1
|
Mueller AU, Molina N, Darst SA. Real-time capture of σ N transcription initiation intermediates reveals mechanism of ATPase-driven activation by limited unfolding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637174. [PMID: 39974980 PMCID: PMC11839083 DOI: 10.1101/2025.02.07.637174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Bacterial σ factors bind RNA polymerase (E) to form holoenzyme (Eσ), conferring promoter specificity to E and playing a key role in transcription bubble formation. σN is unique among σ factors in its structure and functional mechanism, requiring activation by specialized AAA+ ATPases. EσN forms an inactive promoter complex where the N-terminal σN region I (σN-RI) threads through a small DNA bubble. On the opposite side of the DNA, the ATPase engages σN-RI within the pore of its hexameric ring. Here, we perform kinetics-guided structural analysis of de novo formed EσN initiation complexes and engineer a biochemical assay to measure ATPase-mediated σN-RI translocation during promoter melting. We show that the ATPase exerts mechanical action to translocate about 30 residues of σN-RI through the DNA bubble, disrupting inhibitory structures of σN to allow full transcription bubble formation. A local charge switch of σN-RI from positive to negative may help facilitate disengagement of the otherwise processive ATPase, allowing subsequent σN disentanglement from the DNA bubble.
Collapse
Affiliation(s)
- Andreas U. Mueller
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, 10065 USA
| | - Nina Molina
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, 10065 USA
| | - Seth A. Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, 10065 USA
| |
Collapse
|
2
|
σ 54 (σ L) plays a central role in carbon metabolism in the industrially relevant Clostridium beijerinckii. Sci Rep 2019; 9:7228. [PMID: 31076628 PMCID: PMC6510779 DOI: 10.1038/s41598-019-43822-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/23/2019] [Indexed: 11/09/2022] Open
Abstract
The solventogenic C. beijerinckii DSM 6423, a microorganism that naturally produces isopropanol and butanol, was previously modified by random mutagenesis. In this work, one of the resulting mutants was characterized. This strain, selected with allyl alcohol and designated as the AA mutant, shows a dominant production of acids, a severely diminished butanol synthesis capacity, and produces acetone instead of isopropanol. Interestingly, this solvent-deficient strain was also found to have a limited consumption of two carbohydrates and to be still able to form spores, highlighting its particular phenotype. Sequencing of the AA mutant revealed point mutations in several genes including CIBE_0767 (sigL), which encodes the σ54 sigma factor. Complementation with wild-type sigL fully restored solvent production and sugar assimilation and RT-qPCR analyses revealed its transcriptional control of several genes related to solventogensis, demonstrating the central role of σ54 in C. beijerinckii DSM 6423. Comparative genomics analysis suggested that this function is conserved at the species level, and this hypothesis was further confirmed through the deletion of sigL in the model strain C. beijerinckii NCIMB 8052.
Collapse
|
3
|
Crystal structure of Aquifex aeolicus σ N bound to promoter DNA and the structure of σ N-holoenzyme. Proc Natl Acad Sci U S A 2017; 114:E1805-E1814. [PMID: 28223493 DOI: 10.1073/pnas.1619464114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial σ factors confer promoter specificity to the RNA polymerase (RNAP). One alternative σ factor, σN, is unique in its structure and functional mechanism, forming transcriptionally inactive promoter complexes that require activation by specialized AAA+ ATPases. We report a 3.4-Å resolution X-ray crystal structure of a σN fragment in complex with its cognate promoter DNA, revealing the molecular details of promoter recognition by σN The structure allowed us to build and refine an improved σN-holoenzyme model based on previously published 3.8-Å resolution X-ray data. The improved σN-holoenzyme model reveals a conserved interdomain interface within σN that, when disrupted by mutations, leads to transcription activity without activator intervention (so-called bypass mutants). Thus, the structure and stability of this interdomain interface are crucial for the role of σN in blocking transcription activity and in maintaining the activator sensitivity of σN.
