1
|
Rashid FZM, Crémazy FGE, Hofmann A, Forrest D, Grainger DC, Heermann DW, Dame RT. The environmentally-regulated interplay between local three-dimensional chromatin organisation and transcription of proVWX in E. coli. Nat Commun 2023; 14:7478. [PMID: 37978176 PMCID: PMC10656529 DOI: 10.1038/s41467-023-43322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Nucleoid associated proteins (NAPs) maintain the architecture of bacterial chromosomes and regulate gene expression. Thus, their role as transcription factors may involve three-dimensional chromosome re-organisation. While this model is supported by in vitro studies, direct in vivo evidence is lacking. Here, we use RT-qPCR and 3C-qPCR to study the transcriptional and architectural profiles of the H-NS (histone-like nucleoid structuring protein)-regulated, osmoresponsive proVWX operon of Escherichia coli at different osmolarities and provide in vivo evidence for transcription regulation by NAP-mediated chromosome re-modelling in bacteria. By consolidating our in vivo investigations with earlier in vitro and in silico studies that provide mechanistic details of how H-NS re-models DNA in response to osmolarity, we report that activation of proVWX in response to a hyperosmotic shock involves the destabilization of H-NS-mediated bridges anchored between the proVWX downstream and upstream regulatory elements (DRE and URE), and between the DRE and ygaY that lies immediately downstream of proVWX. The re-establishment of these bridges upon adaptation to hyperosmolarity represses the operon. Our results also reveal additional structural features associated with changes in proVWX transcript levels such as the decompaction of local chromatin upstream of the operon, highlighting that further complexity underlies the regulation of this model operon. H-NS and H-NS-like proteins are wide-spread amongst bacteria, suggesting that chromosome re-modelling may be a typical feature of transcriptional control in bacteria.
Collapse
Affiliation(s)
- Fatema-Zahra M Rashid
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, 2333CC, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, 2333CC, The Netherlands
| | - Frédéric G E Crémazy
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands
- Laboratoire Infection et Inflammation, INSERM, UVSQ, Université Paris-Saclay, Versailles, 78180, France
| | - Andreas Hofmann
- Statistical Physics and Theoretical Biophysics, Heidelberg University, Heidelberg, D-69120, Germany
| | - David Forrest
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - David C Grainger
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Dieter W Heermann
- Statistical Physics and Theoretical Biophysics, Heidelberg University, Heidelberg, D-69120, Germany
| | - Remus T Dame
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands.
- Centre for Microbial Cell Biology, Leiden University, Leiden, 2333CC, The Netherlands.
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, 2333CC, The Netherlands.
| |
Collapse
|
2
|
The organosulfur compound dimethylsulfoniopropionate (DMSP) is utilized as an osmoprotectant by Vibrio species. Appl Environ Microbiol 2021; 87:AEM.02235-20. [PMID: 33355097 PMCID: PMC8090876 DOI: 10.1128/aem.02235-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dimethylsulfoniopropionate (DMSP), a key component of the global geochemical sulfur cycle, is a secondary metabolite produced in large quantities by marine phytoplankton and utilized as an osmoprotectant, thermoprotectant and antioxidant. Marine bacteria can use two pathways to degrade and catabolize DMSP, a demethylation pathway and a cleavage pathway that produces the climate active gas dimethylsulfide (DMS). Whether marine bacteria can also accumulate DMSP as an osmoprotectant to maintain the turgor pressure of the cell in response to changes in external osmolarity has received little attention. The marine halophile Vibrio parahaemolyticus, contains at least six osmolyte transporters, four betaine carnitine choline transport (BCCT) carriers BccT1-BccT4 and two ABC-family ProU transporters. In this study, we showed that DMSP is used as an osmoprotectant by V. parahaemolyticus and several other Vibrio species including V. cholerae and V. vulnificus Using a V. parahaemolyticus proU double mutant, we demonstrated that these ABC transporters are not required for DMSP uptake. However, a bccT null mutant lacking all four BCCTs had a growth defect compared to wild type in high salinity media supplemented with DMSP. Using mutants possessing only one functional BCCT in growth pattern assays, we identified two BCCT-family transporters, BccT1 and BccT2, which are carriers of DMSP. The only V. parahaemolyticus BccT homolog that V. cholerae and V. vulnificus possess is BccT3 and functional complementation in Escherichia coli MKH13 showed V. cholerae VcBccT3 could transport DMSP. In V. vulnificus strains, we identified and characterized an additional BCCT family transporter, which we named BccT5 that was also a carrier for DMSP.Importance DMSP is present in the marine environment, produced in large quantities by marine phytoplankton as an osmoprotectant, and is an important component of the global geochemical sulfur cycle. This algal osmolyte has not been previously investigated for its role in marine heterotrophic bacterial osmotic stress response. Vibrionaceae are marine species, many of which are halophiles exemplified by V. parahaemolyticus, a species that possesses at least six transporters for the uptake of osmolytes. Here, we demonstrated that V. parahaemolyticus and other Vibrio species can accumulate DMSP as an osmoprotectant and show that several BCCT family transporters uptake DMSP. These studies suggest that DMSP is a significant bacterial osmoprotectant, which may be important for understanding the fate of DMSP in the environment. DMSP is produced and present in coral mucus and Vibrio species form part of the microbial communities associated with them. The function of DMSP in these interactions is unclear, but could be an important driver for these associations allowing Vibrio proliferation. This work suggests that DMSP likely has an important role in heterotrophic bacteria ecology than previously appreciated.
Collapse
|
3
|
Hoffmann T, Bleisteiner M, Sappa PK, Steil L, Mäder U, Völker U, Bremer E. Synthesis of the compatible solute proline by Bacillus subtilis: point mutations rendering the osmotically controlled proHJ promoter hyperactive. Environ Microbiol 2017; 19:3700-3720. [PMID: 28752945 DOI: 10.1111/1462-2920.13870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/09/2017] [Accepted: 07/24/2017] [Indexed: 01/29/2023]
Abstract
The ProJ and ProH enzymes of Bacillus subtilis catalyse together with ProA (ProJ-ProA-ProH), osmostress-adaptive synthesis of the compatible solute proline. The proA-encoded gamma-glutamyl phosphate reductase is also used for anabolic proline synthesis (ProB-ProA-ProI). Transcription of the proHJ operon is osmotically inducible whereas that of the proBA operon is not. Targeted and quantitative proteome analysis revealed that the amount of ProA is not limiting for the interconnected anabolic and osmostress-responsive proline production routes. A key player for enhanced osmostress-adaptive proline production is the osmotically regulated proHJ promoter. We used site-directed mutagenesis to study the salient features of this stress-responsive promoter. Two important features were identified: (i) deviations of the proHJ promoter from the consensus sequence of SigA-type promoters serve to keep transcription low under non-inducing growth conditions, while still allowing a finely tuned induction of transcriptional activity when the external osmolarity is increased and (ii) a suboptimal spacer length for SigA-type promoters of either 16-bp (the natural proHJ promoter), or 18-bp (a synthetic promoter variant) is strictly required to allow regulation of promoter activity in proportion to the external salinity. Collectively, our data suggest that changes in the local DNA structure at the proHJ promoter are important determinants for osmostress-inducibility of transcription.
