1
|
Baril X, Constant P. Carbon amendments in soil microcosms induce uneven response on H2 oxidation activity and microbial community composition. FEMS Microbiol Ecol 2023; 99:fiad159. [PMID: 38040657 PMCID: PMC10716739 DOI: 10.1093/femsec/fiad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023] Open
Abstract
High-affinity H2-oxidizing bacteria (HA-HOB) thriving in soil are responsible for the most important sink of atmospheric H2. Their activity increases with soil organic carbon content, but the incidence of different carbohydrate fractions on the process has received little attention. Here we tested the hypothesis that carbon amendments impact HA-HOB activity and diversity differentially depending on their recalcitrance and their concentration. Carbon sources (sucrose, starch, cellulose) and application doses (0, 0.1, 1, 3, 5% Ceq soildw-1) were manipulated in soil microcosms. Only 0.1% Ceq soildw-1 cellulose treatment stimulated the HA-HOB activity. Sucrose amendments induced the most significant changes, with an abatement of 50% activity at 1% Ceq soildw-1. This was accompanied with a loss of bacterial and fungal alpha diversity and a reduction of high-affinity group 1 h/5 [NiFe]-hydrogenase gene (hhyL) abundance. A quantitative classification framework was elaborated to assign carbon preference traits to 16S rRNA gene, ITS and hhyL genotypes. The response was uneven at the taxonomic level, making carbon preference a difficult trait to predict. Overall, the results suggest that HA-HOB activity is more susceptible to be stimulated by low doses of recalcitrant carbon, while labile carbon-rich environment is an unfavorable niche for HA-HOB, inducing catabolic repression of hydrogenase.
Collapse
Affiliation(s)
- Xavier Baril
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Philippe Constant
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| |
Collapse
|
2
|
Tejwani V, Schmitt FJ, Wilkening S, Zebger I, Horch M, Lenz O, Friedrich T. Investigation of the NADH/NAD + ratio in Ralstonia eutropha using the fluorescence reporter protein Peredox. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1858:86-94. [PMID: 27816420 DOI: 10.1016/j.bbabio.2016.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/11/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
Abstract
Ralstonia eutropha is a hydrogen-oxidizing ("Knallgas") bacterium that can easily switch between heterotrophic and autotrophic metabolism to thrive in aerobic and anaerobic environments. Its versatile metabolism makes R. eutropha an attractive host for biotechnological applications, including H2-driven production of biodegradable polymers and hydrocarbons. H2 oxidation by R. eutropha takes place in the presence of O2 and is mediated by four hydrogenases, which represent ideal model systems for both biohydrogen production and H2 utilization. The so-called soluble hydrogenase (SH) couples reversibly H2 oxidation with the reduction of NAD+ to NADH and has already been applied successfully in vitro and in vivo for cofactor regeneration. Thus, the interaction of the SH with the cellular NADH/NAD+ pool is of major interest. In this work, we applied the fluorescent biosensor Peredox to measure the [NADH]:[NAD+] ratio in R. eutropha cells under different metabolic conditions. The results suggest that the sensor operates close to saturation level, indicating a rather high [NADH]:[NAD+] ratio in aerobically grown R. eutropha cells. Furthermore, we demonstrate that multicomponent analysis of spectrally-resolved fluorescence lifetime data of the Peredox sensor response to different [NADH]:[NAD+] ratios represents a novel and sensitive tool to determine the redox state of cells.
Collapse
Affiliation(s)
- Vijay Tejwani
- SUNY Polytechnic Institute, College of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY, 12203, U.S.A
| | - Franz-Josef Schmitt
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Svea Wilkening
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Ingo Zebger
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Marius Horch
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Oliver Lenz
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Thomas Friedrich
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| |
Collapse
|
3
|
Jugder BE, Chen Z, Ping DTT, Lebhar H, Welch J, Marquis CP. An analysis of the changes in soluble hydrogenase and global gene expression in Cupriavidus necator (Ralstonia eutropha) H16 grown in heterotrophic diauxic batch culture. Microb Cell Fact 2015; 14:42. [PMID: 25880663 PMCID: PMC4377017 DOI: 10.1186/s12934-015-0226-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/12/2015] [Indexed: 12/20/2022] Open
Abstract
Background Soluble hydrogenases (SH) are enzymes that catalyse the oxidation of molecular hydrogen. The SH enzyme from Cupriavidus necator H16 is relatively oxygen tolerant and makes an attractive target for potential application in biochemical hydrogen fuel cells. Expression of the enzyme can be mediated by derepression of the hox promoter system under heterotrophic conditions. However, the overall impact of hox derepression, from a transcriptomic perspective, has never been previously reported. Results Derepression of hydrogenase gene expression upon fructose depletion was confirmed in replicate experiments. Using qRT-PCR, hoxF was 4.6-fold up-regulated, hypF2 was up-regulated in the cells grown 2.2-fold and the regulatory gene hoxA was up-regulated by a mean factor of 4.5. A full transcriptomic evaluation revealed a substantial shift in the global pattern of gene expression. In addition to up-regulation of genes associated with hydrogenase expression, significant changes were observed in genes associated with energy transduction, amino acid metabolism, transcription and translation (and regulation thereof), genes associated with cell stress, lipid and cell wall biogenesis and other functions, including cell motility. Conclusions We report the first full transcriptome analysis of C. necator H16 grown heterotrophically on fructose and glycerol in diauxic batch culture, which permits expression of soluble hydrogenase under heterotrophic conditions. The data presented deepens our understanding of the changes in global gene expression patterns that occur during the switch to growth on glycerol and suggests that energy deficit is a key driver for induction of hydrogenase expression in this organism. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0226-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bat-Erdene Jugder
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia.
| | - Zhiliang Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia. .,Systems Biology Initiative, University of New South Wales, Sydney, 2052, Australia.
| | - Darren Tan Tek Ping
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia.
| | - Helene Lebhar
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia.
| | - Jeffrey Welch
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia.
| | - Christopher P Marquis
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
4
|
Oda T, Oda K, Yamamoto H, Matsuyama A, Ishii M, Igarashi Y, Nishihara H. Hydrogen-driven asymmetric reduction of hydroxyacetone to (R)-1,2-propanediol by Ralstonia eutropha transformant expressing alcohol dehydrogenase from Kluyveromyces lactis. Microb Cell Fact 2013; 12:2. [PMID: 23305396 PMCID: PMC3552938 DOI: 10.1186/1475-2859-12-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/06/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Conversion of industrial processes to more nature-friendly modes is a crucial subject for achieving sustainable development. Utilization of hydrogen-oxidation reactions by hydrogenase as a driving force of bioprocess reaction can be an environmentally ideal method because the reaction creates no pollutants. We expressed NAD-dependent alcohol dehydrogenase from Kluyveromyces lactis in a hydrogen-oxidizing bacterium: Ralstonia eutropha. This is the first report of hydrogen-driven in vivo coupling reaction of the alcohol dehydrogenase and indigenous soluble NAD-reducing hydrogenase. Asymmetric reduction of hydroxyacetone to (R)-1,2-propanediol, which is a commercial building block for antibacterial agents, was performed using the transformant as the microbial cell catalyst. RESULTS The two enzymes coupled in vitro in vials without a marked decrease of reactivity during the 20 hr reaction because of the hydrogenase reaction, which generates no by-product that affects enzymes. Alcohol dehydrogenase was expressed functionally in R. eutropha in an activity level equivalent to that of indigenous NAD-reducing hydrogenase under the hydrogenase promoter. The hydrogen-driven in vivo coupling reaction proceeded only by the transformant cell without exogenous addition of a cofactor. The decrease of reaction velocity at higher concentration of hydroxyacetone was markedly reduced by application of an in vivo coupling system. Production of (R)-1,2-propanediol (99.8% e.e.) reached 67.7 g/l in 76 hr with almost a constant rate using a jar fermenter. The reaction velocity under 10% PH2 was almost equivalent to that under 100% hydrogen, indicating the availability of crude hydrogen gas from various sources. The in vivo coupling system enabled cell-recycling as catalysts. CONCLUSIONS Asymmetric reduction of hydroxyacetone by a coupling reaction of the two enzymes continued in both in vitro and in vivo systems in the presence of hydrogen. The in vivo reaction system using R. eutropha transformant expressing heterologous alcohol dehydrogenase showed advantages for practical usage relative to the in vitro coupling system. The results suggest a hopeful perspective of the hydrogen-driven bioprocess as an environmentally outstanding method to achieve industrial green innovation. Hydrogen-oxidizing bacteria can be useful hosts for the development of hydrogen-driven microbial cell factories.
