BAP by N terminus protein sequencing. Highly purified BAP catalyzed Pt oxidation with specific activities of 62-242 milliunits/mg and phosphate ester hydrolysis with specific activities of 41-61 units/mg. Surprisingly, BAP catalyzes the oxidation of Pt to phosphate and molecular H2. Thus, BAP is a unique Pt-dependent, H2-evolving hydrogenase. This reaction is unprecedented in both P and H biochemistry, and it is likely to involve direct transfer of hydride from the substrate to water-derived protons.
Collapse
Affiliation(s)
- Kechao Yang
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 Chemical and Life Sciences Laboratory, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
27
|
Matys S, Kuzmina N, Laurinavichius K, Nesmeyanova M. Effect of environmental factors on degradation of the CP bond of methylphosphonate by Escherichia coli cells. Process Biochem 2004. [DOI: 10.1016/s0032-9592(03)00231-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
McGrath JW, Quinn JP. Microbial phosphate removal and polyphosphate production from wastewaters. ADVANCES IN APPLIED MICROBIOLOGY 2003; 52:75-100. [PMID: 12964240 DOI: 10.1016/s0065-2164(03)01003-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- John W McGrath
- School of Biology and Biochemistry, QUESTOR Center, Queen's University of Belfast, Medical Biology Centre Belfast, BT9 7BL Northern Ireland
| | | |
Collapse
|
29
|
Ishige T, Krause M, Bott M, Wendisch VF, Sahm H. The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J Bacteriol 2003; 185:4519-29. [PMID: 12867461 PMCID: PMC165763 DOI: 10.1128/jb.185.15.4519-4529.2003] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphate (P(i)) starvation stimulon of Corynebacterium glutamicum was characterized by global gene expression analysis by using DNA microarrays. Hierarchical cluster analysis of the genes showing altered expression 10 to 180 min after a shift from P(i)-sufficient to P(i)-limiting conditions led to identification of five groups comprising 92 genes. Four of these groups included genes which are not directly involved in P metabolism and changed expression presumably due to the reduced growth rate observed after the shift or to the exchange of medium. One group, however, comprised 25 genes, most of which are obviously related to phosphorus (P) uptake and metabolism and exhibited 4- to >30-fold-greater expression after the shift to P(i) limitation. Among these genes, the RNA levels of the pstSCAB (ABC-type P(i) uptake system), glpQ (glycerophosphoryldiester phosphodiesterase), ugpAEBC (ABC-type sn-glycerol 3-phosphate uptake system), phoH (unknown function), nucH (extracellular nuclease), and Cgl0328 (5'-nucleotidase or related esterase) genes were increased, and pstSCAB exhibited a faster response than the other genes. Transcriptional fusion analyses revealed that elevated expression of pstSCAB and ugpAEBC was primarily due to transcriptional regulation. Several genes also involved in P uptake and metabolism were not affected by P(i) starvation; these included the genes encoding a PitA-like P(i) uptake system and a putative Na(+)-dependent P(i) transporter and the genes involved in the metabolism of pyrophosphate and polyphosphate. In summary, a global, time-resolved picture of the response of C. glutamicum to P(i) starvation was obtained.