Collapse
Affiliation(s)
- Tamara Hoffmann
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg D-35043, Germany
| | - Monika Bleisteiner
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg D-35043, Germany
| | - Praveen Kumar Sappa
- Interfaculty Institute of Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15, Greifswald D-17475, Germany
| | - Leif Steil
- Interfaculty Institute of Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15, Greifswald D-17475, Germany
| | - Ulrike Mäder
- Interfaculty Institute of Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15, Greifswald D-17475, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15, Greifswald D-17475, Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg D-35043, Germany
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerweinstr. 6, Marburg D-35043, Germany
| |
Collapse
|
4
|
Broaders E, O'Brien C, Gahan CGM, Marchesi JR. Evidence for plasmid-mediated salt tolerance in the human gut microbiome and potential mechanisms. FEMS Microbiol Ecol 2016; 92:fiw019. [PMID: 26850157 PMCID: PMC5831011 DOI: 10.1093/femsec/fiw019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 01/31/2016] [Indexed: 11/25/2022] Open
Abstract
The human gut microbiome is critical to health and wellbeing. It hosts a complex ecosystem comprising a multitude of bacterial species, which contributes functionality that would otherwise be absent from the host. Transient and commensal bacteria in the gut must withstand many stresses. The influence of mobile genetic elements such as plasmids in stress adaptation within the ecosystem is poorly understood. Using a mobilomic approach we found evidence for plasmid-mediated osmotolerance as a phenotype amongst the Proteobacteria in healthy faecal slurries. A transconjugant carrying multiple plasmids acquired from healthy faecal slurry demonstrated increased osmotolerance in the presence of metal salts, particularly potassium chloride, which was not evident in the recipient. Pyrosequencing and analysis of the total plasmid DNA demonstrated the presence of plasmid-borne osmotolerance systems (including KdpD and H-NS) which may be linked to the observed phenotype. This is the first report of a transferable osmotolerance phenotype in gut commensals and may have implications for the transfer of osmotolerance in other niches. There is evidence of a transferable osmotolerance phenotype in gut commensals which may have implications for the transfer of osmotolerance in other niches.
Collapse
Affiliation(s)
- Eileen Broaders
- Alimentary Pharmabiotic Centre, University College Cork, College Road, Cork, T12 YT20, Ireland Department of Microbiology, University College Cork, College Road, Cork, T12 YT20, Ireland
| | - Ciarán O'Brien
- Department of Microbiology, University College Cork, College Road, Cork, T12 YT20, Ireland
| | - Cormac G M Gahan
- Alimentary Pharmabiotic Centre, University College Cork, College Road, Cork, T12 YT20, Ireland Department of Microbiology, University College Cork, College Road, Cork, T12 YT20, Ireland School of Pharmacy, University College Cork, Cork, T12 YT20, Ireland
| | - Julian R Marchesi
- Alimentary Pharmabiotic Centre, University College Cork, College Road, Cork, T12 YT20, Ireland School of Biosciences, Cardiff University, Cardiff CF103AX, UK Centre for Digestive and Gut Health, Imperial College London, London W2 1NY, UK
| |
Collapse
|
5
|
Hoffmann T, Wensing A, Brosius M, Steil L, Völker U, Bremer E. Osmotic control of opuA expression in Bacillus subtilis and its modulation in response to intracellular glycine betaine and proline pools. J Bacteriol 2013; 195:510-22. [PMID: 23175650 PMCID: PMC3554007 DOI: 10.1128/jb.01505-12] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/14/2012] [Indexed: 11/20/2022] Open
Abstract
Glycine betaine is an effective osmoprotectant for Bacillus subtilis. Its import into osmotically stressed cells led to the buildup of large pools, whose size was sensitively determined by the degree of the osmotic stress imposed. The amassing of glycine betaine caused repression of the formation of an osmostress-adaptive pool of proline, the only osmoprotectant that B. subtilis can synthesize de novo. The ABC transporter OpuA is the main glycine betaine uptake system of B. subtilis. Expression of opuA was upregulated in response to both sudden and sustained increases in the external osmolarity. Nonionic osmolytes exerted a stronger inducing effect on transcription than ionic osmolytes, and this was reflected in the development of corresponding OpuA-mediated glycine betaine pools. Primer extension analysis and site-directed mutagenesis pinpointed the osmotically controlled opuA promoter. Deviations from the consensus sequence of SigA-type promoters serve to keep the transcriptional activity of the opuA promoter low in the absence of osmotic stress. opuA expression was downregulated in a finely tuned manner in response to increases in the intracellular glycine betaine pool, regardless of whether this osmoprotectant was imported or was newly synthesized from choline. Such an effect was also exerted by carnitine, an effective osmoprotectant for B. subtilis that is not a substrate for the OpuA transporter. opuA expression was upregulated in a B. subtilis mutant that was unable to synthesize proline in response to osmotic stress. Collectively, our data suggest that the intracellular solute pool is a key determinant for the osmotic control of opuA expression.
Collapse
Affiliation(s)
- Tamara Hoffmann
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Marburg, Germany
| | - Annette Wensing
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Marburg, Germany
| | - Margot Brosius
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Marburg, Germany
| | - Leif Steil
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Erhard Bremer
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Marburg, Germany
| |
Collapse
|
6
|
Walawalkar YD, Phadke R, Noronha S, Patankar S, Pillai B. Engineering whole-cell biosensors to evaluate the effect of osmotic conditions on bacteria. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
7
|
Axtell CA, Beattie GA. Construction and characterization of a proU-gfp transcriptional fusion that measures water availability in a microbial habitat. Appl Environ Microbiol 2002; 68:4604-12. [PMID: 12200319 PMCID: PMC124082 DOI: 10.1128/aem.68.9.4604-4612.2002] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We constructed and characterized a transcriptional fusion that measures the availability of water to a bacterial cell. This fusion between the proU promoter from Escherichia coli and the reporter gene gfp was introduced into strains of E. coli, Pantoea agglomerans, and Pseudomonas syringae. The proU-gfp fusion in these bacterial biosensor strains responded in a quantitative manner to water deprivation caused by the presence of NaCl, Na(2)SO(4), KCl, or polyethylene glycol (molecular weight, 8000). The fusion was induced to a detectable level by NaCl concentrations of as low as 10 mM in all three bacterial species. Water deprivation induced proU-gfp expression in both planktonic and surface-associated cells; however, it induced a higher level of expression in the surface-associated cells. Following the introduction of P. agglomerans biosensor cells onto bean leaves, the cells detected a significant decrease in water availability within only 5 min. After 30 min, the populations were exposed, on average, to a water potential equivalent to that imposed by approximately 55 mM NaCl. These results demonstrate the effectiveness of a proU-gfp-based biosensor for evaluating water availability on leaves. Furthermore, the inducibility of proU-gfp in multiple bacterial species illustrates the potential for tailoring proU-gfp-based biosensors to specific habitats.