Collapse
|
4
|
van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 2013; 77:628-95. [PMID: 24296575 PMCID: PMC3973380 DOI: 10.1128/mmbr.00025-13] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now.
Collapse
|
5
|
The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription. Microbiol Mol Biol Rev 2013; 76:497-529. [PMID: 22933558 DOI: 10.1128/mmbr.00006-12] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial enhancer binding proteins (bEBPs) are transcriptional activators that assemble as hexameric rings in their active forms and utilize ATP hydrolysis to remodel the conformation of RNA polymerase containing the alternative sigma factor σ(54). We present a comprehensive and detailed summary of recent advances in our understanding of how these specialized molecular machines function. The review is structured by introducing each of the three domains in turn: the central catalytic domain, the N-terminal regulatory domain, and the C-terminal DNA binding domain. The role of the central catalytic domain is presented with particular reference to (i) oligomerization, (ii) ATP hydrolysis, and (iii) the key GAFTGA motif that contacts σ(54) for remodeling. Each of these functions forms a potential target of the signal-sensing N-terminal regulatory domain, which can act either positively or negatively to control the activation of σ(54)-dependent transcription. Finally, we focus on the DNA binding function of the C-terminal domain and the enhancer sites to which it binds. Particular attention is paid to the importance of σ(54) to the bacterial cell and its unique role in regulating transcription.
Collapse
|
6
|
Francke C, Groot Kormelink T, Hagemeijer Y, Overmars L, Sluijter V, Moezelaar R, Siezen RJ. Comparative analyses imply that the enigmatic Sigma factor 54 is a central controller of the bacterial exterior. BMC Genomics 2011; 12:385. [PMID: 21806785 PMCID: PMC3162934 DOI: 10.1186/1471-2164-12-385] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 08/01/2011] [Indexed: 02/06/2023] Open
Abstract
Background Sigma-54 is a central regulator in many pathogenic bacteria and has been linked to a multitude of cellular processes like nitrogen assimilation and important functional traits such as motility, virulence, and biofilm formation. Until now it has remained obscure whether these phenomena and the control by Sigma-54 share an underlying theme. Results We have uncovered the commonality by performing a range of comparative genome analyses. A) The presence of Sigma-54 and its associated activators was determined for all sequenced prokaryotes. We observed a phylum-dependent distribution that is suggestive of an evolutionary relationship between Sigma-54 and lipopolysaccharide and flagellar biosynthesis. B) All Sigma-54 activators were identified and annotated. The relation with phosphotransfer-mediated signaling (TCS and PTS) and the transport and assimilation of carboxylates and nitrogen containing metabolites was substantiated. C) The function annotations, that were represented within the genomic context of all genes encoding Sigma-54, its activators and its promoters, were analyzed for intra-phylum representation and inter-phylum conservation. Promoters were localized using a straightforward scoring strategy that was formulated to identify similar motifs. We found clear highly-represented and conserved genetic associations with genes that concern the transport and biosynthesis of the metabolic intermediates of exopolysaccharides, flagella, lipids, lipopolysaccharides, lipoproteins and peptidoglycan. Conclusion Our analyses directly implicate Sigma-54 as a central player in the control over the processes that involve the physical interaction of an organism with its environment like in the colonization of a host (virulence) or the formation of biofilm.
