1
|
Vološen T, Gutbier U, Korn R, Korp J, Göttsche T, Schuster L, Pohl C, Rau C, Wolf D, Ostermann K. Controlled interkingdom cell-cell communication between Saccharomyces cerevisiae and Bacillus subtilis using quorum-sensing peptides. Front Microbiol 2024; 15:1477298. [PMID: 39726954 PMCID: PMC11669912 DOI: 10.3389/fmicb.2024.1477298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Understanding communication among microorganisms through the array of signal molecules and establishing controlled signal transfer between different species is a major goal of the future of biotechnology, and controlled multispecies bioreactor cultivations will open a wide range of applications. In this study, we used two quorum-sensing peptides from Bacillus subtilis - namely, the competence and sporulation factor (CSF) and regulator of the activity of phosphatase RapF (PhrF)-to establish a controlled interkingdom communication system between prokaryotes and eukaryotes. For this purpose, we engineered B. subtilis as a reporter capable of detecting the CSF and PhrF peptides heterologously produced by the yeast Saccharomyces cerevisiae. The reporter strain included the ComA-dependent srfAA promoter fused to the bioluminescence or fluorescence reporter gene(s) to monitor promoter activity measured in a multimode microplate reader. The first measurements of srfAA promoter activity showed a specific response of the reporter strain to the peptides CSF and PhrF. Based on this, systematic mutagenesis of genes that modulate the activity of ComA in the reporter strain resulted in increased activity of the promoter and, thereby, higher sensitivity to the heterologously produced CSF/PhrF. The robustness of the signal transfer was further confirmed in co-cultivation studies in both liquid and solid media. The reporter strain exhibited an up to 5-fold increase in promoter activity in the presence of quorum-sensing peptides-producing cells of S. cerevisiae. In summary, a quorum sensing peptide-driven interkingdom crosstalk between yeast and bacteria was successfully established, which might serve as a basis for controlled protein expression in co-cultivations, establishing biological sensor-actuator systems or study cell-cell interaction and metabolite exchange in bioreactors cultivations.
Collapse
Affiliation(s)
- Tomislav Vološen
- General Microbiology, Chair of General Microbiology, TUD Dresden University of Technology, Dresden, Germany
| | - Uta Gutbier
- Faculty of Biology, Research Group Biological Sensor-Actuator-Systems, TUD Dresden University of Technology, Dresden, Germany
- Else Kröner Fresenius Center for Digital Health, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Ramón Korn
- Faculty of Biology, Research Group Biological Sensor-Actuator-Systems, TUD Dresden University of Technology, Dresden, Germany
| | - Juliane Korp
- Faculty of Biology, Research Group Biological Sensor-Actuator-Systems, TUD Dresden University of Technology, Dresden, Germany
| | - Tobias Göttsche
- Faculty of Biology, Research Group Biological Sensor-Actuator-Systems, TUD Dresden University of Technology, Dresden, Germany
| | - Linda Schuster
- Institute of Water Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | - Carolin Pohl
- Institute of Water Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | - Cindy Rau
- Institute of Water Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | - Diana Wolf
- General Microbiology, Chair of General Microbiology, TUD Dresden University of Technology, Dresden, Germany
| | - Kai Ostermann
- Faculty of Biology, Research Group Biological Sensor-Actuator-Systems, TUD Dresden University of Technology, Dresden, Germany
| |
Collapse
|
2
|
Ermoli F, Bontà V, Vitali G, Calvio C. SwrA as global modulator of the two-component system DegSU in Bacillus subtilis. Res Microbiol 2021; 172:103877. [PMID: 34487843 DOI: 10.1016/j.resmic.2021.103877] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022]
Abstract
The two-component system DegSU of Bacillus subtilis controls more than one hundred genes involved in several different cellular behaviours. Over the last four decades, the degU32Hy allele, supposedly encoding a constitutively active mutant of the response regulator DegU, was exploited to define the impact of this system on cell physiology. Those studies concluded that phosphorylated DegU (DegU∼P) induced degradative enzyme expression while repressing flagellar motility and competence. Recent experiments, however, demonstrated that flagella expression is enhanced by DegU∼P if SwrA, a protein only encoded by wild strains, is present. Yet, to promote motility, SwrA must interact with DegU∼P produced by a wild-type degU allele, as it cannot correctly cooperate with the mutant DegU32Hy protein. In this work, the impact of DegSU was reanalysed in the presence or absence of SwrA employing a DegS kinase mutant, degS200Hy, to force the activation of the TCS. Our results demonstrate that the role of SwrA in B. subtilis physiology is wider than expected and affects several other DegSU targets. SwrA reduces subtilisin, cellulases and xylanases production while, besides motility, it also positively modulates competence for DNA uptake, remarkably relieving the inhibition caused by DegU∼P alone and restoring transformability in degS200Hy strains.
Collapse
Affiliation(s)
- Francesca Ermoli
- Dept. of Biology and Biotechnology, Laboratories of Genetics and Microbiology, University of Pavia, Via Ferrata 9, 27100 Pavia (I), Italy.
| | - Valeria Bontà
- Dept. of Biology and Biotechnology, Laboratories of Genetics and Microbiology, University of Pavia, Via Ferrata 9, 27100 Pavia (I), Italy.
| | - Giulia Vitali
- Dept. of Biology and Biotechnology, Laboratories of Genetics and Microbiology, University of Pavia, Via Ferrata 9, 27100 Pavia (I), Italy.
| | - Cinzia Calvio
- Dept. of Biology and Biotechnology, Laboratories of Genetics and Microbiology, University of Pavia, Via Ferrata 9, 27100 Pavia (I), Italy.
| |
Collapse
|
3
|
Kin discrimination promotes horizontal gene transfer between unrelated strains in Bacillus subtilis. Nat Commun 2021; 12:3457. [PMID: 34103505 PMCID: PMC8187645 DOI: 10.1038/s41467-021-23685-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/07/2021] [Indexed: 11/08/2022] Open
Abstract
Bacillus subtilis is a soil bacterium that is competent for natural transformation. Genetically distinct B. subtilis swarms form a boundary upon encounter, resulting in killing of one of the strains. This process is mediated by a fast-evolving kin discrimination (KD) system consisting of cellular attack and defence mechanisms. Here, we show that these swarm antagonisms promote transformation-mediated horizontal gene transfer between strains of low relatedness. Gene transfer between interacting non-kin strains is largely unidirectional, from killed cells of the donor strain to surviving cells of the recipient strain. It is associated with activation of a stress response mediated by sigma factor SigW in the donor cells, and induction of competence in the recipient strain. More closely related strains, which in theory would experience more efficient recombination due to increased sequence homology, do not upregulate transformation upon encounter. This result indicates that social interactions can override mechanistic barriers to horizontal gene transfer. We hypothesize that KD-mediated competence in response to the encounter of distinct neighbouring strains could maximize the probability of efficient incorporation of novel alleles and genes that have proved to function in a genomically and ecologically similar context.
Collapse
|
4
|
Iqbal M, Broberg M, Haarith D, Broberg A, Bushley KE, Brandström Durling M, Viketoft M, Funck Jensen D, Dubey M, Karlsson M. Natural variation of root lesion nematode antagonism in the biocontrol fungus Clonostachys rosea and identification of biocontrol factors through genome-wide association mapping. Evol Appl 2020; 13:2264-2283. [PMID: 33005223 PMCID: PMC7513725 DOI: 10.1111/eva.13001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 01/28/2023] Open
Abstract
Biological control is a promising approach to reduce plant diseases caused by nematodes to ensure high productivity in agricultural production. Large-scale analyses of genetic variation in fungal species used for biocontrol can generate knowledge regarding interaction mechanisms that can improve efficacy of biocontrol applications. In this study, we performed a genome-wide association study (GWAS) for in vitro antagonism against the root lesion nematode Pratylenchus penetrans in 53 previously genome re-sequenced strains of the biocontrol fungus Clonostachys rosea. Nematode mortality in C. rosea potato dextrose broth (PDB) culture filtrates was highly variable and showed continuous variation (p < .001) between strains, indicating a polygenic inheritance. Twenty-one strains produced culture filtrates with higher (p ≤ .05) nematode mortality compared with the PDB control treatment, while ten strains lowered (p ≤ .05) the mortality. The difference in in vitro antagonism against P. penetrans correlated with antagonism against the soybean cyst nematode Heterodera glycines, indicating lack of host specificity in C. rosea. An empirical Bayesian multiple hypothesis testing approach identified 279 single nucleotide polymorphism markers significantly (local false sign rate < 10-10) associated with the trait. Genes present in the genomic regions associated with nematicidal activity included several membrane transporters, a chitinase and genes encoding proteins predicted to biosynthesize secondary metabolites. Gene deletion strains of the predicted nonribosomal peptide synthetase genes nps4 and nps5 were generated and showed increased (p ≤ .001) fungal growth and conidiation rates compared to the wild type. Deletion strains also exhibited reduced (p < .001) nematicidal activity and reduced (p ≤ .05) biocontrol efficacy against nematode root disease and against fusarium foot rot on wheat. In summary, we show that the GWAS approach can be used to identify biocontrol factors in C. rosea, specifically the putative nonribosomal peptide synthetases NPS4 and NPS5.