Collapse
Affiliation(s)
- Catherine A Axtell
- Department of Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
8
|
Sleator RD, Hill C. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 2002; 26:49-71. [PMID: 12007642 DOI: 10.1111/j.1574-6976.2002.tb00598.x] [Citation(s) in RCA: 514] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Two general strategies exist for the growth and survival of prokaryotes in environments of elevated osmolarity. The 'salt in cytoplasm' approach, which requires extensive structural modifications, is restricted mainly to members of the Halobacteriaceae. All other species have convergently evolved to cope with environments of elevated osmolarity by the accumulation of a restricted range of low molecular mass molecules, termed compatible solutes owing to their compatibility with cellular processes at high internal concentrations. Herein we review the molecular mechanisms governing the accumulation of these compounds, both in Gram-positive and Gram-negative bacteria, focusing specifically on the regulation of their transport/synthesis systems and the ability of these systems to sense and respond to changes in the osmolarity of the extracellular environment. Finally, we examine the current knowledge on the role of these osmostress responsive systems in contributing to the virulence potential of a number of pathogenic bacteria.
Collapse
Affiliation(s)
- Roy D Sleator
- Department of Microbiology and National Food Biotechnology Centre, University College Cork, Cork, Ireland
| | | |
Collapse
|
9
|
Rajkumari K, Gowrishankar J. In vivo expression from the RpoS-dependent P1 promoter of the osmotically regulated proU operon in Escherichia coli and Salmonella enterica serovar Typhimurium: activation by rho and hns mutations and by cold stress. J Bacteriol 2001; 183:6543-50. [PMID: 11673423 PMCID: PMC95484 DOI: 10.1128/jb.183.22.6543-6550.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unlike the sigma(70)-controlled P2 promoter for the osmotically regulated proU operon of Escherichia coli and Salmonella enterica serovar Typhimurium, the sigma(s)-controlled P1 promoter situated further upstream appears not to contribute to expression of the proU structural genes under ordinary growth conditions. For S. enterica proU P1, there is evidence that promoter crypticity is the result of a transcription attenuation phenomenon which is relieved by the deletion of a 22-base C-rich segment in the transcript. In this study, we have sought to identify growth conditions and trans-acting mutations which activate in vivo expression from proU P1. The cryptic S. enterica proU P1 promoter was activated, individually and additively, in a rho mutant (which is defective in the transcription termination factor Rho) as well as by growth at 10 degrees C. The E. coli proU P1 promoter was also cryptic in constructs that carried 1.2 kb of downstream proU sequence, and in these cases activation of in vivo expression was achieved either by a rho mutation during growth at 10 degrees C or by an hns null mutation (affecting the nucleoid protein H-NS) at 30 degrees C. The rho mutation had no effect at either 10 or 30 degrees C on in vivo expression from two other sigma(s)-controlled promoters tested, those for osmY and csiD. In cells lacking the RNA-binding regulator protein Hfq, induction of E. coli proU P1 at 10 degrees C and by hns mutation at 30 degrees C was still observed, although the hfq mutation was associated with a reduction in the absolute levels of P1 expression. Our results suggest that expression from proU P1 is modulated both by nucleoid structure and by Rho-mediated transcription attenuation and that this promoter may be physiologically important for proU operon expression during low-temperature growth.
Collapse
Affiliation(s)
- K Rajkumari
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | |
Collapse
|
10
|
Jordi BJ, Higgins CF. The downstream regulatory element of the proU operon of Salmonella typhimurium inhibits open complex formation by RNA polymerase at a distance. J Biol Chem 2000; 275:12123-8. [PMID: 10766847 DOI: 10.1074/jbc.275.16.12123] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intracellular concentration of K(+)-glutamate, chromatin-associated proteins, and a downstream regulatory element (DRE) overlapping with the coding sequence, have been implicated in the regulation of the proU operon of Salmonella typhimurium. The basal expression of the proU operon is low, but it is rapidly induced when the bacteria are grown in media of high osmolarity (e.g. 0.3 M NaCl). It has previously been suggested that increased intracellular concentrations of K(+)-glutamate activate the proU promoter in response to increased extracellular osmolarity. We show here that the activation of the proU promoter by K(+)-glutamate in vitro is nonspecific, and the in vivo regulation cannot simply be mimicked in vitro. In vivo specificity requires both the chromatin-associated protein H-NS and the DRE; they are both needed to maintain repression of proU expression at low osmolarity. How H-NS and the DRE repress the proU promoter in vivo has so far been unclear. We show that, in vivo, the DRE acts at a distance to inhibit open complex formation at the proU promoter.
Collapse
Affiliation(s)
- B J Jordi
- Department of Bacteriology, Institute of Infectious Diseases and Immunology, Faculty of Veterinary Sciences, Yalelaan 1, 3508 TD Utrecht, The Netherlands.
| | | |
Collapse
|
11
|
Ferraris JD, Williams CK, Ohtaka A, García-Pérez A. Functional consensus for mammalian osmotic response elements. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C667-73. [PMID: 10069994 DOI: 10.1152/ajpcell.1999.276.3.c667] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular mechanisms underlying adaptation to hyperosmotic stress through the accumulation of organic osmolytes are largely unknown. Yet, among organisms, this is an almost universal phenomenon. In mammals, the cells of the renal medulla are uniquely exposed to high and variable salt concentrations; in response, renal cells accumulate the osmolyte sorbitol through increased transcription of the aldose reductase (AR) gene. In cloning the rabbit AR gene, we found the first evidence of an osmotic response region in a eukaryotic gene. More recently, we functionally defined a minimal essential osmotic response element (ORE) having the sequence CGGAAAATCAC(C) (bp -1105 to -1094). In the present study, we systematically replaced each base with every other possible nucleotide and tested the resulting sequences individually in reporter gene constructs. Additionally, we categorized hyperosmotic response by electrophoretic mobility shift assays of a 17-bp sequence (-1108 to -1092) containing the native ORE as a probe against which the test constructs would compete for binding. In this manner, binding activity was assessed for the full range of osmotic responses obtained. Thus we have arrived at a functional consensus for the mammalian ORE, NGGAAAWDHMC(N). This finding should accelerate the discovery of genes previously unrecognized as being osmotically regulated.