Collapse
Affiliation(s)
- Takahiro Oda
- Department of Bioresource Science, College of Agriculture, Ibaraki University, 3-21-1 Chu-ou, Ami-machi, Inashiki-gun, Ibaraki, 300-0393, Japan
| | - Koji Oda
- Department of Bioresource Science, College of Agriculture, Ibaraki University, 3-21-1 Chu-ou, Ami-machi, Inashiki-gun, Ibaraki, 300-0393, Japan
| | - Hiroaki Yamamoto
- Green Product Development Center, R&D Management, Daicel Corporation, 1-1 Shinko-cho, Myoko, Niigata, 944-8550, Japan
| | - Akinobu Matsuyama
- Green Product Development Center, R&D Management, Daicel Corporation, 1-1 Shinko-cho, Myoko, Niigata, 944-8550, Japan
| | - Masaharu Ishii
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuo Igarashi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hirofumi Nishihara
- Department of Bioresource Science, College of Agriculture, Ibaraki University, 3-21-1 Chu-ou, Ami-machi, Inashiki-gun, Ibaraki, 300-0393, Japan
| |
Collapse
|
5
|
Schwartz E, Voigt B, Zühlke D, Pohlmann A, Lenz O, Albrecht D, Schwarze A, Kohlmann Y, Krause C, Hecker M, Friedrich B. A proteomic view of the facultatively chemolithoautotrophic lifestyle of Ralstonia eutropha
H16. Proteomics 2009; 9:5132-42. [DOI: 10.1002/pmic.200900333] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
English CM, Eckert C, Brown K, Seibert M, King PW. Recombinant and in vitro expression systems for hydrogenases: new frontiers in basic and applied studies for biological and synthetic H2 production. Dalton Trans 2009:9970-8. [DOI: 10.1039/b913426n] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
|
8
|
|
9
|
Fuhrmann S, Ferner M, Jeffke T, Henne A, Gottschalk G, Meyer O. Complete nucleotide sequence of the circular megaplasmid pHCG3 of Oligotropha carboxidovorans: function in the chemolithoautotrophic utilization of CO, H2 and CO2. Gene 2003; 322:67-75. [PMID: 14644498 DOI: 10.1016/j.gene.2003.08.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Oligotropha carboxidovorans harbors the low-copy-number, circular, 133,058-bp DNA megaplasmid pHCG3, which is essential in the chemolithoautotrophic utilization of CO (carboxidotrophy), H(2) (hydrogenotrophy) and CO(2) under aerobic conditions. The complete nucleotide sequence of pHCG3 revealed 125 open reading frames. Of these, 95 were identified as putative structural genes. The plasmid carries the four gene clusters cox (14.54 kb, 12 genes), cbb (13.33 kb, 13 genes), hox (23.35 kb, 19 genes plus one ORF) and tra/trb (25.01 kb, 22 genes plus 2 ORFs), which assemble the functions required for the utilization of CO, CO(2) or H(2), and the conjugal transfer of the plasmid, respectively. The gene clusters cox, cbb and hox form a 51.2-kb chemolithoautotrophy module. The tra/trb cluster on the plasmid pHCG3 of O. carboxidovorans has a similar architecture as the Ti-plasmid of Agrobacterium tumefaciens. The tra/trb cluster is separated from the chemolithoautotrophy module by two regions (25.2 and 29.6 kb) with miscellaneous or mostly unknown functions. These regions carry a number of single genes coding for replication and stabilization of pHCG3 as well as the components of a putative system of global regulation of plasmid replication in O. carboxidovorans. An oriV encodes the replication proteins RepABC. Sequence comparisons of pHCG3-encoded genes suggest that major genetic exchange between O. carboxidovorans and the proteobacteria has occurred.
Collapse
Affiliation(s)
- Sven Fuhrmann
- Department of Microbiology and Bayreuth Center of Molecular Biosciences, University of Bayreuth, D-95440 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Bernhard M, Buhrke T, Bleijlevens B, De Lacey AL, Fernandez VM, Albracht SP, Friedrich B. The H2 sensor of Ralstonia eutropha. Biochemical characteristics, spectroscopic properties, and its interaction with a histidine protein kinase. J Biol Chem 2001; 276:15592-7. [PMID: 11278570 DOI: 10.1074/jbc.m009802200] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous genetic studies have revealed a multicomponent signal transduction chain, consisting of an H(2) sensor, a histidine protein kinase, and a response regulator, which controls hydrogenase gene transcription in the proteobacterium Ralstonia eutropha. In this study, we isolated the H(2) sensor and demonstrated that the purified protein forms a complex with the histidine protein kinase. Biochemical and spectroscopic analysis revealed that the H(2) sensor is a cytoplasmic [NiFe]-hydrogenase with unique features. The H(2)-oxidizing activity was 2 orders of magnitude lower than that of standard hydrogenases and insensitive to oxygen, carbon monoxide, and acetylene. Interestingly, only H(2) production but no HD formation was detected in the D(2)/H(+) exchange assay. Fourier transform infrared data showed an active site similar to that of standard [NiFe]-hydrogenases. It is suggested that the protein environment accounts for a restricted gas diffusion and for the typical kinetic parameters of the H(2) sensor. EPR analysis demonstrated that the [4Fe-4S] clusters within the small subunit were not reduced under hydrogen even in the presence of dithionite. Optical spectra revealed the presence of a novel, redox-active, n = 2 chromophore that is reduced by H(2). The possible involvement of this chromophore in signal transduction is discussed.
Collapse
Affiliation(s)
- M Bernhard
- Institut für Biologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Kleihues L, Lenz O, Bernhard M, Buhrke T, Friedrich B. The H(2) sensor of Ralstonia eutropha is a member of the subclass of regulatory [NiFe] hydrogenases. J Bacteriol 2000; 182:2716-24. [PMID: 10781538 PMCID: PMC101976 DOI: 10.1128/jb.182.10.2716-2724.2000] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two energy-generating hydrogenases enable the aerobic hydrogen bacterium Ralstonia eutropha (formerly Alcaligenes eutrophus) to use molecular hydrogen as the sole energy source. The complex synthesis of the nickel-iron-containing enzymes has to be efficiently regulated in response to H(2), which is available in low amounts in aerobic environments. H(2) sensing in R. eutropha is achieved by a hydrogenase-like protein which controls the hydrogenase gene expression in concert with a two-component regulatory system. In this study we show that the H(2) sensor of R. eutropha is a cytoplasmic protein. Although capable of H(2) oxidation with redox dyes as electron acceptors, the protein did not support lithoautotrophic growth in the absence of the energy-generating hydrogenases. A specifically designed overexpression system for R. eutropha provided the basis for identifying the H(2) sensor as a nickel-containing regulatory protein. The data support previous results which showed that the sensor has an active site similar to that of prototypic [NiFe] hydrogenases (A. J. Pierik, M. Schmelz, O. Lenz, B. Friedrich, and S. P. J. Albracht, FEBS Lett. 438:231-235, 1998). It is demonstrated that in addition to the enzymatic activity the regulatory function of the H(2) sensor is nickel dependent. The results suggest that H(2) sensing requires an active [NiFe] hydrogenase, leaving the question open whether only H(2) binding or subsequent H(2) oxidation and electron transfer processes are necessary for signaling. The regulatory role of the H(2)-sensing hydrogenase of R. eutropha, which has also been investigated in other hydrogen-oxidizing bacteria, is intimately correlated with a set of typical structural features. Thus, the family of H(2) sensors represents a novel subclass of [NiFe] hydrogenases denoted as the "regulatory hydrogenases."
Collapse
Affiliation(s)
- L Kleihues
- Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
12
|
Bernhard M, Friedrich B, Siddiqui RA. Ralstonia eutropha TF93 is blocked in tat-mediated protein export. J Bacteriol 2000; 182:581-8. [PMID: 10633089 PMCID: PMC94318 DOI: 10.1128/jb.182.3.581-588.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/1999] [Accepted: 11/08/1999] [Indexed: 11/20/2022] Open
Abstract
Ralstonia eutropha (formerly Alcaligenes eutrophus) TF93 is pleiotropically affected in the translocation of redox enzymes synthesized with an N-terminal signal peptide bearing a twin arginine (S/T-R-R-X-F-L-K) motif. Immunoblot analyses showed that the catalytic subunits of the membrane-bound [NiFe] hydrogenase (MBH) and the molybdenum cofactor-binding periplasmic nitrate reductase (Nap) are mislocalized to the cytoplasm and to the inner membrane, respectively. Moreover, physiological studies showed that the copper-containing nitrous oxide reductase (NosZ) was also not translocated to the periplasm in strain TF93. The cellular localization of enzymes exported by the general secretion system was unaffected. The translocation-arrested MBH and Nap proteins were enzymatically active, suggesting that twin-arginine signal peptide-dependent redox enzymes may have their cofactors inserted prior to transmembrane export. The periplasmic destination of MBH, Nap, and NosZ was restored by heterologous expression of Azotobacter chroococcum tatA mobilized into TF93. tatA encodes a bacterial Hcf106-like protein, a component of a novel protein transport system that has been characterized in thylakoids and shown to translocate folded proteins across the membrane.
