1
|
Huan R, Cao Z, Zhai Z, Feng X, Hao Y. An underlying mechanism for MleR activating the malolactic enzyme pathway to enhance acid tolerance in Lacticaseibacillus paracasei L9. Appl Environ Microbiol 2023; 89:e0097423. [PMID: 37681961 PMCID: PMC10537729 DOI: 10.1128/aem.00974-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023] Open
Abstract
Tolerance to acid stress is a crucial property of probiotics against gastric acids. The malolactic enzyme pathway is one of the most important acid resistance systems in lactic acid bacteria. It has been reported that the malolactic enzyme pathway was regulated by the transcriptional regulator, MleR. However, regulatory mechanisms underlying malolactic enzyme pathway to cope with acid stress remain unknown. In this study, the acid tolerance ability of the ΔmleR deletion strain was significantly lower than that of the wild-type strain, and the complementation of the mleR gene into the ΔmleR strain restored the acid tolerance of the ΔmleR strain, indicating that MleR was involved in acid tolerance response of Lacticaseibacillus paracasei L9. Real-time quantitative PCR and transcriptional fusion experiments confirmed MleR-activated transcription of the mleST gene cluster. Furthermore, MleR was confirmed to directly bind to the promoter region of the mleST operon using ChIP assays and EMSAs. The transcription start site G of the mleST operon was located at position -198 relative to the start codon of the mleS gene. The region from -80 to -61 upstream of the transcription start site was determined to be essential for MleR binding. Moreover, L-malic acid acted as an effector for MleR to activate the transcription of the mleST operon in a dose-dependent manner. These results revealed the regulatory mechanism behind MleR-mediated activation of the malolactic enzyme pathway to enhance acid tolerance in Lc. paracasei L9. IMPORTANCE Lacticaseibacillus paracasei is extensively used as probiotics in human health and fermented dairy production. Following consumption, Lc. paracasei is exposed to a variety of physico-chemical stresses, such as low pH in the stomach and bile salts in the intestines. The high acidity of the stomach severely inhibits bacterial metabolism and growth. Therefore, the acid tolerance response is critical for Lc. paracasei to survive. It has been reported that the malolactic enzyme (MLE) pathway plays an important role for LAB to resist acid stress. However, the regulatory mechanism has not yet been investigated. In this study, we determined that the LysR-type regulator MleR positively regulated the MLE pathway to enhance acid tolerance by binding -80 to -61 upstream of the transcription start site of the mleST operon. Further, L-malic acid acts as a co-inducer for MleR transcriptional regulation. Our study provides novel insights into acid tolerance mechanisms in LAB.
Collapse
Affiliation(s)
- Ran Huan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zeyu Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhengyuan Zhai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Food Laboratory of Zhongyuan, Luohe, Henan, China
| | - Xin Feng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanling Hao
- Food Laboratory of Zhongyuan, Luohe, Henan, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Huang R, Chen Y, Ma C, Chai Y, Jia S, Zhang F. Potential factors causing failure of whole plant nettle ( Urtica cannabina) silages. Front Microbiol 2023; 13:1113050. [PMID: 36713207 PMCID: PMC9876617 DOI: 10.3389/fmicb.2022.1113050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Nettle is kind of new feed resources and benefit for animal production. However, a few studies observed that quality of nettle silage was poor under naturally fermentation. Consider of microbial activity was the mainly factors for fermentation characteristics of silage. Methods Thus, the present study investigated the potential factors causing nettle silage failure through metabolome and bacterial community composition analyses during ensiling. Results During ensiling, the pH was >6.22, and water-soluble carbohydrate and organic acid contents stabilized after 7 d. At the genus level, Enterococcus, Weissella, and Pediococcus were the dominant bacteria (relative abundance were 30.06-39.39, 17.29-23.34, and 3.13-7.22%, respectively), with stable trends, whereas Lactococcus and Enterobacter relative abundance decreased significantly over time (relative abundance were 5.68-13.96 and 3.86-24.1%, respectively). Lactobacillus relative abundance was <1% during the entire ensiling period, and malic acid metabolic pathway was the most important pathway. Enterococcus, Pediococcus, and Weissella were negatively correlated with malic acid, with Lactobacillus displaying an opposite trend. Discussion The results suggested that Lactobacillus activity was the lowest among lactic acid bacteria (LAB) during ensiling, which is the main reason for nettle ensiling failure, and attributable to a low capacity to compete for fermentation substrates such as malic acid against other LAB during ensiling. Additionally, anti-bacteria activity of nettle probably inhibited Enterobacter activity during ensiling. Present study probably given a solution for improve nettle silage quality through addition with malic acid.
Collapse
|
3
|
Huan R, Zhai Z, An J, Ma X, Hao Y. L-Malic Acid Protects Lacticaseibacillus paracasei L9 from Glycodeoxycholic Acid Stress via the Malolactic Enzyme Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9007-9016. [PMID: 35833866 DOI: 10.1021/acs.jafc.2c02453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bile stress tolerance is a crucial characteristic of probiotics for surviving in the human gastrointestinal tract. The mechanism underlying the effect of l-malic acid on enhancing the glycodeoxycholic acid (GDCA) tolerance of Lacticaseibacillus paracasei L9 was investigated herein. Bile tolerance specificity assays revealed that Lc. paracasei L9 was more sensitive to GDCA than to taurocholic acid, glycocholic acid, and taurodeoxycholic acid. Notably, l-malic acid significantly enhanced the GDCA tolerance of Lc. paracasei L9 by increasing the pH of the medium. The role of the malolactic enzyme pathway in enhancing GDCA resistance was investigated using molecular techniques. Confocal laser scanning and scanning electron microscopy revealed that l-malic acid preserved membrane permeability and cellular morphology, thereby protecting bacterial cells from GDCA stress-induced damage. The study also demonstrated that l-malic acid enhanced bile tolerance in different species of lactobacilli. These findings provide a novel protective mechanism for coping with bile stress in lactobacilli.
Collapse
Affiliation(s)
- Ran Huan
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengyuan Zhai
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jieran An
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiayin Ma
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yanling Hao
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
4
|
Markkinen N, Pariyani R, Jokioja J, Kortesniemi M, Laaksonen O, Yang B. NMR-based metabolomics approach on optimization of malolactic fermentation of sea buckthorn juice with Lactiplantibacillus plantarum. Food Chem 2021; 366:130630. [PMID: 34333181 DOI: 10.1016/j.foodchem.2021.130630] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
This work investigated the impact of malolactic fermentation on the metabolomic profile of sea buckthorn juice to optimize the fermentation process for flavor modification. Six strains of L. plantarum were used with varied pH of the juice, cell acclimation, and fermentation time. 1H-NOESY spectra were acquired from fresh and fermented juices with a total of 46 metabolites identified. Less sugars and quinic acid were metabolized at pH 2.7 while oxidation of ascorbic acid was reduced at pH 3.5. l-Malic acid, essential amino acids, and nucleosides were consumed early during fermentation while sugars in general were consumed later in the fermentation. If deacidification is the main target of fermentation, strains that produce less acids and ferment less sugars, shorter fermentation time, and lower starter pH should be used. Higher starter pH and longer fermentation time promote formation of antimicrobial compounds and potentially increase antioxidant stability.
Collapse
Affiliation(s)
- N Markkinen
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland.
| | - R Pariyani
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - J Jokioja
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - M Kortesniemi
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - O Laaksonen
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - B Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| |
Collapse
|
5
|
Markkinen N, Laaksonen O, Yang B. Impact of malolactic fermentation with Lactobacillus plantarum on volatile compounds of sea buckthorn juice. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03660-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractMalolactic fermentation using sea buckthorn (Hippophaë rhamnoides) juice as raw material was performed with six different strains of Lactobacillus plantarum. Increasing juice pH from 2.7 to 3.5 or adapting cells to low pH (i.e., acclimation) prior to inoculation allowed malolactic fermentation with all tested strains. Moreover, reducing pH of the growth medium from 6 to 4.5 with l-malate had little or no impact on biomass production. Volatile profile of sea buckthorn juice was analyzed with HS-SPME–GC–MS before and after fermentation. A total of 92 volatiles were tentatively identified and semi-quantified from sea buckthorn juice, majority of which were esters with fruity odor descriptors. Esters and terpenes were decreased in both inoculated and control juices during incubation. Microbial activity increased the levels of acetic acid (vinegar like), free fatty acids (cheese like), ketones (buttery like), and alcohols with fruity descriptors. Conversely, aldehydes associated with “green” aroma were decreased as a result of fermentation. Juices fermented with DSM 1055 had the highest acid and alcohol content, while fermentation with DSM 13273 resulted in the highest content of ketones. Compared to inoculation with other strains, fermentation with strains DSM 16365 and DSM 100813 resulted in rapid malolactic fermentation, less production of volatile acids, and lower loss of esters and terpenes important for natural sea buckthorn flavor.