Collapse
Affiliation(s)
- Takeru Ishige
- Institut für Biotechnologie 1, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | | | | | | | | |
Collapse
|
30
|
Zhou L, Lei XH, Bochner BR, Wanner BL. Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems. J Bacteriol 2003; 185:4956-72. [PMID: 12897016 PMCID: PMC166450 DOI: 10.1128/jb.185.16.4956-4972.2003] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two-component systems are the most common mechanism of transmembrane signal transduction in bacteria. A typical system consists of a histidine kinase and a partner response regulator. The histidine kinase senses an environmental signal, which it transmits to its partner response regulator via a series of autophosphorylation, phosphotransfer, and dephosphorylation reactions. Much work has been done on particular systems, including several systems with regulatory roles in cellular physiology, communication, development, and, in the case of bacterial pathogens, the expression of genes important for virulence. We used two methods to investigate two-component regulatory systems in Escherichia coli K-12. First, we systematically constructed mutants with deletions of all two-component systems by using a now-standard technique of gene disruption (K. A. Datsenko and B. L. Wanner, Proc. Natl. Acad. Sci. USA 97:6640-6645, 2000). We then analyzed these deletion mutants with a new technology called Phenotype MicroArrays, which permits assays of nearly 2,000 growth phenotypes simultaneously. In this study we tested 100 mutants, including mutants with individual deletions of all two-component systems and several related genes, including creBC-regulated genes (cbrA and cbrBC), phoBR-regulated genes (phoA, phoH, phnCDEFGHIJKLMNOP, psiE, and ugpBAECQ), csgD, luxS, and rpoS. The results of this battery of nearly 200,000 tests provided a wealth of new information concerning many of these systems. Of 37 different two-component mutants, 22 showed altered phenotypes. Many phenotypes were expected, and several new phenotypes were also revealed. The results are discussed in terms of the biological roles and other information concerning these systems, including DNA microarray data for a large number of the same mutants. Other mutational effects are also discussed.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
31
|
Smith AH, Imlay JA, Mackie RI. Increasing the oxidative stress response allows Escherichia coli to overcome inhibitory effects of condensed tannins. Appl Environ Microbiol 2003; 69:3406-11. [PMID: 12788743 PMCID: PMC161476 DOI: 10.1128/aem.69.6.3406-3411.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tannins are plant-derived polyphenols with antimicrobial effects. The mechanism of tannin toxicity towards Escherichia coli was determined by using an extract from Acacia mearnsii (Black wattle) as a source of condensed tannins (proanthocyanidins). E. coli growth was inhibited by tannins only when tannins were exposed to oxygen. Tannins auto-oxidize, and substantial hydrogen peroxide was generated when they were added to aerobic media. The addition of exogenous catalase permitted growth in tannin medium. E. coli mutants that lacked HPI, the major catalase, were especially sensitive to tannins, while oxyR mutants that constitutively overexpress antioxidant enzymes were resistant. A tannin-resistant mutant was isolated in which a promoter-region point mutation increased the level of HPI by 10-fold. Our results indicate that wattle condensed tannins are toxic to E. coli in aerobic medium primarily because they generate H(2)O(2). The oxidative stress response helps E. coli strains to overcome their inhibitory effect.
Collapse
Affiliation(s)
- Alexandra H Smith
- Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
32
|
Hove-Jensen B, Rosenkrantz TJ, Haldimann A, Wanner BL. Escherichia coli phnN, encoding ribose 1,5-bisphosphokinase activity (phosphoribosyl diphosphate forming): dual role in phosphonate degradation and NAD biosynthesis pathways. J Bacteriol 2003; 185:2793-801. [PMID: 12700258 PMCID: PMC154390 DOI: 10.1128/jb.185.9.2793-2801.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An enzymatic pathway for synthesis of 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) without the participation of PRPP synthase was analyzed in Escherichia coli. This pathway was revealed by selection for suppression of the NAD requirement of strains with a deletion of the prs gene, the gene encoding PRPP synthase (B. Hove-Jensen, J. Bacteriol. 178:714-722, 1996). The new pathway requires three enzymes: phosphopentomutase, ribose 1-phosphokinase, and ribose 1,5-bisphosphokinase. The latter activity is encoded by phnN; the product of this gene is required for phosphonate degradation, but its enzymatic activity has not been determined previously. The reaction sequence is ribose 5-phosphate --> ribose 1-phosphate --> ribose 1,5-bisphosphate --> PRPP. Alternatively, the synthesis of ribose 1-phosphate in the first step, catalyzed by phosphopentomutase, can proceed via phosphorolysis of a nucleoside, as follows: guanosine + P(i) --> guanine + ribose 1-phosphate. The ribose 1,5-bisphosphokinase-catalyzed phosphorylation of ribose 1,5-bisphosphate is a novel reaction and represents the first assignment of a specific chemical reaction to a polypeptide required for cleavage of a carbon-phosphorus (C-P) bond by a C-P lyase. The phnN gene was manipulated in vitro to encode a variant of ribose 1,5-bisphosphokinase with a tail consisting of six histidine residues at the carboxy-terminal end. PhnN was purified almost to homogeneity and characterized. The enzyme accepted ATP but not GTP as a phosphoryl donor, and it used ribose 1,5-bisphosphate but not ribose, ribose 1-phosphate, or ribose 5-phosphate as a phosphoryl acceptor. The identity of the reaction product as PRPP was confirmed by coupling the ribose 1,5-bisphosphokinase activity to the activity of xanthine phosphoribosyltransferase in the presence of xanthine, which resulted in the formation of 5'-XMP, and by cochromatography of the reaction product with authentic PRPP.