Collapse
Affiliation(s)
- J D Ferraris
- Osmotic Regulation Section, Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1603, USA.
| | | | | | | |
Collapse
|
12
|
Trachman JD, Maas WK. Temperature regulation of heat-labile enterotoxin (LT) synthesis in Escherichia coli is mediated by an interaction of H-NS protein with the LT A-subunit DNA. J Bacteriol 1998; 180:3715-8. [PMID: 9658020 PMCID: PMC107345 DOI: 10.1128/jb.180.14.3715-3718.1998] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/1998] [Accepted: 05/11/1998] [Indexed: 02/08/2023] Open
Abstract
Protein and mRNA levels of heat-labile enterotoxin (LT) of Escherichia coli are highest at 37 degrees C, and they decrease gradually as temperature is decreased. This temperature effect is eliminated in an Hns- mutant. Deletion of portions of DNA coding for the LT A subunit also results in an increase in LT expression at low temperatures, suggesting that the H-NS protein causes inhibition of transcription at low temperatures by interacting with the LT A-subunit DNA. The region that interacts with H-NS is referred to as the downstream regulatory element (DRE). Plasmids in an hns strain from which the DRE has been deleted still produce elevated levels of LT at 18 degrees C, suggesting that intact DRE is not required for transcription from the LT promoter.
Collapse
Affiliation(s)
- J D Trachman
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
13
|
White-Ziegler CA, Angus Hill ML, Braaten BA, van der Woude MW, Low DA. Thermoregulation of Escherichia coli pap transcription: H-NS is a temperature-dependent DNA methylation blocking factor. Mol Microbiol 1998; 28:1121-37. [PMID: 9680203 DOI: 10.1046/j.1365-2958.1998.00872.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of Pap pili that facilitate the attachment of Escherichia coli to uroepithelial cells is shut off outside the host at temperatures below 26 degrees C. Ribonuclease protection analysis showed that this thermoregulatory response was rapid as evidenced by the absence of papBA transcripts, coding for Pap pilin, after only one generation of growth at 23 degrees C. The histone-like nucleoid structuring protein H-NS and DNA sequences within papB were required for thermoregulation, but the PapB and PapI regulatory proteins were not. In vivo analysis of pap DNA methylation patterns indicated that H-NS or a factor regulated by H-NS bound within the pap regulatory region at 23 degrees C but not at 37 degrees C, as evidenced by H-NS-dependent inhibition of methylation of the pap GATC sites designated GATC-I and GATC-II. These GATC sites lie upstream of the papBAp promoter and have been shown previously to play a role in controlling Pap pili expression by regulating the binding of Lrp, a global regulator that is essential for activating papBAp transcription. Competitive electrophoretic mobility shift analysis showed that H-NS bound specifically to a pap DNA fragment containing the GATC-I and GATC-II sites. Moreover, H-NS blocked methylation of these pap GATC sites in vitro: H-NS blocked pap GATC methylation at 1.4 microM but was unable to do so at higher concentrations at which non-specific binding occurred. Thus, non-specific binding of H-NS to pap DNA was not sufficient to inhibit methylation of the pap GATC sites. These results suggest that the ability of H-NS to act as a methylation blocking factor is dependent upon the formation of a specific complex of H-NS with pap regulatory DNA. We hypothesize that a function of H-NS such as oligomerization was altered at 23 degrees C, which enabled H-NS to repress pap gene expression through the formation of a specific nucleoprotein complex.
Collapse
Affiliation(s)
- C A White-Ziegler
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City 84132, USA
| | | | | | | | | |
Collapse
|
14
|
Calamita G, Kempf B, Bonhivers M, Bishai WR, Bremer E, Agre P. Regulation of the Escherichia coli water channel gene aqpZ. Proc Natl Acad Sci U S A 1998; 95:3627-31. [PMID: 9520416 PMCID: PMC19886 DOI: 10.1073/pnas.95.7.3627] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/1997] [Accepted: 01/29/1998] [Indexed: 02/06/2023] Open
Abstract
Osmotic movement of water across bacterial cell membranes is postulated to be a homeostatic mechanism for maintaining cell turgor. The molecular water transporter remained elusive until discovery of the Escherichia coli water channel, AqpZ, however the regulation of the aqpZ gene expression and physiological function of the AqpZ protein are unknown. Northern analysis revealed a transcript of 0.7 kb, confirming the monocistronic nature of aqpZ. Regulatory studies performed with an aqpZ::lacZ low copy plasmid demonstrate enhanced expression during mid-logarithmic growth, and expression of the gene is dependent upon the extracellular osmolality, which increased in hypoosmotic environments but strongly reduced in hyperosmolar NaCl or KCl. While disruption of the chromosomal aqpZ is not lethal for E. coli, the colonies of the aqpZ knockout mutant are smaller than those of the parental wild-type strain. When cocultured with parental wild-type E. coli, the aqpZ knockout mutant exhibits markedly reduced colony formation when grown at 39 degrees C. Similarly, the aqpZ knockout mutant also exhibits greatly reduced colony formation when grown at low osmolality, but this phenotype is reversed by overexpression of AqpZ protein. These results implicate AqpZ as a participant in the adaptive response of E. coli to hypoosmotic environments and indicate a requirement for AqpZ by rapidly growing cells.
Collapse
Affiliation(s)
- G Calamita
- Dipartimento di Fisiologia Generale ed Ambientale, University of Bari, via Amendola, 165/A, 70126 Bari, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Rajkumari K, Kusano S, Ishihama A, Mizuno T, Gowrishankar J. Effects of H-NS and potassium glutamate on sigmaS- and sigma70-directed transcription in vitro from osmotically regulated P1 and P2 promoters of proU in Escherichia coli. J Bacteriol 1996; 178:4176-81. [PMID: 8763946 PMCID: PMC178175 DOI: 10.1128/jb.178.14.4176-4181.1996] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have used supercoiled DNA templates in this study to demonstrate that transcription in vitro from the P1 and P2 promoters of the osmoresponsive proU operon of Escherichia coli is preferentially mediated by the sigma(s) and sigma70-bearing RNA polymerase holoenzymes, respectively. Addition of potassium glutamate resulted in the activation of transcription from both P1 and P2 and also led to a pronounced enhancement of sigma(s) selectivity at the P1 promoter. Transcription from P2, and to a lesser extent from P1, was inhibited by the nucleoid protein H-NS but only in the absence of potassium glutamate. This study validates the existence of dual promoters with dual specificities for proU transcription. Our results also support the proposals that potassium, which is known to accumulate in cells grown at high osmolarity, is at least partially responsible for effecting the in vivo induction of proU transcription and that it does so through two mechanisms, directly by the activation of RNA polymerase and indirectly by the relief of repression imposed by H-NS.
