1
|
Mitra R, Xiang H, Han J. Current Advances towards 4-Hydroxybutyrate Containing Polyhydroxyalkanoates Production for Biomedical Applications. Molecules 2021; 26:molecules26237244. [PMID: 34885814 PMCID: PMC8659255 DOI: 10.3390/molecules26237244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/19/2021] [Accepted: 11/27/2021] [Indexed: 02/05/2023] Open
Abstract
Polyhydroxyalkanoates (PHA) are polyesters having high promise in biomedical applications. Among different types of PHA, poly-4-hydroxybutyrate (P4HB) is the only polymer that has received FDA approval for medical applications. However, most PHA producing microorganisms lack the ability to synthesize P4HB or PHA comprising 4-hydroxybutyrate (4HB) monomer due to their absence of a 4HB monomer supplying pathway. Thus, most microorganisms require supplementation of 4HB precursors to synthesize 4HB polymers. However, usage of 4HB precursors incurs additional production cost. Therefore, researchers have adopted strategies to reduce the cost, such as utilizing low-cost substrate as well as constructing 4HB monomer supplying pathways in microorganisms. We herein summarize the biomedical applications of P4HB, the natural producers of 4HB polymer, and the various strategies that have been applied in producing 4HB polymers in non-4HB producing microorganisms. It is expected that the readers would gain a vivid idea on the different strategic developments in the field of 4HB polymer production.
Collapse
Affiliation(s)
- Ruchira Mitra
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (H.X.); (J.H.)
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (H.X.); (J.H.)
| |
Collapse
|
2
|
Mitra R, Xu T, Chen GQ, Xiang H, Han J. An updated overview on the regulatory circuits of polyhydroxyalkanoates synthesis. Microb Biotechnol 2021; 15:1446-1470. [PMID: 34473895 PMCID: PMC9049629 DOI: 10.1111/1751-7915.13915] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are a promising and sustainable alternative to the petroleum‐based synthetic plastics. Regulation of PHA synthesis is receiving considerable importance as engineering the regulatory factors might help developing strains with improved PHA‐producing abilities. PHA synthesis is dedicatedly regulated by a number of regulatory networks. They tightly control the PHA content, granule size and their distribution in cells. Most PHA‐accumulating microorganisms have multiple regulatory networks that impart a combined effect on PHA metabolism. Among them, several factors ranging from global to specific regulators, have been identified and characterized till now. This review is an attempt to categorically summarize the diverse regulatory circuits that operate in some important PHA‐producing microorganisms. However, in several organisms, the detailed mechanisms involved in the regulation of PHA synthesis is not well‐explored and hence further research is needed. The information presented in this review might help researcher to identify the prevailing research gaps in PHA regulation.
Collapse
Affiliation(s)
- Ruchira Mitra
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,International College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Velázquez-Sánchez C, Espín G, Peña C, Segura D. The Modification of Regulatory Circuits Involved in the Control of Polyhydroxyalkanoates Metabolism to Improve Their Production. Front Bioeng Biotechnol 2020; 8:386. [PMID: 32426348 PMCID: PMC7204398 DOI: 10.3389/fbioe.2020.00386] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
Poly-(3-hydroxyalkanoates) (PHAs) are bacterial carbon and energy storage compounds. These polymers are synthesized under conditions of nutritional imbalance, where a nutrient is growth-limiting while there is still enough carbon source in the medium. On the other side, the accumulated polymer is mobilized under conditions of nutrient accessibility or by limitation of the carbon source. Thus, it is well known that the accumulation of PHAs is affected by the availability of nutritional resources and this knowledge has been used to establish culture conditions favoring high productivities. In addition to this effect of the metabolic status on PHAs accumulation, several genetic regulatory networks have been shown to drive PHAs metabolism, so the expression of the PHAs genes is under the influence of global or specific regulators. These regulators are thought to coordinate PHAs synthesis and mobilization with the rest of bacterial physiology. While the metabolic and biochemical knowledge related to the biosynthesis of these polymers has led to the development of processes in bioreactors for high-level production and also to the establishment of strategies for metabolic engineering for the synthesis of modified biopolymers, the use of knowledge related to the regulatory circuits controlling PHAs metabolism for strain improvement is scarce. A better understanding of the genetic control systems involved could serve as the foundation for new strategies for strain modification in order to increase PHAs production or to adjust the chemical structure of these biopolymers. In this review, the regulatory systems involved in the control of PHAs metabolism are examined, with emphasis on those acting at the level of expression of the enzymes involved and their potential modification for strain improvement, both for higher titers, or manipulation of polymer properties. The case of the PHAs producer Azotobacter vinelandii is taken as an example of the complexity and variety of systems controlling the accumulation of these interesting polymers in response to diverse situations, many of which could be engineered to improve PHAs production.
Collapse
Affiliation(s)
- Claudia Velázquez-Sánchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Carlos Peña
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Daniel Segura
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
4
|
Utsunomia C, Ren Q, Zinn M. Poly(4-Hydroxybutyrate): Current State and Perspectives. Front Bioeng Biotechnol 2020; 8:257. [PMID: 32318554 PMCID: PMC7147479 DOI: 10.3389/fbioe.2020.00257] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
By the end of 1980s, for the first time polyhydroxyalkanoate (PHA) copolymers with incorporated 4-hydroxybutyrate (4HB) units were produced in the bacterium Cupriavidus necator (formally Ralstonia eutropha) from structurally related carbon sources. After that, production of PHA copolymers composed of 3-hydroxybutyrate (3HB) and 4HB [P(3HB-co-4HB)] was demonstrated in diverse wild-type bacteria. The P4HB homopolymer, however, was hardly synthesized because existing bacterial metabolism on 4HB precursors also generate and incorporate 3HB. The resulting material assumes the properties of thermoplastics and elastomers depending on the 4HB fraction in the copolyester. Given the fact that P4HB is biodegradable and yield 4HB, which is a normal compound in the human body and proven to be biocompatible, P4HB has become a prospective material for medical applications, which is the only FDA approved PHA for medical applications since 2007. Different from other materials used in similar applications, high molecular weight P4HB cannot be produced via chemical synthesis. Thus, aiming at the commercial production of this type of PHA, genetic engineering was extensively applied resulting in various production strains, with the ability to convert unrelated carbon sources (e.g., sugars) to 4HB, and capable of producing homopolymeric P4HB. In 2001, Metabolix Inc. filed a patent concerning genetically modified and stable organisms, e.g., Escherichia coli, producing P4HB and copolymers from inexpensive carbon sources. The patent is currently hold by Tepha Inc., the only worldwide producer of commercial P4HB. To date, numerous patents on various applications of P4HB in the medical field have been filed. This review will comprehensively cover the historical evolution and the most recent publications on P4HB biosynthesis, material properties, and industrial and medical applications. Finally, perspectives for the research and commercialization of P4HB will be presented.
Collapse
Affiliation(s)
- Camila Utsunomia
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sion, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Manfred Zinn
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sion, Switzerland
| |
Collapse
|
5
|
Tee KL, Grinham J, Othusitse AM, González-Villanueva M, Johnson AO, Wong TS. An Efficient Transformation Method for the Bioplastic-Producing “Knallgas” Bacterium Ralstonia eutropha
H16. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/14/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Kang Lan Tee
- Department of Chemical and Biological Engineering, ChELSI Institute and Advanced Biomanufacturing Centre; The University of Sheffield; Sheffield United Kingdom
| | - James Grinham
- Department of Chemical and Biological Engineering, ChELSI Institute and Advanced Biomanufacturing Centre; The University of Sheffield; Sheffield United Kingdom
| | - Arona M. Othusitse
- Department of Chemical and Biological Engineering, ChELSI Institute and Advanced Biomanufacturing Centre; The University of Sheffield; Sheffield United Kingdom
| | - Miriam González-Villanueva
- Department of Chemical and Biological Engineering, ChELSI Institute and Advanced Biomanufacturing Centre; The University of Sheffield; Sheffield United Kingdom
| | - Abayomi O. Johnson
- Department of Chemical and Biological Engineering, ChELSI Institute and Advanced Biomanufacturing Centre; The University of Sheffield; Sheffield United Kingdom
| | - Tuck Seng Wong
- Department of Chemical and Biological Engineering, ChELSI Institute and Advanced Biomanufacturing Centre; The University of Sheffield; Sheffield United Kingdom
| |
Collapse
|
6
|
Karstens K, Zschiedrich CP, Bowien B, Stülke J, Görke B. Phosphotransferase protein EIIANtr interacts with SpoT, a key enzyme of the stringent response, in Ralstonia eutropha H16. MICROBIOLOGY-SGM 2014; 160:711-722. [PMID: 24515609 DOI: 10.1099/mic.0.075226-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
EIIA(Ntr) is a member of a truncated phosphotransferase (PTS) system that serves regulatory functions and exists in many Proteobacteria in addition to the sugar transport PTS. In Escherichia coli, EIIA(Ntr) regulates K(+) homeostasis through interaction with the K(+) transporter TrkA and sensor kinase KdpD. In the β-Proteobacterium Ralstonia eutropha H16, EIIA(Ntr) influences formation of the industrially important bioplastic poly(3-hydroxybutyrate) (PHB). PHB accumulation is controlled by the stringent response and induced under conditions of nitrogen deprivation. Knockout of EIIA(Ntr) increases the PHB content. In contrast, absence of enzyme I or HPr, which deliver phosphoryl groups to EIIA(Ntr), has the opposite effect. To clarify the role of EIIA(Ntr) in PHB formation, we screened for interacting proteins that co-purify with Strep-tagged EIIA(Ntr) from R. eutropha cells. This approach identified the bifunctional ppGpp synthase/hydrolase SpoT1, a key enzyme of the stringent response. Two-hybrid and far-Western analyses confirmed the interaction and indicated that only non-phosphorylated EIIA(Ntr) interacts with SpoT1. Interestingly, this interaction does not occur between the corresponding proteins of E. coli. Vice versa, interaction of EIIA(Ntr) with KdpD appears to be absent in R. eutropha, although R. eutropha EIIA(Ntr) can perfectly substitute its homologue in E. coli in regulation of KdpD activity. Thus, interaction with KdpD might be an evolutionary 'ancient' task of EIIA(Ntr) that was subsequently replaced by interaction with SpoT1 in R. eutropha. In conclusion, EIIA(Ntr) might integrate information about nutritional status, as reflected by its phosphorylation state, into the stringent response, thereby controlling cellular PHB content in R. eutropha.