Collapse
Affiliation(s)
- Bjarne Hove-Jensen
- Department of Biological Chemistry, Institute of Molecular Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
33
|
Lesley JA, Waldburger CD. Repression of Escherichia coli PhoP-PhoQ signaling by acetate reveals a regulatory role for acetyl coenzyme A. J Bacteriol 2003; 185:2563-70. [PMID: 12670981 PMCID: PMC152613 DOI: 10.1128/jb.185.8.2563-2570.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PhoP-PhoQ two-component system regulates the transcription of numerous genes in response to changes in extracellular divalent cation concentration and pH. Here we demonstrate that the Escherichia coli PhoP-PhoQ two-component system also responds to acetate. Signaling by the E. coli PhoP-PhoQ system was repressed during growth in acetate (> or = 25 mM) in a PhoQ-dependent manner. The periplasmic sensor domain of PhoQ was not required for acetate to repress signaling. Acetate-mediated repression of the PhoP-PhoQ system was not related to changes in the intracellular concentration of acetate metabolites such as acetyl-phosphate or acetyladenylate. Genetic analysis of acetate metabolism pathways suggested that a perturbation of acetyl coenzyme A turnover was the cause of decreased PhoP-PhoQ signaling during growth in acetate. Consistent with this hypothesis, intracellular acetyl coenzyme A levels rose during growth in the presence of exogenous acetate. Acetyl coenzyme A inhibited the autokinase activity of PhoQ in vitro, suggesting that the in vivo repressing effect may be due to a direct inhibition mechanism.
Collapse
Affiliation(s)
- Joseph A Lesley
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
34
|
Mok KC, Wingreen NS, Bassler BL. Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression. EMBO J 2003; 22:870-81. [PMID: 12574123 PMCID: PMC145445 DOI: 10.1093/emboj/cdg085] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In a process called quorum sensing, bacteria communicate with one another by exchanging chemical signals called autoinducers. In the bioluminescent marine bacterium Vibrio harveyi, two different auto inducers (AI-1 and AI-2) regulate light emission. Detection of and response to the V.harveyi autoinducers are accomplished through two two-component sensory relay systems: AI-1 is detected by the sensor LuxN and AI-2 by LuxPQ. Here we further define the V.harveyi quorum-sensing regulon by identifying 10 new quorum-sensing-controlled target genes. Our examination of signal processing and integration in the V.harveyi quorum-sensing circuit suggests that AI-1 and AI-2 act synergistically, and that the V.harveyi quorum-sensing circuit may function exclusively as a 'coincidence detector' that discriminates between conditions in which both autoinducers are present and all other conditions.
Collapse
Affiliation(s)
| | - Ned S. Wingreen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014 and
NEC Laboratories America, Inc., 4 Independence Way, Princeton, NJ 08540, USA Corresponding author e-mail:
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014 and
NEC Laboratories America, Inc., 4 Independence Way, Princeton, NJ 08540, USA Corresponding author e-mail:
| |
Collapse
|
35
|
Zhang JK, White AK, Kuettner HC, Boccazzi P, Metcalf WW. Directed mutagenesis and plasmid-based complementation in the methanogenic archaeon Methanosarcina acetivorans C2A demonstrated by genetic analysis of proline biosynthesis. J Bacteriol 2002; 184:1449-54. [PMID: 11844777 PMCID: PMC134853 DOI: 10.1128/jb.184.5.1449-1454.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here the first use of directed mutagenesis in Methanosarcina acetivorans C2A. The method employs homologous recombination-mediated gene replacement and was used to construct a variety of proline auxotrophs with mutations in the proABC locus. Each mutation was also complemented in trans with autonomously replicating Methanosarcina-Escherichia plasmid shuttle vectors.