Collapse
Affiliation(s)
- Mudassir Iqbal
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Martin Broberg
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Deepak Haarith
- Department of Plant and Microbial Biology University of Minnesota St. Paul MN USA
| | - Anders Broberg
- Department of Molecular Sciences Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Kathryn E Bushley
- Department of Plant and Microbial Biology University of Minnesota St. Paul MN USA
| | - Mikael Brandström Durling
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Maria Viketoft
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
5
|
Iqbal M, Dubey M, Broberg A, Viketoft M, Jensen DF, Karlsson M. Deletion of the Nonribosomal Peptide Synthetase Gene nps1 in the Fungus Clonostachys rosea Attenuates Antagonism and Biocontrol of Plant Pathogenic Fusarium and Nematodes. PHYTOPATHOLOGY 2019; 109:1698-1709. [PMID: 31120795 DOI: 10.1094/phyto-02-19-0042-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Secondary metabolites produced by biological control agents may influence the outcome of their interactions with plant pathogenic microorganisms and plants. In the present study, we investigated the role of the nonribosomal peptide synthetase gene nps1 expressed by the biocontrol fungus Clonostachys rosea. A gene expression analysis showed that nps1 was induced during confrontations with the plant pathogenic fungus Botrytis cinerea. Gene deletion strains of nps1 displayed increased growth rates and conidiation. However, the nematicidal activity of culture filtrates from C. rosea Δnps1 strains was significantly weaker than that from wild-type filtrates (P ≤ 0.001); after 24 h of incubation with culture filtrates from nps1 deletion strains, only 13 to 33% of a mixed community of nematodes were dead compared with 42% of nematodes incubated with wild-type culture filtrates. The Δnps1 strains also showed reduced biocontrol efficacy during pot experiments, thus failing to protect wheat seedlings from foot rot disease caused by the plant pathogenic fungus Fusarium graminearum. Furthermore, C. rosea Δnps1 strains were not able to reduce populations of plant-parasitic nematodes in soil or in roots of wheat as efficiently as the wild-type strain. Both C. rosea wild-type and Δnps1 strains increased the dry shoot weight and shoot length of wheat by 20 and 13%, respectively. We showed that NPS1, a putative nonribosomal peptide synthetase encoded by nps1, is a biocontrol factor, presumably by producing a hitherto unknown nonribosomal peptide compound with antifungal and nematicidal properties that contributes to the biocontrol properties of C. rosea.
Collapse
Affiliation(s)
- Mudassir Iqbal
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Anders Broberg
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maria Viketoft
- Department of Ecology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| |
Collapse
|
6
|
Miras M, Dubnau D. A DegU-P and DegQ-Dependent Regulatory Pathway for the K-state in Bacillus subtilis. Front Microbiol 2016; 7:1868. [PMID: 27920766 PMCID: PMC5118428 DOI: 10.3389/fmicb.2016.01868] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/07/2016] [Indexed: 12/04/2022] Open
Abstract
The K-state in the model bacterium Bacillus subtilis is associated with transformability (competence) as well as with growth arrest and tolerance for antibiotics. Entry into the K-state is determined by the stochastic activation of the transcription factor ComK and occurs in about ∼15% of the population in domesticated strains. Although the upstream mechanisms that regulate the K-state have been intensively studied and are well understood, it has remained unexplained why undomesticated isolates of B. subtilis are poorly transformable compared to their domesticated counterparts. We show here that this is because fewer cells enter the K-state, suggesting that a regulatory pathway limiting entry to the K-state is missing in domesticated strains. We find that loss of this limitation is largely due to an inactivating point mutation in the promoter of degQ. The resulting low level of DegQ decreases the concentration of phosphorylated DegU, which leads to the de-repression of the srfA operon and ultimately to the stabilization of ComK. As a result, more cells reach the threshold concentration of ComK needed to activate the auto-regulatory loop at the comK promoter. In addition, we demonstrate that the activation of srfA transcription in undomesticated strains is transient, turning off abruptly as cells enter the stationary phase. Thus, the K-state and transformability are more transient and less frequently expressed in the undomesticated strains. This limitation is more extreme than appreciated from studies of domesticated strains. Selection has apparently limited both the frequency and the duration of the bistably expressed K-state in wild strains, likely because of the high cost of growth arrest associated with the K-state. Future modeling of K-state regulation and of the fitness advantages and costs of the K-state must take these features into account.
Collapse
Affiliation(s)
- Mathieu Miras
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, NewarkNJ, USA; Laboratoire de Microbiologie et Génétique Moléculaires, Université de ToulouseToulouse, France
| | - David Dubnau
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark NJ, USA
| |
Collapse
|
7
|
Rahmer R, Morabbi Heravi K, Altenbuchner J. Construction of a Super-Competent Bacillus subtilis 168 Using the P mtlA -comKS Inducible Cassette. Front Microbiol 2015; 6:1431. [PMID: 26732353 PMCID: PMC4685060 DOI: 10.3389/fmicb.2015.01431] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/01/2015] [Indexed: 11/16/2022] Open
Abstract
Competence is a physiological state that enables Bacillus subtilis 168 to take up and internalize extracellular DNA. In practice, only a small subpopulation of B. subtilis 168 cells becomes competent when they enter stationary phase. In this study, we developed a new transformation method to improve the transformation efficiency of B. subtilis 168, specially in rich media. At first, different competence genes, namely comK, comS, and dprA, were alone or together integrated into the chromosome of B. subtilis 168 under control of mannitol-inducible PmtlA promoter. Overexpression of both comK and comS increased the transformation efficiency of B. subtilis REG19 with plasmid DNA by 6.7-fold compared to the wild type strain 168. This transformation efficiency reached its maximal level after 1.5 h of induction by mannitol. Besides, transformability of the REG19 cells was saturated in the presence of 100 ng dimeric plasmid or 3000 ng chromosomal DNA. Studying the influence of global regulators on the development of competence pointed out that important competence development factors, such as Spo0A, ComQXPA, and DegU, could be removed in REG19. On the other hand, efficient REG19 transformation remained highly dependent on the original copies of comK and comS regardless of the presence of PmtlA-comKS. Finally, novel plasmid-free strategies were used for transformation of REG19 based on Gibson assembly.
Collapse
Affiliation(s)
- Regine Rahmer
- Institut für Industrielle Genetik, Universität Stuttgart Stuttgart, Germany
| | | | - Josef Altenbuchner
- Institut für Industrielle Genetik, Universität Stuttgart Stuttgart, Germany
| |
Collapse
|
8
|
Jakobs M, Meinhardt F. What renders Bacilli genetically competent? A gaze beyond the model organism. Appl Microbiol Biotechnol 2014; 99:1557-70. [DOI: 10.1007/s00253-014-6316-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022]
|
9
|
The two putative comS homologs of the biotechnologically important Bacillus licheniformis do not contribute to competence development. Appl Microbiol Biotechnol 2014; 99:2255-66. [PMID: 25520171 DOI: 10.1007/s00253-014-6291-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 01/17/2023]
Abstract
In Bacillus subtilis, natural genetic competence is subject to complex genetic regulation and quorum sensing dependent. Upon extracellular accumulation of the peptide-pheromone ComX, the membrane-bound sensor histidine kinase ComP initiates diverse signaling pathways by activating-among others-DegQ and ComS. While DegQ favors the expression of extracellular enzymes rather than competence development, ComS is crucial for competence development as it prevents proteolytic degradation of ComK, the key transcriptional activator of all genes required for the uptake and integration of DNA. In Bacillus licheniformis, ComX/ComP sensed cell density negatively influences competence development, suggesting differences from the quorum-sensing-dependent control mechanism in Bacillus subtilis. Here, we show that each of six investigated strains possesses both of two different, recently identified putative comS genes. When expressed from an inducible promoter, none of the comS candidate genes displayed an impact on competence development neither in B. subtilis nor in B. licheniformis. Moreover, disruption of the genes did not reduce transformation efficiency. While the putative comS homologs do not contribute to competence development, we provide evidence that the degQ gene as for B. subtilis negatively influences genetic competency in B. licheniformis.
Collapse
|
10
|
The RapP-PhrP quorum-sensing system of Bacillus subtilis strain NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of RapP. J Bacteriol 2014; 197:592-602. [PMID: 25422306 DOI: 10.1128/jb.02382-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The genome of Bacillus subtilis 168 encodes eight rap-phr quorum-sensing pairs. Rap proteins of all characterized Rap-Phr pairs inhibit the function of one or several important response regulators: ComA, Spo0F, or DegU. This inhibition is relieved upon binding of the peptide encoded by the cognate phr gene. Bacillus subtilis strain NCIB3610, the biofilm-proficient ancestor of strain 168, encodes, in addition, the rapP-phrP pair on the plasmid pBS32. RapP was shown to dephosphorylate Spo0F and to regulate biofilm formation, but unlike other Rap-Phr pairs, RapP does not interact with PhrP. In this work we extend the analysis of the RapP pathway by reexamining its transcriptional regulation, its effect on downstream targets, and its interaction with PhrP. At the transcriptional level, we show that rapP and phrP regulation is similar to that of other rap-phr pairs. We further find that RapP has an Spo0F-independent negative effect on biofilm-related genes, which is mediated by the response regulator ComA. Finally, we find that the insensitivity of RapP to PhrP is due to a substitution of a highly conserved residue in the peptide binding domain of the rapP allele of strain NCIB3610. Reversing this substitution to the consensus amino acid restores the PhrP dependence of RapP activity and eliminates the effects of the rapP-phrP locus on ComA activity and biofilm formation. Taken together, our results suggest that RapP strongly represses biofilm formation through multiple targets and that PhrP does not counteract RapP due to a rare mutation in rapP.