Collapse
|
6
|
Li W, Yang L, Nan W, Lu J, Zhang S, Ujiroghene OJ, Pang X, Lv J. Whole-genome sequencing and genomic-based acid tolerance mechanisms of Lactobacillus delbrueckii subsp. bulgaricus LJJ. Appl Microbiol Biotechnol 2020; 104:7631-7642. [PMID: 32715364 DOI: 10.1007/s00253-020-10788-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 11/24/2022]
Abstract
The probiotic efficacy and fermentative ability of Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus), a widely used probiotic, is majorly affected by its acid tolerance. Here, we conducted whole-genome sequencing of the high acid-tolerant L. bulgaricus LJJ stored in the laboratory. Compared with the whole genome of low acid-tolerant strain L. bulgaricus ATCC11842, the results show that 16 candidate acid-tolerant genes may be involved in the regulation of the acid tolerance of L. bulgaricus LJJ. Association analysis of candidate acid-tolerant genes and acid-tolerant traits of different L. bulgaricus strains revealed that the three genes dapA, dapH, and lysC are the main reasons for the strong acid tolerance of L. bulgaricus LJJ. The results of real-time quantitative PCR (RT-qPCR) supported this conclusion. KEGG pathway analysis showed that these three acid-tolerant genes are involved in the synthesis of lysine; the synthesis of lysine may confer L. bulgaricus LJJ strong acid tolerance. This study successfully revealed the acid tolerance mechanism of L. bulgaricus LJJ and provides a theoretical basis for the subsequent selection of strains with high acid tolerance for improved probiotic functions. KEY POINTS: • Three genes are identified as acid-tolerant genes, respectively, lysC, dapA, and dapH. • LysC and dapA are the major key genes in the synthesis of lysine. • The synthesis of lysine may confer L. bulgaricus LJJ strong acid tolerance.
Collapse
Affiliation(s)
- Weixun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lan Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenlong Nan
- China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Jing Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Obaroakpo Joy Ujiroghene
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Department of Food Science and Technology, Auchi Polytechnic, Auchi, Edo State, Nigeria
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
7
|
Comparative genomic analysis of Lactobacillus mucosae LM1 identifies potential niche-specific genes and pathways for gastrointestinal adaptation. Genomics 2019; 111:24-33. [DOI: 10.1016/j.ygeno.2017.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 01/02/2023]
|
8
|
Apple juice as a medium for fermentation by the probiotic Lactobacillus plantarum PCS 26 strain. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1056-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
9
|
Bouix M, Ghorbal S. Rapid assessment of Oenococcus oeni activity by measuring intracellular pH and membrane potential by flow cytometry, and its application to the more effective control of malolactic fermentation. Int J Food Microbiol 2015; 193:139-46. [DOI: 10.1016/j.ijfoodmicro.2014.10.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/03/2014] [Accepted: 10/17/2014] [Indexed: 11/28/2022]
|
10
|
Channel-mediated lactic acid transport: a novel function for aquaglyceroporins in bacteria. Biochem J 2013; 454:559-70. [DOI: 10.1042/bj20130388] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
MIPs (major intrinsic proteins), also known as aquaporins, are membrane proteins that channel water and/or uncharged solutes across membranes in all kingdoms of life. Considering the enormous number of different bacteria on earth, functional information on bacterial MIPs is scarce. In the present study, six MIPs [glpF1 (glycerol facilitator 1)–glpF6] were identified in the genome of the Gram-positive lactic acid bacterium Lactobacillus plantarum. Heterologous expression in Xenopus laevis oocytes revealed that GlpF2, GlpF3 and GlpF4 each facilitated the transmembrane diffusion of water, dihydroxyacetone and glycerol. As several lactic acid bacteria have GlpFs in their lactate racemization operon (GlpF1/F4 phylogenetic group), their ability to transport this organic acid was tested. Both GlpF1 and GlpF4 facilitated the diffusion of D/L-lactic acid. Deletion of glpF1 and/or glpF4 in Lb. plantarum showed that both genes were involved in the racemization of lactic acid and, in addition, the double glpF1 glpF4 mutant showed a growth delay under conditions of mild lactic acid stress. This provides further evidence that GlpFs contribute to lactic acid metabolism in this species. This lactic acid transport capacity was shown to be conserved in the GlpF1/F4 group of Lactobacillales. In conclusion, we have functionally analysed the largest set of bacterial MIPs and demonstrated that the lactic acid membrane permeability of bacteria can be regulated by aquaglyceroporins.
Collapse
|
11
|
Metabolic engineering of Lactobacillus plantarum for succinic acid production through activation of the reductive branch of the tricarboxylic acid cycle. Enzyme Microb Technol 2013; 53:97-103. [DOI: 10.1016/j.enzmictec.2013.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 11/20/2022]
|
12
|
du Toit M, Engelbrecht L, Lerm E, Krieger-Weber S. Lactobacillus: the Next Generation of Malolactic Fermentation Starter Cultures—an Overview. FOOD BIOPROCESS TECH 2010. [DOI: 10.1007/s11947-010-0448-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Rodríguez H, Angulo I, de Las Rivas B, Campillo N, Páez JA, Muñoz R, Mancheño JM. p-Coumaric acid decarboxylase from Lactobacillus plantarum: structural insights into the active site and decarboxylation catalytic mechanism. Proteins 2010; 78:1662-76. [PMID: 20112419 DOI: 10.1002/prot.22684] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
p-Coumaric acid decarboxylases (PDCs) catalyze the nonoxidative decarboxylation of hydroxycinnamic acids to generate the corresponding vinyl derivatives. Despite the biotechnological relevance of PDCs in food industry, their catalytic mechanism remains largely unknown. Here, we report insights into the structural basis of catalysis for the homodimeric PDC from Lactobacillus plantarum (LpPDC). The global fold of LpPDC is based on a flattened beta-barrel surrounding an internal cavity. Crystallographic and functional analyses of single-point mutants of residues located within this cavity have permitted identifying a potential substrate-binding pocket and also to provide structural evidences for rearrangements of surface loops so that they can modulate the accessibility to the active site. Finally, combination of the structural and functional data with in silico results enables us to propose a two-step catalytic mechanism for decarboxylation of p-coumaric acid by PDCs where Glu71 is involved in proton transfer, and Tyr18 and Tyr20 are involved in the proper substrate orientation and in the release of the CO(2) product.
Collapse
Affiliation(s)
- Héctor Rodríguez
- Departamento de Microbiología, Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Da Silveira MG, Abee T. Activity of ethanol-stressed Oenococcus oeni cells: a flow cytometric approach. J Appl Microbiol 2009; 106:1690-6. [PMID: 19226398 DOI: 10.1111/j.1365-2672.2008.04136.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIMS To study the effect of ethanol on Oenococcus oeni activity at the single cell level. METHODS AND RESULTS The active extrusion of the fluorescent probe carboxy fluorescein (cF) was used to assess the metabolic activity of ethanol-stressed O. oeni cells. Subsequent flow cytometric analysis revealed that O. oeni cells extrude the accumulated cF upon energizing with l-malic acid. However, O. oeni cells exposed to 12% (v/v) ethanol for 1 h showed a decreased capacity for active extrusion of cF. Moreover, two subpopulations could be distinguished, one of which being able to extrude cF and the other one remaining cF fluorescent. Growing cells in the presence of 8% (v/v) ethanol resulted in robust cells that maintained the capacity to actively extrude cF after being exposed to 12% (v/v) ethanol, which in turn correlated with the high levels of ATP observed in these ethanol stressed, malolactic fermentation (MLF) performing cells. CONCLUSION From our results, it becomes evident that active extrusion of cF can be used to assess malolactic activity in O. oeni. SIGNIFICANCE AND IMPACT OF THE STUDY The present study provides information for the development of a rapid method to assess the malolactic activity of individual O. oeni cells performing MLF during wine production.