Collapse
Affiliation(s)
- Christof Francke
- TI Food and Nutrition, P,O,Box 557, 6700AN Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
7
|
Poggio S, Osorio A, Dreyfus G, Camarena L. Transcriptional specificity of RpoN1 and RpoN2 involves differential recognition of the promoter sequences and specific interaction with the cognate activator proteins. J Biol Chem 2006; 281:27205-15. [PMID: 16854992 DOI: 10.1074/jbc.m601735200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The four RpoN factors of Rhodobacter sphaeroides are functionally specialized. In this bacterium, RpoN1 and RpoN2 are specifically required for the transcription of the nitrogen fixation and flagellar genes, respectively. Analysis of the promoter sequences recognized by each of these RpoN proteins revealed some significant differences. To investigate the functional relevance of these differences, the flagellar promoter fliOp was sequentially mutagenized to resemble the nitrogen fixation promoter nifUp. Our results indicate that the promoter sequences recognized by these sigma factors have diverged enough so that particular positions of the promoter sequence are differentially recognized. In this regard, we demonstrate that the identity of the -11-position is critical for promoter discrimination by RpoN1 and RpoN2. Accordingly, purified RpoN proteins with a deletion of Region I, which has been involved in the recognition of the -11-position, did not show differential binding of fliOp and nifUp promoters. Substitution of the flagellar enhancer region located upstream fliOp by the enhancer region of nifUp allowed us to demonstrate that RpoN1 and RpoN2 interact specifically with their respective activator protein. In conclusion, two different molecular mechanisms underlie the transcriptional specialization of these sigma factors.
Collapse
Affiliation(s)
- Sebastian Poggio
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 México D. F., México
| | | | | | | |
Collapse
|
8
|
Wigneshweraraj SR, Burrows PC, Bordes P, Schumacher J, Rappas M, Finn RD, Cannon WV, Zhang X, Buck M. The second paradigm for activation of transcription. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:339-69. [PMID: 16096032 DOI: 10.1016/s0079-6603(04)79007-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- S R Wigneshweraraj
- Department of Biological Sciences and Centre for Structural Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wigneshweraraj SR, Burrows PC, Nechaev S, Zenkin N, Severinov K, Buck M. Regulated communication between the upstream face of RNA polymerase and the beta' subunit jaw domain. EMBO J 2004; 23:4264-74. [PMID: 15470503 PMCID: PMC524387 DOI: 10.1038/sj.emboj.7600407] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 08/17/2004] [Indexed: 11/09/2022] Open
Abstract
We used bacteriophage T7-encoded transcription inhibitor gene protein 2 (gp2) as a probe to study the contribution of the Escherichia coli RNA polymerase (RNAP) beta' subunit jaw domain--the site of gp2 binding--to activator and ATP hydrolysis-dependent open complex formation by the sigma(54)-RNAP. We show that, unlike sigma(70)-dependent transcription, activated transcription by sigma(54)-RNAP is resistant to gp2. In contrast, activator and ATP hydrolysis-independent transcription by sigma(54)-RNAP is highly sensitive to gp2. We provide evidence that an activator- and ATP hydrolysis-dependent conformational change involving the beta' jaw domain and promoter DNA is the basis for gp2-resistant transcription by sigma(54)-RNAP. Our results establish that accessory factors bound to the upstream face of the RNAP, communicate with the beta' jaw domain, and that such communication is subjected to regulation.
Collapse
Affiliation(s)
| | | | | | - Nikolay Zenkin
- Waksman Institute and Department of Genetics, Rutgers, The State University, Piscataway, NJ, USA
| | - Konstantin Severinov
- Waksman Institute and Department of Genetics, Rutgers, The State University, Piscataway, NJ, USA
- Waksman Institute and Department of Genetics, Rutgers, The State University, Piscataway, NJ 08904, USA. Tel.: +1 732 445 6095; Fax: +1 732 445 573; E-mail:
| | - Martin Buck
- Department of Biological Sciences, Imperial College London, London, UK
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Tel.: +44 207 594 5442; Fax: +44 207 594 5419; E-mail:
| |
Collapse
|
10
|
Burrows PC, Severinov K, Ishihama A, Buck M, Wigneshweraraj SR. Mapping sigma 54-RNA polymerase interactions at the -24 consensus promoter element. J Biol Chem 2003; 278:29728-43. [PMID: 12750380 DOI: 10.1074/jbc.m303596200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sigma 54 promoter specificity factor is distinct from sigma 70-type factors. The sigma 54-RNA polymerase binds to promoters with conserved sequence elements at -24 and -12 and utilizes specialized enhancer-binding activators to convert, through an ATP-dependent process, closed promoter complexes to open promoter complexes. The interface between sigma 54-RNA polymerase and promoter DNA is poorly characterized, contrasting with sigma 70. Here, sigma 54 was modified with strategically positioned cleavage reagents to provide physical evidence that the highly conserved RpoN box motif of sigma 54 is close to and may therefore interact with the consensus -24 promoter element. We show that the spatial relationship between the sigma 54-RNA polymerase and the -24 promoter element remains unchanged during closed to open complex conversion and transcription initiation but changes during the early elongation phase. In contrast, the spatial relationship between sigma 54-RNA polymerase and the consensus -12 promoter element changes upon conversion of the closed promoter complex to an open one. We provide evidence that some -12 promoter region-sigma 54 interactions are dependent upon either the core RNA polymerase or a fork junction DNA structure at the -12-position, indicating that DNA fork junctions can substitute for core RNAP. We also show the beta-subunit flap domain contributes to different sets of sigma-promoter DNA interactions at sigma 54- and sigma 70-dependent promoters.