Collapse
Affiliation(s)
- M Bernhard
- Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | | | | |
Collapse
|
13
|
Dischert W, Vignais PM, Colbeau A. The synthesis of Rhodobacter capsulatus HupSL hydrogenase is regulated by the two-component HupT/HupR system. Mol Microbiol 1999; 34:995-1006. [PMID: 10594824 DOI: 10.1046/j.1365-2958.1999.01660.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The synthesis of the membrane-bound [NiFe]hydrogenase of Rhodobacter capsulatus (HupSL) is regulated negatively by the protein histidine kinase, HupT, and positively by the response regulator, HupR. It is demonstrated in this work that HupT and HupR are partners in a two-component signal transduction system. The binding of HupR protein to the hupS promoter regulatory region (phupS ) was studied using gel retardation and footprinting assays. HupR protected a 50 bp region localized upstream from the binding site of the histone-like integration host factor (IHF) regulator. HupR, which belongs to the NtrC subfamily, binds to an enhancer site (TTG-N5-CAA) localized at -162/-152 nt. However, the enhancer-binding HupR protein does not require the RpoN sigma factor for transcriptional activation, as is the case for NtrC from enteric bacteria, but functions with sigma70-RNA polymerase, as is the case for R. capsulatus NtrC. Besides, unlike NtrC from Escherichia coli, HupR activates transcription in the unphosphorylated form and becomes inactive by phosphorylation. This was demonstrated by replacing the putative phosphorylation site (D54) of the HupR protein with various amino acids or by deleting it using site-directed mutagenesis. Strains expressing mutated hupR genes showed high hydrogenase activities even in the absence of H2, indicating that hupSL transcription is activated by the binding of unphosphorylated HupR protein. Strains producing mutated HupRD54 proteins were derepressed for hupSL expression as were HupT- mutants. It is shown that the phosphorylated form of HupT was able to transfer phosphate to wild-type HupR protein but not to mutated D54 HupR proteins. Thus, it is concluded that HupT and HupR are the partners of a two-component regulatory system that regulates hupSL gene transcription.
Collapse
Affiliation(s)
- W Dischert
- Unité Mixte de Recherche 314 CEA-CNRS, Laboratoire de Biochimie et de Biophysique des Systèmes Intégrés, Département de Biologie Moléculaire et Structurale, CEA-Grenoble, 17 rue des Martyrs, F-38054 Grenoble cedex 9, France
| | | | | |
Collapse
|
14
|
Schwartz E, Buhrke T, Gerischer U, Friedrich B. Positive transcriptional feedback controls hydrogenase expression in Alcaligenes eutrophus H16. J Bacteriol 1999; 181:5684-92. [PMID: 10482509 PMCID: PMC94088 DOI: 10.1128/jb.181.18.5684-5692.1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein HoxA is the central regulator of the Alcaligenes eutrophus H16 hox regulon, which encodes two hydrogenases, a nickel permease and several accessory proteins required for hydrogenase biosynthesis. Expression of the regulatory gene hoxA was analyzed. Screening of an 8-kb region upstream of hoxA with a promoter probe vector localized four promoter activities. One of these was found in the region immediately 5' of hoxA; the others were correlated with the nickel metabolism genes hypA1, hypB1, and hypX. All four activities were independent of HoxA and of the minor transcription factor sigma(54). Translational fusions revealed that hoxA is expressed constitutively at low levels. In contrast to these findings, immunoblotting studies revealed a clear fluctuation in the HoxA pool in response to conditions which induce the hox regulon. Quantitative transcript assays indicated elevated levels of hyp mRNA under hydrogenase-derepressing conditions. Using interposon mutagenesis, we showed that the activity of a remote promoter is required for hydrogenase expression and autotrophic growth. Site-directed mutagenesis revealed that P(MBH), which directs transcription of the structural genes of the membrane-bound hydrogenase, contributes to the expression of hoxA under hydrogenase-derepressing conditions. Thus, expression of the hox regulon is governed by a positive feedback loop mediating amplification of the regulator HoxA. These results imply the existence of an unusually large (ca. 17,000-nucleotide) transcript.
Collapse
Affiliation(s)
- E Schwartz
- Institut für Biologie der Humboldt-Universität zu Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
15
|
Lenz O, Friedrich B. A novel multicomponent regulatory system mediates H2 sensing in Alcaligenes eutrophus. Proc Natl Acad Sci U S A 1998; 95:12474-9. [PMID: 9770510 PMCID: PMC22855 DOI: 10.1073/pnas.95.21.12474] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxidation of molecular hydrogen catalyzed by [NiFe] hydrogenases is a widespread mechanism of energy generation among prokaryotes. Biosynthesis of the H2-oxidizing enzymes is a complex process subject to positive control by H2 and negative control by organic energy sources. In this report we describe a novel signal transduction system regulating hydrogenase gene (hox) expression in the proteobacterium Alcaligenes eutrophus. This multicomponent system consists of the proteins HoxB, HoxC, HoxJ*, and HoxA. HoxB and HoxC share characteristic features of dimeric [NiFe] hydrogenases and form the putative H2 receptor that interacts directly or indirectly with the histidine protein kinase HoxJ*. A single amino acid substitution (HoxJ*G422S) in a conserved C-terminal glycine-rich motif of HoxJ* resulted in a loss of H2-dependent signal transduction and a concomitant block in autophosphorylating activity, suggesting that autokinase activity is essential for the response to H2. Whereas deletions in hoxB or hoxC abolished hydrogenase synthesis almost completely, the autokinase-deficient strain maintained high-level hox gene expression, indicating that the active sensor kinase exerts a negative effect on hox gene expression in the absence of H2. Substitutions of the conserved phosphoryl acceptor residue Asp55 in the response regulator HoxA (HoxAD55E and HoxAD55N) disrupted the H2 signal-transduction chain. Unlike other NtrC-like regulators, the altered HoxA proteins still allowed high-level transcriptional activation. The data presented here suggest a model in which the nonphosphorylated form of HoxA stimulates transcription in concert with a yet unknown global energy-responsive factor.
Collapse
Affiliation(s)
- O Lenz
- Institut für Biologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany
| | | |
Collapse
|
16
|
Durmowicz MC, Maier RJ. The FixK2 protein is involved in regulation of symbiotic hydrogenase expression in Bradyrhizobium japonicum. J Bacteriol 1998; 180:3253-6. [PMID: 9620982 PMCID: PMC107833 DOI: 10.1128/jb.180.12.3253-3256.1998] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The roles of the nitrogen fixation regulatory proteins NifA, FixK1, and FixK2 in the symbiotic regulation of hydrogenase structural gene expression in Bradyrhizobium japonicum have been investigated. Bacteroids from FixJ and FixK2 mutants have little or no hydrogenase activity, and extracts from these mutant bacteroids contain no hydrogenase protein. Bacteroids from a FixK1 mutant exhibit wild-type levels of hydrogenase activity. In beta-galactosidase transcriptional assays with NifA and FixK2 expression plasmids, the FixK2 protein induces transcription from the hup promoter to levels similar to those induced by HoxA, the transcriptional activator of free-living hydrogenase expression. The NifA protein does not activate transcription at the hydrogenase promoter. Therefore, FixK2 is involved in the transcriptional activation of symbiotic hydrogenase expression. By using beta-galactosidase transcriptional fusion constructs containing successive truncations of the hup promoter, the region of the hup promoter required for regulation by FixK2 was determined to be between 29 and 44 bp upstream of the transcription start site.
Collapse
Affiliation(s)
- M C Durmowicz
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
17
|
Schwartz E, Gerischer U, Friedrich B. Transcriptional regulation of Alcaligenes eutrophus hydrogenase genes. J Bacteriol 1998; 180:3197-204. [PMID: 9620971 PMCID: PMC107822 DOI: 10.1128/jb.180.12.3197-3204.1998] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/1998] [Accepted: 04/08/1998] [Indexed: 02/07/2023] Open
Abstract
Alcaligenes eutrophus H16 produces a soluble hydrogenase (SH) and a membrane-bound hydrogenase (MBH) which catalyze the oxidation of H2, supplying the organism with energy for autotrophic growth. The promoters of the structural genes for the SH and the MBH, PSH and PMBH, respectively, were identified by means of the primer extension technique. Both promoters were active in vivo under hydrogenase-derepressing conditions but directed only low levels of transcription under condition which repressed hydrogenase synthesis. The cellular pools of SH and MBH transcripts under the different growth conditions correlated with the activities of the respective promoters. Also, an immediate and drastic increase in transcript pool levels occurred upon derepression of the hydrogenase system. Both promoters were dependent on the minor sigma factor sigma 54 and on the hydrogenase regulator HoxA in vivo. PSH was stronger than PMBH under both heterotrophic and autotrophic growth conditions. The two promoters were induced at approximately the same rates upon derepression of the hydrogenase system in diauxic cultures. The response regulator HoxA mediated low-level activation of PSH and PMBH in a heterologous system.