Collapse
Affiliation(s)
- Jun Kai Zhang
- Department of Microbiology, B103 Chemical and Life Science Laboratory, University of Illinois, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
36
|
Goss TJ, Perez-Matos A, Bender RA. Roles of glutamate synthase, gltBD, and gltF in nitrogen metabolism of Escherichia coli and Klebsiella aerogenes. J Bacteriol 2001; 183:6607-19. [PMID: 11673431 PMCID: PMC95492 DOI: 10.1128/jb.183.22.6607-6619.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutants of Escherichia coli and Klebsiella aerogenes that are deficient in glutamate synthase (glutamate-oxoglutarate amidotransferase [GOGAT]) activity have difficulty growing with nitrogen sources other than ammonia. Two models have been proposed to account for this inability to grow. One model postulated an imbalance between glutamine synthesis and glutamine degradation that led to a repression of the Ntr system and the subsequent failure to activate transcription of genes required for the use of alternative nitrogen sources. The other model postulated that mutations in gltB or gltD (which encode the subunits of GOGAT) were polar on a downstream gene, gltF, which is necessary for proper activation of gene expression by the Ntr system. The data reported here show that the gltF model is incorrect for three reasons: first, a nonpolar gltB and a polar gltD mutation of K. aerogenes both show the same phenotype; second, K. aerogenes and several other enteric bacteria lack a gene homologous to gltF; and third, mutants of E. coli whose gltF gene has been deleted show no defect in nitrogen metabolism. The argument that accumulated glutamine represses the Ntr system in gltB or gltD mutants is also incorrect, because these mutants can derepress the Ntr system normally so long as sufficient glutamate is supplied. Thus, we conclude that gltB or gltD mutants grow slowly on many poor nitrogen sources because they are starved for glutamate. Much of the glutamate formed by catabolism of alternative nitrogen sources is converted to glutamine, which cannot be efficiently converted to glutamate in the absence of GOGAT activity. Finally, GOGAT-deficient E. coli cells growing with glutamine as the sole nitrogen source increase their synthesis of the other glutamate-forming enzyme, glutamate dehydrogenase, severalfold, but this is still insufficient to allow rapid growth under these conditions.
Collapse
Affiliation(s)
- T J Goss
- Department of Biology, The University of Michigan, Ann Arbor 48109-1048, USA
| | | | | |
Collapse
|
37
|
Monds RD, Silby MW, Mahanty HK. Expression of the Pho regulon negatively regulates biofilm formation by Pseudomonas aureofaciens PA147-2. Mol Microbiol 2001; 42:415-26. [PMID: 11703664 DOI: 10.1046/j.1365-2958.2001.02641.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the isolation of insertional mutations to the pstC and pstA genes of the phosphate-specific transport (pst) operon that results in loss of biofilm formation by Pseudomonas aureofaciens PA147-2. Consistent with the known roles of the Pst system in Escherichia coli and Pseudomonas aeruginosa, both P. aureofaciens pst mutants were demonstrated to have defects in inorganic phosphate (P(i)) transport and repression of Pho regulon expression. Subsequently, biofilm formation by the wild type was shown to require a threshold concentration of extracellular P(i). The two-component regulatory pair PhoR/PhoB is responsible for upregulation of Pho regulon expression in response to P(i)-limiting environments. By generating phoR mutants that were unable to express the Pho regulon, we were able to restore biofilm formation by P. aureofaciens in P(i)-limiting conditions. This result suggests that gene(s) within the Pho regulon act to regulate biofilm formation negatively in low-P(i) environments, and that phoR mutations uncouple PA147-2 from such regulatory constraints. Furthermore, the inability of pst mutants to repress Pho regulon expression accounts for their inability to form biofilms in non-limiting P(i) environments. Preliminary evidence suggests that the Pst system is also required for antifungal activity by PA147-2. During phenotypic analysis of pst mutants, we also uncovered novelties in relation to P(i) assimilation and Pho regulon control in P. aureofaciens.