Collapse
|
11
|
Differential proteomics analysis of Bacillus amyloliquefaciens and its genome-shuffled mutant for improving surfactin production. Int J Mol Sci 2014; 15:19847-69. [PMID: 25365175 PMCID: PMC4264142 DOI: 10.3390/ijms151119847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 11/21/2022] Open
Abstract
Genome shuffling technology was used as a novel whole-genome engineering approach to rapidly improve the antimicrobial lipopeptide yield of Bacillus amyloliquefaciens. Comparative proteomic analysis of the parental ES-2-4 and genome-shuffled FMB38 strains was conducted to examine the differentially expressed proteins. The proteome was separated by 2-DE (two dimensional electrophoresis) and analyzed by MS (mass spectrum). In the shuffled strain FMB38, 51 differentially expressed protein spots with higher than two-fold spot density were detected by gel image comparison. Forty-six protein spots were detectable by silver staining and further MS analysis. The results demonstrated that among the 46 protein spots expressed particularly induced in the genome-shuffled mutant, 15 were related to metabolism, five to DNA replication, recombination and repair, six to translation and post-translational modifications, one to cell secretion and signal transduction mechanisms, three to surfactin synthesis, two to energy production and conversion, and 14 to others. All these indicated that the metabolic capability of the mutant was improved by the genome shuffling. The study will enable future detailed investigation of gene expression and function linked with surfactin synthesis. The results of proteome analysis may provide information for metabolic engineering of Bacillus amyloliquefaciens for overproduction of surfactin.
Collapse
|
12
|
Unravelling the genetic basis for competence development of auxotrophic Bacillus licheniformis 9945A strains. Microbiology (Reading) 2014; 160:2136-2147. [DOI: 10.1099/mic.0.079236-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacterial natural genetic competence – well studied in Bacillus subtilis – enables cells to take up and integrate extracellularly supplied DNA into their own genome. However, little is known about competence development and its regulation in other members of the genus, although DNA uptake machineries are routinely encoded. Auxotrophic Bacillus licheniformis 9945A derivatives, obtained from repeated rounds of random mutagenesis, were long known to develop natural competence. Inspection of the colony morphology and extracellular enzyme secretion of two of these derivatives, M28 and M18, suggested that regulator genes are collaterally hit. M28 emerged as a 14 bp deletion mutant concomitantly displaying a shift in the reading frame of degS that encodes the sensor histidine kinase, which is part of the molecular switch that directs cells to genetic competence, the synthesis of extracellular enzymes or biofilm formation, while for M18, sequencing of the suspected gene revealed a 375 bp deletion in abrB, encoding the major transition state regulator. With respect to colony morphology, enzyme secretion and competence development, both of the mutations, when newly generated on the wild-type B. licheniformis 9945A genetic background, resulted in phenotypes resembling M28 and M18, respectively. All of the known naturally competent B. licheniformis representatives, hitherto thoroughly investigated in this regard, carry mutations in regulator genes, and hence genetic competence observed in domesticated strains supposedly results from deregulation.
Collapse
|
13
|
Oslizlo A, Stefanic P, Dogsa I, Mandic-Mulec I. Private link between signal and response in Bacillus subtilis quorum sensing. Proc Natl Acad Sci U S A 2014; 111:1586-91. [PMID: 24425772 PMCID: PMC3910598 DOI: 10.1073/pnas.1316283111] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria coordinate their behavior using quorum sensing (QS), whereby cells secrete diffusible signals that generate phenotypic responses associated with group living. The canonical model of QS is one of extracellular signaling, where signal molecules bind to cognate receptors and cause a coordinated response across many cells. Here we study the link between QS input (signaling) and QS output (response) in the ComQXPA QS system of Bacillus subtilis by characterizing the phenotype and fitness of comQ null mutants. These lack the enzyme to produce the ComX signal and do not activate the ComQXPA QS system in other cells. In addition to the activation effect of the signal, however, we find evidence of a second, repressive effect of signal production on the QS system. Unlike activation, which can affect other cells, repression acts privately: the de-repression of QS in comQ cells is intracellular and only affects mutant cells lacking ComQ. As a result, the QS signal mutants have an overly responsive QS system and overproduce the secondary metabolite surfactin in the presence of the signal. This surfactin overproduction is associated with a strong fitness cost, as resources are diverted away from primary metabolism. Therefore, by acting as a private QS repressor, ComQ may be protected against evolutionary competition from loss-of-function mutations. Additionally, we find that surfactin participates in a social selection mechanism that targets signal null mutants in coculture with signal producers. Our study shows that by pleiotropically combining intracellular and extracellular signaling, bacteria may generate evolutionarily stable QS systems.
Collapse
Affiliation(s)
- Anna Oslizlo
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Polonca Stefanic
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Iztok Dogsa
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Ines Mandic-Mulec
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
|
15
|
Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M. Natural functions of lipopeptides fromBacillusandPseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 2010; 34:1037-62. [DOI: 10.1111/j.1574-6976.2010.00221.x] [Citation(s) in RCA: 609] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
16
|
Hobbs CA, Bobay BG, Thompson RJ, Perego M, Cavanagh J. NMR solution structure and DNA-binding model of the DNA-binding domain of competence protein A. J Mol Biol 2010; 398:248-63. [PMID: 20302877 PMCID: PMC2855743 DOI: 10.1016/j.jmb.2010.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 11/15/2022]
Abstract
Competence protein A (ComA) is a response regulator protein involved in the development of genetic competence in the Gram-positive spore-forming bacterium Bacillus subtilis, as well as the regulation of the production of degradative enzymes and antibiotic synthesis. ComA belongs to the NarL family of proteins, which are characterized by a C-terminal transcriptional activator domain that consists of a bundle of four helices, where the second and third helices (alpha 8 and alpha 9) form a helix-turn-helix DNA-binding domain. Using NMR spectroscopy, the high-resolution 3D solution structure of the C-terminal DNA-binding domain of ComA (ComAC) has been determined. In addition, surface plasmon resonance and NMR protein-DNA titration experiments allowed for the analysis of the interaction of ComAC with its target DNA sequences. Combining the solution structure and biochemical data, a model of ComAC bound to the ComA recognition sequences on the srfA promoter has been developed. The model shows that for DNA binding, ComA uses the conserved helix-turn-helix motif present in other NarL family members. However, the model reveals also that ComA might use a slightly different part of the helix-turn-helix motif and there appears to be some associated domain re-orientation. These observations suggest a basis for DNA binding specificity within the NarL family.
Collapse
Affiliation(s)
- Carey A. Hobbs
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Benjamin G. Bobay
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
- North Carolina Research Campus, Kannapolis, North Carolina 28081, USA
| | - Richele J. Thompson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Marta Perego
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John Cavanagh
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
17
|
Bushley KE, Turgeon BG. Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol Biol 2010; 10:26. [PMID: 20100353 PMCID: PMC2823734 DOI: 10.1186/1471-2148-10-26] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 01/26/2010] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Nonribosomal peptide synthetases (NRPSs) are multimodular enzymes, found in fungi and bacteria, which biosynthesize peptides without the aid of ribosomes. Although their metabolite products have been the subject of intense investigation due to their life-saving roles as medicinals and injurious roles as mycotoxins and virulence factors, little is known of the phylogenetic relationships of the corresponding NRPSs or whether they can be ranked into subgroups of common function. We identified genes (NPS) encoding NRPS and NRPS-like proteins in 38 fungal genomes and undertook phylogenomic analyses in order to identify fungal NRPS subfamilies, assess taxonomic distribution, evaluate levels of conservation across subfamilies, and address mechanisms of evolution of multimodular NRPSs. We also characterized relationships of fungal NRPSs, a representative sampling of bacterial NRPSs, and related adenylating enzymes, including alpha-aminoadipate reductases (AARs) involved in lysine biosynthesis in fungi. RESULTS Phylogenomic analysis identified nine major subfamilies of fungal NRPSs which fell into two main groups: one corresponds to NPS genes encoding primarily mono/bi-modular enzymes which grouped with bacterial NRPSs and the other includes genes encoding primarily multimodular and exclusively fungal NRPSs. AARs shared a closer phylogenetic relationship to NRPSs than to other acyl-adenylating enzymes. Phylogenetic analyses and taxonomic distribution suggest that several mono/bi-modular subfamilies arose either prior to, or early in, the evolution of fungi, while two multimodular groups appear restricted to and expanded in fungi. The older mono/bi-modular subfamilies show conserved domain architectures suggestive of functional conservation, while multimodular NRPSs, particularly those unique to euascomycetes, show a diversity of architectures and of genetic mechanisms generating this diversity. CONCLUSIONS This work is the first to characterize subfamilies of fungal NRPSs. Our analyses suggest that mono/bi-modular NRPSs have more ancient origins and more conserved domain architectures than most multimodular NRPSs. It also demonstrates that the alpha-aminoadipate reductases involved in lysine biosynthesis in fungi are closely related to mono/bi-modular NRPSs. Several groups of mono/bi-modular NRPS metabolites are predicted to play more pivotal roles in cellular metabolism than products of multimodular NRPSs. In contrast, multimodular subfamilies of NRPSs are of more recent origin, are restricted to fungi, show less stable domain architectures, and biosynthesize metabolites which perform more niche-specific functions than mono/bi-modular NRPS products. The euascomycete-only NRPS subfamily, in particular, shows evidence for extensive gain and loss of domains suggestive of the contribution of domain duplication and loss in responding to niche-specific pressures.