Collapse
MESH Headings
- Alcaligenes/enzymology
- Alcaligenes/genetics
- Alcaligenes/metabolism
- Bacterial Proteins/metabolism
- Base Sequence
- DNA Primers/genetics
- DNA, Bacterial/genetics
- DNA-Binding Proteins
- DNA-Directed RNA Polymerases/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Genes, Bacterial
- Homeodomain Proteins
- Hydrogenase/genetics
- Hydrogenase/metabolism
- Kinetics
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA Polymerase Sigma 54
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sigma Factor/metabolism
- Solubility
- Trans-Activators/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- E Schwartz
- Institut für Biologie, Humboldt-Universität zu Berlin, Germany. edward=
| | | | | |
Collapse
|
18
|
Brito B, Martínez M, Fernández D, Rey L, Cabrera E, Palacios JM, Imperial J, Ruiz-Argüeso T. Hydrogenase genes from Rhizobium leguminosarum bv. viciae are controlled by the nitrogen fixation regulatory protein nifA. Proc Natl Acad Sci U S A 1997; 94:6019-24. [PMID: 9177161 PMCID: PMC20993 DOI: 10.1073/pnas.94.12.6019] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/1996] [Accepted: 04/07/1997] [Indexed: 02/04/2023] Open
Abstract
Rhizobium leguminosarum bv. viciae expresses an uptake hydrogenase in symbiosis with peas (Pisum sativum) but, unlike all other characterized hydrogen-oxidizing bacteria, cannot express it in free-living conditions. The hydrogenase-specific transcriptional activator gene hoxA described in other species was shown to have been inactivated in R. leguminosarum by accumulation of frameshift and deletion mutations. Symbiotic transcription of hydrogenase structural genes hupSL originates from a -24/-12 type promoter (hupSp). A regulatory region located in the -173 to -88 region was essential for promoter activity in R. leguminosarum. Activation of hupSp was observed in Klebsiella pneumoniae and Escherichia coli cells expressing the K. pneumoniae nitrogen fixation regulator NifA, and in E. coli cells expressing R. meliloti NifA. This activation required direct interaction of NifA with the essential -173 to -88 regulatory region. However, no sequences resembling known NifA-binding sites were found in or around this region. NifA-dependent activation was also observed in R. etli bean bacteroids. NifA-dependent hupSp activity in heterologous hosts was also absolutely dependent on the RpoN sigma-factor and on integration host factor. Proteins immunologically related to integration host factor were identified in R. leguminosarum. The data suggest that hupSp is structurally and functionally similar to nitrogen fixation promoters. The requirement to coordinate nitrogenase-dependent H2 production and H2 oxidation in nodules might be the reason for the loss of HoxA in R. leguminosarum and the concomitant NifA control of hup gene expression. This evolutionary acquired control would ensure regulated synthesis of uptake hydrogenase in the most common H2-rich environment for rhizobia, the legume nodule.
Collapse
Affiliation(s)
- B Brito
- Laboratorio de Microbiología, Escuela Técnica Superior Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Durmowicz MC, Maier RJ. Roles of HoxX and HoxA in biosynthesis of hydrogenase in Bradyrhizobium japonicum. J Bacteriol 1997; 179:3676-82. [PMID: 9171416 PMCID: PMC179164 DOI: 10.1128/jb.179.11.3676-3682.1997] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In-frame deletion mutagenesis was used to study the roles of two Bradyrhizobium japonicum proteins, HoxX and HoxA, in hydrogenase biosynthesis; based on their sequences, these proteins were previously proposed to be sensor and regulator proteins, respectively, of a two-component regulatory system necessary for hydrogenase transcription. Deletion of the hoxX gene resulted in a strain that expressed only 30 to 40% of wild-type hydrogenase activity. The inactive unprocessed form of the hydrogenase large subunit accumulated in this strain, indicating a role for HoxX in posttranslational processing of the hydrogenase enzyme but not in transcriptional regulation. Strains containing a deletion of the hoxA gene or a double mutation (hoxX and hoxA) did not exhibit any hydrogenase activity under free-living conditions, and extracts from these strains were inactive in gel retardation assays with a 158-bp fragment of the DNA region upstream of the hupSL operon. However, bacteroids from root nodules formed by all three mutant types (hoxX, hoxA, and hoxX hoxA) exhibited hydrogenase activity comparable to that of wild-type bacteroids. Bacteroid extracts from all of these strains, including the wild type, failed to cause a shift of the hydrogenase upstream region used in our assay. It was shown that HoxA is a DNA-binding transcriptional activator of hydrogenase structural gene expression under free-living conditions but not under symbiotic conditions. Although symbiotic hydrogenase expression is still sigma54 dependent, a transcriptional activator other than HoxA functions presumably upstream of the HoxA binding site.
Collapse
Affiliation(s)
- M C Durmowicz
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
20
|
Lenz O, Strack A, Tran-Betcke A, Friedrich B. A hydrogen-sensing system in transcriptional regulation of hydrogenase gene expression in Alcaligenes species. J Bacteriol 1997; 179:1655-63. [PMID: 9045826 PMCID: PMC178879 DOI: 10.1128/jb.179.5.1655-1663.1997] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Heterologous complementation studies using Alcaligenes eutrophus H16 as a recipient identified a hydrogenase-specific regulatory DNA region on megaplasmid pHG21-a of the related species Alcaligenes hydrogenophilus. Nucleotide sequence analysis revealed four open reading frames on the subcloned DNA, designated hoxA, hoxB, hoxC, and hoxJ. The product of hoxA is homologous to a transcriptional activator of the family of two-component regulatory systems present in a number of H2-oxidizing bacteria. hoxB and hoxC predict polypeptides of 34.5 and 52.5 kDa, respectively, which resemble the small and the large subunits of [NiFe] hydrogenases and correlate with putative regulatory proteins of Bradyrhizobium japonicum (HupU and HupV) and Rhodobacter capsulatus (HupU). hoxJ encodes a protein with typical consensus motifs of histidine protein kinases. Introduction of the complete set of genes on a broad-host-range plasmid into A. eutrophus H16 caused severe repression of soluble and membrane-bound hydrogenase (SH and MBH, respectively) synthesis in the absence of H2. This repression was released by truncation of hoxJ. H2-dependent hydrogenase gene transcription is a typical feature of A. hydrogenophilus and differs from the energy and carbon source-responding, H2-independent mode of control characteristic of A. eutrophus H16. Disruption of the A. hydrogenophilus hoxJ gene by an in-frame deletion on megaplasmid pHG21-a led to conversion of the regulatory phenotype: SH and MBH of the mutant were expressed in the absence of H2 in response to the availability of the carbon and energy source. RNA dot blot analysis showed that HoxJ functions on the transcriptional level. These results suggest that the putative histidine protein kinase HoxJ is involved in sensing molecular hydrogen, possibly in conjunction with the hydrogenase-like polypeptides HoxB and HoxC.
Collapse
Affiliation(s)
- O Lenz
- Institut für Biologie der Humboldt-Universität zu Berlin, Germany
| | | | | | | |
Collapse
|
21
|
Rey L, Fernández D, Brito B, Hernando Y, Palacios JM, Imperial J, Ruiz-Argüeso T. The hydrogenase gene cluster of Rhizobium leguminosarum bv. viciae contains an additional gene (hypX), which encodes a protein with sequence similarity to the N10-formyltetrahydrofolate-dependent enzyme family and is required for nickel-dependent hydrogenase processing and activity. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:237-48. [PMID: 8842143 DOI: 10.1007/bf02173769] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Plasmid pAL618 contains the genetic determinants for H2 uptake (hup) from Rhizobium leguminosarum bv. viciae, including a cluster of 17 genes named hupSLCDEFGHIJK-hypABFCDE. A 1.7-kb segment of insert DNA located downstream of hypE has now been sequenced, thus completing the sequence of the 20441-bp insert DNA in plasmid pAL618. An open reading frame (designated hypX) encoding a protein with a calculated M(r) of 62300 that exhibits extensive sequence similarity with HoxX from Alcaligenes eutrophus (52% identity) and Bradyrhizobium japonicum (57% identity) was identified 10 bp downstream of hypE. Nodule bacteroids produced by hypX mutants in pea (Pisum sativum L.) plants grown at optimal nickel concentrations (100 microM) for hydrogenase expression, exhibited less than 5% of the wild-type levels of hydrogenase activity. These bacteroids contained wild-type levels of mRNA from hydrogenase structural genes (hupSL) but accumulated large amounts of the immature form of HupL protein. The Hup-deficient mutants were complemented for normal hydrogenase activity and nickel-dependent maturation of HupL by a hypX gene provided in trans. From expression analysis of hypX-lacZ fusion genes, it appears that hypX gene is transcribed from the FnrN-dependent hyp promoter, thus placing hypX in the hyp operon (hypBFCDEX). Comparisons of the HypX/HoxX sequences with those in databases provided unexpected insights into their function in hydrogenase synthesis. Similarities were restricted to two distinct regions in the HypX/HoxX sequences. Region I, corresponding to a sequence conserved in N10-formyltetrahydrofolate-dependent enzymes involved in transferring one-carbon units (C1), was located in the N-terminal half of the protein, whereas region II, corresponding to a sequence conserved in enzymes of the enoyl-CoA hydratase/isomerase family, was located in the C-terminal half. These similarities strongly suggest that HypX/HoxX have dual functions: binding of the C1 donor N10-formyltetrahydrofolate and transfer of the C1 to an unknown substrate, and catalysis of a reaction involving polarization of the C = O bond of an X-CO-SCoA substrate. These results also suggest the involvement of a small organic molecule, possibly synthesized with the participation of an X-CO-SCoA precursor and of formyl groups, in the synthesis of the metal-containing active centre of hydrogenase.