Collapse
Affiliation(s)
- Patricia C Burrows
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Wigneshweraraj SR, Casaz P, Buck M. Correlating protein footprinting with mutational analysis in the bacterial transcription factor sigma54 (sigmaN). Nucleic Acids Res 2002; 30:1016-28. [PMID: 11842114 PMCID: PMC100328 DOI: 10.1093/nar/30.4.1016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein footprints of the enhancer-dependent sigma54 protein, upon binding the Escherichia coli RNA polymerase core enzyme or upon forming closed promoter complexes, identified surface-exposed residues in sigma54 of potential functional importance at the interface between sigma54 and core RNA polymerases (RNAP) or DNA. We have now characterised alanine and glycine substitution mutants at several of these positions. Properties of the mutant sigma54s correlate protein footprints to activity. Some mutants show elevated DNA binding suggesting that promoter binding by holoenzyme may be limited to enable normal functioning. One such mutant (F318A) within the DNA binding domain of sigma54 shows a changed interaction with the promoter regulatory region implicated in transcription silencing and fails to silence transcription in vitro. It appears specifically defective in preferentially binding to a repressive DNA structure believed to restrict RNA polymerase isomerisation and is largely intact for activator responsiveness. Two mutants, one in the regulatory region I and the other within core interacting sequences of sigma54, failed to stably bind the activator in the presence of ADP-aluminium fluoride, an analogue of ATP in the transition state for hydrolysis. Overall, the data presented describe a collection sigma54 mutants that have escaped previous analysis and display an array of properties which allows the role of surface-exposed residues in the regulation of open complex formation and promoter DNA binding to be better understood. Their properties support the view that the interface between sigma54 and core RNAP is functionally specialised.
Collapse
Affiliation(s)
- Siva R Wigneshweraraj
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
12
|
Wang L, Gralla JD. Roles for the C-terminal region of sigma 54 in transcriptional silencing and DNA binding. J Biol Chem 2001; 276:8979-86. [PMID: 11124262 DOI: 10.1074/jbc.m009587200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Twenty-one conserved positively charged and aromatic amino acids between residues 331 and 462 of sigma 54 were changed to alanine, and the mutant proteins were studied by transcription, band shift analysis, and footprinting in vitro. A small segment corresponding to the rpoN box was found to be most important for binding duplex DNA. Two amino acids, 52 residues apart, were found to be critical for maintaining transcriptional silencing in the absence of activator. These two activator bypass mutants and several other mutants failed to bind the type of fork junction DNA thought to be required to maintain silencing. The two bypass mutants showed a binding pattern to DNA probes that was unique, both in comparison to other C-terminal mutants and to previously known N-terminal bypass mutants. On this basis, a model is proposed for the role of the C terminus and the N terminus of sigma 54 in enhancer-dependent transcription.