Collapse
Affiliation(s)
- K Rajkumari
- Centre for Cellular & Molecular Biology, Hyderabad, India
| | | | | | | | | |
Collapse
|
16
|
Zhang X, Fletcher SA, Csonka LN. Site-directed mutational analysis of the osmotically regulated proU promoter of Salmonella typhimurium. J Bacteriol 1996; 178:3377-9. [PMID: 8655527 PMCID: PMC178099 DOI: 10.1128/jb.178.11.3377-3379.1996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We carried out PCR mutagenesis of the proU promoter of Salmonella typhimurium, in order to identify sequences important for its osmotic control. We obtained five mutations in the -35 element: two decreased the promoter strength, one increased it, and the others had no effect. However, none abolished osmotic control, suggesting that the sequence of the -35 element is not crucial for osmotic control.
Collapse
Affiliation(s)
- X Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | |
Collapse
|
17
|
Gowrishankar J, Manna D. How is osmotic regulation of transcription of the Escherichia coli proU operon achieved? A review and a model. Genetica 1996; 97:363-78. [PMID: 9081863 DOI: 10.1007/bf00055322] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The proU operon in enterobacteria encodes a binding-protein-dependent transporter for the active uptake of glycine betaine and L-proline, and serves an adaptive role during growth of cells in hyperosmolar environments. Transcription of proU is induced 400-fold under these conditions, but the underlying signal transduction mechanisms are incompletely understood. Increased DNA supercoiling and activation by potassium glutamate have each been proposed in alternative models as mediators of proU osmoresponsivity. We review here the available experimental data on proU regulation, and in particular the roles for DNA supercoiling, potassium glutamate, histone-like proteins of the bacterial nucleoid, and alternative sigma factors of RNA polymerase in such regulation. We also propose a new unifying model, in which the pronounced osmotic regulation of proU expression is achieved through the additive effects of at least three separate mechanisms, each comprised of a cis element [two promoters P1 and P2, and negative-regulatory-element (NRE) downstream of both promoters] and distinct trans-acting factors that interact with it: stationary-phase sigma factor RpoS with P1, nucleoid proteins HU and IHF with P2, and nucleoid protein H-NS with the NRE. In this model, potassium glutamate may activate proU expression through each of the three mechanisms whereas DNA supercoiling has a very limited role, if any, in the osmotic induction of proU transcription. We also suggest that proU may be a virulence gene in the pathogenic enterobacteria.
Collapse
Affiliation(s)
- J Gowrishankar
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
18
|
Fagan PK, Djordjevic SP, Eamens GJ, Chin J, Walker MJ. Molecular characterization of a ribonucleotide reductase (nrdF) gene fragment of Mycoplasma hyopneumoniae and assessment of the recombinant product as an experimental vaccine for enzootic pneumonia. Infect Immun 1996; 64:1060-4. [PMID: 8641761 PMCID: PMC173882 DOI: 10.1128/iai.64.3.1060-1064.1996] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A Mycoplasma hyopneumoniae clone bank was screened with hyperimmune pig serum. One clone exhibited sequence homology to the prokaryotic R2 subunit of ribonucleotide reductase and was expressed as an 11-kDa protein fused to beta-galactosidase. The vaccine potential of the fusion protein was assessed in pig trials. Following experimental challenge with a virulent isolate of M. hyopneumoniae, gross lung pathology (mean Goodwin lung score) of vaccinated animals, irrespective of adjuvant treatment, was significantly reduced compared with that of control unvaccinated pigs (P < 0.05).
Collapse
Affiliation(s)
- P K Fagan
- Department of Biological Sciences, University of Wollongong, New South Wales, Australia
| | | | | | | | | |
Collapse
|
19
|
Fletcher SA, Csonka LN. Fine-structure deletion analysis of the transcriptional silencer of the proU operon of Salmonella typhimurium. J Bacteriol 1995; 177:4508-13. [PMID: 7635833 PMCID: PMC177203 DOI: 10.1128/jb.177.15.4508-4513.1995] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transcriptional control of the osmotically regulated proU operon of Salmonella typhimurium is mediated in part by a transcriptional silencer downstream from the promoter (D.G. Overdier and L.N. Csonka, Proc. Natl. Acad. Sci. USA 89:3140-3144, 1992). We carried out a fine-structure deletion analysis to determine the structure and the position of the silencer, which demonstrated that this regulatory element is located between nucleotide positions +73 to +274 downstream from the transcription start site. The silencer appears to be made up of a number of components which have cumulative negative regulatory effects. Deletions or insertions of short nucleotide sequences (< 40 bp) between the proU promoter and the silencer do not disrupt repression exerted by the silencer, but long insertions (> or = 0.8 kbp) result in a high level of expression from the proU promoter, similar to that imparted by deletion of the entire silencer. The general DNA-binding protein H-NS is required for the full range of repression of the proU operon in media of low osmolality. Although in the presence of the silencer hns mutations increased basal expression from the proU promoter three- to sixfold, in the absence of the silencer they did not result in a substantial increase in basal expression from the proU promoter. Furthermore, deletion of the silencer in hns+ background was up to 10-fold more effective in increasing basal expression from the proU promoter than the hns mutations. These results indicate that osmotic control of the proU operon is dependent of some factor besides H-NS. We propose that the transcriptional regulation of this operon is effected in media of low osmolality by a protein which makes the promoter inaccessible to RNA polymerase by forming a complex containing the proU promoter and silencer.
Collapse
Affiliation(s)
- S A Fletcher
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | |
Collapse
|
20
|
Gutierrez C, Gordia S, Bonnassie S. Characterization of the osmotically inducible gene osmE of Escherichia coli K-12. Mol Microbiol 1995; 16:553-63. [PMID: 7565114 DOI: 10.1111/j.1365-2958.1995.tb02418.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
osmE, an osmotically inducible gene of Escherichia coli, was physically mapped on the bacterial chromosome, cloned and sequenced. osmE appeared to encode a 12,021 Da protein of unknown function, with a lipoprotein-type signal sequence at the amino-terminus. The osmE reading frame was confirmed by sequencing the junction of an osmE-phoA gene fusion. osmE was demonstrated to be transcribed as a single cistron. A phi [osmEp-lac] operon fusion was constructed, and analysis of its expression demonstrated that osmE osmotic regulation probably occurs at the transcriptional level. The osmE promoter was identified by both S1 nuclease and primer extension mapping of the 5' end of the osmE mRNA, by deletion analysis and by identification of a point mutation reducing its activity. Sequence information sufficient for expression and osmotic regulation is present on a DNA fragment extending from positions -37 to +52 with respect to the osmE transcription start. Uninduced expression of the osmE-lac fusion was increased in the presence of mutations in the hns and himA genes. The osmE promoter overlaps a promoter for a gene transcribed in the opposite direction, efg. Transcription from the efg promoter is only weakly affected by osmotic pressure and is independent of the presence of an intact OsmE protein.