Collapse
Affiliation(s)
- L Rey
- Laboratorio de Microbiologia, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Dernedde J, Eitinger T, Patenge N, Friedrich B. hyp gene products in Alcaligenes eutrophus are part of a hydrogenase-maturation system. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 235:351-8. [PMID: 8631353 DOI: 10.1111/j.1432-1033.1996.00351.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In Alcaligenes eutrophus H16 the hyp gene complex consists of six open reading frames hypA1, B1, F1, C, D and E whose products are involved in maturation of the two NiFe hydrogenases: an NAD-reducing cytoplasmic enzyme (SH) and a membrane-bound electron-transport-coupled protein (MBH). hypB1 and hypF1 were originally considered to form a single open reading frame designated hypB [Dernedde, J., Eitinger, M. & Friedrich, B. (1993) Arch. Microbiol. 159, 545-553]. Re-examination of the relevant sequence identified hypB1 and hypF1 as two distinct genes. Non-polar in-frame deletions in the individual hyp genes were constructed in vitro and transferred via gene replacement to the wild-type strain. The resulting mutants fall into two classes. Deletions in hypC, D and E (class I) gave a clear negative phenotype, while hypA1, B1 and F1 deletion mutants (class II) were not impaired in hydrogen metabolism. Class I mutants were unable to grow on hydrogen under autotrophic conditions. The enzymatic activities of SH and MBH were disrupted in all three class I mutants. Immunoblot analysis showed the presence of the H2-activating SH subunit (HoxH) at levels comparable to those observed in the wild-type strain whereas the other three subunits (HoxF, U and Y) were only detectable in trace amounts, probably due to proteolytic degradation. Likewise, MBH was less stable in hypC, D and E deletion mutants and was not attached to the cytoplasmic membrane. In the wild-type strain, HoxH and the MBH large subunit (HoxG) undergo C-terminal proteolytic processing before attaining enzymatic activity. In class I mutants this maturation was blocked. 63Ni-incorporation experiments identified both hydrogenases as nickel-free apoproteins in these mutants. Although class II mutants bearing deletions in hypA1, B1 and F1 showed no alteration of the wild-type phenotype, a role for these genes in the incorporation of nickel and hence hydrogenase maturation cannot be excluded, since there is experimental evidence that this set of genes is duplicated in A. eutrophus.
Collapse
Affiliation(s)
- J Dernedde
- Institut für Pflanzenphysiologie und Mikrobiologie, Freie Universitat Berlin, Germany
| | | | | | | |
Collapse
|
23
|
Black LK, Maier RJ. IHF- and RpoN-dependent regulation of hydrogenase expression in Bradyrhizobium japonicum. Mol Microbiol 1995; 16:405-13. [PMID: 7565102 DOI: 10.1111/j.1365-2958.1995.tb02406.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sequence analysis of the Bradyrhizobium japonicum hydrogenase promoter regulatory region indicated the presence of a -24/-12 type promoter, which is recognized by RpoN, and a potential integration host factor (IHF)-binding site. B. japonicum rpoN1-/rpoN2- double mutants were deficient in hydrogen-uptake activity. Using plasmid-borne hup-lacZ fusions, it was shown that the rpoN mutants were also deficient in nickel-dependent transcriptional regulation of hydrogenase. Gel-shift assays of the hydrogenase promoter regulatory region showed that purified IHF from Escherichia coli binds to a 210 bp fragment. DNase footprint analysis revealed a protected region of 31 bp between bases -44 and -75 from the transcription start site. Western analysis with B. japonicum soluble extract and antibodies against E. coli IHF gave two bands equivalent to molecular masses of 12 and 14 kDa approximately. When the IHF-binding area is mutated on a plasmid-borne hup-lacZ fusion, nickel-dependent transcriptional regulation of hydrogenase is still observed, but the transcriptional rates are clearly less than in the parent hup-lacZ fusion plasmid. Like the results with nickel, regulation of hydrogenase by other transcriptional regulators (hydrogen and oxygen) still occurs, but at a diminished level in the IHF-binding-area-mutated construct.
Collapse
Affiliation(s)
- L K Black
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
24
|
|
25
|
Fu C, Maier RJ. Organization of the hydrogenase gene cluster from Bradyrhizobium japonicum: sequences and analysis of five more hydrogenase-related genes. Gene X 1994; 145:91-6. [PMID: 8045431 DOI: 10.1016/0378-1119(94)90328-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Previously, the deletion of a 2.9-kb chromosomal EcoRI fragment of DNA located 2.2 kb downstream from the end of the Bradyrhizobium japonicum hydrogenase structural genes caused lack of normal-sized hydrogenase (Hup) subunits and complete loss of Hup activity. It was suggested that this region encodes one or more genes required for Hup processing. Sequencing of a 3322-bp XcmI fragment of DNA covering this 2.9-kb EcoRI fragment within the hup gene cluster revealed the presence of five open reading frames (ORFs) designated hupG, hupH, hupI, hupJ and hupK, encoding polypeptides with calculated molecular masses of 15.8, 30.7, 7.6, 18.1 and 38 kDa, respectively. Based on deduced amino acid (aa) sequences, all five products of the hupGHIJK genes showed significant homology with other genes' products in several H2-utilizing bacteria. Of particular interest are HupG and HupI. HupG showed 70% similarity (28% identity) to the HyaE of the Escherichia coli hydrogenase-1 operon which was demonstrated to be involved in the processing of hydrogenase-1. HupI showed strong identity to rubredoxin and rubredoxin-like proteins from many other bacteria. The latter proteins contain two 'C-X-X-C' motifs, which may serve as iron ligands for non-heme iron proteins involved as intermediate electron carriers or in the assembly process for Fe-S (or NiFe-S) clusters.
Collapse
Affiliation(s)
- C Fu
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|
26
|
Lenz O, Schwartz E, Dernedde J, Eitinger M, Friedrich B. The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation. J Bacteriol 1994; 176:4385-93. [PMID: 8021224 PMCID: PMC205652 DOI: 10.1128/jb.176.14.4385-4393.1994] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nucleotide sequence analysis revealed a 1,791-bp open reading frame in the hox gene cluster of the gram-negative chemolithotroph Alcaligenes eutrophus H16. In order to investigate the biological role of this open reading frame, we generated an in-frame deletion allele via a gene replacement strategy. The resulting mutant grew significantly more slowly than the wild type under lithoautotrophic conditions (6.1 versus 4.2 h doubling time). A reduction in the level of the soluble NAD-reducing hydrogenase (60% of the wild-type activity) was shown to be the cause of the slow lithoautotrophic growth. We used plasmid-borne gene fusions to monitor the expression of the operons encoding the soluble and membrane-bound hydrogenases. The expression of both operons was lower in the mutant than in the wild-type strain. These results suggest that the newly identified gene, designated hoxX, encodes a regulatory component which, in conjunction with the transcriptional activator HoxA, controls hydrogenase synthesis.
Collapse
Affiliation(s)
- O Lenz
- Institut für Pflanzenphysiologie und Mikrobiologie, Freien Universität Berlin, Germany
| | | | | | | | | |
Collapse
|
27
|
Kern M, Klipp W, Klemme JH. Increased Nitrogenase-Dependent H
2
Photoproduction by
hup
Mutants of
Rhodospirillum rubrum. Appl Environ Microbiol 1994; 60:1768-74. [PMID: 16349271 PMCID: PMC201560 DOI: 10.1128/aem.60.6.1768-1774.1994] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transposon Tn
5
mutagenesis was used to isolate mutants of
Rhodospirillum rubrum
which lack uptake hydrogenase (Hup) activity. Three Tn
5
insertions mapped at different positions within the same 13-kb
Eco
RI fragment (fragment E1). Hybridization experiments revealed homology to the structural hydrogenase genes
hupSLM
from
Rhodobacter capsulatus
and
hupSL
from
Bradyrhizobium japonicum
in a 3.8-kb
Eco
RI-
Cla
I subfragment of fragment E1. It is suggested that this region contains at least some of the structural genes encoding the nickel-dependent uptake hydrogenase of
R. rubrum
. At a distance of about 4.5 kb from the fragment homologous to
hupSLM
, a region with homology to a DNA fragment carrying
hypDE
and
hoxXA
from
B. japonicum
was identified. Stable insertion and deletion mutations were generated in vitro and introduced into
R. rubrum
by homogenotization. In comparison with the wild type, the resulting
hup
mutants showed increased nitrogenase-dependent H
2
photoproduction. However, a mutation in a structural
hup
gene did not result in maximum H
2
production rates, indicating that the capacity to recycle H
2
was not completely lost. Highest H
2
production rates were obtained with a mutant carrying an insertion in a nonstructural
hup
-specific sequence and with a deletion mutant affected in both structural and nonstructural
hup
genes. Thus, besides the known Hup activity, a second, previously unknown Hup activity seems to be involved in H
2
recycling. A single regulatory or accessory gene might be responsible for both enzymes. In contrast to the nickel-dependent uptake hydrogenase, the second Hup activity seems to be resistant to the metal chelator EDTA.