Collapse
Affiliation(s)
- M G Da Silveira
- Departamento de Ciências Agrárias, Universidade dos Açores, Angra do Heroísmo, Portugal.
| | | |
Collapse
|
15
|
Rodríguez H, de las Rivas B, Muñoz R, Mancheño JM. Overexpression, purification, crystallization and preliminary structural studies of p-coumaric acid decarboxylase from Lactobacillus plantarum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:300-3. [PMID: 17401200 PMCID: PMC2330202 DOI: 10.1107/s1744309107008846] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 02/22/2007] [Indexed: 05/14/2023]
Abstract
The substrate-inducible p-coumaric acid decarboxylase (PDC) from Lactobacillus plantarum has been overexpressed in Escherichia coli, purified and confirmed to possess decarboxylase activity. The recombinant His(6)-tagged enzyme was crystallized using the hanging-drop vapour-diffusion method from a solution containing 20%(w/v) PEG 4000, 12%(w/v) 2-propanol, 0.2 M sodium acetate, 0.1 M Tris-HCl pH 8.0 with 0.1 M barium chloride as an additive. Diffraction data were collected in-house to 2.04 A resolution. Crystals belonged to the tetragonal space group P4(3), with unit-cell parameters a = b = 43.15, c = 231.86 A. The estimated Matthews coefficient was 2.36 A(3) Da(-1), corresponding to 48% solvent content, which is consistent with the presence of two protein molecules in the asymmetric unit. The structure of PDC has been determined by the molecular-replacement method. Currently, the structure of PDC complexed with substrate analogues is in progress, with the aim of elucidating the structural basis of the catalytic mechanism.
Collapse
Affiliation(s)
- Héctor Rodríguez
- Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Blanca de las Rivas
- Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Rosario Muñoz
- Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - José M. Mancheño
- Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| |
Collapse
|
16
|
Pieterse B, Leer RJ, Schuren FHJ, van der Werf MJ. Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology (Reading) 2005; 151:3881-3894. [PMID: 16339934 DOI: 10.1099/mic.0.28304-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The organic acid lactate is the predominant fermentation product of Lactobacillus plantarum. The undissociated form of this organic acid is a strong growth inhibitor for the organism. Different theories have been postulated to explain the inhibitory effects of lactic acid: (i) toxicity arising from the dissipation of the membrane potential, (ii) acidification of the cytosol, or (iii) intracellular anion accumulation. In general, organic acid stresses are complex to study, since their toxicity is highly dependent on their degree of dissociation and thus on the pH. In this study, transcription profiles of L. plantarum grown in steady-state cultures that varied in lactate/lactic acid concentration, pH, osmolarity and absolute and relative growth rate, were compared by microarray analysis. By doing so, the differential expression of multiple groups of genes could specifically be attributed to the different aspects of lactic acid stress. A highly coherent group of lactic acid-responsive, cell surface protein-encoding genes was identified, to which no function has previously been assigned. Moreover, a group of genes that showed increased expression in response to the combination of lactic acid and a lower growth rate is expected to be involved in the formation of the alternative fermentation end-products malate, acetate and ethanol. One of these pathways is the phosphoketolase by-pass that is typical for bifidobacteria.
Collapse
Affiliation(s)
- Bart Pieterse
- TNO Quality of Life, Utrechtseweg 48, 3700 AJ Zeist, The Netherlands
- Wageningen Centre for Food Sciences, Diedenweg 20, 6700 AN, Wageningen, The Netherlands
| | - Rob J Leer
- TNO Quality of Life, Utrechtseweg 48, 3700 AJ Zeist, The Netherlands
| | - Frank H J Schuren
- TNO Quality of Life, Utrechtseweg 48, 3700 AJ Zeist, The Netherlands
| | - Mariët J van der Werf
- TNO Quality of Life, Utrechtseweg 48, 3700 AJ Zeist, The Netherlands
- Wageningen Centre for Food Sciences, Diedenweg 20, 6700 AN, Wageningen, The Netherlands
| |
Collapse
|
17
|
Osborne JP, Edwards CG. Bacteria Important during Winemaking. ADVANCES IN FOOD AND NUTRITION RESEARCH 2005; 50:139-77. [PMID: 16263430 DOI: 10.1016/s1043-4526(05)50005-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- James P Osborne
- Department of Food Science and Human Nutrition, Washington State University, Pullman, Washington 99164, USA
| | | |
Collapse
|
18
|
Zapparoli G, Moser M, Dellaglio F, Tourdot-Maréchal R, Guzzo J. Typical metabolic traits of two Oenococcus oeni strains isolated from Valpolicella wines. Lett Appl Microbiol 2004; 39:48-54. [PMID: 15189287 DOI: 10.1111/j.1472-765x.2004.01541.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Physiological comparison of two indigenous Oenococcus oeni strains, U1 and F3 isolated in the same area (Valpolicella, Italy) in order to select a performant starter for MLF in wine. METHODS AND RESULTS Growth rate, sugar and malate metabolism in FT80 media at pH 5.3 and 3.5 were analysed. The amount of total protein synthesized and the level of expression of the small Hsp Lo18 were evaluated by radiolabelling and immunodetection experiments after heat (42 degrees C), acid (pH 3.5) and ethanol (12% v/v) stresses. Strain U1 showed significantly lower specific growth rate and growth yield in acid conditions than strain F3. However, strain U1 had a higher malate consumption capacity at pH 3.5 than strain F3, in relation with an higher malolactic activity determined on whole cells. Strain U1 exhibited about half the total protein synthesis level than strain F3, but both strains expressed Lo18 similarly. Evaluation of malolactic fermentation (MLF) performance by microvinification trials was carried out. Strain U1 was able to complete MLF, whereas strain F3 degraded malic acid partially when inoculated in Amarone wine. CONCLUSIONS Considering its performances in microvinifications experiments, strain U1 could be a good candidate for malolactic starter as an alternative to deficient commercial starters.
Collapse
Affiliation(s)
- G Zapparoli
- Dipartimento Scientifico e Tecnologico, Università degli Studi di Verona, Strada le Grazie, Verona, Italy
| | | | | | | | | |
Collapse
|
19
|
Richard H, Foster JW. Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol 2004; 186:6032-41. [PMID: 15342572 PMCID: PMC515135 DOI: 10.1128/jb.186.18.6032-6041.2004] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 06/22/2004] [Indexed: 11/20/2022] Open
Abstract
Due to the acidic nature of the stomach, enteric organisms must withstand extreme acid stress for colonization and pathogenesis. Escherichia coli contains several acid resistance systems that protect cells to pH 2. One acid resistance system, acid resistance system 2 (AR2), requires extracellular glutamate, while another (AR3) requires extracellular arginine. Little is known about how these systems protect cells from acid stress. AR2 and AR3 are thought to consume intracellular protons through amino acid decarboxylation. Antiport mechanisms then exchange decarboxylation products for new amino acid substrates. This form of proton consumption could maintain an internal pH (pHi) conducive to cell survival. The model was tested by estimating the pHi and transmembrane potential (DeltaPsi) of cells acid stressed at pH 2.5. During acid challenge, glutamate- and arginine-dependent systems elevated pHi from 3.6 to 4.2 and 4.7, respectively. However, when pHi was manipulated to 4.0 in the presence or absence of glutamate, only cultures challenged in the presence of glutamate survived, indicating that a physiological parameter aside from pHi was also important. Measurements of DeltaPsi indicated that amino acid-dependent acid resistance systems help convert membrane potential from an inside negative to inside positive charge, an established acidophile strategy used to survive extreme acidic environments. Thus, reversing DeltaPsi may be a more important acid resistance strategy than maintaining a specific pHi value.
Collapse
Affiliation(s)
- Hope Richard
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, 307 University Blvd., Mobile, AL 36688, USA
| | | |
Collapse
|
20
|
Alexandre H, Costello PJ, Remize F, Guzzo J, Guilloux-Benatier M. Saccharomyces cerevisiae-Oenococcus oeni interactions in wine: current knowledge and perspectives. Int J Food Microbiol 2004; 93:141-54. [PMID: 15135953 DOI: 10.1016/j.ijfoodmicro.2003.10.013] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 09/30/2003] [Accepted: 10/21/2003] [Indexed: 11/30/2022]
Abstract
Winemaking can be summarized as the biotransformation of must into wine, which is performed principally by Saccharomyces cerevisiae strains during the primary or alcoholic fermentation. A secondary fermentation, the so-called malolactic fermentation (MLF) is a biodeacidification that is often encouraged, since it improves wine stability and quality. Malolactic fermentation usually occurs either spontaneously or after inoculation with selected bacteria after alcoholic fermentation. The main organism responsible for MLF, the lactic acid bacterium Oenococcus oeni, develops in physicochemically harsh conditions, which may lead to MLF failure. Furthermore, yeast that ferment must before or together with O. oeni can prevent or stimulate the progress of MLF. These phenomena are part of the interactions observed between yeast and bacteria. The mechanisms that govern yeast bacteria interaction are reviewed and the consequences for winemaking are discussed. In the light of recent advances, future prospects are also presented.