Collapse
Affiliation(s)
- C Gutierrez
- Laboratoire de Microbiologie et Génétique Moléculaire, UPR 9007 du CNRS, Toulouse, France
| | | | | |
Collapse
|
21
|
Jayashree P, Gowrishankar J. An unusual suicidal interaction inEscherichia coli involving nucleoid protein H-NS. J Genet 1995. [DOI: 10.1007/bf02924242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Mellies J, Wise A, Villarejo M. Two different Escherichia coli proP promoters respond to osmotic and growth phase signals. J Bacteriol 1995; 177:144-51. [PMID: 8002611 PMCID: PMC176566 DOI: 10.1128/jb.177.1.144-151.1995] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
proP of Escherichia coli encodes an active transport system for proline and glycine betaine which is activated by both hyperosmolarity and amino acid-limited growth. proP DNA sequences far upstream from the translational start site are strongly homologous to the promoter of proU, an operon that specifies another osmoregulated glycine betaine transport system. Mutation and deletion analysis of proP and primer extension experiments established that this promoter, P1, was responsible for proP's strong expression in minimal medium and its response to osmotic signals. When cells were grown in complex medium, expression from a proP-lacZ fusion was induced three- to fourfold as growth slowed and cells entered stationary phase. Stationary-phase induction was dependent on rpoS, which encodes a stationary-phase sigma factor. Deletion of 158 bp of the untranslated leader sequence between P1 and the proP structural gene abolished rpoS-dependent stationary-phase regulation. Transcription initiation detected by primer extension within this region was absent in an rpoS mutant. proP is therefore a member of the growing class of sigma S-dependent genes which respond to both stationary-phase and hyperosmolarity signals.
Collapse
Affiliation(s)
- J Mellies
- Section of Microbiology, University of California, Davis 95616
| | | | | |
Collapse
|
23
|
Herbst B, Kneip S, Bremer E. pOSEX: vectors for osmotically controlled and finely tuned gene expression in Escherichia coli. Gene 1994; 151:137-42. [PMID: 7828862 DOI: 10.1016/0378-1119(94)90644-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Expression of the proU operon of Escherichia coli is directly proportional to the osmolarity of the growth medium. The basal level of proU transcription is very low, but a large increase is triggered by a sudden rise in the external osmolarity. This increased expression is maintained for as long as the osmotic stimulus persists. We have capitalized upon these regulatory features of the proU operon and have constructed a series of expression vectors (pOSEX) permitting osmotically controlled expression of heterologous genes governed by regulatory signals of proU. The pOSEX vectors carry the proU promoter, an upstream region required for high-level expression, and part of the first structural gene (proV), which acts as a silencer and is necessary to maintain low-level expression in low osmolarity media. An extended multiple cloning site (MCS) positioned at the 3' end of proV' permits the cloning of heterologous genes into the pOSEX plasmids, and efficient transcription terminators derived from the rrnB operon prevent deleterious read-through transcription into the vector portion. The properties of the pOSEX expression vectors were tested by positioning a promoterless lacZ (encoding beta-galactosidase) gene from E. coli and the gcdA (encoding carboxytransferase) gene from the Gram+ bacterium Acidaminococcus fermentans under the control of the proU regulatory region. Efficient, osmo-regulated and finely tuned expression of both lacZ and gcdA was achieved, and the amount of beta-galactosidase and carboxytransferase synthesized were simply controlled by adjusting the osmolarity of the growth medium with various concentrations of NaCl.
Collapse
Affiliation(s)
- B Herbst
- Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany
| | | | | |
Collapse
|
24
|
Manna D, Gowrishankar J. Evidence for involvement of proteins HU and RpoS in transcription of the osmoresponsive proU operon in Escherichia coli. J Bacteriol 1994; 176:5378-84. [PMID: 8071215 PMCID: PMC196724 DOI: 10.1128/jb.176.17.5378-5384.1994] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Transcription of the proU operon of Escherichia coli is induced several hundred-fold upon growth at elevated osmolarity, but the underlying mechanisms are incompletely understood. Three cis elements appear to act additively to mediate proU osmoresponsivity: (i) sequences around a promoter, P1, which is situated 250 bp upstream of the first structural gene proV; (ii) sequences around another (sigma 70-dependent) promoter, P2, which is situated 60 bp upstream of proV; and (iii) a negative regulatory element present within the proV coding region. These three cis elements are designated, respectively, P1R, P2R, and NRE. trans-acting mutants with partially derepressed proU expression have been obtained earlier, and a vast majority of the mutations affect the gene encoding the nucleoid protein HNS. In this study we employed a selection for trans-acting mutants with reduced proU+ expression, and we obtained a derivative that had suffered mutations in two separate loci designated dpeA and dpeB. The dpeB mutation caused a marked reduction in promoter P1 expression and was allelic to rpoS, the structural gene for the stationary-phase-specific sigma factor of RNA polymerase. Expression from P1 was markedly induced, in an RpoS-dependent manner, in stationary-phase cultures. In contrast to the behavior of the isolated P1 promoter, transcription from a construct carrying the entire proU cis-regulatory region (P1R plus P2R plus NRE) was not significantly affected by either growth phase or RpoS. The dpeA locus was allelic to hupB, which along with hupA encodes the nucleoid protein HU. hupA hupB double mutants exhibited a pronounced reduction in proU osmotic inducibility. HU appears to affect proU regulation through the P2R mechanism, whereas the effect of HNS is mediated through the NRE.
Collapse
Affiliation(s)
- D Manna
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
25
|
Mellies J, Brems R, Villarejo M. The Escherichia coli proU promoter element and its contribution to osmotically signaled transcription activation. J Bacteriol 1994; 176:3638-45. [PMID: 8206842 PMCID: PMC205553 DOI: 10.1128/jb.176.12.3638-3645.1994] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The proU operon of Escherichia coli encodes a high-affinity glycine betaine transport system which is osmotically inducible and enables the organism to recover from the deleterious effects of hyperosmotic shock. Regulation occurs at the transcriptional level. KMnO4 footprinting showed that the preponderance of transcription initiated at a single primary promoter region and that proU transcription activation did not occur differentially at alternate promoters in response to various levels of salt shock. Mutational analysis confirmed the location of the primary promoter and identified an extended -10 region required for promoter activity. Specific nucleotides within the spacer, between position -10 and position -35, were important for maximal expression, but every mutant which retained transcriptional activity remained responsive to osmotic signals. A chromosomal 90-bp minimal promoter fragment fused to lacZ was not significantly osmotically inducible. However, transcription from this fragment was resistant to inhibition by salt shock. A mutation in osmZ, which encodes the DNA-binding protein H-NS, derepressed wild-type proU expression by sevenfold but did not alter expression from the minimal promoter. The current data support a model in which the role of the proU promoter is to function efficiently at high ionic strength while other cis-acting elements receive and respond to the osmotic signal.