Collapse
Affiliation(s)
- Kathryn E Bushley
- Department of Plant Pathology & Plant-Microbe Biology, 334 Plant Science Bldg. Cornell University, Ithaca, NY, 14853, USA
| | - B Gillian Turgeon
- Department of Plant Pathology & Plant-Microbe Biology, 334 Plant Science Bldg. Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
18
|
Hamze K, Julkowska D, Autret S, Hinc K, Nagorska K, Sekowska A, Holland IB, Séror SJ. Identification of genes required for different stages of dendritic swarming in Bacillus subtilis, with a novel role for phrC. Microbiology (Reading) 2009; 155:398-412. [DOI: 10.1099/mic.0.021477-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Highly branched dendritic swarming of B. subtilis on synthetic B-medium involves a developmental-like process that is absolutely dependent on flagella and surfactin secretion. In order to identify new swarming genes, we targeted the two-component ComPA signalling pathway and associated global regulators. In liquid cultures, the histidine kinase ComP, and the response regulator ComA, respond to secreted pheromones ComX and CSF (encoded by phrC) in order to control production of surfactin synthases and ComS (competence regulator). In this study, for what is believed to be the first time, we established that distinct early stages of dendritic swarming can be clearly defined, and that they are amenable to genetic analysis. In a mutational analysis producing several mutants with distinctive phenotypes, we were able to assign the genes sfp (activation of surfactin synthases), comA, abrB and codY (global regulators), hag (flagellin), mecA and yvzB (hag-like), and swrB (motility), to the different swarming stages. Surprisingly, mutations in genes comPX, comQ, comS, rapC and oppD, which are normally indispensable for import of CSF, had only modest effects, if any, on swarming and surfactin production. Therefore, during dendritic swarming, surfactin synthesis is apparently subject to novel regulation that is largely independent of the ComXP pathway; we discuss possible alternative mechanisms for driving srfABCD transcription. We showed that the phrC mutant, largely independent of any effect on surfactin production, was also, nevertheless, blocked early in swarming, forming stunted dendrites, with abnormal dendrite initiation morphology. In a mixed swarm co-inoculated with phrC sfp+
and phrC+ sfp (GFP), an apparently normal swarm was produced. In fact, while initiation of all dendrites was of the abnormal phrC type, these were predominantly populated by sfp cells, which migrated faster than the phrC cells. This and other results indicated a specific migration defect in the phrC mutant that could not be trans-complemented by CSF in a mixed swarm. CSF is the C-terminal pentapeptide of the surface-exposed PhrC pre-peptide and we propose that the residual PhrC 35 aa residue peptide anchored in the exterior of the cytoplasmic membrane has an apparently novel extracellular role in swarming.
Collapse
Affiliation(s)
- Kassem Hamze
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| | - Daria Julkowska
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| | - Sabine Autret
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| | - Krzysztof Hinc
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| | - Krzysztofa Nagorska
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| | - Agnieszka Sekowska
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| | - I. Barry Holland
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| | - Simone J. Séror
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| |
Collapse
|
19
|
Turgeon BG, Oide S, Bushley K. Creating and screening Cochliobolus heterostrophus non-ribosomal peptide synthetase mutants. ACTA ACUST UNITED AC 2007; 112:200-6. [PMID: 18280721 DOI: 10.1016/j.mycres.2007.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 09/18/2007] [Accepted: 10/23/2007] [Indexed: 11/27/2022]
Abstract
An exhaustive characterization of the set of non-ribosomal peptide synthetase (NRPS) genes of the corn pathogen, Cochliobolus heterostrophus, and the small molecule peptides produced by the enzymes they encode, has been undertaken to ascertain the role of the peptide metabolites in the fungal cell. To date, the NRPS method of peptide biosynthesis has been described for filamentous ascomycete fungi (and to a limited extent, for basidiomycete fungi) and for bacteria, only. In addition to structural diversity, non-ribosomal peptides have a broad spectrum of biological activities, many are useful in medicine, agriculture, industry, and biological research. However, to suggest that inter-organismal activities is their primary function is likely incorrect; in fact, the physiological significance of these peptides to the producing fungi is largely unknown. We document that NRPS enzymes are purveyors of small molecules for both basal metabolism and for specialized environmental niches and that some are conserved, but most are not.
Collapse
Affiliation(s)
- B Gillian Turgeon
- Department of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Building, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
20
|
Takahashi K, Sekine Y, Chibazakura T, Yoshikawa H. Development of an intermolecular transposition assay system in Bacillus subtilis 168 using IS4Bsu1 from Bacillus subtilis (natto). Microbiology (Reading) 2007; 153:2553-2559. [PMID: 17660419 DOI: 10.1099/mic.0.2007/007104-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most of the spontaneous poly-gamma-glutamate (gamma-PGA)-deficient mutants of Bacillus subtilis (natto) appear to have resulted from the insertion of IS4Bsu1 exclusively into the comP gene. However, complete genomic analysis of B. subtilis 168, a close relative of B. subtilis (natto), revealed no IS4Bsu1 insertion. Preliminary experiments using a transformable 'natto' strain indicated that the frequency of transposition of IS4Bsu1 was exceptionally high under competence-developing conditions. On the other hand, such high-frequency transposition was not observed when cells were grown in a rich medium, such as LB medium, suggesting that there must be suitable environmental conditions that give rise to the transposition of IS4Bsu1. To assess the behaviour of IS4Bsu1 and explore any host factors playing roles in IS transposition, an intermolecular transposition assay system was constructed using a modified IS4Bsu1 element in B. subtilis 168. Here, the details of the intermolecular transposition assay system are given, and the increase in transposition frequency observed under high-temperature and competence-inducing conditions is described.
Collapse
Affiliation(s)
- Kiwamu Takahashi
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo (St Paul's) University, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Taku Chibazakura
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
21
|
Duitman EH, Wyczawski D, Boven LG, Venema G, Kuipers OP, Hamoen LW. Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases. Appl Environ Microbiol 2007; 73:3490-6. [PMID: 17416694 PMCID: PMC1932663 DOI: 10.1128/aem.02751-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural isolates of Bacillus subtilis are often difficult to transform due to their low genetic competence levels. Here we describe two methods that stimulate natural transformation. The first method uses plasmid pGSP12, which expresses the competence transcription factor ComK and stimulates competence development about 100-fold. The second method stimulates Campbell-type recombination of DNA ligation mixtures in B. subtilis by the addition of polyethylene glycol. We employed these novel methods to study the regulation of the synthetases for the lipopeptide antibiotics mycosubtilin (myc) and surfactin (srfA) in B. subtilis strain ATCC 6633. By means of lacZ reporter fusions, it was shown that the expression of srfA is >100 times lower in strain ATCC 6633 than in the laboratory strain B. subtilis 168. Expression of the myc operon was highest in rich medium, whereas srfA expression reached maximal levels in minimal medium. Further genetic analyses showed that the srfA operon is mainly regulated by the response regulator ComA, while the myc operon is primarily regulated by the transition-state regulator AbrB. Although there is in vitro evidence for a synergistic activity of mycosubtilin and surfactin, the expression of both lipopeptide antibiotics is clearly not coordinated.
Collapse
Affiliation(s)
- Erwin H Duitman
- Department of Genetics, University of Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Ohsawa T, Tsukahara K, Sato T, Ogura M. Superoxide stress decreases expression of srfA through inhibition of transcription of the comQXP quorum-sensing locus in Bacillus subtilis. J Biochem 2007; 139:203-11. [PMID: 16452308 DOI: 10.1093/jb/mvj023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During the course of screening for competence-deficient mutants in the mutant collection constructed by the Japan Consortium of Bacillus Functional Genomics, a disruption mutant of sodA encoding superoxide dismutase was identified as a mutant with decreased transformation efficiency. In fact, in the sodA mutant we observed a severe decrease in the expression of srfA required for the development of genetic competence. Northern and primer extension analyses revealed inhibition of the transcription of the comQXP quorum-sensing locus in the sodA mutant, thereby preventing srfA expression. Furthermore, an excess amount of superoxide anion induced by the addition of paraquat also resulted in a decrease in comQXP transcription. Thus, it was concluded that high levels of superoxide are able to inhibit specifically the transcription of the comQXP operon. In support of this conclusion, the effect of added paraquat was significantly alleviated in a comX-independent srfA expression system.