Collapse
Affiliation(s)
- Hervé Alexandre
- Laboratoire d'Oenologie, Institut Universitaire de la Vigne et du Vin Jules Guyot, Equipe Microbiologie UMR INRA-Université de Bourgogne, Rue Claude Ladrey, -BP27877-21078 Dijon cedex, France.
| | | | | | | | | |
Collapse
|
21
|
Cotter PD, Hill C. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev 2003; 67:429-53, table of contents. [PMID: 12966143 PMCID: PMC193868 DOI: 10.1128/mmbr.67.3.429-453.2003] [Citation(s) in RCA: 791] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-positive bacteria possess a myriad of acid resistance systems that can help them to overcome the challenge posed by different acidic environments. In this review the most common mechanisms are described: i.e., the use of proton pumps, the protection or repair of macromolecules, cell membrane changes, production of alkali, induction of pathways by transcriptional regulators, alteration of metabolism, and the role of cell density and cell signaling. We also discuss the responses of Listeria monocytogenes, Rhodococcus, Mycobacterium, Clostridium perfringens, Staphylococcus aureus, Bacillus cereus, oral streptococci, and lactic acid bacteria to acidic environments and outline ways in which this knowledge has been or may be used to either aid or prevent bacterial survival in low-pH environments.
Collapse
Affiliation(s)
- Paul D Cotter
- Department of Microbiology and National Food Biotechnology Centre, University College Cork, Cork, Ireland
| | | |
Collapse
|
22
|
Galland D, Tourdot-Maréchal R, Abraham M, Chu KS, Guzzo J. Absence of malolactic activity is a characteristic of H+-ATPase-deficient mutants of the lactic acid bacterium Oenococcus oeni. Appl Environ Microbiol 2003; 69:1973-9. [PMID: 12676672 PMCID: PMC154835 DOI: 10.1128/aem.69.4.1973-1979.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lack of malolactic activity in H(+)-ATPase-deficient mutants of Oenococcus oeni selected previously was analyzed at the molecular level. Western blot experiments revealed a spot at 60 kDa corresponding to the malolactic enzyme only in the parental strain. Moreover, the mleA transcript encoding the malolactic enzyme was not detected by reverse transcription (RT)-PCR analysis of mutants. These results suggest that the malolactic operon was not transcribed in ATPase-deficient mutants. The mleR gene encoding a LysR-type regulatory protein which should be involved in expression of the malolactic genes was described previously for O. oeni. Results obtained in this study show that the mleR transcript was not detected in the mutants by RT-PCR. No mutation in the nucleotide sequences of the mleR gene and the malolactic operon was found. The effect of a reduction in H(+)-ATPase activity on L-malate metabolism was then investigated by using other malolactic bacteria. Spontaneous H(+)-ATPase-deficient mutant strains of Lactococcus lactis and Leuconostoc mesenteroides were isolated by using neomycin resistance. Two mutants were selected. These mutants exhibited ATPase activities that were reduced to 54 and 70% of the activities obtained for the L. lactis and L. mesenteroides parental strains, respectively. These mutants were also acid sensitive. However, in contrast to the ATPase-deficient mutants of O. oeni, activation of L-malate metabolism was observed with the L. lactis and L. mesenteroides mutants under optimal or acidic growth conditions. These data support the suggestion that expression of the genes encoding malolactic enzymes in O. oeni is regulated by the mleR product, as it is in L. lactis. Nevertheless, our results strongly suggest that there is a difference between the regulation of expression of the malolactic locus in O. oeni and the regulation of expression of this locus in less acidophilic lactic acid bacteria.
Collapse
Affiliation(s)
- Delphine Galland
- Laboratoire de Microbiologie, UMR INRA 1232, Equipe PG2MA, ENSBANA, Université de Bourgogne, 21000 Dijon, France
| | | | | | | | | |
Collapse
|
23
|
Sievers M, Uermösi C, Fehlmann M, Krieger S. Cloning, Sequence Analysis and Expression of the F1F0-ATPase β-Subunit from Wine Lactic Acid Bacteria. Syst Appl Microbiol 2003; 26:350-6. [PMID: 14529177 DOI: 10.1078/072320203322497374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The nucleotide sequences of the genes encoding the F1F0-ATPase beta-subunit from Oenococcus oeni, Leuconostoc mesenteroides subsp. mesenteroides, Pediococcus damnosus, Pediococcus parvulus, Lactobacillus brevis and Lactobacillus hilgardii were determined. Their deduced amino acid sequences showed homology values of 79-98%. Data from the alignment and ATPase tree indicated that O. oeni and L. mesenteroides subsp. mesenteroides formed a group well-separated from P. damnosus and P. parvulus and from the group comprises L. brevis and L. hilgardii. The N-terminus of the F1F0-ATPase beta-subunit of O. oeni contains a stretch of additional 38 amino acid residues. The catalytic site of the ATPase beta-subunit of the investigated strains is characterized by the two conserved motifs GGAGVGKT and GERTRE. The amplified atpD coding sequences were inserted into the pCRT7/CT-TOPO vector using TA-cloning strategy and transformed in Escherichia coli. SDS-PAGE and Western blot analyses confirmed that O. oeni has an ATPase beta-subunit protein which is larger in size than the corresponding molecules from the investigated strains.
Collapse
Affiliation(s)
- Martin Sievers
- Hochschule Wädenswil, Molekularbiologie, Wädenswil, Switzerland.
| | | | | | | |
Collapse
|
24
|
Graça da Silveira M, Vitória San Romão M, Loureiro-Dias MC, Rombouts FM, Abee T. Flow cytometric assessment of membrane integrity of ethanol-stressed Oenococcus oeni cells. Appl Environ Microbiol 2002; 68:6087-93. [PMID: 12450832 PMCID: PMC134380 DOI: 10.1128/aem.68.12.6087-6093.2002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The practical application of commercial malolactic starter cultures of Oenococcus oeni surviving direct inoculation in wine requires insight into the mechanisms involved in ethanol toxicity and tolerance in this organism. Exposure to ethanol resulted in an increase in the permeability of the cytoplasmic membrane, enhancing passive proton influx and concomitant loss of intracellular material (absorbing at 260 nm). Cells grown in the presence of 8% (vol/vol) ethanol revealed adaptation to ethanol stress, since these cells showed higher retention of compounds absorbing at 260 nm. Moreover, for concentrations higher than 10% (vol/vol), lower rates of passive proton influx were observed in these ethanol-adapted cells, especially at pH 3.5. The effect of ethanol on O. oeni cells was studied as the ability to efficiently retain carboxyfluorescein (cF) as an indicator of membrane integrity and enzyme activity and the uptake of propidium iodide (PI) to assess membrane damage. Flow cytometric analysis of both ethanol-adapted and nonadapted cells with a mixture of the two fluorescent dyes, cF and PI, revealed three main subpopulations of cells: cF-stained intact cells; cF- and PI-stained permeable cells, and PI-stained damaged cells. The subpopulation of O. oeni cells that maintained their membrane integrity, i.e., cells stained only with cF, was three times larger in the population grown in the presence of ethanol, reflecting the protective effect of ethanol adaptation. This information is of major importance in studies of microbial fermentations in order to assign bulk activities measured by classical methods to the very active cells that are effectively responsible for the observations.
Collapse
|
25
|
Wei Y, Guffanti AA, Ito M, Krulwich TA. Bacillus subtilis YqkI is a novel malic/Na+-lactate antiporter that enhances growth on malate at low protonmotive force. J Biol Chem 2000; 275:30287-92. [PMID: 10903309 DOI: 10.1074/jbc.m001112200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus subtilis yheL encodes a Na(+)/H(+) antiporter, whereas its paralogue, yqkI, encodes a novel antiporter that achieves a simultaneous Na(+)/H(+) and malolactate antiport. B. subtilis yufR, a control in some experiments, encodes a Na(+)/malate symporter. YqkI complemented a malate transport mutant of Escherichia coli if Na(+) and lactate were present. YheL conferred Na(+) uptake capacity on everted membrane vesicles from an antiporter-deficient E. coli mutant that was consistent with a secondary Na(+)/H(+) antiport, but YqkI-dependent Na(+) uptake depended on intravesicular malate and extravesicular lactate. YqkI-dependent lactate uptake depended on intravesicular malate and extravesicular Na(+). YqkI mediated an electroneutral exchange, which is proposed to be a malic(-2)-2H(+) (or fully protonated malate)/Na(+)-lactate(-1) antiport. Because the composite YqkI-mediated exchanges could be driven by gradients of the malate-lactate pair, this transporter could play a role in growth of B. subtilis on malate at low protonmotive force. A mutant with a disruption of yqkI exhibited an abrupt arrest in the mid-logarithmic phase of growth on malate when low concentrations of protonophore were present. Thus growth of B. subtilis to high density on a putatively nonfermentative dicarboxylic acid substrate depends on a malolactate exchange at suboptimal protonmotive force.