Collapse
Affiliation(s)
- Katja Karstens
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, 37077 Göttingen, Germany
| | - Christopher P Zschiedrich
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, 37077 Göttingen, Germany
| | - Botho Bowien
- Department of Molecular Physiology, Institute of Microbiology and Genetics, Georg-August-University, 37077 Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, 37077 Göttingen, Germany
| | - Boris Görke
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Center of Molecular Biology, University of Vienna, 1030 Vienna, Austria.,Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, 37077 Göttingen, Germany
| |
Collapse
|
7
|
Kaddor C, Voigt B, Hecker M, Steinbüchel A. Impact of the Core Components of the Phosphoenolpyruvate-Carbohydrate Phosphotransferase System, HPr and EI, on Differential Protein Expression in Ralstonia eutropha H16. J Proteome Res 2012; 11:3624-36. [DOI: 10.1021/pr300042f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chlud Kaddor
- Institut für
Molekulare
Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse
3, D-48149 Münster, Germany
| | - Birgit Voigt
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität, Friedrich-Ludwig-Jahn-Straße
15, D-17489 Greifswald, Germany
| | - Michael Hecker
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität, Friedrich-Ludwig-Jahn-Straße
15, D-17489 Greifswald, Germany
| | - Alexander Steinbüchel
- Institut für
Molekulare
Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse
3, D-48149 Münster, Germany
- King Abdul Aziz University, Jeddah 22254,
Saudi Arabia
| |
Collapse
|
8
|
Physiological and proteomic adaptation of "Aromatoleum aromaticum" EbN1 to low growth rates in benzoate-limited, anoxic chemostats. J Bacteriol 2012; 194:2165-80. [PMID: 22366417 DOI: 10.1128/jb.06519-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
"Aromatoleum aromaticum" EbN1 was cultivated at different growth rates in benzoate-limited chemostats under nitrate-reducing conditions. Physiological characteristics, proteome dynamics, phospholipid-linked fatty acid (PLFA) composition, and poly(3-hydroxybutyrate) (PHB) content were analyzed in steady-state cells at low (μ(low)) (0.036 h(-1)), medium (μ(med)) (0.108 h(-1)), and high (μ(high)) (0.180 h(-1)) growth rates. A positive correlation to growth rate was observed for cellular parameters (cell size, and DNA and protein contents). The free energy consumed for biomass formation steadily increased with growth rate. In contrast, the energy demand for maintenance increased only from μ(low) to μ(med) and then remained constant until μ(high). The most comprehensive proteomic changes were observed at μ(low) compared to μ(high). Uniformly decreased abundances of protein components of the anaerobic benzoyl coenzyme A (benzoyl-CoA) pathway, central carbon metabolism, and information processing agree with a general deceleration of benzoate metabolism and cellular processes in response to slow growth. In contrast, increased abundances were observed at μ(low) for diverse catabolic proteins and components of uptake systems in the absence of the respective substrate (aromatic or aliphatic compounds) and for proteins involved in stress responses. This potential catabolic versatility and stress defense during slow growth may be interpreted as preparation for future needs.
Collapse
|
9
|
Kaddor C, Steinbüchel A. Implications of various phosphoenolpyruvate-carbohydrate phosphotransferase system mutations on glycerol utilization and poly(3-hydroxybutyrate) accumulation in Ralstonia eutropha H16. AMB Express 2011; 1:16. [PMID: 21906371 PMCID: PMC3222305 DOI: 10.1186/2191-0855-1-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/13/2011] [Indexed: 11/10/2022] Open
Abstract
The enhanced global biodiesel production is also yielding increased quantities of glycerol as main coproduct. An effective application of glycerol, for example, as low-cost substrate for microbial growth in industrial fermentation processes to specific products will reduce the production costs for biodiesel. Our study focuses on the utilization of glycerol as a cheap carbon source during cultivation of the thermoplastic producing bacterium Ralstonia eutropha H16, and on the investigation of carbohydrate transport proteins involved herein. Seven open reading frames were identified in the genome of strain H16 to encode for putative proteins of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PEP-PTS). Although the core components of PEP-PTS, enzyme I (ptsI) and histidine phosphocarrier protein (ptsH), are available in strain H16, a complete PTS-mediated carbohydrate transport is lacking. Growth experiments employing several PEP-PTS mutants indicate that the putative ptsMHI operon, comprising ptsM (a fructose-specific EIIA component of PTS), ptsH, and ptsI, is responsible for limited cell growth and reduced PHB accumulation (53%, w/w, less PHB than the wild type) of this strain in media containing glycerol as a sole carbon source. Otherwise, the deletion of gene H16_A0384 (ptsN, nitrogen regulatory EIIA component of PTS) seemed to largely compensate the effect of the deleted ptsMHI operon (49%, w/w, PHB). The involvement of the PTS homologous proteins on the utilization of the non-PTS sugar alcohol glycerol and its effect on cell growth as well as PHB and carbon metabolism of R. eutropha will be discussed.
Collapse
|
10
|
Kaddor C, Steinbüchel A. Effects of homologous phosphoenolpyruvate-carbohydrate phosphotransferase system proteins on carbohydrate uptake and poly(3-Hydroxybutyrate) accumulation in Ralstonia eutropha H16. Appl Environ Microbiol 2011; 77:3582-90. [PMID: 21478317 PMCID: PMC3127587 DOI: 10.1128/aem.00218-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/29/2011] [Indexed: 11/20/2022] Open
Abstract
Seven gene loci encoding putative proteins of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PEP-PTS) were identified in the genome of Ralstonia eutropha H16 by in silico analysis. Except the N-acetylglucosamine-specific PEP-PTS, an additional complete PEP-PTS is lacking in strain H16. Based on these findings, we generated single and multiple deletion mutants defective mainly in the PEP-PTS genes to investigate their influence on carbon source utilization, growth behavior, and poly(3-hydroxybutyrate) (PHB) accumulation. As supposed, the H16 ΔfrcACB and H16 ΔnagFEC mutants exhibited no growth when cultivated on fructose and N-acetylglucosamine, respectively. Furthermore, a transposon mutant with a ptsM-ptsH insertion site did not grow on both carbon sources. The observed phenotype was not complemented, suggesting that it results from an interaction of genes or a polar effect caused by the Tn5::mob insertion. ptsM, ptsH, and ptsI single, double, and triple mutants stored much less PHB than the wild type (about 10 to 39% [wt/wt] of cell dry weight) and caused reduced PHB production in mutants lacking the H16_A2203, H16_A0384, frcACB, or nagFEC genes. In contrast, mutant H16 ΔH16_A0384 accumulated 11.5% (wt/wt) more PHB than the wild type when grown on gluconate and suppressed partially the negative effect of the ptsMHI deletion on PHB synthesis. Based on our experimental data, we discussed whether the PEP-PTS homologous proteins in R. eutropha H16 are exclusively involved in the complex sugar transport system or whether they are also involved in cellular regulatory functions of carbon and PHB metabolism.
Collapse
Affiliation(s)
- Chlud Kaddor
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149 Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149 Münster, Germany
| |
Collapse
|
11
|
Ueda S, Matsumoto S, Takagi A, Yamane T. Synthesis of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) from Methanol and n-Amyl Alcohol by the Methylotrophic Bacteria Paracoccus denitrificans and Methylobacterium extorquens. Appl Environ Microbiol 2010; 58:3574-9. [PMID: 16348804 PMCID: PMC183146 DOI: 10.1128/aem.58.11.3574-3579.1992] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strains of two types of methylotrophic bacteria, Paracoccus denitrificans and Methylobacterium extorquens, synthesized the copolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate) when methanol and n-amyl alcohol were added together to nitrogen-limited medium. The composition of the copolyester differed considerably between the two strains: the copolyester from P. denitrificans was comparatively rich in 3-hydroxyvalerate (3HV). The 3HV content of the copolyester synthesized by this strain increased with increasing concentrations of n-amyl alcohol. Its maximum content was 91.5 mol% under the conditions used. In M. extorquens, the maximum 3HV content was limited to 38.2 mol%. Since n-amyl alcohol served as a substrate for a standard methanol dehydrogenase, the enzyme was proposed to oxidize both methanol and n-amyl alcohol in the first step of copolyester synthesis from these substrates by methanol-grown cells.