Collapse
Affiliation(s)
- R D Monds
- Department of Plant and Microbial Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | | | | |
Collapse
|
38
|
Sardesai AA, Gowrishankar J. Improvement in K+-limited growth rate associated with expression of the N-terminal fragment of one subunit (KdpA) of the multisubunit Kdp transporter in Escherichia coli. J Bacteriol 2001; 183:3515-20. [PMID: 11344160 PMCID: PMC99650 DOI: 10.1128/jb.183.11.3515-3520.2001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in any one of three genes, kdpA, -B, or -C, in Escherichia coli abolish the activity of Kdp, a multisubunit K+-ATPase that belongs to the P-type ATPase family of cation transporters. We found in this study that expression in vivo of a 135-amino-acid-long N-terminal fragment (KdpA'), less than one-quarter the length of native KdpA, was able to mediate an improvement in K+-limited growth rates in two different contexts, even in the absence of both KdpC and the ATPase subunit KdpB. The first context was when KdpA' was overexpressed in cells from a heterologous inducible promoter, and the second was when KdpA' was provided with a C-terminally altered extension (following a spontaneous genetic rearrangement). Our results suggest that KdpA' provides an incipient pathway for K+ translocation which can serve to transport K+ into the cells in response to the cytoplasmic membrane potential.
Collapse
Affiliation(s)
- A A Sardesai
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | |
Collapse
|
39
|
Matys S, Laurinavichius K, Krupyanko V, Nesmeyanova M. Optimization of degradation of methylphosphonate — analogue of toxic pollutants with direct CP bond by Escherichia coli. Process Biochem 2001. [DOI: 10.1016/s0032-9592(00)00294-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Kim SK, Kimura S, Shinagawa H, Nakata A, Lee KS, Wanner BL, Makino K. Dual transcriptional regulation of the Escherichia coli phosphate-starvation-inducible psiE gene of the phosphate regulon by PhoB and the cyclic AMP (cAMP)-cAMP receptor protein complex. J Bacteriol 2000; 182:5596-9. [PMID: 10986267 PMCID: PMC111007 DOI: 10.1128/jb.182.19.5596-5599.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown that the Escherichia coli phosphate-starvation-inducible psiE gene is regulated by both phosphate and the carbon source by using both lacZ and chloramphenicol acetyltransferase gene (cat) fusions. Yet, under all conditions tested, a single transcriptional start site lying 7 bp downstream of a predicted -10 region was revealed by primer extension analysis. DNase I footprinting showed that the PhoB transcriptional-activator protein protects two predicted pho boxes lying upstream of and near the -35 promoter region. Similar analysis showed that the cyclic AMP (cAMP)-cAMP receptor protein (cAMP-CRP) complex binds a region that overlaps with the downstream pho box. These results, together with measurements of the in vivo psiE promoter activity under various conditions, show that expression of the psiE gene is under direct positive and negative control by PhoB and cAMP-CRP, respectively.
Collapse
Affiliation(s)
- S K Kim
- Research Center for Biomedicinal Resources (Bio-Med RRC), Paichai University, Taejon 302-735, Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
El Hanafi D, Bossi L. Activation and silencing of leu-500 promoter by transcription-induced DNA supercoiling in the Salmonella chromosome. Mol Microbiol 2000; 37:583-94. [PMID: 10931352 DOI: 10.1046/j.1365-2958.2000.02015.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The notion that transcription can generate supercoils in the DNA template largely stems from work with small circular plasmids. In the present work, we tested this model in the bacterial chromosome using a supercoiling-sensitive promoter as a functional sensor of superhelicity changes. The leu-500 promoter of Salmonella typhimurium is a mutant and inactive variant of the leucine operon promoter that regains activity if negative DNA supercoiling rises above normal levels, typically as a result of mutations affecting DNA topoisomerase I (topA mutants). Activation of the leu-500 promoter was analysed in topA mutant cells harbouring transcriptionally inducible tet or cat gene cassettes inserted in the region upstream from the leu operon. Some insertions inhibited leu-500 promoter activation in the absence of inducer. This effect is dramatic in the interval between 1.7 kb and 0.6 kb from the leu operon, suggesting that the insertions physically interfere with the mechanism responsible for activation. Superimposed on these effects, transcription of the inserted gene stimulated or inhibited leu-500 promoter activity depending on whether this gene was oriented divergently from the leu operon or in the same direction respectively. Interestingly, transcription-mediated inhibition of leu-500 promoter was observed with inserts as far as 5 kb from the leu operon, and it could be relieved by the introduction of a strong gyrase site between the inserted element and the leu-500 promoter. These results are consistent with the idea that transcriptionally generated positive and negative supercoils can diffuse along chromosomal DNA and, depending on their topological sign, elicit opposite responses from the leu-500 promoter.