Collapse
Affiliation(s)
- J Mellies
- Section of Microbiology, University of California, Davis 95616
| | | | | |
Collapse
|
26
|
Lucht JM, Bremer E. Adaptation of Escherichia coli to high osmolarity environments: osmoregulation of the high-affinity glycine betaine transport system proU. FEMS Microbiol Rev 1994; 14:3-20. [PMID: 8011357 DOI: 10.1111/j.1574-6976.1994.tb00067.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A sudden increase in the osmolarity of the environment is highly detrimental to the growth and survival of Escherichia coli and Salmonella typhimurium since it triggers a rapid efflux of water from the cell, resulting in a decreased turgor. Changes in the external osmolarity must therefore be sensed by the microorganisms and this information must be converted into an adaptation process that aims at the restoration of turgor. The physiological reaction of the cell to the changing environmental condition is a highly coordinated process. Loss of turgor triggers a rapid influx of K+ ions into the cell via specific transporters and the concomitant synthesis of counterions, such as glutamate. The increased intracellular concentration of K(+)-glutamate allows the adaptation of the cell to environments of moderately high osmolarities. At high osmolarity, K(+)-glutamate is insufficient to ensure cell growth, and the bacteria therefore replace the accumulated K+ ions with compounds that are less deleterious for the cell's physiology. These compatible solutes include polyoles such as trehalose, amino acids such as proline, and methyl-amines such as glycine betaine. One of the most important compatible solutes for bacteria is glycine betaine. This potent osmoprotectant is widespread in nature, and its intracellular accumulation is achieved through uptake from the environment or synthesis from its precursor choline. In this overview, we discuss the properties of the high-affinity glycine betaine transport system ProU and the osmotic regulation of its structural genes.
Collapse
Affiliation(s)
- J M Lucht
- University of Konstanz, Department of Biology, FRG
| | | |
Collapse
|
27
|
Lucht J, Dersch P, Kempf B, Bremer E. Interactions of the nucleoid-associated DNA-binding protein H-NS with the regulatory region of the osmotically controlled proU operon of Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37411-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
28
|
Dersch P, Schmidt K, Bremer E. Synthesis of the Escherichia coli K-12 nucleoid-associated DNA-binding protein H-NS is subjected to growth-phase control and autoregulation. Mol Microbiol 1993; 8:875-89. [PMID: 8355613 DOI: 10.1111/j.1365-2958.1993.tb01634.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mutations in the structural gene (hns) for the Escherichia coli nucleoid-associated DNA-binding protein H-NS cause highly pleiotropic effects on gene expression, site-specific recombination, transposition of phage Mu, the stability of the genetic material and the topological state of the DNA. We have investigated the regulation of hns expression and found that hns transcription is subjected to stationary phase induction and negative autoregulation. A set of hns-lacZ protein and operon fusions was constructed in vitro and integrated in single copy into the attB site of the bacterial genome. Quantification of beta-galactosidase activity along the bacterial growth curve showed that hns expression increases approximately 10-fold in stationary phase compared with exponentially growing cells. Immunological detection of the H-NS protein in growing and stationary phase cells supported the genetic data and showed that H-NS synthesis varies with growth phase. In addition, primer extension experiments demonstrated that the amount of hns mRNA is elevated in stationary phase cultures and that hns transcription is directed by a unique promoter functioning in both log and stationary phase. Disruption of the hns gene by an insertion mutation led to the derepression (approximately fourfold) of the expression of an hns-lacZ operon fusion integrated at the attB site, showing that hns transcription is subjected to negative regulation by its own gene product. Autoregulation of hns expression is particularly pronounced in log phase. Both stationary phase control and autoregulation of hns transcription are associated with a 130 bp fragment that contains the hns promoter. In order to study the interaction of H-NS with its own regulatory region, we developed an efficient overproduction procedure and a simple purification scheme for H-NS. DNA gel retardation assays showed that the H-NS protein can preferentially interact with a restriction fragment carrying the hns promoter. This restriction fragment showed features of curved DNA as judged by two-dimensional polyacrylamide gel electrophoresis performed at 4 degrees C and 60 degrees C.
Collapse
Affiliation(s)
- P Dersch
- Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany
| | | | | |
Collapse
|
29
|
Hengge-Aronis R, Lange R, Henneberg N, Fischer D. Osmotic regulation of rpoS-dependent genes in Escherichia coli. J Bacteriol 1993; 175:259-65. [PMID: 8416901 PMCID: PMC196121 DOI: 10.1128/jb.175.1.259-265.1993] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The rpoS gene, which encodes a putative alternative sigma factor (sigma S), is essential for the expression of a variety of stationary-phase-induced genes as well as for stationary-phase-specific multiple-stress resistance. As previously shown for the otsA and otsB genes (R. Hengge-Aronis, W. Klein, R. Lange, M. Rimmele, and W. Boos, J. Bacteriol. 173:7918-7924, 1991), we demonstrate here that additional rpoS-controlled genes (bolA, csi-5) as well as at least 18 proteins on two-dimensional O'Farrell gels could be induced in growing cells by osmotic upshift via an rpoS-dependent mechanism. Also, rpoS-dependent thermotolerance and resistance against hydrogen peroxide could be osmotically stimulated. In contrast, the expression of glgS, while exhibiting strong stationary-phase induction, was only weakly increased by elevated osmolarity, and several rpoS-dependent proteins previously identified on two-dimensional gels were not osmotically induced. During osmotic induction of rpoS-dependent genes, rpoS transcription and the level of sigma S remained unchanged. We conclude that osmotically regulated genes represent a subfamily within the rpoS regulon that requires differential regulation in addition to that provided by sigma S.
Collapse
|
30
|
Friehs K, Reardon KF. Parameters influencing the productivity of recombinant E. coli cultivations. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1993; 48:53-77. [PMID: 8460577 DOI: 10.1007/bfb0007196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the past 10 to 15 years, many of the promises of microbial genetic engineering have been realized: the use of recombinant Escherichia coli has moved from the laboratory to the production facility, and the manufacture of therapeutic recombinant proteins such as human growth hormone and interleukins is a rapidly growing industry. Along with this progress, however, have come new problems to solve: bioreactor operators have discovered that large-scale cultivations of plasmid-containing bacteria do not behave in exactly the same way as those of plasmid-free cells, plasmid stability has been recognized as a major hurdle, and the protein product might not be present in a soluble form but rather as intracellular granules that resist solubilization. These and other difficulties represent a new generation of challenges for genetic engineering. However, genetic engineering can do more than solve these problems. Molecular biological techniques also have the ability to create new opportunities: to produce new compounds, to use cheaper substrates, to facilitate downstream processing, and to optimize production in new ways. The productivity of a cultivation can generally be expressed as the product of the cell density and the specific biological activity. Both of these parameters are influenced by a variety of factors. For recombinant cultivations, though, the level of biological activity, a reflection of the plasmid copy number and expression efficiency, is the more interesting and important consideration and will therefore be given more attention in our review. In this contribution, our general goal is to discuss the factors that influence the productivity of recombinant E. coli cultivations, covering parameters relating to DNA; parameters relating to protein synthesis; parameters relating to proteins; and parameters relating to downstream processing. The object is not to tell the reader how to choose the perfect plasmid, host, and cultivation conditions, but to make known the many variables involved in designing a recombinant process and to point out recent and potential advances made possible by genetic engineering. The discussion focuses on the production of a protein, but many of the same concepts apply to other cultivations of recombinant E. coli, including cases in which the desired product is not a protein or the cells have been designed for a special metabolic capability such as pollutant biodegradation.