Collapse
Affiliation(s)
- S Ueda
- Laboratory of Bioreaction Engineering, Department of Food Science and Technology, School of Agricultural Sciences, Nagoya University, Nagoya 464-01, Japan
| | | | | | | |
Collapse
|
12
|
Raiger-Iustman LJ, Ruiz JA. The alternative sigma factor, ÏS, affects polyhydroxyalkanoate metabolism inPseudomonas putida. FEMS Microbiol Lett 2008; 284:218-24. [DOI: 10.1111/j.1574-6968.2008.01203.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 1033] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
14
|
Zheng Z, Li M, Xue XJ, Tian HL, Li Z, Chen GQ. Mutation on N-terminus of polyhydroxybutyrate synthase of Ralstonia eutropha enhanced PHB accumulation. Appl Microbiol Biotechnol 2006; 72:896-905. [PMID: 16673109 DOI: 10.1007/s00253-006-0371-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 02/05/2006] [Accepted: 02/07/2006] [Indexed: 10/24/2022]
Abstract
Polyhydroxyalkanoate (PHA) synthase is the central enzyme involved in the biosynthesis of PHA, a family of bacterial biodegradable polyesters. Due to its high variability, the N-terminal fragment of this enzyme was previously considered as unnecessary for a functionally active enzyme. In this study, polyhydroxybutyrate synthase from Ralstonia eutropha (PhbC(Re)) with a deletion on N-terminal 88 amino acid residues showed a significant reduced activity, as reflected by only 1.5% PHB accumulation compared with the wild type which produced 58.4% PHB of the cell dry weight. Whilst several site-specific mutagenesis results revealed the amphiphilic alpha-helix assembled by the amino acid region, D70-E88 played an important role in both maintaining the PHB synthase activity and regulating molecular weight and polydispersity of accumulated PHB homopolymer.
Collapse
Affiliation(s)
- Zhong Zheng
- MOE Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | |
Collapse
|
15
|
Barabote RD, Saier MH. Comparative genomic analyses of the bacterial phosphotransferase system. Microbiol Mol Biol Rev 2005; 69:608-34. [PMID: 16339738 PMCID: PMC1306802 DOI: 10.1128/mmbr.69.4.608-634.2005] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report analyses of 202 fully sequenced genomes for homologues of known protein constituents of the bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS). These included 174 bacterial, 19 archaeal, and 9 eukaryotic genomes. Homologues of PTS proteins were not identified in archaea or eukaryotes, showing that the horizontal transfer of genes encoding PTS proteins has not occurred between the three domains of life. Of the 174 bacterial genomes (136 bacterial species) analyzed, 30 diverse species have no PTS homologues, and 29 species have cytoplasmic PTS phosphoryl transfer protein homologues but lack recognizable PTS permeases. These soluble homologues presumably function in regulation. The remaining 77 species possess all PTS proteins required for the transport and phosphorylation of at least one sugar via the PTS. Up to 3.2% of the genes in a bacterium encode PTS proteins. These homologues were analyzed for family association, range of protein types, domain organization, and organismal distribution. Different strains of a single bacterial species often possess strikingly different complements of PTS proteins. Types of PTS protein domain fusions were analyzed, showing that certain types of domain fusions are common, while others are rare or prohibited. Select PTS proteins were analyzed from different phylogenetic standpoints, showing that PTS protein phylogeny often differs from organismal phylogeny. The results document the frequent gain and loss of PTS protein-encoding genes and suggest that the lateral transfer of these genes within the bacterial domain has played an important role in bacterial evolution. Our studies provide insight into the development of complex multicomponent enzyme systems and lead to predictions regarding the types of protein-protein interactions that promote efficient PTS-mediated phosphoryl transfer.
Collapse
Affiliation(s)
- Ravi D Barabote
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116, USA
| | | |
Collapse
|
16
|
Babel W, Ackermann JU, Breuer U. Physiology, regulation, and limits of the synthesis of poly(3HB). ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2001; 71:125-57. [PMID: 11217410 DOI: 10.1007/3-540-40021-4_4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The properties of poly(3-hydroxybutyrate) combined with the fact that it can be produced easily by numerous prokaryotes from renewable resources and even from potentially toxic waste products using well-known fermentation processes have generated keen interest in this biopolyester as a substitute for chemo-synthetic petroleum-derived polymers in many applications. However, the high price of poly(3HB) compared with the conventional synthetic materials currently in use has restricted its availability in a wide range of applications. If the economic viability of poly(3HB) production and its competitiveness are to be improved, more must be found out about the phenotypic optimization and the upper limits of bacterial systems as the factory of poly(3HB). In this chapter, two aspects of poly(3HB) are reviewed--poly(3HB) formation as a physiological response to external limitations and overcoming internal bottlenecks, and poly(3HB) as a commercially attractive polyester. From a physiological viewpoint, the ability to synthesize and degrade poly(3HB) is considered an investment in the future and provides organisms with a selective advantage. Poly(3HB) is presented as a strategic survival polymer, and it is shown that growth-associated synthesis is not as rare as reported. The influence of the efficiency and velocity of cell multiplication and product formation, of poly(3HB) content and of productivity on the overall yield, and finally on the economics of the whole process are discussed and evaluated from the technological or consumer's point of view. The specific production rate and poly(3HB) content appear to be more important than the yield coefficients.
Collapse
Affiliation(s)
- W Babel
- UFZ Umweltforschungszentrum Leipzig-Halle, Sektion Umweltmikrobiologie, Permoserstrasse 15, D-04318 Leipzig, Germany.
| | | | | |
Collapse
|
17
|
Steinbüchel A, Hein S. Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2001; 71:81-123. [PMID: 11217418 DOI: 10.1007/3-540-40021-4_3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Intensive research on the physiology, biochemistry, and molecular genetics of the metabolism of polyhydroxyalkanoates (PHA) during the last 15 years has revealed a dramatic increase of our knowledge on the biosynthesis of these polyesters in bacteria. This mainly very basic research has revealed several new, hitherto not described enzymes and pathways. In addition, many genes encoding the enzymes of these pathways and in particular the key enzyme of PHA biosynthesis, PHA synthase, were cloned and characterized at a molecular level. This knowledge was utilized to establish PHA biosynthesis in many prokaryotic and eukaryotic organisms, which were unable to synthesize PHAs, and to apply the methodology of metabolic engineering, thus opening new perspectives for the production of various PHAs by fermentation biotechnology or agriculture in economically feasible processes. This contribution summarizes the properties of PHA synthases and gives an overview on the genes for these enzymes and other enzymes of PHA biosynthesis that have been cloned and are available. It also summarizes our current knowledge on the regulation at the enzyme and gene level of PHA biosynthesis in bacteria.
Collapse
Affiliation(s)
- A Steinbüchel
- Institut für Mikrobiologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, 48149 Münster, Germany.
| | | |
Collapse
|
18
|
Reizer J, Bachem S, Reizer A, Arnaud M, Saier MH, Stülke J. Novel phosphotransferase system genes revealed by genome analysis - the complete complement of PTS proteins encoded within the genome of Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 12):3419-3429. [PMID: 10627040 DOI: 10.1099/00221287-145-12-3419] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacillus subtilis can utilize several sugars as single sources of carbon and energy. Many of these sugars are transported and concomitantly phosphorylated by the phosphoenolpyruvate:sugar phosphotransferase system (PTS). In addition to its role in sugar uptake, the PTS is one of the major signal transduction systems in B. subtilis. In this study, an analysis of the complete set of PTS proteins encoded within the B. subtilis genome is presented. Fifteen sugar-specific PTS permeases were found to be present and the functions of novel PTS permeases were studied based on homology to previously characterized permeases, analysis of the structure of the gene clusters in which the permease encoding genes are located and biochemical analysis of relevant mutants. Members of the glucose, sucrose, lactose, mannose and fructose/mannitol families of PTS permeases were identified. Interestingly, nine pairs of IIB and IIC domains belonging to the glucose and sucrose permease families are present in B. subtilis; by contrast only five Enzyme IIA(Glc)-like proteins or domains are encoded within the B. subtilis genome. Consequently, some of the EIIA(Glc)-like proteins must function in phosphoryl transfer to more than one IIB domain of the glucose and sucrose families. In addition, 13 PTS-associated proteins are encoded within the B. subtilis genome. These proteins include metabolic enzymes, a bifunctional protein kinase/phosphatase, a transcriptional cofactor and transcriptional regulators that are involved in PTS-dependent signal transduction. The PTS proteins and the auxiliary PTS proteins represent a highly integrated network that catalyses and simultaneously modulates carbohydrate utilization in this bacterium.
Collapse
Affiliation(s)
- Jonathan Reizer
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA1
| | - Steffi Bachem
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik der Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany2
| | - Aiala Reizer
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA1
| | - Maryvonne Arnaud
- Unité de Biochimie Microbienne, D épartement des Biotechnologies, Institut Pasteur, 25 rue du Dr Roux, F-75724 Paris Cedex 15, France 3
| | - Milton H Saier
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA1
| | - Jörg Stülke
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik der Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany2
| |
Collapse
|
19
|
Overhage J, Priefert H, Steinbüchel A. Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. Strain HR199. Appl Environ Microbiol 1999; 65:4837-47. [PMID: 10543794 PMCID: PMC91652 DOI: 10.1128/aem.65.11.4837-4847.1999] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene loci fcs, encoding feruloyl coenzyme A (feruloyl-CoA) synthetase, ech, encoding enoyl-CoA hydratase/aldolase, and aat, encoding beta-ketothiolase, which are involved in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199 (DSM7063), were localized on a DNA region covered by two EcoRI fragments (E230 and E94), which were recently cloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The nucleotide sequences of parts of fragments E230 and E94 were determined, revealing the arrangement of the aforementioned genes. To confirm the function of the structural genes fcs and ech, they were cloned and expressed in Escherichia coli. Recombinant strains harboring both genes were able to transform ferulic acid to vanillin. The feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase activities of the fcs and ech gene products, respectively, were confirmed by photometric assays and by high-pressure liquid chromatography analysis. To prove the essential involvement of the fcs, ech, and aat genes in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199, these genes were inactivated separately by the insertion of omega elements. The corresponding mutants Pseudomonas sp. strain HRfcsOmegaGm and Pseudomonas sp. strain HRechOmegaKm were not able to grow on ferulic acid or on eugenol, whereas the mutant Pseudomonas sp. strain HRaatOmegaKm exhibited a ferulic acid- and eugenol-positive phenotype like the wild type. In conclusion, the degradation pathway of eugenol via ferulic acid and the necessity of the activation of ferulic acid to the corresponding CoA ester was confirmed. The aat gene product was shown not to be involved in this catabolism, thus excluding a beta-oxidation analogous degradation pathway for ferulic acid. Moreover, the function of the ech gene product as an enoyl-CoA hydratase/aldolase suggests that ferulic acid degradation in Pseudomonas sp. strain HR199 proceeds via a similar pathway to that recently described for Pseudomonas fluorescens AN103.