Collapse
Affiliation(s)
- Taku Ohsawa
- Department of Marine Science, School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan
| | | | | | | |
Collapse
|
23
|
Auchtung JM, Lee CA, Grossman AD. Modulation of the ComA-dependent quorum response in Bacillus subtilis by multiple Rap proteins and Phr peptides. J Bacteriol 2006; 188:5273-85. [PMID: 16816200 PMCID: PMC1539962 DOI: 10.1128/jb.00300-06] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis, extracellular peptide signaling regulates several biological processes. Secreted Phr signaling peptides are imported into the cell and act intracellularly to antagonize the activity of regulators known as Rap proteins. B. subtilis encodes several Rap proteins and Phr peptides, and the processes regulated by many of these Rap proteins and Phr peptides are unknown. We used DNA microarrays to characterize the roles that several rap-phr signaling modules play in regulating gene expression. We found that rapK-phrK regulates the expression of a number of genes activated by the response regulator ComA. ComA activates expression of genes involved in competence development and the production of several secreted products. Two Phr peptides, PhrC and PhrF, were previously known to stimulate the activity of ComA. We assayed the roles that PhrC, PhrF, and PhrK play in regulating gene expression and found that these three peptides stimulate ComA-dependent gene expression to different levels and are all required for full expression of genes activated by ComA. The involvement of multiple Rap proteins and Phr peptides allows multiple physiological cues to be integrated into a regulatory network that modulates the timing and magnitude of the ComA response.
Collapse
|
24
|
Süel GM, Garcia-Ojalvo J, Liberman LM, Elowitz MB. An excitable gene regulatory circuit induces transient cellular differentiation. Nature 2006; 440:545-50. [PMID: 16554821 DOI: 10.1038/nature04588] [Citation(s) in RCA: 497] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 01/18/2006] [Indexed: 11/09/2022]
Abstract
Certain types of cellular differentiation are probabilistic and transient. In such systems individual cells can switch to an alternative state and, after some time, switch back again. In Bacillus subtilis, competence is an example of such a transiently differentiated state associated with the capability for DNA uptake from the environment. Individual genes and proteins underlying differentiation into the competent state have been identified, but it has been unclear how these genes interact dynamically in individual cells to control both spontaneous entry into competence and return to vegetative growth. Here we show that this behaviour can be understood in terms of excitability in the underlying genetic circuit. Using quantitative fluorescence time-lapse microscopy, we directly observed the activities of multiple circuit components simultaneously in individual cells, and analysed the resulting data in terms of a mathematical model. We find that an excitable core module containing positive and negative feedback loops can explain both entry into, and exit from, the competent state. We further tested this model by analysing initiation in sister cells, and by re-engineering the gene circuit to specifically block exit. Excitable dynamics driven by noise naturally generate stochastic and transient responses, thereby providing an ideal mechanism for competence regulation.
Collapse
Affiliation(s)
- Gürol M Süel
- Division of Biology and Department of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
25
|
Lee BN, Kroken S, Chou DYT, Robbertse B, Yoder OC, Turgeon BG. Functional analysis of all nonribosomal peptide synthetases in Cochliobolus heterostrophus reveals a factor, NPS6, involved in virulence and resistance to oxidative stress. EUKARYOTIC CELL 2005; 4:545-55. [PMID: 15755917 PMCID: PMC1087798 DOI: 10.1128/ec.4.3.545-555.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nonribosomal peptides, made by nonribosomal peptide synthetases, have diverse biological activities, including roles as fungal virulence effectors. Inspection of the genome of Cochliobolus heterostrophus, a fungal pathogen of maize and a member of a genus noted for secondary metabolite production, revealed eight multimodular nonribosomal peptide synthase (NPS) genes and three monomodular NPS-like genes, one of which encodes a nonribosomal peptide synthetase/polyketide synthase hybrid enzyme presumed to be involved in synthesis of a peptide/polyketide molecule. Deletion of each NPS gene and phenotypic analyses showed that the product of only one of these genes, NPS6, is required for normal virulence on maize. NPS6 is also required for resistance to hydrogen peroxide, suggesting it may protect the fungus from oxidative stress. This and all other nps mutants had normal growth, mating ability, and appressoria. Real-time PCR analysis showed that expression of all NPS genes is low (relative to that of actin), that all (except possibly NPS2) are expressed during vegetative growth, and that expression is induced by nitrogen starvation. Only NPS6 is unfailingly conserved among euascomycete fungi, including plant and human pathogens and saprobes, suggesting the possibility that NPS6 activity provides oxidative stress protection during both saprobic and parasitic growth.
Collapse
Affiliation(s)
- Bee-Na Lee
- Torrey Mesa Research Institute, San Diego, California, USA
| | | | | | | | | | | |
Collapse
|
26
|
Hayashi K, Ohsawa T, Kobayashi K, Ogasawara N, Ogura M. The H2O2 stress-responsive regulator PerR positively regulates srfA expression in Bacillus subtilis. J Bacteriol 2005; 187:6659-67. [PMID: 16166527 PMCID: PMC1251593 DOI: 10.1128/jb.187.19.6659-6667.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
srfA is an operon required for the synthesis of surfactin and the development of genetic competence in Bacillus subtilis. We observed that the expression of srfA is downregulated upon treatment with H2O2. Thus, we examined the involvement of several oxidative stress-responsive transcription factors in srfA expression. Our DNA microarray analysis revealed that the H2O2 stress-responsive regulator PerR is required for srfA expression. This was confirmed by lacZ fusion analysis. A ComX feeding assay and epistatic analyses revealed that the role of PerR in srfA expression is independent of other known regulators of srfA expression, namely, comQXP, rapC, and spx. Gel mobility shift and footprint assays revealed that PerR binds directly to two tandemly arranged noncanonical PerR boxes located in the upstream promoter region of srfA. A transcriptional srfA-lacZ fusion lacking both PerR boxes showed diminished and PerR-independent expression, indicating that the PerR boxes we identified function as positive cis elements for srfA transcription.
Collapse
Affiliation(s)
- Kentaro Hayashi
- Department of Marine Science, School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan
| | | | | | | | | |
Collapse
|
27
|
Bacon Schneider K, Palmer TM, Grossman AD. Characterization of comQ and comX, two genes required for production of ComX pheromone in Bacillus subtilis. J Bacteriol 2002; 184:410-9. [PMID: 11751817 PMCID: PMC139578 DOI: 10.1128/jb.184.2.410-419.2002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many microbes use secreted peptide-signaling molecules to stimulate changes in gene expression in response to high population density, a process called quorum sensing. ComX pheromone is a modified 10-amino-acid peptide used by Bacillus subtilis to modulate changes in gene expression in response to crowding. comQ and comX are required for production of ComX pheromone. We found that accumulation of ComX pheromone in culture supernatant paralleled cell growth, indicating that there was no autoinduction of production of ComX pheromone. We overexpressed comQ and comX separately and together and found that overexpression of comX alone was sufficient to cause an increase in production of ComX pheromone and early induction of a quorum-responsive promoter. These results indicate that the extracellular concentration of ComX pheromone plays a major role in determining the timing of the quorum response and that expression of comX is limiting for production of ComX pheromone. We made alanine substitutions in the residues that comprise the peptide backbone of ComX pheromone. Analysis of these mutants highlighted the importance of the modification for ComX pheromone function and identified three residues (T50, G54, and D55) that are unlikely to interact with proteins involved in production of or response to ComX pheromone. We have also identified and mutated a putative isoprenoid binding domain of ComQ. Mutations in this domain eliminated production of ComX pheromone, consistent with the hypothesis that ComQ is involved in modifying ComX pheromone and that the modification is likely to be an isoprenoid.
Collapse
|
28
|
Nakano MM, Hajarizadeh F, Zhu Y, Zuber P. Loss-of-function mutations in yjbD result in ClpX- and ClpP-independent competence development of Bacillus subtilis. Mol Microbiol 2001; 42:383-94. [PMID: 11703662 DOI: 10.1046/j.1365-2958.2001.02639.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in clpP and clpX have pleiotropic effects on growth and developmentally regulated gene expression in Bacillus subtilis. ClpP and ClpX are needed for expression of comK, encoding the competence transcription factor required for the expression of genes within the competence regulon. ClpP, in combination with the ATPase ClpC, degrades the inhibitor of ComK, MecA. Proteolysis of MecA is stimulated by a small protein, ComS, which interacts with MecA. Suppressor mutations (cxs) were isolated that bypass the requirement for clpX for comK expression. These were found also to overcome the defect in comK expression conferred by a clpP mutation. These mutations were identified as missense mutations (cxs-5, -7 and -12) and a nonsense (UAG) codon substitution (cxs-10) in the yjbD coding sequence in a locus linked to mecA. That a yjbD disruption confers the cxs phenotype, together with its complementation by an ectopically expressed copy of yjbD, indicated that the suppressor alleles bear recessive, loss-of-function mutations of yjbD. ClpP- and ClpX-independent comK expression rendered by inactivation of yjbD was still medium-dependent and required ComS. MecA levels in a clpP-yjbD mutant were lower that those of clpP mutant cells and ComK protein concentration in the clpP mutant was restored to wild-type levels by the yjbD mutation. Consequently, the yjbD mutation bypasses the defect in competence development conferred by clpP and clpX. YjbD protein is barely detectable in wild-type cells, but is present in large amounts in the clpP mutant cells. The results suggest that the role of ClpP in competence development is to degrade YjbD protein so that ComS can productively interact with the MecA-ClpC-ComK complex. Alternatively, the result could suggest that YjbD has a negative effect on regulated proteolysis and that MecA is degraded independently of ClpP when YjbD is absent.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, OR 97006-8921, USA
| | | | | | | |
Collapse
|
29
|
Tortosa P, Albano M, Dubnau D. Characterization of ylbF, a new gene involved in competence development and sporulation in Bacillus subtilis. Mol Microbiol 2000; 35:1110-9. [PMID: 10712692 DOI: 10.1046/j.1365-2958.2000.01779.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used mini Tn10 transposition to generate a library of Bacillus subtilis insertion mutants, with the goal of identifying and characterizing new competence genes. Two new regulatory genes were identified in our screen: ypuN (also known as rsiX, the anti-sigmaX factor) and ylbF. The disruption of ylbF leads to a dramatic decrease in the expression of comK, encoding the competence transcription factor. Our data show that ylbF positively controls ComK at a post-transcriptional level. It has been reported previously that ComK is degraded in vivo and in vitro by a multimeric protein complex composed of ClpP, ClpC and MecA. This proteolysis is inhibited by the ComS peptide. We show that both the overexpression of comS and the inactivation of mecA individually suffice to bypass the competence phenotype of the ylbF mutation. This mutation does not seem to alter the cellular concentrations of MecA or ClpP, and we propose a role for YlbF in modulating the translation, stability or activity of ComS. In addition to its role in competence, ylbF also appears to regulate sporulation by acting before stage II.