Collapse
Affiliation(s)
- D El Hanafi
- Centre de Génétique Moléculaire, CNRS, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
42
|
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000; 97:6640-5. [PMID: 10829079 PMCID: PMC18686 DOI: 10.1073/pnas.120163297] [Citation(s) in RCA: 12150] [Impact Index Per Article: 486.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have developed a simple and highly efficient method to disrupt chromosomal genes in Escherichia coli in which PCR primers provide the homology to the targeted gene(s). In this procedure, recombination requires the phage lambda Red recombinase, which is synthesized under the control of an inducible promoter on an easily curable, low copy number plasmid. To demonstrate the utility of this approach, we generated PCR products by using primers with 36- to 50-nt extensions that are homologous to regions adjacent to the gene to be inactivated and template plasmids carrying antibiotic resistance genes that are flanked by FRT (FLP recognition target) sites. By using the respective PCR products, we made 13 different disruptions of chromosomal genes. Mutants of the arcB, cyaA, lacZYA, ompR-envZ, phnR, pstB, pstCA, pstS, pstSCAB-phoU, recA, and torSTRCAD genes or operons were isolated as antibiotic-resistant colonies after the introduction into bacteria carrying a Red expression plasmid of synthetic (PCR-generated) DNA. The resistance genes were then eliminated by using a helper plasmid encoding the FLP recombinase which is also easily curable. This procedure should be widely useful, especially in genome analysis of E. coli and other bacteria because the procedure can be done in wild-type cells.
Collapse
Affiliation(s)
- K A Datsenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
43
|
Hughes D. Co-evolution of the tuf genes links gene conversion with the generation of chromosomal inversions. J Mol Biol 2000; 297:355-64. [PMID: 10715206 DOI: 10.1006/jmbi.2000.3587] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tufA and tufB genes in Salmonella typhimurium co-evolve by recombination and exchange of genetic material. A model is presented which predicts that co-evolution is achieved by gene conversions and chromosomal inversions. Analysis of recombinants reveals that conversion and inversion each occur with similar rates and each depends on RecBCD activity. The model predicts sequence structures for different classes of post-recombination tuf genes. Sequence analysis reveals the presence of each of these structures and classes, with a predicted bias in the absence of mismatch repair. An implication of these data is that co-evolution of gene families can be linked with the generation of chromosomal rearrangements.
Collapse
MESH Headings
- Alleles
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Base Pair Mismatch/genetics
- Chromosome Breakage/genetics
- Chromosome Inversion
- DNA Damage/genetics
- DNA Repair/genetics
- Drug Resistance, Microbial
- Evolution, Molecular
- Exodeoxyribonuclease V
- Exodeoxyribonucleases/genetics
- Exodeoxyribonucleases/metabolism
- Gene Conversion/genetics
- Genes, Bacterial/genetics
- Kinetics
- Models, Genetic
- Mutation/genetics
- Pyridones/pharmacology
- RNA, Bacterial/analysis
- RNA, Bacterial/genetics
- RNA, Bacterial/physiology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Messenger/physiology
- Salmonella typhimurium/drug effects
- Salmonella typhimurium/enzymology
- Salmonella typhimurium/genetics
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- D Hughes
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center Box 596, SE-751 24 Uppsala Sweden.
| |
Collapse
|
44
|
Van Dien SJ, Keasling J. Control of polyphosphate metabolism in genetically engineered Escherichia coli. Enzyme Microb Technol 1999. [DOI: 10.1016/s0141-0229(98)00083-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Abstract
The discovery and characterization of genes specifically induced in vivo upon infection and/or at a specific stage of the infection will be the next phase in studying bacterial virulence at the molecular level. Genes isolated are most likely to encode virulence-associated factors or products essential for survival, bacterial cell division and multiplication in situ. Identification of these genes is expected to provide new means to prevent infection, new targets for, antimicrobial therapy, as well as new insights into the infection process. Analysis of genes and their sequences initially discovered as in vivo induced may now be revealed by functional and comparative genomics. The new field of virulence genomics and their clustering as pathogenicity islands makes feasible their in-depth analysis. Application of new technologies such as in vivo expression technologies, signature-tagged mutagenesis, differential fluorescence induction, differential display using polymerase chain reaction coupled to bacterial genomics is expected to provide a strong basis for studying in vivo induced genes, and a better understanding of bacterial pathogenicity in vivo. This review presents technologies for characterization of genes expressed in vivo.