Collapse
Affiliation(s)
- J Overhage
- Institut für Mikrobiologie der Westfälischen Wilhelms-Universität Münster, D-48149 Münster, Germany
| | | | | |
Collapse
|
20
|
Abstract
Carbon catabolite repression (CCR) is a regulatory mechanism by which the expression of genes required for the utilization of secondary sources of carbon is prevented by the presence of a preferred substrate. This enables bacteria to increase their fitness by optimizing growth rates in natural environments providing complex mixtures of nutrients. In most bacteria, the enzymes involved in sugar transport and phosphorylation play an essential role in signal generation leading through different transduction mechanisms to catabolite repression. The actual mechanisms of regulation are substantially different in various bacteria. The mechanism of lactose-glucose diauxie in Escherichia coli has been reinvestigated and was found to be caused mainly by inducer exclusion. In addition, the gene encoding HPr kinase, a key component of CCR in many bacteria, was discovered recently.
Collapse
Affiliation(s)
- J Stülke
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik der Friedrich-Alexander-Universität, Erlangen-Nüurnberg, Staudtstr.5, D-91058, Erlangen, Germany
| | | |
Collapse
|
21
|
Madison LL, Huisman GW. Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 1999; 63:21-53. [PMID: 10066830 PMCID: PMC98956 DOI: 10.1128/mmbr.63.1.21-53.1999] [Citation(s) in RCA: 895] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poly(3-hydroxyalkanoates) (PHAs) are a class of microbially produced polyesters that have potential applications as conventional plastics, specifically thermoplastic elastomers. A wealth of biological diversity in PHA formation exists, with at least 100 different PHA constituents and at least five different dedicated PHA biosynthetic pathways. This diversity, in combination with classical microbial physiology and modern molecular biology, has now opened up this area for genetic and metabolic engineering to develop optimal PHA-producing organisms. Commercial processes for PHA production were initially developed by W. R. Grace in the 1960s and later developed by Imperial Chemical Industries, Ltd., in the United Kingdom in the 1970s and 1980s. Since the early 1990s, Metabolix Inc. and Monsanto have been the driving forces behind the commercial exploitation of PHA polymers in the United States. The gram-negative bacterium Ralstonia eutropha, formerly known as Alcaligenes eutrophus, has generally been used as the production organism of choice, and intracellular accumulation of PHA of over 90% of the cell dry weight have been reported. The advent of molecular biological techniques and a developing environmental awareness initiated a renewed scientific interest in PHAs, and the biosynthetic machinery for PHA metabolism has been studied in great detail over the last two decades. Because the structure and monomeric composition of PHAs determine the applications for each type of polymer, a variety of polymers have been synthesized by cofeeding of various substrates or by metabolic engineering of the production organism. Classical microbiology and modern molecular bacterial physiology have been brought together to decipher the intricacies of PHA metabolism both for production purposes and for the unraveling of the natural role of PHAs. This review provides an overview of the different PHA biosynthetic systems and their genetic background, followed by a detailed summation of how this natural diversity is being used to develop commercially attractive, recombinant processes for the large-scale production of PHAs.
Collapse
Affiliation(s)
- L L Madison
- Metabolix, Inc., Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
22
|
Overhage J, Kresse AU, Priefert H, Sommer H, Krammer G, Rabenhorst J, Steinbüchel A. Molecular characterization of the genes pcaG and pcaH, encoding protocatechuate 3,4-dioxygenase, which are essential for vanillin catabolism in Pseudomonas sp. strain HR199. Appl Environ Microbiol 1999; 65:951-60. [PMID: 10049847 PMCID: PMC91128 DOI: 10.1128/aem.65.3.951-960.1999] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/1998] [Accepted: 12/14/1998] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas sp. strain HR199 is able to utilize eugenol (4-allyl-2-methoxyphenol), vanillin (4-hydroxy-3-methoxybenzaldehyde), or protocatechuate as the sole carbon source for growth. Mutants of this strain which were impaired in the catabolism of vanillin but retained the ability to utilize eugenol or protocatechuate were obtained after nitrosoguanidine mutagenesis. One mutant (SK6169) was used as recipient of a Pseudomonas sp. strain HR199 genomic library in cosmid pVK100, and phenotypic complementation was achieved with a 5.8-kbp EcoRI fragment (E58). The amino acid sequences deduced from two corresponding open reading frames (ORF) identified on E58 revealed high degrees of homology to pcaG and pcaH, encoding the two subunits of protocatechuate 3,4-dioxygenase. Three additional ORF most probably encoded a 4-hydroxybenzoate 3-hydroxylase (PobA) and two putative regulatory proteins, which exhibited homology to PcaQ of Agrobacterium tumefaciens and PobR of Pseudomonas aeruginosa, respectively. Since mutant SK6169 was also complemented by a subfragment of E58 that harbored only pcaH, this mutant was most probably lacking a functional beta subunit of the protocatechuate 3, 4-dioxygenase. Since this mutant was still able to grow on protocatechuate and lacked protocatechuate 4,5-dioxygenase and protocatechuate 2,3-dioxygenase, the degradation had to be catalyzed by different enzymes. Two other mutants (SK6184 and SK6190), which were also impaired in the catabolism of vanillin, were not complemented by fragment E58. Since these mutants accumulated 3-carboxy muconolactone during cultivation on eugenol, they most probably exhibited a defect in a step of the catabolic pathway following the ortho cleavage. Moreover, in these mutants cyclization of 3-carboxymuconic acid seems to occur by a syn absolute stereochemical course, which is normally only observed for cis, cis-muconate lactonization in pseudomonads. In conclusion, vanillin is degraded through the ortho-cleavage pathway in Pseudomonas sp. strain HR199 whereas protocatechuate could also be metabolized via a different pathway in the mutants.
Collapse
Affiliation(s)
- J Overhage
- Institut für Mikrobiologie der Westfälischen Wilhelms-Universität Münster, D-48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Segura D, Espín G. Mutational inactivation of a gene homologous to Escherichia coli ptsP affects poly-beta-hydroxybutyrate accumulation and nitrogen fixation in Azotobacter vinelandii. J Bacteriol 1998; 180:4790-8. [PMID: 9733679 PMCID: PMC107501 DOI: 10.1128/jb.180.18.4790-4798.1998] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strain DS988, an Azotobacter vinelandii mutant with a reduced capacity to accumulate poly-beta-hydroxybutyrate, was isolated after mini-Tn5 mutagenesis of the UW136 strain. Cloning and nucleotide sequencing of the affected locus revealed a gene homologous to Escherichia coli ptsP which encodes enzyme INtr, a homologue of enzyme I of the phosphoenol pyruvate-sugar phosphotransferase system with an N-terminal domain similar to the N-terminal domain of some NifA proteins. Strain DS988 was unable to grow diazotrophically with 10 mM glucose as a carbon source. Diazotrophic growth on alternative carbon sources such as gluconate was only slightly affected. Glucose uptake, as well as glucose kinase and glucose-6-phosphate-dehydrogenase activities that lead to the synthesis of gluconate-6-phosphate, were not affected by the ptsP mutation. The inability of DS988 to grow diazotrophically in 10 mM glucose was overcome by supplying ammonium or other sources of fixed nitrogen. Acetylene reduction activity but not transcription of the nitrogenase structural gene nifH was shown to be impaired in strain DS988 when it was incubated in 10 mM glucose. The diazotrophic growth defect of DS988 was restored either by increasing the glucose concentration to above 20 mM or by lowering the oxygen concentration. These data suggest that a mutation in ptsP leads to a failure in poly-beta-hydroxybutyrate metabolism and in the respiratory protection of nitrogenase under carbon-limiting conditions.