Collapse
Affiliation(s)
- M Kern
- Institut für Mikrobiologie und Biotechnologie, Universität Bonn, 53115 Bonn, Germany
| | | | | |
Collapse
|
28
|
Penfold RJ, Pemberton JM. Sequencing, chromosomal inactivation, and functional expression in Escherichia coli of ppsR, a gene which represses carotenoid and bacteriochlorophyll synthesis in Rhodobacter sphaeroides. J Bacteriol 1994; 176:2869-76. [PMID: 8188588 PMCID: PMC205441 DOI: 10.1128/jb.176.10.2869-2876.1994] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Sequencing of a DNA fragment that causes trans suppression of bacteriochlorophyll and carotenoid levels in Rhodobacter sphaeroides revealed two genes: orf-192 and ppsR. The ppsR gene alone is sufficient for photopigment suppression. Inactivation of the R. sphaeroides chromosomal copy of ppsR results in overproduction of both bacteriochlorophyll and carotenoid pigments. The deduced 464-amino-acid protein product of ppsR is homologous to the CrtJ protein of Rhodobacter capsulatus and contains a helix-turn-helix domain that is found in various DNA-binding proteins. Removal of the helix-turn-helix domain renders PpsR nonfunctional. The promoter of ppsR is located within the coding region of the upstream orf-192 gene. When this promoter is replaced by a lacZ promoter, ppsR is expressed in Escherichia coli. An R. sphaeroides DNA fragment carrying crtD', -E, and -F and bchC, -X, -Y, and -Z' exhibited putative promoter activity in E. coli. This putative promoter activity could be suppressed by PpsR in both E. coli and R. sphaeroides. These results suggest that PpsR is a transcriptional repressor. It could potentially act by binding to a putative regulatory palindrome found in the 5' flanking regions of a number of R. sphaeroides and R. capsulatus photosynthesis genes.
Collapse
Affiliation(s)
- R J Penfold
- Microbiology Department, University of Queensland, St. Lucia, Brisbane, Australia
| | | |
Collapse
|
29
|
Vignais PM, Toussaint B. Molecular biology of membrane-bound H2 uptake hydrogenases. Arch Microbiol 1994; 161:1-10. [PMID: 8304820 DOI: 10.1007/bf00248887] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- P M Vignais
- Laboratoire de Biochimie Microbienne (CNRS URA 1130 alliée à l'INSERM), Département de Biologie Moléculaire et Structurale/CENG/85X, Grenoble, France
| | | |
Collapse
|
30
|
Hydrogenase in Bradyrhizobium japonicum: genetics, regulation and effect on plant growth. World J Microbiol Biotechnol 1993; 9:615-24. [DOI: 10.1007/bf00369567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/26/1993] [Accepted: 05/13/1993] [Indexed: 10/26/2022]
|
31
|
Siddiqui RA, Warnecke-Eberz U, Hengsberger A, Schneider B, Kostka S, Friedrich B. Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. J Bacteriol 1993; 175:5867-76. [PMID: 8376334 PMCID: PMC206666 DOI: 10.1128/jb.175.18.5867-5876.1993] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Alcaligenes eutrophus H16 shows three distinct nitrate reductase activities (U. Warnecke-Eberz and B. Friedrich, Arch. Microbiol. 159:405-409, 1993). The periplasmic enzyme, designated NAP (nitrate reductase, periplasmic), has been isolated. The 80-fold-purified heterodimeric enzyme catalyzed nitrate reduction with reduced viologen dyes as electron donors. The nap genes were identified in a library of A. eutrophus H16 megaplasmid DNA by using oligonucleotide probes based on the amino-terminal polypeptide sequences of the two NAP subunits. The two structural genes, designated napA and napB, code for polypeptides of 93 and 18.9 kDa, respectively. Sequence comparisons indicate that the putative gene products are translated with signal peptides of 28 and 35 amino acids, respectively. This is compatible with the fact that NAP activity was found in the soluble fraction of cell extracts and suggests that the mature enzyme is located in the periplasm. The deduced sequence of the large subunit, NAPA, contained two conserved amino-terminal stretches of amino acids found in molybdenum-dependent proteins such as nitrate reductases and formate dehydrogenases, suggesting that NAPA contains the catalytic site. The predicted sequence of the small subunit, NAPB, revealed two potential heme c-binding sites, indicating its involvement in the transfer of electrons. An insertion in the napA gene led to a complete loss of NAP activity but did not abolish the ability of A. eutrophus to use nitrate as a nitrogen source or as an electron acceptor in anaerobic respiration. Nevertheless, the NAP-deficient mutant showed delayed growth after transition from aerobic to anaerobic respiration, suggesting a role for NAP in the adaptation to anaerobic metabolism.
Collapse
Affiliation(s)
- R A Siddiqui
- Institut für Pflanzenphysiologie und Mikrobiologie, Freien Universität Berlin, Germany
| | | | | | | | | | | |
Collapse
|
32
|
North AK, Klose KE, Stedman KM, Kustu S. Prokaryotic enhancer-binding proteins reflect eukaryote-like modularity: the puzzle of nitrogen regulatory protein C. J Bacteriol 1993; 175:4267-73. [PMID: 8331061 PMCID: PMC204865 DOI: 10.1128/jb.175.14.4267-4273.1993] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- A K North
- Department of Plant Pathology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
33
|
Dernedde J, Eitinger M, Friedrich B. Analysis of a pleiotropic gene region involved in formation of catalytically active hydrogenases in Alcaligenes eutrophus H16. Arch Microbiol 1993; 159:545-53. [PMID: 8352644 DOI: 10.1007/bf00249034] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In Alcaligenes eutrophus H16 a pleiotropic DNA-region is involved in formation of catalytically active hydrogenases. This region lies within the hydrogenase gene cluster of megaplasmid pHG1. Nucleotide sequence determination revealed five open reading frames with significant amino acid homology to the products of the hyp operon of Escherichia coli and other hydrogenase-related gene products of diverse organisms. Mutants of A. eutrophus H16 carrying Tn5 insertions in two genes (hypB and hypD) lacked catalytic activity of both soluble (SH) and membrane-bound (MBH) hydrogenase. Immunological analysis showed that the mutants contained SH- and MBH-specific antigen. Growing the cells in the presence of 63Ni2+ yielded significantly lower nickel accumulation rates of the mutant strains compared to the wild-type. Analysis of partially purified SH showed only traces of nickel in the mutant protein suggesting that the gene products of the pleiotropic region are involved in the supply and/or incorporation of nickel into the two hydrogenases of A. eutrophus.
Collapse
Affiliation(s)
- J Dernedde
- Institut für Pflanzenphysiologie und Mikrobiologie der Freien Universität Berlin, Germany
| | | | | |
Collapse
|
34
|
Tibelius KH, Du L, Tito D, Stejskal F. The Azotobacter chroococcum hydrogenase gene cluster: sequences and genetic analysis of four accessory genes, hupA, hupB, hupY and hupC. Gene 1993; 127:53-61. [PMID: 8486288 DOI: 10.1016/0378-1119(93)90616-b] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Azotobacter chroococcum chromosome contains a region spanning about 14 kb associated with hydrogen-uptake (Hup) activity. The small and large subunits of the hydrogenase are encoded by the structural genes hupS and hupL. Two other genes, hupD and hupE, are located 8.9 kb downstream from hupL and are required for the formation of a catalytically active hydrogenase. In this study, we determined the nucleotide sequence of a 3.8-kb region immediately upstream from hupD. This revealed four additional closely linked ORFs which we designated hupA, hupB, hupY and hupC; these genes potentially encode polypeptides with predicted masses of 12.6, 33.3, 80.4 and 9.0 kDa, respectively. This cluster of genes was shown to be essential for hydrogenase activity by insertion mutagenesis using antibiotic-resistance gene cassettes and a Tn5 derivative carrying a promoterless lacZ gene. A 10.5-kb fragment of DNA beginning 3.4 kb downstream from hupL, and including the sequenced region, was able to complement hupA and hupY mutants, supporting earlier evidence for a promoter downstream from hupSL. The deduced amino acid sequences of hupA, hupB and hupC are homologous to the Escherichia coli hypA, hypB and hypC gene products, respectively. Of particular interest is the fact that there is no homologue of the hupY gene product in the E. coli hyp operon. Mutations in hupY or hupB had little effect on beta-galactosidase activity in a strain also carrying a hupL::lacZ fusion, showing that hupY and hupB are not major factors in regulating the transcription of the hydrogenase structural genes.