Collapse
Affiliation(s)
- Y Wei
- Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
26
|
Cotter PD, Gahan CG, Hill C. Analysis of the role of the Listeria monocytogenes F0F1 -AtPase operon in the acid tolerance response. Int J Food Microbiol 2000; 60:137-46. [PMID: 11016603 DOI: 10.1016/s0168-1605(00)00305-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As little is known about the genes involved in the induction of an acid tolerance response in Listeria monocytogenes, the role of the F0F1-ATPase was analyzed as a consequence of its role in the acid tolerance of a number of other bacteria and its conserved nature. It was found that acid adapted cells treated with N,N'-dicyclohexylcarbodiimide (DCCD) exhibited greatly enhanced sensitivity to low pH stress. Degenerate primers were designed to amplify and sequence a portion of the atpD gene. Subsequently, a PCR product from atpA to atpD was identified. While we were unable to create a deletion in the atpA gene, the plasmid pORI19 was inserted in a region between atpA and atpG to reduce, rather than eliminate, expression of the downstream genes. As expected this mutant displayed enhanced resistance to neomycin and exhibited slower growth than the wild type strain. This mutant could still induce an acid tolerance response and remained susceptible to DCCD treatment, but its relative acid sensitivity was difficult to assess as a consequence of its slow growth.
Collapse
Affiliation(s)
- P D Cotter
- Department of Microbiology, University College Cork, Ireland
| | | | | |
Collapse
|
27
|
Guzzo J, Jobin MP, Delmas F, Fortier LC, Garmyn D, Tourdot-Maréchal R, Lee B, Diviès C. Regulation of stress response in Oenococcus oeni as a function of environmental changes and growth phase. Int J Food Microbiol 2000; 55:27-31. [PMID: 10791713 DOI: 10.1016/s0168-1605(00)00209-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Oenococcus oeni is a lactic acid bacterium which is able to grow in wine and perform malolactic fermentation. To survive and grow in such a harsh environment as wine, O. oeni uses several mechanisms of resistance including stress protein synthesis. The molecular characterisation of three stress genes hsp18, clpX, trxA encoding for a small heat shock protein, an ATPase regulation component of ClpP protease and a thioredoxin, respectively, allow us to suggest the existence in O. oeni of multiple regulation mechanisms as is the case in Bacillus subtilis. One common feature of these genes is that they are expressed under the control of housekeeping promoters. The expression of these genes as a function of growth is significantly different. Surprisingly, the clpX gene, which is induced by heat shock, was highly expressed in the early phase of growth. In addition to stress protein synthesis, adaptation to the acid pH of wine requires efficient cellular systems to extrude protons. Using inhibitors specific for different types of ATPases, we demonstrated the existence of H+-ATPase and P-type ATPase.
Collapse
Affiliation(s)
- J Guzzo
- Laboratoire de Microbiologie UA INRA, ENSBANA, Université de Bourgogne, Dijon, France.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Tourdot-Maréchal R, Fortier LC, Guzzo J, Lee B, Diviès C. Acid sensitivity of neomycin-resistant mutants of Oenococcus oeni: a relationship between reduction of ATPase activity and lack of malolactic activity. FEMS Microbiol Lett 1999; 178:319-26. [PMID: 10499282 DOI: 10.1111/j.1574-6968.1999.tb08694.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mutants of Oenococcus oeni were isolated as spontaneous neomycin-resistant mutants. Three of these mutants harbored a significantly reduced ATPase activity that represented 50% of that of the wild-type strain. Their growth rates were also impaired at pH 5.3 (46-86% of the wild-type level). However, the profiles of sugar consumption appeared identical to those of the parental strain. At pH 3.2, all the mutant strains failed to grow and a drastic decrease in viability was observed after an acid shock. Surprisingly, all the isolated mutants were devoid of malolactic activity. These results suggest that the ATPase and malolactic activities of O. oeni are linked to each other and play a crucial role in the mechanism of resistance to an acid stress.
Collapse
Affiliation(s)
- R Tourdot-Maréchal
- Laboratoire de Microbiologie UA INRA, ENSBANA, Université de Bourgogne, Dijon, France.
| | | | | | | | | |
Collapse
|
29
|
Arthurs CE, Lloyd D. Kinetics, stereospecificity, and expression of the malolactic enzyme. Appl Environ Microbiol 1999; 65:3360-3. [PMID: 10427020 PMCID: PMC91505 DOI: 10.1128/aem.65.8.3360-3363.1999] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mass spectrometric measurement of carbon dioxide production was used to study malolactic fermentation (MLF) in Lactobacillus collinoides isolated from cider. The kinetics and stereospecificity of the malolactic enzyme (MLE) were studied, and the stoichiometry of the reaction sequence was investigated. The optimum pH for activity of the MLE was 4.9. MLF was more rapid (in both intact cells and cell extracts) when L-malic acid was used than when D-malic acid or the racemic mixture was added. The enzyme was found to be constitutively present in L. collinoides. Addition of L-malic acid (37 mM) to the growth medium resulted in increased MLE activity; addition of the D isomer alone or the racemic mixture resulted in lower activities. Addition of the main sugars in apple juice (fructose, sucrose, and glucose) to the growth medium in the presence of malic acid repressed production of MLE to similar extents in all three cases; in the absence of malic acid, instead of inhibiting MLF, addition of sugars to the growth medium somewhat increased the residual MLE activity.
Collapse
Affiliation(s)
- C E Arthurs
- Microbiology Group (Cardiff School of Biosciences), Cardiff University, Cardiff CF1 3TL, Wales, United Kingdom.
| | | |
Collapse
|
30
|
Terpe K, Kerkhoff K, Pluta E, Jendrossek D. Relationship between succinate transport and production of extracellular poly(3-hydroxybutyrate) depolymerase in Pseudomonas lemoignei. Appl Environ Microbiol 1999; 65:1703-9. [PMID: 10103271 PMCID: PMC91241 DOI: 10.1128/aem.65.4.1703-1709.1999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relationship between extracellular poly(3-hydroxybutyrate) (PHB) depolymerase synthesis and the unusual properties of a succinate uptake system was investigated in Pseudomonas lemoignei. Growth on and uptake of succinate were highly pH dependent, with optima at pH 5.6. Above pH 7, growth on and uptake of succinate were strongly reduced with concomitant derepression of PHB depolymerase synthesis. The specific succinate uptake rates were saturable by high concentrations of succinate, and maximal transport rates of 110 nmol/mg of cell protein per min were determined between pH 5.6 and 6. 8. The apparent KS0.5 values increased with increasing pH from 0.2 mM succinate at pH 5.6 to more than 10 mM succinate at pH 7.6. The uptake of [14C]succinate was strongly inhibited by several monocarboxylates. Dicarboxylates also inhibited the uptake of succinate but only at pH values near the dissociation constant of the second carboxylate function (pKa2). We conclude that the succinate carrier is specific for the monocarboxylate forms of various carboxylic acids and is not able to utilize the dicarboxylic forms. The inability to take up succinate2- accounts for the carbon starvation of P. lemoignei observed during growth on succinate at pH values above 7. As a consequence the bacteria produce high levels of extracellular PHB depolymerase activity in an effort to escape carbon starvation by utilization of PHB hydrolysis products.