Collapse
Affiliation(s)
- D Segura
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | |
Collapse
|
24
|
Seok YJ, Sondej M, Badawi P, Lewis MS, Briggs MC, Jaffe H, Peterkofsky A. High affinity binding and allosteric regulation of Escherichia coli glycogen phosphorylase by the histidine phosphocarrier protein, HPr. J Biol Chem 1997; 272:26511-21. [PMID: 9334229 DOI: 10.1074/jbc.272.42.26511] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The histidine phosphocarrier protein (HPr) is an essential element in sugar transport by the bacterial phosphoenolpyruvate:sugar phosphotransferase system. Ligand fishing, using surface plasmon resonance, was used to show the binding of HPr to a nonphosphotransferase protein in extracts of Escherichia coli; the protein was subsequently identified as glycogen phosphorylase (GP). The high affinity (association constant approximately 10(8) M-1), species-specific interaction was also demonstrated in electrophoretic mobility shift experiments by polyacrylamide gel electrophoresis. Equilibrium ultracentrifugation analysis indicates that HPr allosterically regulates the oligomeric state of glycogen phosphorylase. HPr binding increases GP activity to 250% of the level in control assays. Kinetic analysis of coupled enzyme assays shows that the binding of HPr to GP causes a decrease in the Km for glycogen and an increase in the Vmax for phosphate, indicating a mixed type activation. The stimulatory effect of E. coli HPr on E. coli GP activity is species-specific, and the unphosphorylated form of HPr activates GP more than does the phosphorylated form. Replacement of specific amino acids in HPr results in reduced GP activation; HPr residues Arg-17, Lys-24, Lys-27, Lys-40, Ser-46, Gln-51, and Lys-72 were established to be important. This novel mechanism for the regulation of GP provides the first evidence directly linking E. coli HPr to the regulation of carbohydrate metabolism.
Collapse
Affiliation(s)
- Y J Seok
- NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Priefert H, Rabenhorst J, Steinbüchel A. Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate. J Bacteriol 1997; 179:2595-607. [PMID: 9098058 PMCID: PMC179009 DOI: 10.1128/jb.179.8.2595-2607.1997] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gene loci vdh, vanA, and vanB, which are involved in the bioconversion of vanillin to protocatechuate by Pseudomonas sp. strain HR199 (DSM 7063), were identified as the structural genes of a novel vanillin dehydrogenase (vdh) and the two subunits of a vanillate demethylase (vanA and vanB), respectively. These genes were localized on an EcoRI fragment (E230), which was cloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The vdh gene was identified on a subfragment (HE35) of E230, and the vanA and vanB genes were localized on a different subfragment (H110) of E230. The nucleotide sequences of fragment HE35 and part of fragment H110 were determined, revealing open reading frames of 1062, 951, and 1446 bp, representing vanA, vanB, and vdh, respectively. The vdh gene was organized in one operon together with a fourth open reading frame (ORF2), of 735 bp, which was located upstream of vdh. The deduced amino acid sequences of vanA and vanB exhibited 78.8 and 62.1% amino acid identity, respectively, to the corresponding gene products from Pseudomonas sp. strain ATCC 19151 (F. Brunel and J. Davison, J. Bacteriol. 170:4924-4930, 1988). The deduced amino acid sequence of the vdh gene exhibited up to 35.3% amino acid identity to aldehyde dehydrogenases from different sources. The deduced amino acid sequence of ORF2 exhibited up to 28.4% amino acid identity to those of enoyl coenzyme A hydratases. Escherichia coli strains harboring fragment E230 cloned in pBluescript SK- converted vanillin to protocatechuate via vanillate, indicating the functional expression of vdh, vanA, and vanB in E. coli. High expression of vdh in E. coli was achieved with HE35 cloned in pBluescript SK-. The resulting recombinant strains converted vanillin to vanillate at a rate of up to 0.3 micromol per min per ml of culture. Transfer of vanA, vanB, and vdh to Alcaligenes eutrophus and to different Pseudomonas strains, which were unable to utilize vanillin or vanillate as carbon sources, respectively, conferred the ability to grow on these substrates to these bacteria.
Collapse
Affiliation(s)
- H Priefert
- Institut für Mikrobiologie der Westfälischen Wilhelms-Universitat Münster, Germany
| | | | | |
Collapse
|
26
|
Reizer J, Reizer A. A voyage along the bases: novel phosphotransferase genes revealed by in silico analyses of the Escherichia coli genome. Res Microbiol 1996; 147:458-71. [PMID: 9092011 DOI: 10.1016/0923-2508(96)84000-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- J Reizer
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| | | |
Collapse
|
27
|
Koch S, Sutrina SL, Wu LF, Reizer J, Schnetz K, Rak B, Saier MH. Identification of a site in the phosphocarrier protein, HPr, which influences its interactions with sugar permeases of the bacterial phosphotransferase system: kinetic analyses employing site-specific mutants. J Bacteriol 1996; 178:1126-33. [PMID: 8576048 PMCID: PMC177775 DOI: 10.1128/jb.178.4.1126-1133.1996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The permeases of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system (PTS), the sugar-specific enzymes II, are energized by sequential phosphoryl transfer from phosphoenolpyruvate to (i) enzyme I, (ii) the phosphocarrier protein HPr, (iii) the enzyme IIA domains of the permeases, and (iv) the enzyme IIBC domains of the permeases which transport and phosphorylate their sugar substrates. A number of site-specific mutants of HPr were examined by using kinetic approaches. Most of the mutations exerted minimal effects on the kinetic parameters characterizing reactions involving phosphoryl transfer from phospho-HPr to various sugars. However, when the well-conserved aspartyl 69 residue in HPr was changed to a glutamyl residue, the affinities for phospho-HPr of the enzymes II specific for mannitol, N-acetylglucosamine, and beta-glucosides decreased markedly without changing the maximal reaction rates. The same mutation reduced the spontaneous rate of phosphohistidyl HPr hydrolysis but did not appear to alter the rate of phosphoryl transfer from phospho-enzyme I to HPr. When the adjacent glutamyl residue 70 in HPr was changed to a lysyl residue, the Vmax values of the reactions catalyzed by the enzymes II were reduced, but the Km values remained unaltered. Changing this residue to alanine exerted little effect. Site-specific alterations in the C terminus of the beta-glucoside enzyme II which reduced the maximal reaction rate of phosphoryl transfer about 20-fold did not alter the relative kinetic parameters because of the aforementioned mutations in HPr. Published three-dimensional structural analyses of HPr and the complex of HPr with the glucose-specific enzyme IIA (IIAGlc) (homologous to the beta-glucoside and N-acetylglucosamine enzyme IIA domains) have revealed that residues 69 and 70 in HPr are distant from the active phosphorylation site and the IIAGlc binding interface in HPr. The results reported therefore suggest that residues D-69 and E-70 in HPr play important roles in controlling conformational aspects of HPr that influence (i) autophosphohydrolysis, (ii) the interaction of this protein with the sugar permeases of the bacterial phosphotransferase system, and (iii) catalysis of phosphoryl transfer to the IIA domains in these permeases.
Collapse
Affiliation(s)
- S Koch
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Meier-Schneiders M, Grosshans U, Busch C, Weikmann W, Steinbuchel A. On-line analysis of Alcaligenes eutrophus fermentations. Can J Microbiol 1995. [DOI: 10.1139/m95-196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Improvements in the poly(β-hydroxybutyrate) (PHB) productivity of Alcaligenes eutrophus can be achieved by using genetically engineered strains. Knowledge of their metabolic regulation can be obtained from fermentation experiments. Certain events may not be noticed owing to the typically low frequency of sampling. To avoid information gaps, a newly developed fermenter-calorimeter was used for batch experiments allowing comprehensive on-line monitoring of fermentations. PHB-producing strain HI 6 and PHB-lacking mutant PHB−4 were selected, since they are well characterized with respect to the metabolism of PHB. For both strains, the profiles of thermograms, oxygen dissolved in the medium, and carbon dioxide formation were in good agreement with the off-line analysis. The on-line measurements showed characteristic differences between strains PHB−4 and H16. During fed-batch cultivations of PHB-accumulating strain H16, rapid autolysis of the cells was observed.Key words: Alcaligenes eutrophus, PHB, fermentation, calorimetry, on-line analysis, growth efficiency.
Collapse
|
29
|
Wieczorek R, Pries A, Steinbüchel A, Mayer F. Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. J Bacteriol 1995; 177:2425-35. [PMID: 7730274 PMCID: PMC176901 DOI: 10.1128/jb.177.9.2425-2435.1995] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A 5.0-kbp genomic EcoRI restriction fragment which complemented a third subclass of polyhydroxyalkanoic acid (PHA)-leaky mutants of A. eutrophus that accumulated PHA at a lower rate than the wild type was cloned from Alcaligenes eutrophus H16. A 687-bp phaPAe gene on this fragment encoded a 24-kDa protein (M(r) = 23,963), which was referred to as the GA24 protein. The GA24 protein was solubilized from the granules and purified to electrophoretic homogeneity, and antibodies against the GA24 protein were obtained. The GA24 protein bound to the surface of PHA granules, as revealed by immunoelectron microscopy of whole cells and of artificial PHA granules. The GA24 protein contributed approximately 5% (wt/wt) of the total cellular protein, and it was the predominant protein present in the granules. It was synthesized only in cells accumulating PHA and only in amounts that could be bound to the granules; no soluble GA24 protein was detected. Tn5::mob-induced phaPAe mutants which were unable to synthesize intact GA24 protein formed only one large PHA granule per cell. The amino acid sequence of the GA24 protein revealed two closely related stretches consisting exclusively of nonhydrophilic amino acids at the C-terminal region, which are presumably involved in the binding of GA24 to the granules, as was recently proposed for a similar protein in Rhodococcus ruber. The GA24 protein seems to be a representative of phasins, which are a new class of protein that form a layer at the surface of PHA granules, like oleosins, which form a layer at the surface of triacylglycerol inclusions in oilseed plants.