Collapse
Affiliation(s)
- K Friehs
- Technische Fakultät, AG Fermentationstechnik, Universität Bielefeld, Germany
| | | |
Collapse
|
31
|
Owen-Hughes TA, Pavitt GD, Santos DS, Sidebotham JM, Hulton CS, Hinton JC, Higgins CF. The chromatin-associated protein H-NS interacts with curved DNA to influence DNA topology and gene expression. Cell 1992; 71:255-65. [PMID: 1423593 DOI: 10.1016/0092-8674(92)90354-f] [Citation(s) in RCA: 243] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
H-NS is an abundant structural component of bacterial chromatin and influences many cellular processes, including recombination, transposition, and transcription. We have studied the mechanism of action of H-NS at the osmotically regulated proU promoter. The interaction of H-NS with a curved DNA element located downstream of the proU promoter is required for normal regulation of expression. Heterologous curved sequences can replace the regulatory role of the proU curve. Hence, the luxAB and lacZ reporter genes, which differ in the presence or absence of a curve, can indicate very different patterns of transcription. H-NS interacts preferentially with these curved DNA elements in vitro. Furthermore, in vivo the interaction of H-NS with curved DNA participates in the control of plasmid linking number. The data suggest that H-NS-dependent changes in DNA topology play a role in the osmoregulation of proU expression.
Collapse
Affiliation(s)
- T A Owen-Hughes
- Imperial Cancer Research Fund, University of Oxford, John Radcliffe Hospital, England
| | | | | | | | | | | | | |
Collapse
|
32
|
Jebbar M, Talibart R, Gloux K, Bernard T, Blanco C. Osmoprotection of Escherichia coli by ectoine: uptake and accumulation characteristics. J Bacteriol 1992; 174:5027-35. [PMID: 1629159 PMCID: PMC206317 DOI: 10.1128/jb.174.15.5027-5035.1992] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) is a cyclic amino acid, identified as a compatible solute in moderately halophilic bacteria. Exogenously provided ectoine was found to stimulate growth of Escherichia coli in media of inhibitory osmotic strength. The stimulation was independent of any specific solute, electrolyte or nonelectrolyte. It is accumulated in E. coli cells proportionally to the osmotic strength of the medium, and it is not metabolized. Its osmoprotective ability was as potent as that of glycine betaine. The ProP and ProU systems are both involved in ectoine uptake and accumulation in E. coli. ProP being the main system for ectoine transport. The intracellular ectoine pool is regulated by both influx and efflux systems.
Collapse
Affiliation(s)
- M Jebbar
- Centre National de la Recherche Scientifique URA 256, Laboratoire de Génétique et Physiologie Microbiennes, Rennes, France
| | | | | | | | | |
Collapse
|
33
|
Overdier DG, Csonka LN. A transcriptional silencer downstream of the promoter in the osmotically controlled proU operon of Salmonella typhimurium. Proc Natl Acad Sci U S A 1992; 89:3140-4. [PMID: 1557423 PMCID: PMC48820 DOI: 10.1073/pnas.89.7.3140] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The proU operon of Salmonella typhimurium is induced by conditions of high osmolality. The cis-acting sequences that mediate osmotic control of transcription were characterized by deletion analysis. The nucleotide sequence between -60 and +274 (relative to the transcription start point) is sufficient for normal osmotic control. Deletions that removed sequences upstream of position +274 but left the promoter intact resulted in greatly increased expression from the proU promoter in the absence of osmotic stress. Thus, the transcription control region of the proU operon consists of two discrete components: (i) the promoter and (ii) a negatively acting site that overlaps the coding sequence of the first structural gene of the operon, proV. That this negative regulatory element is a transcriptional terminator or mRNA processing site was ruled out. Our results suggest that the negative regulatory element behaves as a transcriptional silencer that inhibits transcription initiation at the proU promoter in medium of low osmolality by some action at a distance. We propose several possible mechanisms for the function of this regulatory site.
Collapse
Affiliation(s)
- D G Overdier
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | |
Collapse
|
34
|
Dattananda CS, Rajkumari K, Gowrishankar J. Multiple mechanisms contribute to osmotic inducibility of proU operon expression in Escherichia coli: demonstration of two osmoresponsive promoters and of a negative regulatory element within the first structural gene. J Bacteriol 1991; 173:7481-90. [PMID: 1938945 PMCID: PMC212513 DOI: 10.1128/jb.173.23.7481-7490.1991] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transcription of the proU operon in Escherichia coli is induced several hundredfold upon growth of cells in media of elevated osmolarity. A low-copy-number promoter-cloning plasmid vector, with lacZ as the reporter gene, was used for assaying the osmoresponsive promoter activity of each of various lengths of proU DNA, generated by cloning of discrete restriction fragments and by an exonuclease III-mediated deletion approach. The results indicate that expression of proU in E. coli is directed from two promoters, one (P2) characterized earlier by other workers with the start site of transcription 60 nucleotides upstream of the initiation codon of the first structural gene (proV), and the other (P1) situated 250 nucleotides upstream of proV. Furthermore, a region of DNA within proV was shown to be involved in negative regulation of proU transcription; phage Mu dII1681-generated lac fusions in the early region of proV also exhibited partial derepression of proU regulation, in comparison with fusions further downstream in the operon. Sequences around promoter P1, sequences around P2, and the promoter-downstream negative regulatory element, respectively, conferred approximately 5-, 8-, and 25-fold osmoresponsivity on proU expression. Within the region genetically defined to encode the negative regulatory element, there is a 116-nucleotide stretch that is absolutely conserved between the proU operons of E. coli and Salmonella typhimurium and has the capability of exhibiting alternative secondary structure. Insertion of this region of DNA into each of two different plasmid vectors was associated with a marked reduction in the mean topological linking number in plasmid molecules isolated from cultures grown in high-osmolarity medium. We propose that this region of DNA undergoes reversible transition to an underwound DNA conformation under high-osmolarity growth conditions and that this transition mediates its regulatory effect on proU expression.
Collapse
Affiliation(s)
- C S Dattananda
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|