Collapse
Affiliation(s)
- K H Tibelius
- Department of Microbiology, McGill University, Ste. Anne de Bellevue, Québec, Canada
| | | | | | | |
Collapse
|
35
|
Van Soom C, Verreth C, Sampaio MJ, Vanderleyden J. Identification of a potential transcriptional regulator of hydrogenase activity in free-living Bradyrhizobium japonicum strains. MOLECULAR & GENERAL GENETICS : MGG 1993; 239:235-40. [PMID: 8510650 DOI: 10.1007/bf00281623] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In Bradyrhizobium japonicum, Tn5 insertions in a particular chromosomal DNA fragment result in a Hup- phenotype in free-living conditions without affecting hydrogenase (Hup) activity in the symbiotic state. By determination of the nucleotide sequence of this region, we were able to identify the nature of the inactivated genes. The fragment is located 9 kb downstream of the hydrogenase structural genes and contains one incomplete and three complete open reading frames. They are designated hypD', hypE, hoxX and hoxA respectively, since the deduced amino acid sequences display very strong homology with genes involved in the regulation of hydrogenase activity in Escherichia coli, Rhodobacter capsulatus, Azotobacter vinelandii (hypD' and hypE) and Alcaligenes eutrophus (hoxX and hoxA). This is the first report on transcriptional activators of the hup genes in B. japonicum. Implications of these findings with respect to regulation of hydrogenase synthesis by hydrogen, oxygen and nickel in free-living B. japonicum are discussed.
Collapse
Affiliation(s)
- C Van Soom
- F.A. Janssens Laboratory of Genetics, Catholic University of Leuven, Heverlee, Belgium
| | | | | | | |
Collapse
|
36
|
Colbeau A, Richaud P, Toussaint B, Caballero FJ, Elster C, Delphin C, Smith RL, Chabert J, Vignais PM. Organization of the genes necessary for hydrogenase expression in Rhodobacter capsulatus. Sequence analysis and identification of two hyp regulatory mutants. Mol Microbiol 1993; 8:15-29. [PMID: 8497190 DOI: 10.1111/j.1365-2958.1993.tb01199.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A 25 kbp DNA fragment from the chromosome of Rhodobacter capsulatus B10 carrying hydrogenase (hup) determinants was completely sequenced. Coding regions corresponding to 20 open reading frames were identified. The R. capsulatus hydrogenase-specific gene (hup and hyp) products bear significant structural identity to hydrogenase gene products from Escherichia coli (13), from Rhizobium leguminosarum (16), from Azotobacter vinelandii (10) and from Alcaligenes eutrophus (11). The sequential arrangement of the R. capsulatus genes is: hupR2-hupU-hypF-hupS-hupL-hupM-hu pD-hupF-hupG-hupH-hupJ-hupK-hypA- hypB-hupR1- hypC-hypD-hypE-ORF19-ORF20, all contiguous and transcribed from the same DNA strand. The last two potential genes do not encode products that are related to identified hydrogenase-specific gene products in other species. The sequence of the 12 R. capsulatus genes underlined above is presented. The mutation site in two of the Hup- mutants used in this study, RS13 and RCC12, was identified in the hypF gene (deletion of one G) and in the hypD gene (deletion of 54 bp), respectively. The hypF gene product shares 45% identity with the product of hydA from E. coli and the product of hypF from R. leguminosarum. Those products present at their N-terminus a Cys arrangement typical of zinc-finger proteins. The G deletion in the C-terminal region of hypF in the RS13 mutant prevented the expression of a hupS::lacZ translational fusion from being stimulated by H2 as it is observed in the wild-type strain B10. It is inferred that the HypF protein is a factor involved in H2 stimulation of hydrogenase expression.
Collapse
Affiliation(s)
- A Colbeau
- Laboratoire de Biochimie Microbienne/DBMS (CNRS URA 1130 alliée à l'INSERM), Centre d'Etudes Nucléaires, Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yang J, Ganesan S, Sarsero J, Pittard AJ. A genetic analysis of various functions of the TyrR protein of Escherichia coli. J Bacteriol 1993; 175:1767-76. [PMID: 8449883 PMCID: PMC203971 DOI: 10.1128/jb.175.6.1767-1776.1993] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The TyrR protein is involved in both repression and activation of the genes of the TyrR regulon. Correction of an error in a previously published sequence has revealed a Cro-like helix-turn-helix DNA-binding domain near the carboxyl terminus. Site-directed mutagenesis in this region has generated a number of mutants that can no longer repress or activate. Deletions of amino acid residues 5 to 42 produced a protein that could repress but not activate. The central domain of TyrR contains an ATP-binding site and is homologous with the NtrC family of activator proteins. A mutation to site A of the ATP-binding site and other mutations in this region affect tyrosine-mediated repression but do not prevent activation or phenylalanine-mediated repression of aroG.
Collapse
Affiliation(s)
- J Yang
- Department of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
38
|
Jacobi A, Rossmann R, Böck A. The hyp operon gene products are required for the maturation of catalytically active hydrogenase isoenzymes in Escherichia coli. Arch Microbiol 1992; 158:444-51. [PMID: 1482271 DOI: 10.1007/bf00276307] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The hyp operon of Escherichia coli comprises several genes which are required for the synthesis of all three hydrogenase isoenzymes. Deletions were introduced into each of the hypA-E genes, transferred to the chromosome and the resulting mutants were analysed for hydrogenase 1, 2 and 3 activity. The products of three of the genes, hypB, hypD and hypE were found to be essential for the synthesis of all three hydrogenase isoenzymes. A defect in hypB, as previously observed, could be complemented by high nickel concentrations in the medium, whereas the effects of mutants in the other genes could not. Lesions in hypA prevented development of hydrogenase 3 activity, did not influence the level of hydrogenase 1 but led to a considerable increase in hydrogenase 2 activity although the amount of hydrogenase 2 protein was not drastically altered. Lesions in hypC, on the other hand, led to a reduction of hydrogenase 1 activity and abolished hydrogenase 3 activity. HYPA and HYPC, besides being required for hydrogenase 3 formation, therefore may have a function in modulating the activities of the three isoenzymes with respect to each other and adjusting their levels to the requirement imposed by the physiological situation. Mutations in all five hyp genes prevented the apparent processing of the large subunits of all three hydrogenase isoenzymes. It is concluded that the products of the hypA-E genes play a role in nickel incorporation into hydrogenase apoprotein and/or processing of the constituent subunits of this enzyme. The importance of their roles is also reflected in their phylogenetic conservation in distantly related organisms.
Collapse
Affiliation(s)
- A Jacobi
- Lehrstuhl für Mikrobiologie der Universität München, Federal Republic of Germany
| | | | | |
Collapse
|
39
|
Abstract
The formation of the catalytically active membrane-bound hydrogenase (MBH) of Alcaligenes eutrophus H16 requires the genes for the small and large subunits of the enzyme (hoxK and hoxG, respectively) and an accompanying set of accessory genes (C. Kortl ke, K. Horstmann, E. Schwartz, M. Rohde, R. Binsack, and B. Friedrich, J. Bacteriol. 174:6277-6289, 1992). Other genes located in the adjacent pleiotropic region are also required. In the absence of these genes, MBH is synthesized but is catalytically inactive. Immunological analyses revealed that cells containing active MBH produced the small and large subunits of the enzyme in two distinct conformations each; only one of each, presumably the immature form, occurred in cells devoid of MBH activity. The results suggest that the conversion of the two subunits into the catalytically active membrane-associated heterodimer depends on specific maturation processes mediated by hox genes.
Collapse
Affiliation(s)
- C Kortlüke
- Institut für Pflanzenphysiologie und Mikrobiologie, Freien Universität Berlin, Germany
| | | |
Collapse
|
40
|
Kortlüke C, Horstmann K, Schwartz E, Rohde M, Binsack R, Friedrich B. A gene complex coding for the membrane-bound hydrogenase of Alcaligenes eutrophus H16. J Bacteriol 1992; 174:6277-89. [PMID: 1383192 PMCID: PMC207698 DOI: 10.1128/jb.174.19.6277-6289.1992] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
One of the key enzymes in the chemolithoautotrophic metabolism of Alcaligenes eutrophus H16 is a dimeric, membrane-associated hydrogenase. The genetic determinants of this enzyme are located on the endogenous megaplasmid pHG1 (G. Eberz, C. Hogrefe, C. Kortlüke, A. Kamienski, and B. Friedrich, J. Bacteriol. 168:636-641, 1986). Complementation studies showed that the information required for the formation of active membrane-bound hydrogenase occupies more than 7.5 kb of megaplasmid DNA. We cloned and sequenced this region and identified the genes encoding the two hydrogenase subunits (hoxK and hoxG). The nucleotide sequence contains nine additional closely spaced open reading frames. Immunoelectron microscopy showed that the gene product of one of these open reading frames (hoxM) is involved in the process leading to the attachment of hydrogenase to the membrane. Other open reading frames may encode additional processing functions and components of a hydrogenase-linked electron transport chain. Analysis of Tn5-B21-mediated transcriptional fusions provided evidence that the structural genes and accessory functions belong to at least three coordinately regulated transcriptional units.