Collapse
Affiliation(s)
- R Wieczorek
- Institut für Mikrobiologie der Georg-August-Universität zu Göttingen, Germany
| | | | | | | |
Collapse
|
30
|
Powell BS, Court DL, Inada T, Nakamura Y, Michotey V, Cui X, Reizer A, Saier MH, Reizer J. Novel proteins of the phosphotransferase system encoded within the rpoN operon of Escherichia coli. Enzyme IIANtr affects growth on organic nitrogen and the conditional lethality of an erats mutant. J Biol Chem 1995; 270:4822-39. [PMID: 7876255 DOI: 10.1074/jbc.270.9.4822] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two rpoN-linked delta Tn10-kan insertions suppress the conditionally lethal erats allele. One truncates rpoN while the second disrupts another gene (ptsN) in the rpoN operon and does not affect classical nitrogen regulation. Neither alter expression of era indicating that suppression is post-translational. Plasmid clones of ptsN prevent suppression by either disruption mutation indicating that this gene is important for lethality caused by erats. rpoN and six neighboring genes were sequenced and compared with sequences in the database. Two of these genes encode proteins homologous to Enzyme IIAFru and HPr of the phosphoenolpyruvate:sugar phosphotransferase system. We designate these proteins IIANtr (ptsN) and NPr (npr). Purified IIANtr and NPr exchange phosphate appropriately with Enzyme I, HPr, and Enzyme IIA proteins of the phosphoenolpyruvate: sugar phosphotransferase system. Several sugars and tricarboxylic acid cycle intermediates inhibited growth of the ptsN disruption mutant on medium containing an amino acid or nucleoside base as a combined source of nitrogen, carbon, and energy. This growth inhibition was relieved by supplying the ptsN gene or ammonium salts but was not aleviated by altering levels of exogenously supplied cAMP. These results support our previous proposal of a novel mechanism linking carbon and nitrogen assimilation and relates IIANtr to the unknown process regulated by the essential GTPase Era.
Collapse
Affiliation(s)
- B S Powell
- Laboratory of Chromosome Biology, NCI-Frederick Cancer Research and Development Center, Maryland 21702-1201
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Valentin HE, Zwingmann G, Schönebaum A, Steinbüchel A. Metabolic pathway for biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from 4-hydroxybutyrate by Alcaligenes eutrophus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 227:43-60. [PMID: 7851418 DOI: 10.1111/j.1432-1033.1995.tb20358.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Various aerobic Gram-negative bacteria have been examined for their ability to use 4-hydroxybutyrate and 1,4-butanediol as carbon source for growth. Alcaligenes eutrophus strains H16, HF39, PHB-4 and Pseudomonas denitrificans 'Morris' were not able to grow with 1,4-butanediol or 4-hydroxybutyrate. From A. eutrophus HF39 spontaneous primary mutants (e.g. SK4040) were isolated which grew on 4-hydroxybutyrate with doubling times of approximately 3 h. Tn5::mob mutagenesis of mutant SK4040 led to the isolation of two phenotypically different classes of secondary mutants which were affected in the utilization of 4-hydroxybutyrate. Mutants exhibiting the phenotype 4-hydroxybutyrate-negative did not grow with 4-hydroxybutyrate, and mutants exhibiting the phenotype 4-hydroxybutyrate-leaky grew at a significantly lower rate with 4-hydroxybutyrate. Hybridization experiments led to the identification of a 10-kbp genomic EcoRI fragment of A. eutrophus SK4040, which was altered in mutants with the phenotype 4-hydroxybutyrate-negative, and of two 1-kbp and 4.5-kbp genomic EcoRI fragments, which were altered in mutants with the phenotype 4-hydroxybutyrate-leaky. This 10-kbp EcoRI fragment was cloned from A. eutrophus SK4040, and conjugative transfer of a pVDZ'2 hybrid plasmid to A. eutrophus H16 conferred the ability to grow with 4-hydroxybutyrate to the wild type. DNA-sequence analysis of this fragment, enzymic analysis of the wild type and of mutants of A. eutrophus as well as of recombinant strains of Escherichia coli led to the identification of a structural gene encoding for a 4-hydroxybutyrate dehydrogenase which was affected by transposon mutagenesis in five of six available 4-hydroxybutyrate-negative mutants. Enzymic studies also provided evidence for the presence of an active succinate-semialdehyde dehydrogenase in 4-hydroxybutyrate-grown cells. This indicated that degradation of 4-hydroxybutyrate occurs via succinate semialdehyde and succinate and that the latter is degraded by the citric acid cycle. NMR studies of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) accumulated from 4-hydroxy [1-13C]butyrate or 4-hydroxy[2-13C]butyrate as substrate gave no evidence for a direct conversion of 4-hydroxybutyrate into 3-hydroxybutyrate and therefore supported the results of enzymic analysis.
Collapse
Affiliation(s)
- H E Valentin
- Institut für Mikrobiologie, Georg-August-Universität zu Göttingen, Germany
| | | | | | | |
Collapse
|
32
|
Zhu PP, Reizer J, Peterkofsky A. Unique dicistronic operon (ptsI-crr) in Mycoplasma capricolum encoding enzyme I and the glucose-specific enzyme IIA of the phosphoenolpyruvate:sugar phosphotransferase system: cloning, sequencing, promoter analysis, and protein characterization. Protein Sci 1994; 3:2115-28. [PMID: 7703858 PMCID: PMC2142656 DOI: 10.1002/pro.5560031125] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The region of the genome of Mycoplasma capricolum encompassing the genes for Enzymes I and IIAglc of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) was cloned and sequenced. Examination of the sequence revealed a unique arrangement of the pts operon. In all other bacterial species characterized thus far, the gene encoding Enzyme I (ptsI) in the pts operon is located immediately downstream of the gene (ptsH) encoding HPr, a general energy coupling protein of the PTS. In M. capricolum, ptsH and ptsI reside on 2 distinct operons at separate loci on the chromosome (Zhu PP, Reizer J, Reizer A, Peterkofsky A, 1993, J Biol Chem 268:26531-26540). In the present work, it is shown that the Mycoplasma Enzyme I gene is preceded by an open reading frame homologous to the product of the Escherichia coli kdtB gene and is followed by the gene (crr) encoding Enzyme IIAglc. Northern blot analysis indicated that ptsI and crr constitute a dicistronic operon that includes an independent promoter for the crr gene. Primer extension studies established the transcription start sites for the ptsI and crr genes. The products of the ptsI and crr genes are homologous to previously sequenced Enzymes I and IIAglc proteins but are more similar to the counterpart proteins from gram-positive than to those from gram-negative organisms. The deduced amino acid sequence of the Mycoplasma Enzyme I shows that it differs from other Enzymes I by having fewer acidic amino acids and more basic, amidated, and aromatic amino acids. The deduced amino acid sequence of the Mycoplasma Enzyme IIAglc indicates that it is the shortest (154 residues) of the proteins in this class and it is the only Enzyme IIAglc with a tryptophan and a cysteine residue. In vitro sugar phosphorylation studies with extracts from E. coli and Bacillus subtilis and purified proteins indicated that the Mycoplasma HPr is not a phosphoacceptor from the E. coli Enzyme I, whereas the Mycoplasma Enzyme IIAglc accepts and transfers phosphate from both E. coli and B. subtilis PTS components.
Collapse
Affiliation(s)
- P P Zhu
- Laboratory of Biochemical Genetics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
33
|
Abstract
In 1964, Kundig, Ghosh and Roseman reported the discovery of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). Thirty years later, we find that the PTS functions not only as a sugar-phosphorylating system, but also as a complex protein kinase system that regulates a wide variety of metabolic processes and controls the expression of numerous genes. As a result of recent operon- and genome-sequencing projects, novel PTS protein-encoding genes have been discovered, most of which have yet to be functionally defined. Some of them appear to be involved in cellular processes distinct from those recognized previously. Fundamental aspects of past and current PTS research are briefly reviewed, and recent advances are integrated into conceptual pictures that provide guides for future research.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| | | |
Collapse
|
34
|
Schembri MA, Bayly RC, Davies JK. Cloning and analysis of the polyhydroxyalkanoic acid synthase gene from an Acinetobacter sp.: evidence that the gene is both plasmid and chromosomally located. FEMS Microbiol Lett 1994; 118:145-52. [PMID: 8013870 DOI: 10.1111/j.1574-6968.1994.tb06817.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The polyhydroxyalkanoic acid (PHA) synthase gene (phaCAc) of a species of Acinetobacter isolated from an activated sludge treatment plant was cloned by heterologous complementation in a poly-beta-hydroxybutyrate (PHB) negative mutant of Alcaligenes eutrophus. Nucleotide sequence analysis of phaCAc revealed an open reading frame of 1770 bp with potential to encode a 67.7 kDa protein. The deduced amino acid sequence displays high similarity to other PHA synthase proteins. Probing with an internal region of phaCAc revealed that the PHA synthase gene may be present in more than one copy and may occur at both plasmid and chromosomal locations in Acinetobacter spp. This is the first organism for which evidence has been presented to suggest that a gene involved in PHA metabolism is plasmid-encoded. Purification of PHB granules from sucrose gradients identified proteins of 38 kDa, 41 kDa and 64 kDa which may have a role in PHB metabolism.