Collapse
Affiliation(s)
- L Wang
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095-1569, USA
| | | |
Collapse
|
13
|
Wigneshweraraj SR, Chaney MK, Ishihama A, Buck M. Regulatory sequences in sigma 54 localise near the start of DNA melting. J Mol Biol 2001; 306:681-701. [PMID: 11243780 DOI: 10.1006/jmbi.2000.4393] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription initiation by the enhancer-dependent sigma(54) RNA polymerase holoenzyme is positively regulated after promoter binding. The promoter DNA melting process is subject to activation by an enhancer-bound activator protein with nucleoside triphosphate hydrolysis activity. Tethered iron chelate probes attached to amino and carboxyl-terminal domains of sigma(54) were used to map sigma(54)-DNA interaction sites. The two domains localise to form a centre over the -12 promoter region. The use of deletion mutants of sigma(54) suggests that amino-terminal and carboxyl-terminal sequences are both needed for the centre to function. Upon activation, the relationship between the centre and promoter DNA changes. We suggest that the activator re-organises the centre to favour stable open complex formation through adjustments in sigma(54)-DNA contact and sigma(54) conformation. The centre is close to the active site of the RNA polymerase and includes sigma(54) regulatory sequences needed for DNA melting upon activation. This contrasts systems where activators recruit RNA polymerase to promoter DNA, and the protein and DNA determinants required for activation localise away from promoter sequences closely associated with the start of DNA melting.
Collapse
Affiliation(s)
- S R Wigneshweraraj
- Department of Biology, Imperial College of Science Technology and Medicine, Imperial College Road, London, SW7 2AZ, UK
| | | | | | | |
Collapse
|
14
|
Wigneshweraraj SR, Ishihama A, Buck M. In vitro roles of invariant helix-turn-helix motif residue R383 in sigma(54) (sigma(N)). Nucleic Acids Res 2001; 29:1163-74. [PMID: 11222766 PMCID: PMC29711 DOI: 10.1093/nar/29.5.1163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vitro DNA-binding and transcription properties of sigma(54) proteins with the invariant Arg383 in the putative helix-turn-helix motif of the DNA-binding domain substituted by lysine or alanine are described. We show that R383 contributes to maintaining stable holoenzyme-promoter complexes in which limited DNA opening downstream of the -12 GC element has occurred. Unlike wild-type sigma(54), holoenzymes assembled with the R383A or R383K mutants could not form activator-independent, heparin-stable complexes on heteroduplex Sinorhizobium meliloti nifH DNA mismatched next to the GC. Using longer sequences of heteroduplex DNA, heparin-stable complexes formed with the R383K and, to a lesser extent, R383A mutant holoenzymes, but only when the activator and a hydrolysable nucleotide was added and the DNA was opened to include the -1 site. Although R383 appears inessential for polymerase isomerisation, it makes a significant contribution to maintaining the holoenzyme in a stable complex when melting is initiating next to the GC element. Strikingly, Cys383-tethered FeBABE footprinting of promoter DNA strongly suggests that R383 is not proximal to promoter DNA in the closed complex. This indicates that R383 is not part of the regulatory centre in the sigma(54) holoenzyme, which includes the -12 promoter region elements. R383 contributes to several properties, including core RNA polymerase binding and to the in vivo stability of sigma(54).
Collapse
Affiliation(s)
- S R Wigneshweraraj
- Department of Biology, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
15
|
Pitt M, Gallegos MT, Buck M. Single amino acid substitution mutants of Klebsiella pneumoniae sigma(54) defective in transcription. Nucleic Acids Res 2000; 28:4419-27. [PMID: 11071928 PMCID: PMC113868 DOI: 10.1093/nar/28.22.4419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcription initiation by the sigma(54) RNA polymerase requires specialised activators and their associated nucleoside triphosphate hydrolysis. To explore the roles of sigma(54) in initiation we used random mutagenesis of rpoN and an in vivo activity screen to isolate functionally altered sigma(54) proteins. Five defective mutants, each with a different single amino acid substitution, were obtained. Three failed in transcription after forming a closed complex. One such mutant mapped to regulatory Region I of sigma(54), the other two to Region III. The Region I mutant allowed transcription independently of activator and showed reduced activator-dependent sigma(54) isomerisation. The two Region III mutants displayed altered behaviour in a sigma(54) isomerisation assay and one failed to stably bind early melted DNA as the holoenzyme; they may contribute to a communication pathway linking changes in sigma to open complex formation. Two further Region III mutants showed gross defects in overall DNA binding. For one, sufficient residual DNA binding activity remained to allow us to demonstrate that other activities were largely unaffected. Changes in DNA binding preferences and core polymerase-dependent properties were evident amongst the mutants.