Collapse
Affiliation(s)
- K Terpe
- Institut für Mikrobiologie und Genetik der Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | | | | | | |
Collapse
|
31
|
Chaillou S, Bor YC, Batt CA, Postma PW, Pouwels PH. Molecular cloning and functional expression in lactobacillus plantarum 80 of xylT, encoding the D-xylose-H+ symporter of Lactobacillus brevis. Appl Environ Microbiol 1998; 64:4720-8. [PMID: 9835554 PMCID: PMC90914 DOI: 10.1128/aem.64.12.4720-4728.1998] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 3-kb region, located downstream of the Lactobacillus brevis xylA gene (encoding D-xylose isomerase), was cloned in Escherichia coli TG1. The sequence revealed two open reading frames which could code for the D-xylulose kinase gene (xylB) and another gene (xylT) encoding a protein of 457 amino acids with significant similarity to the D-xylose-H+ symporters of E. coli, XylE (57%), and Bacillus megaterium, XylT (58%), to the D-xylose-Na+ symporter of Tetragenococcus halophila, XylE (57%), and to the L-arabinose-H+ symporter of E. coli, AraE (60%). The L. brevis xylABT genes showed an arrangement similar to that of the B. megaterium xylABT operon and the T. halophila xylABE operon. Southern hybridization performed with the Lactobacillus pentosus xylR gene (encoding the D-xylose repressor protein) as a probe revealed the existence of a xylR homologue in L. brevis which is not located with the xyABT locus. The existence of a functional XylR was further suggested by the presence of xylO sequences upstream of xylA and xylT and by the requirement of D-xylose for the induction of D-xylose isomerase, D-xylulose kinase, and D-xylose transport activities in L. brevis. When L. brevis was cultivated in a mixture of D-glucose and D-xylose, the D-xylose isomerase and D-xylulose kinase activities were reduced fourfold and the D-xylose transport activity was reduced by sixfold, suggesting catabolite repression by D-glucose of D-xylose assimilation. The xylT gene was functionally expressed in Lactobacillus plantarum 80, a strain which lacks proton motive force-linked D-xylose transport activity. The role of the XylT protein was confirmed by the accumulation of D-xylose in L. plantarum 80 cells, and this accumulation was dependent on the proton motive force generated by either malolactic fermentation or by the metabolism of D-glucose. The apparent affinity constant of XylT for D-xylose was approximately 215 microM, and the maximal initial velocity of transport was 35 nmol/min per mg (dry weight). Furthermore, of a number of sugars tested, only 6-deoxy-D-glucose inhibited the transport of D-xylose by XylT competitively, with a Ki of 220 microM.
Collapse
Affiliation(s)
- S Chaillou
- EC Slater Institute, BioCentrum, University of Amsterdam, 1018 TV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
32
|
Chaillou S, Postma PW, Pouwels PH. Functional expression in Lactobacillus plantarum of xylP encoding the isoprimeverose transporter of Lactobacillus pentosus. J Bacteriol 1998; 180:4011-4. [PMID: 9683504 PMCID: PMC107391 DOI: 10.1128/jb.180.15.4011-4014.1998] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The xylP gene of Lactobacillus pentosus, the first gene of the xylPQR operon, was recently found to be involved in isoprimeverose metabolism. By expression of xylP on a multicopy plasmid in Lactobacillus plantarum 80, a strain which lacks active isoprimeverose and D-xylose transport activities, it was shown that xylP encodes a transporter. Functional expression of the XylP transporter was shown by uptake of isoprimeverose in L. plantarum 80 cells, and this transport was driven by the proton motive force generated by malolactic fermentation. XylP was unable to catalyze transport of D-xylose.
Collapse
Affiliation(s)
- S Chaillou
- EC Slater Institute, BioCentrum, University of Amsterdam, 1018 TV Amsterdam, The Netherlands
| | | | | |
Collapse
|
33
|
Abstract
Anaerobic habitats often have low pH and high concentrations of fermentation acids, and these conditions can inhibit the growth of many bacteria. The toxicity of fermentation acids at low pH was traditionally explained by an uncoupling mechanism. Undissociated fermentation acids can pass across the cell membrane and dissociate in the more alkaline interior, but there is little evidence that they can act in a cyclic manner to dissipate protonmotive force. Fermentation acid dissociation in the more alkaline interior causes an accumulation of the anionic species, and this accumulation is dependent on the pH gradient (delta pH) across the membrane. Fermentation acid-resistant bacteria have low delta pH and are able to generate ATP and grow with a low intracellular pH. Escherichia coli O157:H7 is able to decrease its intracellular pH to 6.1 before growth ceases, but this modest decrease in delta pH can only partially counteract the toxic effect of fermentation anion accumulation. Fermentation acid-resistant bacteria are in most cases Gram-positive bacteria with a high intracellular potassium concentration, and even acid-sensitive bacteria like E. coli K-12 have increased potassium levels when fermentation acids are present. Intracellular potassium provides a counteraction for fermentation acid anions, and allows bacteria to tolerate even greater amounts of fermentation anions. The delta pH-mediated anion accumulation provides a mechanistic explanation for the effect of fermentation acids on microbial ecology and metabolism.
Collapse
Affiliation(s)
- J B Russell
- Section of Microbiology, Cornell University, USDA Ithaca, New York 14853, USA
| | | |
Collapse
|
34
|
Bandell M, Ansanay V, Rachidi N, Dequin S, Lolkema JS. Membrane potential-generating malate (MleP) and citrate (CitP) transporters of lactic acid bacteria are homologous proteins. Substrate specificity of the 2-hydroxycarboxylate transporter family. J Biol Chem 1997; 272:18140-6. [PMID: 9218448 DOI: 10.1074/jbc.272.29.18140] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Membrane potential generation via malate/lactate exchange catalyzed by the malate carrier (MleP) of Lactococcus lactis, together with the generation of a pH gradient via decarboxylation of malate to lactate in the cytoplasm, is a typical example of a secondary proton motive force-generating system. The mleP gene was cloned, sequenced, and expressed in a malolactic fermentation-deficient L. lactis strain. Functional analysis revealed the same properties as observed in membrane vesicles of a malolactic fermentation-positive strain. MleP belongs to a family of secondary transporters in which the citrate carriers from Leuconostoc mesenteroides (CitP) and Klebsiella pneumoniae (CitS) are found also. CitP, but not CitS, is also involved in membrane potential generation via electrogenic citrate/lactate exchange. MleP, CitP, and CitS were analyzed for their substrate specificity. The 2-hydroxycarboxylate motif R1R2COHCOOH, common to the physiological substrates, was found to be essential for transport although some 2-oxocarboxylates could be transported to a lesser extent. Clear differences in substrate specificity among the transporters were observed because of different tolerances toward the R substituents at the C2 atom. Both MleP and CitP transport a broad range of 2-hydroxycarboxylates with R substituents ranging in size from two hydrogen atoms (glycolate) to acetyl and methyl groups (citromalate) for MleP and two acetyl groups (citrate) for CitP. CitS was much less tolerant and transported only citrate and at a low rate citromalate. The substrate specificities are discussed in the context of the physiological function of the transporters.
Collapse
Affiliation(s)
- M Bandell
- Department of Microbiology, Groningen Biotechnology and Biomolecular Sciences Institute, University of Groningen, 9751NN Haren, The Netherlands
| | | | | | | | | |
Collapse
|
35
|
Higuchi T, Hayashi H, Abe K. Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain. J Bacteriol 1997; 179:3362-4. [PMID: 9150237 PMCID: PMC179120 DOI: 10.1128/jb.179.10.3362-3364.1997] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Lactobacillus sp. strain E1 catalyzed the decarboxylation of glutamate (Glu), resulting in a nearly stoichiometric release of the products gamma-aminobutyrate (GABA) and CO2. This decarboxylation was associated with the net synthesis of ATP. ATP synthesis was inhibited almost completely by nigericin and about 70% by N,N'-dicyclohexylcarbodiimide (DCCD), without inhibition of the decarboxylation. These findings are consistent with the possibility that a proton motive force arises from the cytoplasmic proton consumption that accompanies glutamate decarboxylation and the electrogenic Glu/GABA antiporter and the possibility that this proton motive force is coupled with ATP synthesis by DCCD-sensitive ATPase.
Collapse
Affiliation(s)
- T Higuchi
- Soy Sauce Research Laboratory, R & D Division of Kikkoman Corporation, Noda City, Chiba, Japan.
| | | | | |
Collapse
|
36
|
Cavin JF, Barthelmebs L, Diviès C. Molecular characterization of an inducible p-coumaric acid decarboxylase from Lactobacillus plantarum: gene cloning, transcriptional analysis, overexpression in Escherichia coli, purification, and characterization. Appl Environ Microbiol 1997; 63:1939-44. [PMID: 9143125 PMCID: PMC168485 DOI: 10.1128/aem.63.5.1939-1944.1997] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
By using degenerate primers designed from the first 19 N-terminal amino acids of Lactobacillus plantarum p-coumaric acid decarboxylase (PDC), a 56-bp fragment was amplified from L. plantarum in PCRs and used as a probe for screening an L. plantarum genomic bank. Of the 2,880 clones in the genomic bank, one was isolated by colony hybridization and contained a 519-bp open reading frame (pdc gene) followed by a putative terminator structure. The pdc gene is expressed on a monocistronic transcriptional unit, which is transcribed from promoter sequences homologous to Lactococcus promoter sequences. No mRNA from pdc and no PDC activity were detected in uninduced cell extracts, indicating that the expression is transcriptionally regulated by p-coumaric acid, which corresponds to an activation factor up to 6,000. The pdc gene was overexpressed constitutively in Escherichia coli, and the recombinant enzyme was purified and characterized.