Collapse
Affiliation(s)
- M A Schembri
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
35
|
Boyd DA, Cvitkovitch DG, Hamilton IR. Sequence and expression of the genes for HPr (ptsH) and enzyme I (ptsI) of the phosphoenolpyruvate-dependent phosphotransferase transport system from Streptococcus mutans. Infect Immun 1994; 62:1156-65. [PMID: 8132321 PMCID: PMC186246 DOI: 10.1128/iai.62.4.1156-1165.1994] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We report the sequencing of a 2,242-bp region of the Streptococcus mutants NG5 genome containing the genes for ptsH and ptsI, which encode HPr and enzyme I (EI), respectively, of the phosphoenolpyruvate-dependent phosphotransferase transport system. The sequence was obtained from two cloned overlapping genomic fragments; one expresses HPr and a truncated EI, while the other expresses a full-length EI in Escherichia coli, as determined by Western immunoblotting. The ptsI gene appeared to be expressed from a region located in the ptsH gene. The S. mutans NG5 pts operon does not appear to be linked to other phosphotransferase transport system proteins as has been found in other bacteria. A positive fermentation pattern on MacConkey-glucose plates by an E. coli ptsI mutant harboring the S. mutans NG5 ptsI gene on a plasmid indicated that the S. mutans NG5 EI can complement a defect in the E. coli gene. This was confirmed by protein phosphorylation experiments with 32P-labeled phosphoenolpyruvate indicating phosphotransfer from the S. mutans NG5 EI to the E. coli HPr. Two forms of the cloned EI, both truncated to varying degrees in the C-terminal region, were inefficiently phosphorylated and unable to complement fully the ptsI defect in the E. coli mutant. The deduced amino acid sequence of HPr shows a high degree of homology, particularly around the active site, to the same protein from other gram-positive bacteria, notably, S. salivarius, and to a lesser extent with those of gram-negative bacteria. The deduced amino acid sequence of S. mutans NG5 EI also shares several regions of homology with other sequenced EIs, notably, with the region around the active site, a region that contains the only conserved cystidyl residue among the various proteins and which may be involved in substrate binding.
Collapse
Affiliation(s)
- D A Boyd
- Department of Oral Biology, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
36
|
Application of recombinant gene technology for production of polyhydroxyalkanoic acids: Biosynthesis of poly(4-hydroxybutyric acid) homopolyester. ACTA ACUST UNITED AC 1994. [DOI: 10.1007/bf02074775] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Titgemeyer F, Walkenhorst J, Cui X, Reizer J, Saier MH. Proteins of the phosphoenolpyruvate:sugar phosphotransferase system in Streptomyces: possible involvement in the regulation of antibiotic production. Res Microbiol 1994; 145:89-92. [PMID: 8090996 DOI: 10.1016/0923-2508(94)90001-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- F Titgemeyer
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| | | | | | | | | |
Collapse
|
38
|
Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 1993; 57:543-94. [PMID: 8246840 PMCID: PMC372926 DOI: 10.1128/mr.57.3.543-594.1993] [Citation(s) in RCA: 865] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function.
Collapse
Affiliation(s)
- P W Postma
- E. C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
39
|
Valentin HE, Steinbüchel A. Cloning and characterization of the Methylobacterium extorquens polyhydroxyalkanoic-acid-synthase structural gene. Appl Microbiol Biotechnol 1993; 39:309-17. [PMID: 7763712 DOI: 10.1007/bf00192084] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A cosmid gene bank of partially EcoRI-digested genomic DNA from Methylobacterium extorquens IBT no. 6 was screened for DNA fragments restoring polyhydroxyalkanoic-acid (PHA) accumulation in the PHA-negative mutant Alkaligenes eutrophus H16 PHB-4. The M. extorquens PHA-synthase structural gene phaCMex was mapped on a 23-kbp EcoRI fragment by complementation studies, by hybridization experiments with heterologous DNA probes from A. eutrophus H16 encoding for phaA, phaB and phaC and by nucleic acid sequence analysis. Evidence for the presence of genes for a beta-ketothiolase or an acetoacetyl-coenzyme A reductase on this fragment was not obtained. The nucleotide sequence of a 3.7-kbp region was obtained. It contained the entire 1.815-kbp phaCMex plus approximately each 900-bp upstream and downstream of phaCMex.PhaCMex encoded a protein of 605 amino acids with a relative molecular mass (M(r)) of 66742, which exhibited 38.1% amino acid identity with the A. eutrophus PHA synthase. Determination of the N-terminal amino acid sequence of an M(r) 65,000 protein, which was enriched concomitantly with the purification of PHA granules in sucrose gradients, revealed a sequence that was identical with the amino acid sequence deduced from the most probable translation start codon except for a valine, which was obviously removed post-translationally. Enzyme analysis, which was done with the native gene and a phaCMex'-'lacZ fusion gene, gave no evidence for expression of phaCMex in Escherichia coli.
Collapse
Affiliation(s)
- H E Valentin
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | |
Collapse
|
40
|
Reizer J, Hoischen C, Reizer A, Pham TN, Saier MH. Sequence analyses and evolutionary relationships among the energy-coupling proteins Enzyme I and HPr of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Protein Sci 1993; 2:506-21. [PMID: 7686067 PMCID: PMC2142364 DOI: 10.1002/pro.5560020403] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have previously reported the overexpression, purification, and biochemical properties of the Bacillus subtilis Enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system (PTS) (Reizer, J., et al., 1992, J. Biol. Chem. 267, 9158-9169). We now report the sequencing of the ptsI gene of B. subtilis encoding Enzyme I (570 amino acids and 63,076 Da). Putative transcriptional regulatory signals are identified, and the pts operon is shown to be subject to carbon source-dependent regulation. Multiple alignments of the B. subtilis Enzyme I with (1) six other sequenced Enzymes I of the PTS from various bacterial species, (2) phosphoenolpyruvate synthase of Escherichia coli, and (3) bacterial and plant pyruvate: phosphate dikinases (PPDKs) revealed regions of sequence similarity as well as divergence. Statistical analyses revealed that these three types of proteins comprise a homologous family, and the phylogenetic tree of the 11 sequenced protein members of this family was constructed. This tree was compared with that of the 12 sequence HPr proteins or protein domains. Antibodies raised against the B. subtilis and E. coli Enzymes I exhibited immunological cross-reactivity with each other as well as with PPDK of Bacteroides symbiosus, providing support for the evolutionary relationships of these proteins suggested from the sequence comparisons. Putative flexible linkers tethering the N-terminal and the C-terminal domains of protein members of the Enzyme I family were identified, and their potential significance with regard to Enzyme I function is discussed. The codon choice pattern of the B. subtilis and E. coli ptsI and ptsH genes was found to exhibit a bias toward optimal codons in these organisms.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Reizer
- Department of Biology, University of California, San Diego, La Jolla 92093-0116
| | | | | | | | | |
Collapse
|
41
|
Liebergesell M, Steinbüchel A. Cloning and molecular analysis of the poly(3-hydroxybutyric acid) biosynthetic genes of Thiocystis violacea. Appl Microbiol Biotechnol 1993; 38:493-501. [PMID: 7763384 DOI: 10.1007/bf00242944] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
From a genomic library of Thiocystis violaceae strain 2311 in lambda L47, two adjacent EcoRI restriction fragments of 5361 base pairs (bp) and of 1978 bp were cloned. The 5361-bp EcoRI restriction fragment hybridized with a DNA fragment harbouring the Alcaligenes eutrophus poly(3-hydroxyalkanoate) (PHA) synthase operon (phbCAB) and restored the ability to synthesize and accumulate PHA in PHA-negative mutants derived from A. eutrophus. The nucleotide sequence analysis of both fragments revealed five open-reading frames (ORFs); at least three of them are probably relevant for PHA biosynthesis. The amino acid sequences of the putative proteins deduced from these genes indicate that they encode a beta-ketothiolase [phbATv, relative molecular mass (M(r)) 40850], which exhibited 87.3% amino acid identity with the beta-ketothiolase from Chromatium vinosum. The amino acid sequences of the putative proteins deduced from ORF2Tv (M(r) 41450) and phbCTv (M(r) 39550), which were located upstream of and antilinear to phbATv, exhibited 74.7% and 87.6% amino acid identity, respectively, with the corresponding gene products of C. vinosum. Downstream of and antilinear to phbCTv was located ORF5, which encodes for a protein of high relative molecular mass (M(r) 76428) of unknown function. With respect to the divergent organisation of ORF2Tv and phbCTv on one side and of phbATv on the other side and from the homologies of the putative gene products, this region of the T. violaceae genome resembled very much the corresponding region of C. vinosum, which was identified recently.
Collapse
Affiliation(s)
- M Liebergesell
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Federal Republic of Germany
| | | |
Collapse
|
42
|
Reizer J, Romano AH, Deutscher J. The role of phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, in the regulation of carbon metabolism in gram-positive bacteria. J Cell Biochem 1993; 51:19-24. [PMID: 8432739 DOI: 10.1002/jcb.240510105] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
HPr of the Gram-positive bacterial phosphotransferase system (PTS) can be phosphorylated by an ATP-dependent protein kinase on a serine residue or by PEP-dependent Enzyme 1 on a histidyl residue. Both phosphorylation events appear to influence the metabolism of non-PTS carbon sources. Catabolite repression of the gluconate (gnt) operon of B. subtilis appears to be regulated by the former phosphorylation event, while glycerol kinase appears to be regulated by the latter phosphorylation reaction. The extent of our understanding of these processes will be described.