Collapse
Affiliation(s)
- M Handfield
- Molecular Microbiology and Protein Engineering, Health and Life Sciences Research Center, Quebec, Canada
| | | |
Collapse
|
46
|
Summers ML, Elkins JG, Elliott BA, McDermott TR. Expression and regulation of phosphate stress inducible genes in Sinorhizobium meliloti. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:1094-1101. [PMID: 9805396 DOI: 10.1094/mpmi.1998.11.11.1094] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Sinorhizobium meliloti 104A14 was mutated with transposon Tn5B22, which creates lacZ transcriptional fusions when inserted in the correct orientation relative to the promoter. This promoter reporter allowed us to identify six phosphate stress inducible (psi) genes in S. meliloti that are up-regulated in response to inorganic phosphate (Pi) starvation. The transposon and flanking DNA were cloned from each psi::Tn5B22 reporter mutant and the junction DNA sequenced. High identity/similarity of the inferred peptides with those in major data bases allowed identification of the following genes: dnaK, expC, pssB, ackA, vipC, and prkA. The prkA homolog was also found to be up-regulated in response to carbon starvation and when nitrate replaced ammonium as the nitrogen source. Through allele replacement techniques, PhoB- mutants were generated for the expC, ackA, vipC, and pssB reporter strains. Loss of a functional PhoB resulted in the absence of Pi-sensitive induction in all four genes. These experiments suggest the Pho regulon in S. meliloti includes genes that presumably are not directly linked to Pi acquisition or assimilation. The psi strains were tested for their symbiotic properties under growth conditions that were Pi-limiting or Pi-nonlimiting for the host plant. All were Nod+ and Fix+ except the reporter strain of dnaK transcription, which was less effective than the wild-type strain under both P treatments, indicating DnaK is required for optimum symbiotic function.
Collapse
Affiliation(s)
- M L Summers
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman 59717-3120, USA
| | | | | | | |
Collapse
|
47
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
48
|
Bhagwat SP, Rice MR, Matthews RG, Blumenthal RM. Use of an inducible regulatory protein to identify members of a regulon: application to the regulon controlled by the leucine-responsive regulatory protein (Lrp) in Escherichia coli. J Bacteriol 1997; 179:6254-63. [PMID: 9335270 PMCID: PMC179537 DOI: 10.1128/jb.179.20.6254-6263.1997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Procedures were developed to facilitate the identification of genes that belong to a given regulon and characterization of their responses to the regulator. The regulon controlled by the Escherichia coli leucine-responsive regulatory protein (Lrp) was studied by isolating random transcriptional fusions to lacZ, using lambda placMu53 and a strain in which lrp is under isopropylthio-beta-D-galactopyranoside (IPTG)-inducible control. Fusions exhibiting IPTG-responsive beta-galactosidase activity were cloned by integrating the suicide vector pIVET1 via homologous recombination at lacZ, followed by self-ligating digested chromosomal DNA. We verified the patterns of lacZ expression after using the plasmid clones to generate merodiploid strains with interrupted and uninterrupted copies of the same sequence. If the merodiploid expression pattern was unchanged from that shown by the original fusion strain, then the cloned fusion was responsible for the regulatory pattern of interest; a difference in the expression pattern could indicate that the original strain carried multiple fusions or that there were autogenous effects of having interrupted the fused gene. Using these procedures, we generated a fusion library of approximately 5 x 10(6) strains; approximately 3,000 of these strains were screened, yielding 84 Lrp-responsive fusions, and 10 of the 84 were phenotypically stable and were characterized. The responses of different fusions in a given operon to in vivo Lrp titrations revealed variations in expression with the position of insertion. Among the newly identified members of the regulon is an open reading frame (orf3) between rpiA and serA. Also, expression of a fusion just downstream of dinF was found to be Lrp dependent only in stationary phase.