Collapse
Affiliation(s)
- J F Cavin
- Laboratoire de Microbiologie, US, INRA, ENSBANA, Université de Bourgogne, Dijon, France.
| | | | | |
Collapse
|
37
|
Salema M, Capucho I, Poolman B, San Romão MV, Dias MC. In vitro reassembly of the malolactic fermentation pathway of Leuconostoc oenos (Oenococcus oeni). J Bacteriol 1996; 178:5537-9. [PMID: 8808948 PMCID: PMC178381 DOI: 10.1128/jb.178.18.5537-5539.1996] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mechanism of metabolic energy generation by malolactic fermentation was studied with artificial membrane vesicles of Leuconostoc oenos (Oenococcus oeni). (Note that although L. oenos was recently reclassified as O. oeni [L. M. T. Dicks, F. Dellaglio, and M. D. Collins, Int. J. Syst. Bacteriol. 45:395-397, 1995], the old designation was kept in the present work.) Purified malolactic enzyme was entrapped in artificial membrane vesicles prepared from L. oenos cells able to transport L-malate. We show that the in vitro reconstituted system, including an electrogenic L-malate carrier and the decarboxylating malolactic enzyme, generated a proton motive force that was able to drive intravesicular accumulation of leucine.
Collapse
Affiliation(s)
- M Salema
- Instituto de Technologia Química e Biológica, U.N.L., Oeiras, Portugal
| | | | | | | | | |
Collapse
|
38
|
Hockings PD, Rogers PJ. The measurement of transmembrane electrical potential with lipophilic cations. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1282:101-6. [PMID: 8679645 DOI: 10.1016/0005-2736(96)00045-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The binding of lipophilic cation probes of membrane potential to cells was re-examined. Even concentrations of probe molecules as low as 100 nM were found to reduce delta psi and thus many commonly used techniques for delta psi determination are inappropriate. Binding was found to be a linear function of probe concentration and independent of pH. The proportionality constant for binding has been equated to an "apparent binding volume' for [3H]TPP+ with units of microliter/mg dry weight of cells. This "apparent binding volume' is thermodynamically equivalent to the volume of cell membrane multiplied by the partition coefficient of [3H]TPP+ for cell membrane and was equivalent to 9.10 +/- 0.33 microliters/mg dry weight in Enterococcus faecalis. It was concluded that the most accurate method for delta psi determination was to use nanomolar concentrations of lipophilic cations and appropriate correction for energy dependent binding.
Collapse
Affiliation(s)
- P D Hockings
- Division of Science and Technology, Griffith University, Nathan, Australia.
| | | |
Collapse
|
39
|
Salema M, Lolkema JS, San Romão MV, Lourero Dias MC. The proton motive force generated in Leuconostoc oenos by L-malate fermentation. J Bacteriol 1996; 178:3127-32. [PMID: 8655490 PMCID: PMC178062 DOI: 10.1128/jb.178.11.3127-3132.1996] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In cells of Leuconostoc oenos, the fermentation of L-malic acid generates both a transmembrane pH gradient, inside alkaline, and an electrical potential gradient, inside negative. In resting cells, the proton motive force ranged from -170 mV to -88 mV between pH 3.1 and 5.6 in the presence Of L-malate. Membrane potentials were calculated by using a model for probe binding that accounted for the different binding constants at the different pH values at the two faces of the membrane. The delta psi generated by the transport of monovalent malate, H-malate-, controlled the rate of fermentation. The fermentation rate significantly increased under conditions of decreased delta psi, i.e., upon addition of the ionophore valinomycin in the presence of KCl, whereas in a buffer depleted of potassium, the addition of valinomycin resulted in a hyperpolarization of the cell membrane and a reduction of the rate of fermentation. At the steady state, the chemical gradient for H-malate- was of the same magnitude as delta psi. Synthesis of ATP was observed in cells performing malolactic fermentation.
Collapse
Affiliation(s)
- M Salema
- Instituto de Tecnologia Química e Biológica, Universdade Nova de Lisboa, Portugal
| | | | | | | |
Collapse
|
40
|
Labarre C, Guzzo J, Cavin JF, Diviès C. Cloning and characterization of the genes encoding the malolactic enzyme and the malate permease of Leuconostoc oenos. Appl Environ Microbiol 1996; 62:1274-82. [PMID: 8919788 PMCID: PMC167893 DOI: 10.1128/aem.62.4.1274-1282.1996] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Using degenerated primers from conserved regions of the protein sequences of malic enzymes, we amplified a 324-bp DNA fragment by PCR from Leuconostoc oenos and used this fragment as a probe for screening a Leuconostoc oenos genomic bank. Of the 2,990 clones in the genomic bank examined, 7 with overlapping fragments were isolated by performing colony hybridization experiments. Sequencing 3,453 bp from overlapping fragments revealed two open reading frames that were 1,623 and 942 nucleotides long and were followed by a putative terminator structure. The first deduced protein (molecular weight, 59,118) is very similar (level of similarity, 66%) to the malolactic enzyme of Lactococcus lactis; as in several malic enzymes, highly conserved protein regions are present. The synthesis of a protein with an apparent molecular mass of 60 kDa was highlighted by the results of labelling experiments performed with Escherichia coli minicells. The gene was expressed in E. coli and Saccharomyces cerevisiae and conferred "malolactic activity" to these species. The second open reading frame encodes a putative 34,190-Da protein which has the characteristics of a carrier protein and may have 10 membrane-spanning segments organized around a central hydrophilic core. Energy-dependent L-[14C]malate transport was observed with E. coli dicarboxylic acid transport-deficient mutants carrying the malate permease-expressing vector. Our results suggest that in Leuconostoc oenos the genes that encode the malolactic enzyme and a malate carrier protein are organized in a cluster.
Collapse
Affiliation(s)
- C Labarre
- Laboratoire de Microbiologie, ENSBANA, Dijon, France
| | | | | | | |
Collapse
|
41
|
Abe K, Hayashi H, Maloney PC, Malone PC. Exchange of aspartate and alanine. Mechanism for development of a proton-motive force in bacteria. J Biol Chem 1996; 271:3079-84. [PMID: 8621704 DOI: 10.1074/jbc.271.6.3079] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We examined the idea that aspartate metabolism by Lactobacillus subsp. M3 is organized as a proton-motive metabolic cycle by using reconstitution to monitor the activity of the carrier, termed AspT, expected to carry out the electrogenic exchange of precursor (aspartate) and product (alanine). Membranes of Lactobacillus subsp. M3 were extracted with 1.25% octyl glucoside in the presence of 0. 4% Escherichia coli phospholipid and 20% glycerol. The extracts were then used to prepare proteoliposomes loaded with either aspartate or alanine. Aspartate-loaded proteoliposomes accumulated external [3H]aspartate by exchange with internal substrate; this homologous self-exchange (Kt = 0.4 mm) was insensitive to potassium or proton ionophores and was unaffected by the presence or absence of Na+, K+, or Mg2+. Alanine-loaded proteoliposomes also took up [3H]aspartate in a heterologous antiport reaction that was stimulated or inhibited by an inside-positive or inside-negative membrane potential, respectively. Several lines of evidence suggest that these homologous and heterologous exchange reactions were catalyzed by the same functional unit. Thus, [3H]aspartate taken up by AspT during self-exchange was released by a delayed addition of alanine. In addition, the spontaneous loss of AspT activity that occurs when a detergent extract is held at 37 degrees C prior to reconstitution was prevented by the presence of either aspartate (KD(aspartate) = 0.3 mm) or alanine (KD(alanine) > or = 10 mm), indicating that both substrates interact directly with AspT. These findings are consistent with operation of a proton-motive metabolic cycle during aspartate metabolism by Lactobacillus subsp. M3.