Collapse
Affiliation(s)
- P Tortosa
- Public Health Research Institute, 455 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
30
|
Lazazzera BA, Kurtser IG, McQuade RS, Grossman AD. An autoregulatory circuit affecting peptide signaling in Bacillus subtilis. J Bacteriol 1999; 181:5193-200. [PMID: 10464187 PMCID: PMC94022 DOI: 10.1128/jb.181.17.5193-5200.1999] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The competence and sporulation factor (CSF) of Bacillus subtilis is an extracellular pentapeptide produced from the product of phrC. CSF has at least three activities: (i) at low concentrations, it stimulates expression of genes activated by the transcription factor ComA; at higher concentrations, it (ii) inhibits expression of those same genes and (iii) stimulates sporulation. Because the activities of CSF are concentration dependent, we measured the amount of extracellular CSF produced by cells. We found that by mid-exponential phase, CSF accumulated to concentrations (1 to 5 nM) that stimulate ComA-dependent gene expression. Upon entry into stationary phase, CSF reached 50 to 100 nM, concentrations that stimulate sporulation and inhibit ComA-dependent gene expression. Transcription of phrC was found to be controlled by two promoters: P1, which precedes rapC, the gene upstream of phrC; and P2, which directs transcription of phrC only. Both RapC and CSF were found to be part of autoregulatory loops that affect transcription from P1, which we show is activated by ComA approximately P. RapC negatively regulates its own expression, presumably due to its ability to inhibit accumulation of ComA approximately P. CSF positively regulates its own expression, presumably due to its ability to inhibit RapC activity. Transcription from P2, which is controlled by the alternate sigma factor sigma(H), increased as cells entered stationary phase, contributing to the increase in extracellular CSF at this time. In addition to controlling transcription of phrC, sigmaH appears to control expression of at least one other gene required for production of CSF.
Collapse
Affiliation(s)
- B A Lazazzera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
31
|
Ogura M, Liu L, Lacelle M, Nakano MM, Zuber P. Mutational analysis of ComS: evidence for the interaction of ComS and MecA in the regulation of competence development in Bacillus subtilis. Mol Microbiol 1999; 32:799-812. [PMID: 10361283 DOI: 10.1046/j.1365-2958.1999.01399.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of Bacillus subtilis genetic competence is a highly regulated adaptive response to stationary-phase stress. A key step in competence development is the activation of the transcriptional regulator ComK, which is required for the expression of genes encoding the products that function in DNA uptake. In log-phase cultures, ComK is trapped in a complex composed of MecA and ClpC, in which it is rendered inactive. The comS gene, contained within the srf operon, is induced in response to high culture cell density and nutritional stress. Its product functions to release active ComK from the complex, allowing ComK to stimulate the transcription initiation of its own gene as well as that of the late competence operons. Western analysis showed that ComS accumulates to maximal levels between T3 and T4, mirroring the pattern of competence cell development and late competence gene expression. Experiments to examine the target of ComS activity in vitro showed that ComS binds to MecA. This is further supported by coimmunoprecipitation using anti-MecA antiserum. To clarify the role of ComS in competence regulation, a system for evaluating the effect of comS and mutant derivatives on the expression of comG, one of the late competence operons, was constructed. comS mutations, created by alanine-scanning mutagenesis, that significantly reduced comG-lacZ expression were clustered within two regions, one at the N-terminus and the other at the C-terminus of ComS. ComSI13 --> A and ComSW43 --> A were selected for further analysis as representative mutants for both regions required for ComS activity. We observed that ComSI13 --> A showed significantly reduced affinity for MecA, whereas ComSW43 --> A showed near normal binding affinity for MecA. The results show that binding to MecA is critical for ComS function, but do not rule out the possibility that ComS possesses other activities.
Collapse
Affiliation(s)
- M Ogura
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport, LA 71130, USA
| | | | | | | | | |
Collapse
|
32
|
Msadek T. When the going gets tough: survival strategies and environmental signaling networks in Bacillus subtilis. Trends Microbiol 1999; 7:201-7. [PMID: 10354595 DOI: 10.1016/s0966-842x(99)01479-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Regulatory pathways involving two-component histidine kinase/response regulator proteins of Bacillus subtilis are highly interconnected and form a signal transduction network controlling stationary-phase adaptive responses. These include chemotaxis and motility, degradative enzyme synthesis, antibiotic production, natural competence for DNA uptake, and sporulation. Many of these responses are mutually exclusive, with different control levels involving protein-environment, protein-protein and protein-DNA interactions, allowing the bacteria to adapt rapidly to environmental changes.
Collapse
Affiliation(s)
- T Msadek
- Unité de Biochimie Microbienne, URA 1300 du Centre National de la Recherche Scientifique, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
33
|
Guenzi E, Galli G, Grgurina I, Pace E, Ferranti P, Grandi G. Coordinate transcription and physical linkage of domains in surfactin synthetase are not essential for proper assembly and activity of the multienzyme complex. J Biol Chem 1998; 273:14403-10. [PMID: 9603952 DOI: 10.1074/jbc.273.23.14403] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial peptide synthetases have two common features that appear to be strictly conserved. 1) The enzyme subunits are co-regulated at both transcriptional and translational level. 2) The organization of the different enzymatic domains constituting the enzyme fulfills the "colinearity rule" according to which the order of the domains along the chromosome parallels their functional hierarchy. Considering the high degree of conservation of these features, one would expect that mutations such as transcription uncoupling and domain dissociations, deletions, duplications, and reshuffling would result in profound effects on the quality and quantity of synthesized peptides. To start testing this hypothesis, we designed two mutants. In one mutant, the operon structure of surfactin synthetase was destroyed, thus altering the concerted expression of the enzyme subunits. In the other mutant, the thioesterase domain naturally fused to the last amino acid binding domain of surfactin was physically dissociated and independently expressed. When the lipopeptides secreted by the mutant Bacillus subtilis strains were purified and characterized, they appeared to be expressed approximately at the same level of the wild type surfactin and to be identical to it, indicating that specific domain-domain interactions rather than coordinated transcription and translation play the major role in determining the correct assembly and activity of peptide synthetases.
Collapse
Affiliation(s)
- E Guenzi
- Department of Molecular Biology, Chiron S.p.A., Via Fiorentina, 1 53100, Siena, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Cosby WM, Vollenbroich D, Lee OH, Zuber P. Altered srf expression in Bacillus subtilis resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control. J Bacteriol 1998; 180:1438-45. [PMID: 9515911 PMCID: PMC107042 DOI: 10.1128/jb.180.6.1438-1445.1998] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The expression of the srf operon of Bacillus subtilis, encoding surfactin synthetase and the competence regulatory protein ComS, was observed to be reduced when cells were grown in a rich glucose- and glutamine-containing medium in which late-growth culture pH was 5.0 or lower. The production of the surfactin synthetase subunits and of surfactin itself was also reduced. Raising the pH to near neutrality resulted in dramatic increases in srf expression and surfactin production. This apparent pH-dependent induction of srf expression required spo0K, which encodes the oligopeptide permease that functions in cell-density-dependent control of sporulation and competence, but not CSF, the competence-inducing pheromone that regulates srf expression in a Spo0K-dependent manner. Both ComP and ComA, the two-component regulatory pair that stimulates cell-density-dependent srf transcription, were required for optimal expression of srf at low and high pHs, but ComP was not required for pH-dependent srf induction. The known negative regulators of srf, RapC and CodY, were found not to function significantly in pH-dependent srf expression. Late-growth culture supernatants at low pH were not active in inducing srf expression in cells of low-density cultures but were rendered active when their pH was raised to near neutrality. ComQ (and very likely the srf-inducing pheromone ComX) and Spo0K were found to be required for the extracellular induction of srf-lacZ at neutral pH. The results suggest that srf expression, in response to changes in culture pH, requires Spo0K and another, as yet unidentified, extracellular factor. The study also provides evidence consistent with the hypothesis that ComP acts both positively and negatively in the regulation of ComA and that both activities are controlled by the ComX pheromone.