Collapse
Affiliation(s)
- M Pitt
- Department of Biology, Sir Alexander Fleming Building, Imperial College of Science, Technology and Medicine, Imperial College Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
16
|
Kelly MT, Ferguson JA, Hoover TR. Transcription initiation-defective forms of sigma(54) that differ in ability To function with a heteroduplex DNA template. J Bacteriol 2000; 182:6503-8. [PMID: 11053397 PMCID: PMC94799 DOI: 10.1128/jb.182.22.6503-6508.2000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription by sigma(54)-RNA polymerase holoenzyme requires an activator that catalyzes isomerization of the closed promoter complex to an open complex. We examined mutant forms of Salmonella enterica serovar Typhimurium sigma(54) that were defective in transcription initiation but retained core RNA polymerase- and promoter-binding activities. Four of the mutant proteins allowed activator-independent transcription from a heteroduplex DNA template. One of these mutant proteins, L124P V148A, had substitutions in a sequence that had not been shown previously to participate in the prevention of activator-independent transcription. The remaining mutants did not allow efficient activator-independent transcription from the heteroduplex DNA template and had substitutions within a conserved 20-amino-acid segment (Leu-179 to Leu-199), suggesting a role for this sequence in transcription initiation.
Collapse
Affiliation(s)
- M T Kelly
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
17
|
Buck M, Gallegos MT, Studholme DJ, Guo Y, Gralla JD. The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor. J Bacteriol 2000; 182:4129-36. [PMID: 10894718 PMCID: PMC101881 DOI: 10.1128/jb.182.15.4129-4136.2000] [Citation(s) in RCA: 344] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- M Buck
- Department of Biology, Imperial College of Science, Technology and Medicine, London SW7 2AZ, United Kingdom.
| | | | | | | | | |
Collapse
|
18
|
Chaney M, Pitt M, Buck M. Sequences within the DNA cross-linking patch of sigma 54 involved in promoter recognition, sigma isomerization, and open complex formation. J Biol Chem 2000; 275:22104-13. [PMID: 10807913 DOI: 10.1074/jbc.m002253200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial RNA polymerase holoenzyme containing the final sigma(54) subunit functions in enhancer-dependent transcription. Mutagenesis has been used to probe the function of a sequence in the final sigma(54) DNA binding domain that includes residues that cross-link to promoter DNA. Several activities of the final sigma and holoenzyme are shown to depend on the cross-linking patch. The patch contributes to promoter binding by final sigma(54), and holoenzyme and is involved in activator-dependent final sigma isomerization. As part of the final sigma(54)-holoenzyme, some residues in the patch limit basal transcription. Other cross-linking patch sequences appear to limit activator-dependent open complex formation. Deletion of 19 residues adjacent to the cross-linking patch resulted in a holoenzyme unable to respond to activator but capable of activator-independent (bypass) transcription in vitro. Overall results are consistent with the cross-linking patch directing interactions to the -12 promoter region to set basal and activated levels of transcription.