Collapse
Affiliation(s)
- S P Bhagwat
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo 43614-5806, USA
| | | | | | | |
Collapse
|
49
|
Borst DW, Blumenthal RM, Matthews RG. Use of an in vivo titration method to study a global regulator: effect of varying Lrp levels on expression of gltBDF in Escherichia coli. J Bacteriol 1996; 178:6904-12. [PMID: 8955313 PMCID: PMC178592 DOI: 10.1128/jb.178.23.6904-6912.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Most studies of global regulatory proteins are performed in vitro or involve phenotypic comparisons between wild-type and mutant strains. We report the use of strains in which the gene for the leucine-responsive regulatory protein (lrp) is transcribed from isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoters for the purpose of continuously varying the in vivo concentration of Lrp. To obtain a broad range of Lrp concentrations, strains were employed that contained the lrp fusion either in the chromosome (I. C. Blomfield, P. J. Calie, K. J. Eberhardt, M. S. McClain, and B. I. Eisenstein, J. Bacteriol. 175:27-36, 1993) or on a multicopy plasmid. Western blot (immunoblot) analysis with polyclonal antiserum to Lrp confirmed that Lrp levels could be varied more than 70-fold by growing the strains in glucose minimal 3-(N-morpholino)propanesulfonic acid (MOPS) medium containing different amounts of IPTG. Expression of an Lrp-regulated gltB::lacZ operon fusion was measured over this range of Lrp concentrations. beta-Galactosidase activity rose with increasing Lrp levels up to the level of Lrp found in wild-type strains, at which point expression is maximal. The presence of leucine in the medium increased the level of Lrp necessary to achieve half-maximal expression of the gltB::lacZ fusion, as predicted by earlier in vitro studies (B. R. Ernsting, J. W. Denninger, R. M. Blumenthal, and R. G. Matthews, J. Bacteriol. 175:7160-7169, 1993). Interestingly, levels of Lrp greater than those in wild-type cells interfered with activation of gltB::lacZ expression. The growth rate of cultures correlated with the intracellular Lrp concentration: levels of Lrp either lower or higher than wild-type levels resulted in significantly slower growth rates. Thus, the level of Lrp in the cell appears to be optimal for rapid growth in minimal medium, and the gltBDF control region is designed to give maximal expression at this Lrp level.
Collapse
Affiliation(s)
- D W Borst
- Department of Biological Chemistry, The University of Michigan, Ann Arbor 48109-1055, USA
| | | | | |
Collapse
|
50
|
Cavicchioli R, Kolesnikow T, Chiang RC, Gunsalus RP. Characterization of the aegA locus of Escherichia coli: control of gene expression in response to anaerobiosis and nitrate. J Bacteriol 1996; 178:6968-74. [PMID: 8955321 PMCID: PMC178600 DOI: 10.1128/jb.178.23.6968-6974.1996] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Analysis of the DNA sequence upstream of the narQ gene, which encodes the second nitrate-responsive sensor-transmitter protein in Escherichia coli, revealed an open reading frame (ORF) whose product shows a high degree of similarity to a number of iron-sulfur proteins as well as to the beta subunit of glutamate synthase (gltD) of E. coli. This ORF, located at 53.0 min on the E. coli chromosome, is divergently transcribed and is separated by 206 bp from the narQ gene. Because of the small size of the intergenic region, we reasoned that the genes may be of related function and/or regulated in a similar fashion. An aegA-lacZ gene fusion was constructed and examined in vivo; aegA expression was induced 11-fold by anaerobiosis and repressed 5-fold by nitrate. This control was mediated by the fnr, narX, narQ, and narL gene products. Analysis of an aegA mutant indicated that the aegA gene product is not essential for cell respiration or fermentation or for the utilization of ammonium or the amino acids L-alanine, L-arginine, L-glutamic acid, glycine, and DL-serine as sole nitrogen sources. The ORF was designated aegA to reflect that it is an anaerobically expressed gene. The structural properties of the predicted AegA amino acid sequence and the regulation of aegA are discussed with regard to the possible function of aegA in E. coli.
Collapse
Affiliation(s)
- R Cavicchioli
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90095-1489, USA
| | | | | | | |
Collapse
|