Collapse
Affiliation(s)
- W M Cosby
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130-3932, USA
| | | | | | | |
Collapse
|
35
|
LeDeaux JR, Solomon JM, Grossman AD. Analysis of non-polar deletion mutations in the genes of the spo0K (opp) operon of Bacillus subtilis. FEMS Microbiol Lett 1997; 153:63-9. [PMID: 9252573 DOI: 10.1111/j.1574-6968.1997.tb10464.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The spo0K (opp) operon of Bacillus subtilis encodes an oligopeptide permease that is required for uptake of oligopeptides, development of genetic competence, and initiation of sporulation. We made in-frame, non-polar deletion mutations in each of the first four genes of the five-gene spo0K operon and tested effects on oligopeptide transport, sporulation, and expression of competence genes. spo0KA, B, C, and D were required for sporulation, competence development, and oligopeptide transport. Disruption of spo0KE caused a less severe phenotype than did disruption of any of the other genes of the operon.
Collapse
Affiliation(s)
- J R LeDeaux
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
36
|
Liljemark WF, Bloomquist CG, Reilly BE, Bernards CJ, Townsend DW, Pennock AT, LeMoine JL. Growth dynamics in a natural biofilm and its impact on oral disease management. Adv Dent Res 1997; 11:14-23. [PMID: 9524438 DOI: 10.1177/08959374970110010501] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Measurements of the microbial growth dynamics in natural biofilm communities are almost non-existent. In a recent study, the biofilm formation on teeth was examined. A previously unknown active period of bacterial division occurred at a certain density of plaque bacteria on tooth enamel. The density-dependent cell-division phase of plaque formation contributed 90% of the biomass in the first 24 hrs of plaque formation. This suggested that growth was induced by the bacteria. In vitro assays were developed for rapid evaluation of the growth of surface-linked bacteria by the measurement of cellular components associated with growth on a per cell per time basis. Cell-free supernatants (termed START) of media in contact with bacteria were assayed for their effects on DNA synthesis and other cellular components associated with growth. START was found to increase the incorporation of [3H-methyl]-thymidine on a per cell per time basis, when compared with media not in contact with bacteria. Additional in vivo studies and in situ-based models of complex biofilms are needed if all of the mechanisms involved in the rapid accumulation of biofilm bacteria on teeth and other surfaces are to be understood.
Collapse
Affiliation(s)
- W F Liljemark
- Department of Diagnostic and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis 55455-0329, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Serror P, Sonenshein AL. CodY is required for nutritional repression of Bacillus subtilis genetic competence. J Bacteriol 1996; 178:5910-5. [PMID: 8830686 PMCID: PMC178446 DOI: 10.1128/jb.178.20.5910-5915.1996] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The acquisition of genetic competence by Bacillus subtilis is repressed when the growth medium contains Casamino Acids. This repression was shown to be exerted at the level of expression from the promoters of the competence-regulatory genes srfA and comK and was relieved in strains carrying a null mutation in the codY gene. DNase I footprinting experiments showed that purified CodY binds directly to the srfA and comK promoter regions.
Collapse
Affiliation(s)
- P Serror
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
38
|
Liu L, Nakano MM, Lee OH, Zuber P. Plasmid-amplified comS enhances genetic competence and suppresses sinR in Bacillus subtilis. J Bacteriol 1996; 178:5144-52. [PMID: 8752331 PMCID: PMC178310 DOI: 10.1128/jb.178.17.5144-5152.1996] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The establishment of genetic competence in Bacillus subtilis is controlled by a vast signal transduction network involving the products of genes that function in several postexponential-phase processes. Two of these proteins, SinR and DegU, serve as molecular switches that influence a cell's decision to undergo either sporulation or genetic competence development. In order to determine the roles of SinR and DegU in competence control, multicopy suppression experiments with plasmid-amplified comS, SinR, and degU genes were undertaken. Multicopy comS was found to elevate competence gene transcription and transformation efficiency in both wild-type and sinR mutant cells but not in degU mutant cells. Multicopy degU failed to suppress comS or sinR mutations. No suppression of comS or degU by multicopy sinR was observed. The expression of a comS'::'lacZ translational fusion and srf-lacZ operon fusion was examined in sinR cells and cells bearing plasmid-amplified sinR. The expression of comS'::'lacZ gene fusion was reduced by the sinR mutation, but both comS'::'lacZ and srf-lacZ were repressed by multicopy sinR. Cells bearing plasmid-amplified sinR were poorly competent. These results suggest that sinR is required for optimal comS expression but not transcription from the srf promoter and that SinR at high concentrations represses srf transcription initiation.
Collapse
Affiliation(s)
- L Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport, USA
| | | | | | | |
Collapse
|
39
|
Solomon JM, Lazazzera BA, Grossman AD. Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. Genes Dev 1996; 10:2014-24. [PMID: 8769645 DOI: 10.1101/gad.10.16.2014] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have purified and characterized an extracellular peptide factor that serves as a cell density signal for both competence development and sporulation in Bacillus subtilis. This competence and sporulation stimulating factor (CSF) was purified from conditioned medium (culture supernatant) based on its ability to stimulate expression of srfA (comS) in cells at low cell density. CSF is a 5-amino-acid peptide, glu-arg-gly-met-thr (ERGMT), that is, the carboxy-terminal 5 amino acids of the 40-amino-acid peptide encoded by phrC. No detectable CSF was produced in a phrC null mutant. The activity of chemically synthesized CSF (ERGMT) was virtually indistinguishable from that of CSF that was purified from culture supernatants. At relatively low concentrations (1-10 nM), CSF stimulated expression of srfA, whereas high concentrations of CSF stimulated the ability of cells at low cell density to sporulate. Stimulation of srfA expression by CSF requires the oligopeptide permease encoded by spo0K, a member of the ATP-binding-cassette family of transporters, and the putative phosphatase encoded by rapC, the gene immediately upstream of phrC. RapC was found to be a negative regulator of srfA expression, suggesting that the target of RapC is the transcription factor encoded by comA. We propose that CSF is transported into the cell by the Spo0K oligopeptide permease and stimulates competence gene expression by inhibiting (either directly or indirectly) the RapC phosphatase.
Collapse
Affiliation(s)
- J M Solomon
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
40
|
Solomon JM, Grossman AD. Who's competent and when: regulation of natural genetic competence in bacteria. Trends Genet 1996; 12:150-5. [PMID: 8901420 DOI: 10.1016/0168-9525(96)10014-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Natural genetic competence, the ability of cells to bind to and to take up exogenous DNA, is widespread among bacteria and might be an important mechanism for the horizontal transfer of genes. Competent cells express specialized proteins that assemble into a DNA-uptake complex. In many organisms, the development of competence and expression of the uptake machinery is regulated in response to cell-cell signaling and/or nutritional conditions. Exciting new progress has been made in characterizing the signals and pathways that regulate the development of competence.
Collapse
Affiliation(s)
- J M Solomon
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
41
|
Bloomquist CG, Reilly BE, Liljemark WF. Adherence, accumulation, and cell division of a natural adherent bacterial population. J Bacteriol 1996; 178:1172-7. [PMID: 8576054 PMCID: PMC177781 DOI: 10.1128/jb.178.4.1172-1177.1996] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Developing dental bacterial plaques formed in vivo on enamel surfaces were examined in specimens from 18 adult volunteers during the first day of plaque formation. An intraoral model placing enamel pieces onto teeth was used to study bacterial plaque populations developing naturally to various cell densities per square millimeter of surface area of the enamel (W. F. Liljemark, C. G. Bloomquist, C. L. Bandt, B. L. Philstrom, J. E. Hinrichs, and L. F. Wolff, Oral Microbiol. Immunol. 8:5-15, 1993). Radiolabeled nucleoside incorporation was used to measure DNA synthesis concurrent with the taking of standard viable cell counts of the plaque samples. Results showed that in vivo plaque formation began with the rapid adherence of bacteria until ca. 12 to 32% of the enamel's salivary pellicle was saturated (ca. 2.5 x 10(5) to 6.3 x 10(5) cells per mm2). The pioneer adherent species were predominantly those of the "sanguis streptococci." At the above-noted density, the bacteria present on the salivary pellicle incorporated low levels of radiolabeled nucleoside per viable cell. As bacterial numbers reached densities between 8.0 x 10(5) and 2.0 x 10(6) cells per mm2, there was a small increase in the incorporation of radiolabeled nucleosides per cell. At 2.5 x 10(6) to 4.0 x 10(6) cells per mm2 of enamel surface, there was a marked increase in the incorporation of radiolabeled nucleosides per cell which appeared to be cell-density dependent. The predominant species group in developing dental plaque films during density-dependent growth was the sanguis streptococci; however, most other species present showed similar patterns of increased DNA synthesis as the density noted above approached 2.5 x 10(6) to 4.0 x 10(6) cells per mm2.