Collapse
Affiliation(s)
- J Reizer
- Department of Biology, University of California, San Diego, La Jolla 92093-0116
| | | | | |
Collapse
|
43
|
Steinbüchel A, Hustede E, Liebergesell M, Pieper U, Timm A, Valentin H. Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol Rev 1992; 9:217-30. [PMID: 1476773 DOI: 10.1111/j.1574-6968.1992.tb05841.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The current knowledge on the structure and on the organization of polyhydroxyalkanoic acid (PHA)-biosynthetic genes from a wide range of different bacteria, which rely on different pathways for biosynthesis of this storage polyesters, is provided. Molecular data will be shown for genes of Alcaligenes eutrophus, purple non-sulfur bacteria, such as Rhodospirillum rubrum, purple sulfur bacteria, such as Chromatium vinosum, pseudomonads belonging to rRNA homology group I, such as Pseudomonas aeruginosa, Methylobacterium extorquens, and for the Gram-positive bacterium Rhodococcus ruber. Three different types of PHA synthases can be distinguished with respect to their substrate specificity and structure. Strategies for the cloning of PHA synthase structural genes will be outlined which are based on the knowledge of conserved regions of PHA synthase structural genes and of the PHA-biosynthetic routes in bacteria as well as on the heterologous expression of these genes and on the availability of mutants impaired in the accumulation of PHA. In addition, a terminology for the designation of PHAs and of proteins and genes relevant for the metabolism of PHA is suggested.
Collapse
Affiliation(s)
- A Steinbüchel
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, FRG
| | | | | | | | | | | |
Collapse
|
44
|
Priefert H, Steinbüchel A. Identification and molecular characterization of the acetyl coenzyme A synthetase gene (acoE) of Alcaligenes eutrophus. J Bacteriol 1992; 174:6590-9. [PMID: 1356967 PMCID: PMC207630 DOI: 10.1128/jb.174.20.6590-6599.1992] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene locus acoE, which is involved in the utilization of acetoin in Alcaligenes eutrophus, was identified as the structural gene of an acetyl coenzyme A synthetase (acetate:coenzyme A ligase [AMP forming]; EC 6.2.1.1). This gene was localized on a 3.8-kbp SmaI-EcoRI subfragment of an 8.1-kbp EcoRI restriction fragment (fragment E) that was cloned recently (C. Fründ, H. Priefert, A. Steinbüchel, and H. G. Schlegel, J. Bacteriol. 171:6539-6548, 1989). The 1,983 bp acoE gene encoded a protein with a relative molecular weight of 72,519, and it was preceded by a putative Shine-Dalgarno sequence. A comparison analysis of the amino acid sequence deduced from acoE revealed a high degree of homology to primary structures of acetyl coenzyme A synthetases from other sources (amounting to up to 50.5% identical amino acids). Tn5 insertions in two transposon-induced mutants of A. eutrophus, that were impaired in the catabolism of acetoin were mapped 481 and 1,159 bp downstream from the translational start codon of acoE. The expression of acoE in Escherichia coli led to the formation of an acyl coenzyme A synthetase that accepted acetate as the preferred substrate (100% relative activity) but also reacted with propionate (46%) and hydroxypropionate (87%); fatty acids consisting of four or more carbon atoms were not accepted. In addition, evidence for the presence of a second acyl coenzyme A synthetase was obtained; this enzyme exhibited a different substrate specificity. The latter enzyme is obviously required for the activation of propionate, e.g., during the formation of the storage compound poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) when propionate is provided as the sole carbon source. An analysis of mutants provided evidence that the expression of the uptake protein for propionate depends on the presence of alternate sigma factor sigma 54.
Collapse
Affiliation(s)
- H Priefert
- Institut für Mikrobiologie Georg-August-Universität zu Göttingen, Germany
| | | |
Collapse
|
45
|
Liebergesell M, Steinbüchel A. Cloning and nucleotide sequences of genes relevant for biosynthesis of poly(3-hydroxybutyric acid) in Chromatium vinosum strain D. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 209:135-50. [PMID: 1396692 DOI: 10.1111/j.1432-1033.1992.tb17270.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
From a genomic library of Chromatium vinosum strain D in lambda L47, a 16.5-kbp EcoRI-restriction fragment was identified by hybridization with a DNA fragment harboring the operon for Alcaligenes eutrophus poly(3-hydroxyalkanoate) (PHA) synthesis. This fragment and subfragments thereof restored the ability to synthesize and accumulate PHA in PHA-negative mutants of A. eutrophus. A region of 6977 bp was sequenced; seven open reading frames (ORFs) were identified which probably represent coding regions; six of these are most probably relevant for PHA biosynthesis in C. vinosum. The structural genes for biosynthetic acetyl-CoA acyltransferase (beta-ketothiolase; phbACv, 1188 bp) and NADH-dependent acetoacetyl-CoA reductase (phbBCv, 741 bp) were separated by ORF4 (462 bp) and ORF5 (369 bp). Downstream of phbBCv ORF7 (471 pb) was identified which was not completed at the 3' terminus. The functions of ORF4, ORF5, and ORF7 are not known. The amino acid sequences of beta-ketothiolase and acetoacetyl-CoA reductase deduced from phbACv and phbBCv, exhibited a similarity of 68.2% and 56.4% identical amino acids, respectively, to the corresponding enzymes of A. eutrophus. Antilinear to and upstream of the genes mentioned above, two genes were identified which were transcribed from a sigma 70-dependent promoter. This promoter overlapped with and was divergent to the phbACv promoter; the transcriptional start sites were mapped by S1 nuclease protection assays. These genes were ORF2 (1074 bp), whose function is not known but whose presence in Escherichia coli is essential for expression of PHA synthase activity, and the structural gene for a PHA synthase of low M(r) (phbCCv, 1068 bp). The gene products of ORF2 and phbCCv, with M(r) of 40,525 and 39,730, respectively, were expressed in E. coli applying the T7 RNA polymerase/promoter system. Although the amino acid sequence of PHA synthase deduced from phbCCv exhibited only 24.7% overall similarity with the PHA synthase of A. eutrophus, highly conserved regions were identified.
Collapse
Affiliation(s)
- M Liebergesell
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Federal Republic of Germany
| | | |
Collapse
|
46
|
Timm A, Steinbüchel A. Cloning and molecular analysis of the poly(3-hydroxyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 209:15-30. [PMID: 1396693 DOI: 10.1111/j.1432-1033.1992.tb17256.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
From genomic libraries, the polyhydroxyalkanoate gene locus of Pseudomonas aeruginosa PAO1 was cloned and characterised at the molecular level. Two genes coding for polyhydroxyalkanoate synthases, phaC1Pa and phaC2Pa, a polyhydroxyalkanoate depolymerase gene, phaDPa, and four adjacent open reading frames (ORF1, ORF2, ORF3 and ORF4) were identified from the nucleotide sequence. Two transcriptional start sites, which were preceded by sequences resembling the Escherichia coli consensus sequences for sigma 54 and sigma 70 promoters, were identified experimentally upstream of phaC1Pa, which was shown by Northern blot analysis to constitute an operon together with phaDPa. A third putative promoter resembling the E. coli consensus sequence for sigma 70-dependent promoters was proposed upstream of phaC2Pa, which is in a bicistronic operon with ORF3. Investigations of rpoN-negative mutants of related strains revealed that polyhydroxyalkanoate accumulation from gluconate required an intact rpoN locus in P. aeruginosa. Complementation experiments revealed multiple evidence that either polyhydroxyalkanoate synthase is involved in polyhydroylkanoate accumulation from gluconate as well as from octanoate. The P. aeruginosa PAO1 polyhydroxyalkanoate gene locus was expressed in the polyhydroxyalkanoate-negative mutant Alcaligenes eutrophus PHB-4 and in the poly(3-hydroxybutyrate)-accumulating strain P. oleovorans DSM1045. It conferred on the latter the ability to synthesize and accumulate polyhydroxyalkanoates consisting of medium-chain-length 3-hydroxyalkanoic acids from unrelated substrates in addition to poly(3-hydroxybutyrate). The sequence of the putative translational product of ORF1 was similar to those of the leukotoxin repressor of Pasteurella haemolytica and to the ORF9 product of Azotobacter vinelandii, and that of ORF4 was similar to the algP product of P. aeruginosa and to eukaryotic histone H1 proteins. The proteins of ORF2 and ORF3 appear to be previously unidentified.
Collapse
Affiliation(s)
- A Timm
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Federal Republic of Germany
| | | |
Collapse
|
47
|
Pries A, Hein S, Steinbüchel A. Identification of a lipoamide dehydrogenase gene as second locus affected in poly(3-hydroxybutyric acid)-leaky mutants ofAlcaligenes eutrophus. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05468.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
48
|
Pieper U, Steinbüchel A. Identification, cloning and sequence analysis of the poly(3-hydroxyalkanoic acid) synthase gene of the Gram-positive bacteriumRhodococcus ruber. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05396.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
49
|
Reizer J, Reizer A, Saier MH, Jacobson GR. A proposed link between nitrogen and carbon metabolism involving protein phosphorylation in bacteria. Protein Sci 1992; 1:722-6. [PMID: 1304914 PMCID: PMC2142240 DOI: 10.1002/pro.5560010604] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We demonstrate that certain phosphoryl transfer proteins of the bacterial phosphotransferase system (PTS), the fructose- and mannitol-specific IIA proteins or domains, are homologous to a class of proteins, one of which is known to affect transcription of some of the nitrogen-regulatory sigma 54-dependent operons in Klebsiella pneumoniae. The phosphorylatable histidyl residue in the homologous PTS proteins and the consensus sequence in the vicinity of the active-site histidine are fully conserved in all members that comprise this family of proteins. A phylogenetic tree of the eight protein members of this family was constructed, and a "signature" sequence that can serve for the identification of new protein members of this family is proposed. These observations suggest that PTS-catalyzed protein phosphorylation may provide a regulatory link between carbon and nitrogen assimilation in bacteria.
Collapse
Affiliation(s)
- J Reizer
- Department of Biology, University of California, San Diego, La Jolla 92093-0116
| | | | | | | |
Collapse
|
50
|
|