Collapse
Affiliation(s)
- K Abe
- Department of Physiology, Johns Hopkins Medical School, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
42
|
Chapter 11 Secondary transporters and metabolic energy generation in bacteria. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1383-8121(96)80052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
43
|
The role of an NAD-independent lactate dehydrogenase and acetate in the utilization of lactate byClostridium acetobutylicum strain P262. Arch Microbiol 1995. [DOI: 10.1007/bf02568732] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
|
45
|
Salema M, Poolman B, Lolkema JS, Dias MC, Konings WN. Uniport of monoanionic L-malate in membrane vesicles from Leuconostoc oenos. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:289-95. [PMID: 7925448 DOI: 10.1111/j.1432-1033.1994.00289.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
L-malate transport was studied in membrane vesicles from Leuconostoc oenos MLE(-) (mutant lacking malolactic enzyme) which were fused with liposomes containing beef heart cytochrome c oxidase as a proton-motive-force-generating system. In these hybrid membranes, accumulation of L-malate was observed in response to a pH gradient (delta pH), with the inside alkaline, but was strongly inhibited by a membrane potential (delta psi) of normal polarity (inside negative). Imposition of a delta psi, with the inside positive, by means of valinomycin-mediated potassium influx, resulted in a rapid accumulation of L-malate, indicating that L-malate was taken up in an anionic form. The results are consistent with a uniport mechanism facilitating the uptake of monoanionic L-malate, the dominant species at the low pH of the experiments. Kinetic analysis of delta pH-driven L-malate uptake in the pH range 3.0-5.8, yielded apparent affinity constants that varied less than twofold when calculated on the basis of the concentrations of monoanionic L-malate, whereas the values differed 2-3 orders of magnitude for the other species. At L-malate concentrations above 1 mM, a non-saturable transport component became apparent which may reflect passive influx of L-malic acid. Substrate specificity studies indicated that citrate and L-malate (and possibly D-lactate and L-lactate) compete for a single general carboxylate transport system. The carboxylate transport system catalysed homologous L-malate and heterologous L-malate/citrate exchange with rates similar to the rate of L-malate efflux. Since metabolic energy is conserved during malolactic fermentation in L. oenos, the underlying mechanism most likely involves electrogenic monoanionic L-malate uptake, in combination with H+ consumption in the cytoplasm, followed by diffusion outwards of lactic acid plus carbon dioxide.
Collapse
Affiliation(s)
- M Salema
- Department of Microbiology, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Cook GM, Russell JB. Energy-spilling reactions of Streptococcus bovis and resistance of its membrane to proton conductance. Appl Environ Microbiol 1994; 60:1942-8. [PMID: 8031089 PMCID: PMC201584 DOI: 10.1128/aem.60.6.1942-1948.1994] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Glucose-excess cultures of Streptococcus bovis consumed glucose faster than the amount that could be explained by growth or maintenance, and nongrowing chloramphenicol-treated cells had a rate of glucose consumption that was 10-fold greater than the maintenance rate. Because N,N-dicyclohexylcarbodiimide, an inhibitor of the membrane-bound F1F0 ATPase, eliminated the nongrowth energy dissipation (energy spilling) without a decrease in ATP and the rate of energy spilling could be increased by the protonophore 3,3',4',5-tetrachlorosalicylanilide, it appeared that a futile cycle of protons through the cell membrane was responsible for most of the energy spilling. When the rate of energy spilling was decreased gradually with iodoacetate, there was only a small decrease in the phosphorylation potential (delta G'p) and the theoretical estimate of H+ per ATP decreased from 4.2 to 3.6. On the bases of this ratio of H+ to ATP and the rate of ATP production, the flux of protons (amperage) across the cell membrane was directly proportional to the rate of energy spilling. Amperage values estimated from delta G'p were, however, nearly twice as great as values which were estimated from the heat production (delta H) of the cells [amperage = (0.38 x wattage)/delta p]. The last comparison indicated that only a fraction of the delta G of ATP hydrolysis was harvested by the F1F0 ATPase to pump protons. Both estimates of amperage indicated that the resistance of the cell membrane to proton conductance was inversely proportional to the log of the energy-spilling rate.
Collapse
Affiliation(s)
- G M Cook
- Section of Microbiology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
48
|
Beck BJ, Russell JB. Electrogenic glutamine uptake by Peptostreptococcus anaerobius and generation of a transmembrane potential. J Bacteriol 1994; 176:1303-8. [PMID: 8113169 PMCID: PMC205193 DOI: 10.1128/jb.176.5.1303-1308.1994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Peptostreptococcus anaerobius converted glutamine stoichiometrically to ammonia and pyroglutamic acid, and the Eadie-Hofstee plot of glutamine transport was biphasic. High-affinity, sodium-dependent glutamine transport (affinity constant [Kt] of 1.5 microM) could be driven by the chemical gradient of sodium, and more than 20 mM sodium was required for half-maximal velocity. High-affinity glutamine transport was not stimulated or inhibited by a membrane potential (delta psi). Low-affinity glutamine transport had a rate which was directly proportional to the external glutamine concentration, required less than 100 microM sodium, and was inhibited strongly by a delta psi. Cells which were treated with N,N-dicyclohexylcarbodiimide to inhibit the F1F0 ATPase still generated a delta psi but did so only if the external glutamine concentration was greater than 15 mM. Low-affinity glutamine uptake could not be saturated by as much as 200 mM glutamine, but glutamine-1 accounts for only a small fraction of the total glutamine at physiological pH values (pH 6 to 7). On the basis of these results, it appeared that the low-affinity glutamine transport was an electrogenic mechanism which was converting a chemical gradient of glutamine-1 into a delta psi. Other mechanisms of delta psi generation (electrogenic glutamine-pyroglutamate or -ammonium exchange) could not be demonstrated.
Collapse
Affiliation(s)
- B J Beck
- Section of Microbiology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
49
|
Hugenholtz J, Perdon L, Abee T. Growth and Energy Generation by
Lactococcus lactis
subsp.
lactis
biovar diacetylactis during Citrate Metabolism. Appl Environ Microbiol 1993; 59:4216-22. [PMID: 16349120 PMCID: PMC195888 DOI: 10.1128/aem.59.12.4216-4222.1993] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growth of
Lactococcus lactis
subsp.
lactis
biovar diacetylactis was observed on media with citrate as the only energy source. At pH 5.6, steady state was achieved in a chemostat on a citrate-containing medium in the absence of a carbohydrate. Under these conditions, pyruvate, acetate, and some acetoin and butanediol were the main fermentation products. This indicated that energy was conserved in
L. lactis
subsp.
lactis
biovar diacetylactis during citrate metabolism and presumably during the conversion of citrate into pyruvate. The presumed energy-conserving step, decarboxylation of oxaloacetate, was studied in detail. Oxaloacetate decarboxylase was purified to homogeneity and characterized. The enzyme has a native molecular mass of approximately 300 kDa and consists of three subunits of 52, 34, and 12 kDa. The enzyme is apparently not sodium dependent and does not contain a biotin moiety, and it seems to be different from the energy-generating oxaloacetate decarboxylase from
Klebsiella pneumoniae.
Energy-depleted
L. lactis
subsp.
lactis
biovar diacetylactis cells generated a membrane potential and a pH gradient immediately upon addition of citrate, whereas ATP formation was slow and limited. In contrast, lactose energization resulted in rapid ATP formation and gradual generation of a proton motive force. These data were confirmed during studies on amino acid uptake. α-Aminoisobutyrate uptake was rapid but glutamate uptake was slow in citrate-energized cells, whereas lactose-energized cells showed the reverse tendency. These data suggest that, in
L. lactis
subsp.
lactis
bv. diacetylactis, a proton motive force could be generated during citrate metabolism as a result of electrogenic citrate uptake or citrate/product exchange together with proton consumption by the intracellular oxaloacetate decarboxylase.
Collapse
Affiliation(s)
- J Hugenholtz
- Netherlands Institute for Dairy Research (NIZO), 6710 BA Ede, and Department of Food Science, Agricultural University of Wageningen, Wageningen, The Netherlands
| | | | | |
Collapse
|
50
|
Cook GM, Russell JB. The glutamine cyclotransferase reaction of Streptococcus bovis: a novel mechanism of deriving energy from non-oxidative and non-reductive deamination. FEMS Microbiol Lett 1993; 111:263-8. [PMID: 8405935 DOI: 10.1111/j.1574-6968.1993.tb06396.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Streptococcus bovis deaminated glutamine by a mechanism that did not involve glutaminase. Since pyroglutamate and ammonia were the only end-products, it appeared that glutamine deamination was catalyzed by a cyclotransferase reaction. Stationary S. bovis cells had essentially no intracellular ATP or membrane potential (delta psi), however, when they were provided with glutamine, intracellular ATP and delta psi increased to 0.52 mM and 158 mV, respectively. When glutamine-energized cells were treated with N,N-dicyclohexylcarbodiimide (DCCD, 150 microM), there was an even greater increase in intracellular ATP (> 5-fold) and the delta psi was dissipated. Because toluene-treated cells produced ATP from ADP and Pi, it did not appear that the cell membrane was directly involved in glutamine-dependent ATP generation. The rate of ammonia production was directly proportional to the glutamine concentration, but the stoichiometry of ATP to ammonia was always 1 to 1. Based on these results, it appeared that glutamine was deaminated by glutamine cyclotransferase which was coupled to ATP formation. The membrane bound ATPase then used the ATP to create a delta psi.
Collapse
Affiliation(s)
- G M Cook
- Section of Microbiology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|