Collapse
Affiliation(s)
- C Kortlüke
- Institut für Pflanzenphysiologie und Mikrobiologie, Freien Universität Berlin, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Du L, Stejskal F, Tibelius KH. Characterization of two genes (hupDandhupE) required for hydrogenase activity inAzotobacter chroococcum. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05399.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
42
|
Krüger N, Steinbüchel A. Identification of acoR, a regulatory gene for the expression of genes essential for acetoin catabolism in Alcaligenes eutrophus H16. J Bacteriol 1992; 174:4391-400. [PMID: 1378052 PMCID: PMC206224 DOI: 10.1128/jb.174.13.4391-4400.1992] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Two hundred thirty-nine base pairs upstream from acoXABC, which encodes the Alcaligenes eutrophus H16 structural genes essential for cleavage of acetoin, the 2,004-bp acoR gene was identified. acoR encodes a protein of 668 amino acids with a molecular mass of 72.9 kDa. The amino acid sequence deduced from acoR exhibited homologies to the primary structures of transcriptional activators such as NifA of Azotobacter vinelandii, NtrC of Klebsiella pneumoniae, and HoxA of A. eutrophus. Striking similarities to the central domain of these proteins and the presence of a typical nucleotide-binding site (GETGSGK) as well as of a C-terminal helix-turn-helix motif as a DNA-binding site were revealed. Between acoR and acoXABC, two different types of sequences with dual rotational symmetry [CAC-(N11 to N18)-GTG and TGT-(N10 to N14)-ACA] were found; these sequences are similar to NtrC and NifA upstream activator sequences, respectively. Determination of the N-terminal amino acid sequence of an acoR'-'lacZ gene fusion identified the translational start of acoR. S1 nuclease protection assay identified the transcriptional start site 109 bp upstream of acoR. The promoter region (TTGCGC-N18-TACATT) resembled the sigma 70 consensus sequence of Escherichia coli. Analysis of an acoR'-'lacZ fusion and primer extension studies revealed that acoR was expressed at a low level under all culture conditions, whereas acoXABC was expressed only in acetoin-grown cells. The insertions of Tn5 in six transposon-induced acetoin-negative mutants of A. eutrophus were mapped within acoR. On the basis of these studies, it is probable that AcoR represents a regulatory protein which is required for sigma 54-dependent transcription of acoXABC.
Collapse
MESH Headings
- Acetoin/metabolism
- Alcaligenes/genetics
- Alcaligenes/metabolism
- Amino Acid Sequence
- Bacterial Proteins
- Base Sequence
- Cloning, Molecular
- DNA Transposable Elements
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA-Binding Proteins
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Genes, Regulator
- Molecular Sequence Data
- Mutagenesis, Insertional
- Oligodeoxyribonucleotides
- Plasmids
- Promoter Regions, Genetic
- RNA, Bacterial/genetics
- RNA, Bacterial/isolation & purification
- Restriction Mapping
- Sequence Homology, Nucleic Acid
- Terminator Regions, Genetic
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- N Krüger
- Institut für Mikrobiologie, Georg-August-Universität zu Göttingen, Germany
| | | |
Collapse
|
43
|
Priefert H, Krüger N, Jendrossek D, Schmidt B, Steinbüchel A. Identification and molecular characterization of the gene coding for acetaldehyde dehydrogenase II (acoD) of Alcaligenes eutrophus. J Bacteriol 1992; 174:899-907. [PMID: 1732222 PMCID: PMC206168 DOI: 10.1128/jb.174.3.899-907.1992] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The N-terminal amino acid sequence of purified acetaldehyde dehydrogenase II (AcDH-II) from ethanol-grown cells of Alcaligenes eutrophus was determined. By using oligonucleotides deduced from this sequence the structural gene for AcDH-II, which was referred to as acoD, was localized on a 7.2-kbp EcoRI restriction fragment (fragment D), which has been cloned recently (C. Fründ, H. Priefert, A. Steinbüchel, and H. G. Schlegel, J. Bacteriol. 171:6539-6548, 1989). A 2.8-kbp PstI subfragment of D, which harbored acoD, was sequenced. It revealed an open reading frame of 1,518 bp, encoding a protein with a relative molecular weight of 54,819. The insertions of Tn5::mob of two transposon-induced mutants of A. eutrophus, which were impaired in the catabolism of acetoin, were mapped 483 or 1,359 bp downstream from the translational start codon of acoD. The structural gene was preceded by a putative Shine-Dalgarno sequence. The transcriptional start site 57 bp upstream of acoD was identified and was preceded by a sequence which exhibited a striking homology to the enterobacterial sigma 54-dependent promoter consensus sequence. This was in accordance with the observation that the expression of acoD and of other acetoin-catabolic genes depended on the presence of an intact rpoN-like gene. Alignments of the amino acid sequence deduced from acoD with the primary structures of aldehyde dehydrogenases from other sources revealed high degrees of homology, amounting to 46.5% identical amino acids.
Collapse
Affiliation(s)
- H Priefert
- Institut für Mikrobiologie, Georg-August-Universität zu Göttingen, Germany
| | | | | | | | | |
Collapse
|
44
|
Dressler C, Kües U, Nies DH, Friedrich B. Determinants Encoding Resistance to Several Heavy Metals in Newly Isolated Copper-Resistant Bacteria. Appl Environ Microbiol 1991; 57:3079-85. [PMID: 16348575 PMCID: PMC183930 DOI: 10.1128/aem.57.11.3079-3085.1991] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three copper-resistant, gram-negative bacteria were isolated and characterized. Of the three strains,
Alcaligenes denitrificans
AH tolerated the highest copper concentration (MIC = 4 mM CuSO
4
). All three strains showed various levels of resistance to other metal ions.
A. denitrificans
AH contains sequences which cross-hybridized with the
mer
(mercury resistance) determinant of Tn
21
and the
czc
(cobalt, zinc, and cadmium resistance),
cnr
(cobalt and nickel resistance), and
chr
(chromate resistance) determinants of
A. eutrophus
CH34. DNA-DNA hybridization with probes prepared from
A. eutrophus
CH34 and Tn
21
revealed the presence of
chr-, cnr-
, and
mer
-like sequences on the 200-kb plasmid pHG27 and of
czc, cnr
, and
mer
homologs located on the chromosome. The second strain, classified as
Alcaligenes
sp. strain PW, carries
czc, cnr
, and
mer
homologs on the 240-kb plasmid pHG29-c and a
chr
determinant on the 290-kb plasmid pHG29-a; a third plasmid, the 260-kb large plasmid pHG29-b, is cryptic. In contrast to the
Alcaligenes
strains, which were isolated from metal-contaminated water,
Pseudomonas paucimobilis
CD was isolated from the air. This strain harbors two cryptic plasmids: the 210-kb large plasmid pHG28-a and the 40-kb plasmid pHG28-b. Southern analysis revealed no homology between the metal ion resistance determinants of
A. eutrophus
CH34 and
P. paucimobilis
CD.
Collapse
Affiliation(s)
- C Dressler
- Institut für Pflanzenphysiologie und Mikrobiologie, Freie Universität Berlin, Königin-Luise-Strasse 12-16, D-1000 Berlin 33, Germany
| | | | | | | |
Collapse
|
45
|
Weiss DS, Batut J, Klose KE, Keener J, Kustu S. The phosphorylated form of the enhancer-binding protein NTRC has an ATPase activity that is essential for activation of transcription. Cell 1991; 67:155-67. [PMID: 1833069 DOI: 10.1016/0092-8674(91)90579-n] [Citation(s) in RCA: 266] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The NTRC protein of enteric bacteria is an enhancer-binding protein that activates transcription in response to limitation of combined nitrogen. NTRC activates transcription by catalyzing formation of open complexes by RNA polymerase (sigma 54 holoenzyme form) in an ATP-dependent reaction. To catalyze open complex formation, NTRC must be phosphorylated. We show that phosphorylated NTRC has an ATPase activity, and we present biochemical and genetic evidence that NTRC must hydrolyze ATP to catalyze open complex formation. It is likely that all activators of sigma 54 holoenzyme have an ATPase activity.
Collapse
Affiliation(s)
- D S Weiss
- Department of Plant Pathology, University of California, Berkeley 94720
| | | | | | | | | |
Collapse
|
46
|
Richaud P, Colbeau A, Toussaint B, Vignais PM. Identification and sequence analysis of the hupR1 gene, which encodes a response regulator of the NtrC family required for hydrogenase expression in Rhodobacter capsulatus. J Bacteriol 1991; 173:5928-32. [PMID: 1885559 PMCID: PMC208331 DOI: 10.1128/jb.173.18.5928-5932.1991] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The hupR1 gene from Rhodobacter capsulatus was cloned and sequenced. It can encode a protein of 53,843 Da which shares significant similarity with several transcriptional regulators and activates transcription of the structural hupSL genes of [NiFe]hydrogenase, as shown by the use of a translational fusion of lacZ with the hupSL promoter. A Hup- mutant having a point mutation in the hupR1 gene is described.
Collapse
Affiliation(s)
- P Richaud
- Laboratoire de Biochimie Microbienne (Centre National de la Recherche Scientifique Unité 1130 alliée à l'Institut National de la Santé de la Recherche Médicale), Grenoble, France
| | | | | | | |
Collapse
|
47
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1991; 19:4577-89. [PMID: 1886797 PMCID: PMC328687 DOI: 10.1093/nar/19.16.4577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|