Collapse
Affiliation(s)
- C G Bloomquist
- Department of Diagnostic and Surgical Sciences, University of Minnesota, Minneapolis 55455, USA.
| | | | | |
Collapse
|
42
|
D'Souza C, Nakano MM, Frisby DL, Zuber P. Translation of the open reading frame encoded by comS, a gene of the srf operon, is necessary for the development of genetic competence, but not surfactin biosynthesis, in Bacillus subtilis. J Bacteriol 1995; 177:4144-8. [PMID: 7608091 PMCID: PMC177150 DOI: 10.1128/jb.177.14.4144-4148.1995] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A small open reading frame, comS of the srf operon, is the site of mutations that impair competence development in Bacillus subtilis. comS open reading frame translation was required for competence, as was confirmed by the suppression of a comS amber mutation [comS(Am)] by the nonsense suppressor sup-3. comS(Am), when introduced into the srf operon, eliminated late competence gene expression but had no significant effect on surfactin production.
Collapse
Affiliation(s)
- C D'Souza
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130-3932, USA
| | | | | | | |
Collapse
|
43
|
Hahn J, Roggiani M, Dubnau D. The major role of Spo0A in genetic competence is to downregulate abrB, an essential competence gene. J Bacteriol 1995; 177:3601-5. [PMID: 7768874 PMCID: PMC177070 DOI: 10.1128/jb.177.12.3601-3605.1995] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We show that the major role for Spo0A in the development of genetic competence is to downregulate expression of abrB. AbrB is both a negative regulator and a positive regulator of competence. The negative effects are exerted at multiple points in competence regulation. A regulatory mechanism that is independent of mecA and abrB operates on comK expression.
Collapse
Affiliation(s)
- J Hahn
- Public Health Research Institute, New York, New York 10016, USA
| | | | | |
Collapse
|
44
|
Solomon JM, Magnuson R, Srivastava A, Grossman AD. Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis. Genes Dev 1995; 9:547-58. [PMID: 7698645 DOI: 10.1101/gad.9.5.547] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Development of genetic competence in Bacillus subtilis is regulated by extracellular signaling molecules, including the ComX pheromone, a modified 9- or 10-amino-acid peptide. Here, we present characterization of a second extracellular competence stimulating factor (CSF). CSF appears to be, at least in part, a small peptide of between 520 and 720 daltons. Production of CSF requires several genes that are needed both for initiation of sporulation and development of competence (spo0H, spo0A, spo0B, and spo0F). Although both peptide factors regulate competence, two different sensing pathways mediate the response to the ComX pheromone and CSF. Analysis of double mutants indicated that ComX pheromone is on the same genetic pathway as the membrane-bound histidine protein kinase encoded by comP and that CSF is on the same genetic pathway as the oligopeptide permease encoded by spo0K. Furthermore, the cellular response to partly purified ComX pheromone requires the ComP histidine protein kinase, whereas the response to partly purified CSF requires the Spo0K oligopeptide permease. These two sensing pathways converge to activate competence genes. Both factors and their convergent sensing pathways are required for normal development of competence and might function to integrate different physiological signals.
Collapse
Affiliation(s)
- J M Solomon
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
45
|
Hamoen LW, Eshuis H, Jongbloed J, Venema G, van Sinderen D. A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. Mol Microbiol 1995; 15:55-63. [PMID: 7752896 DOI: 10.1111/j.1365-2958.1995.tb02220.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The valine-activation domain-encoding portion of the srfA locus (srfA-d4) is not only involved in the non-ribosomal synthesis of surfactin, but is also required for the regulation of competence development. In this study we show that impairment of the adenylation activity of the valine-activating domain did not affect competence development. Deletion analysis and complementation studies delineated the competence-required portion of srfA-d4 to a 168 bp fragment, which contains a small open reading frame (ORF), designated comS, encoding a polypeptide of 46 amino acids, embedded within, but translated in, a frame different from that of srfA-d4. Introduction of an amber mutation in the comS-coding frame prevented competence development, demonstrating the involvement of comS in this prokaryotic specialization process.
Collapse
Affiliation(s)
- L W Hamoen
- Department of Genetics, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Abstract
If we include beta-lactam antibiotics on the grounds that they have the same biosynthetic origin, peptides remain commercially the most important group of pharmaceuticals. However, our increasing knowledge of the genetic and enzymic background to biosynthesis, and of the regulation of metabolite production, will eventually bring a more unified approach to bioactive compounds. Mixing of structural types will become important, and we will be able to use our knowledge of biosynthetic genes and their regulatory networks. We will also benefit from an appreciation of the modular organization of catalytic functions, substrate transfer mechanisms and signalling between interacting enzymes. Since all of this is, in fact, the basis for enzymic synthesis of complex natural products in vivo, the exploitation of living cells requires mastery of a formidable network of cellular controls and compartments. For the present we are able to see fascinating connections emerging between genes in a variety of reaction sequences, not only in biosynthetic but also in degradative pathways. Peptide synthetases show surprising similarities to acylcoenzyme A synthetases, which are key enzymes in forming polyketides as well as in generating the CoA-derivatives that serve as substrates in degradative pathways. 4'-Phosphopantetheine, the functional half of CoA, plays a key role as the intrinsic transfer cofactor in various multienzyme systems. The comparatively small catalogue of reactions modifying natural products, notably epimerization, methylation, hydroxylation, decarboxylation (of peptides) and reduction/dehydration (of polyketides) can be found within or amongst biosynthetic proteins, generally as modules and organized in a specified order. The biochemist is coming close to the synthetic chemist's recipes, and may soon be recruiting proteins to carry them out.
Collapse
Affiliation(s)
- H von Döhren
- Institut für Biochemie und Molekulare Biologie Technische Universitt Berlin, Germany
| |
Collapse
|
47
|
van Sinderen D, Venema G. comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis. J Bacteriol 1994; 176:5762-70. [PMID: 8083168 PMCID: PMC196780 DOI: 10.1128/jb.176.18.5762-5770.1994] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The comK gene is a regulatory transcription unit which is essential for the development of genetic competence in Bacillus subtilis. The transcription of comK is under strict nutritional and growth phase-dependent control and has been shown to depend on the gene products of comA and srfA. In this report, we show that expression of comK is dependent on its own gene product as well as on the gene products of all other tested regulatory genes known to be involved in competence development (abrB, comA, comP, degU, sin, spo0A, spo0H, spo0K, and srfA). A mecA mutation is able to suppress the competence deficiency of mutations in any of these regulatory loci except for mutations in spo0A and, as we show here, in comK. Furthermore, we show that the presence of comK on a multiple copy plasmid leads to derepression of comK expression, causing an almost constitutive expression of competence in minimal medium as well as permitting competence development in complex medium. We infer from these results that the signals which trigger competence development, after having been received and processed by the various components of the competence signal transduction pathway, all converge at the level of comK expression. As soon as derepression of comK expression occurs, the positive autoregulation rapidly results in accumulation of the comK gene product, which subsequently induces competence.
Collapse
Affiliation(s)
- D van Sinderen
- Department of Genetics, University of Groningen, Haren, The Netherlands
| | | |
Collapse
|
48
|
Hahn J, Kong L, Dubnau D. The regulation of competence transcription factor synthesis constitutes a critical control point in the regulation of competence in Bacillus subtilis. J Bacteriol 1994; 176:5753-61. [PMID: 8083167 PMCID: PMC196779 DOI: 10.1128/jb.176.18.5753-5761.1994] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
comK, which encodes the competence transcription factor, is itself transcriptionally activated at the transition from exponential growth to stationary phase in Bacillus subtilis. MecA, a negative regulator of competence, also inhibits comK transcription when overexpressed, and a mecA null mutation results in comK overexpression. Although null mutations in mecA, as well as in another gene, mecB, are known to bypass the requirements for nearly all of the competence regulatory genes, the comK requirement is not suppressed by mecA inactivation. Various competence regulatory genes (comA, srfA, degU, abrB, sin, and spo0A) are shown to be required for the expression of comK. srfA transcription is shown to occur equally in cells destined for competence and those destined not to become competent. In contrast, comK transcription is restricted to the presumptive competent cells. These and other results are combined to describe a regulatory pathway for competence.
Collapse
Affiliation(s)
- J Hahn
- Public Health Research Institute, New York, New York 10016
| | | | | |
Collapse
|
49
|
Tokunaga T, Rashid MH, Kuroda A, Sekiguchi J. Effect of degS-degU mutations on the expression of sigD, encoding an alternative sigma factor, and autolysin operon of Bacillus subtilis. J Bacteriol 1994; 176:5177-80. [PMID: 7914190 PMCID: PMC196365 DOI: 10.1128/jb.176.16.5177-5180.1994] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Primer extension analysis of transcripts of the Bacillus subtilis autolysin (cwlB) operon indicated that SigD-dependent transcripts from the Pd promoter are missing in the degU32(Hy) and degS200 (Hy) mutants. The degU32(Hy) mutation caused a 99% reduction in the expression of a sigD-lacZ translational fusion gene constructed in the B. subtilis chromosome. The phosphorylated form of the DegU protein seems to be a regulator for expression of the sigD gene.
Collapse
Affiliation(s)
- T Tokunaga
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | | | | | | |
Collapse
|
50
|
Dubnau D, Hahn J, Roggiani M, Piazza F, Weinrauch Y. Two-component regulators and genetic competence in Bacillus subtilis. Res Microbiol 1994; 145:403-11. [PMID: 7855426 DOI: 10.1016/0923-2508(94)90088-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- D Dubnau
- Department of Microbiology, Public Health Research Institute, New York, NY 10016
| | | | | | | | | |
Collapse
|