Collapse
Affiliation(s)
- M Chaney
- Department of Biology, Imperial College of Science, Technology, and Medicine, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
19
|
Southern E, Merrick M. The role of region II in the RNA polymerase sigma factor sigma(N) (sigma(54)). Nucleic Acids Res 2000; 28:2563-70. [PMID: 10871407 PMCID: PMC102712 DOI: 10.1093/nar/28.13.2563] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacterial RNA polymerase holoenzymes containing the sigma subunit sigma(N) (sigma(54)) can form a stable closed complex with promoter DNA but only undergo transition to an open complex and transcription initiation when acted on by an activator protein. Proteins of the sigma(N) family have a conserved N-terminal region of 50 amino acids (Region I) that is separated from a conserved C-terminal region of around 360 amino acids (Region III) by a much more variable sequence of between 30 and 110 residues (Region II). We have investigated the role of Region II in Klebsiella pneumoniae sigma(N) by studying the properties of deletions of all or part of the region both in vivo and in vitro. We found that whilst Region II is not essential, deletion of all or part of it can significantly impair sigma(N) activity. Deletions have effects on DNA binding by the isolated sigma factor and on holoenzyme formation, but the most marked effects are on transition of the holoenzyme from the closed to the open complex in the presence of the activator protein.
Collapse
Affiliation(s)
- E Southern
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | | |
Collapse
|
20
|
Wigneshweraraj SR, Fujita N, Ishihama A, Buck M. Conservation of sigma-core RNA polymerase proximity relationships between the enhancer-independent and enhancer-dependent sigma classes. EMBO J 2000; 19:3038-48. [PMID: 10856247 PMCID: PMC203346 DOI: 10.1093/emboj/19.12.3038] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two distinct classes of RNA polymerase sigma factors (sigma) exist in bacteria and are largely unrelated in primary amino acid sequence and their modes of transcription activation. Using tethered iron chelate (Fe-BABE) derivatives of the enhancer-dependent sigma(54), we mapped several sites of proximity to the beta and beta' subunits of the core RNA polymerase. Remarkably, most sites localized to those previously identified as close to the enhancer-independent sigma(70) and sigma(38). This indicates a common use of sets of sequences in core for interacting with the two sigma classes. Some sites chosen in sigma(54) for modification with Fe-BABE were positions, which when mutated, deregulate the sigma(54)-holoenzyme and allow activator-independent initiation and holoenzyme isomerization. We infer that these sites in sigma(54) may be involved in interactions with the core that contribute to maintenance of alternative states of the holoenzyme needed for either the stable closed promoter complex conformation or the isomerized holoenzyme conformation associated with the open promoter complex. One site of sigma(54) proximity to the core is apparently not evident with sigma(70), and may represent a specialized interaction.
Collapse
Affiliation(s)
- S R Wigneshweraraj
- Imperial College of Science, Technology and Medicine, Department of Biology, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
21
|
Kelly MT, Hoover TR. The amino terminus of Salmonella enterica serovar Typhimurium sigma(54) is required for interactions with an enhancer-binding protein and binding to fork junction DNA. J Bacteriol 2000; 182:513-7. [PMID: 10629201 PMCID: PMC94304 DOI: 10.1128/jb.182.2.513-517.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription initiation by the sigma(54)-RNA polymerase holoenzyme requires an enhancer-binding protein that is thought to contact sigma(54) to activate transcription. To identify potential enhancer-binding protein contact sites in sigma(54), we compared the abilities of wild-type and truncated forms of Salmonella enterica serovar Typhimurium sigma(54) to interact with the enhancer-binding protein DctD in a chemical cross-linking assay. Removal of two regions in the amino-terminal portion of sigma(54), residues 57 to 105 and residues 144 to 179, prevented cross-linking, but removal of either region alone did not. In addition, deletion of 56 amino-terminal residues of sigma(54) (region I) reduced the affinity of the protein for a fork junction DNA probe.
Collapse
Affiliation(s)
- M T Kelly
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
22
|
Wang L, Guo Y, Gralla JD. Regulation of sigma 54-dependent transcription by core promoter sequences: role of -12 region nucleotides. J Bacteriol 1999; 181:7558-65. [PMID: 10601214 PMCID: PMC94214 DOI: 10.1128/jb.181.24.7558-7565.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tetranucleotide core recognition sequence (TTGC) of the sigma 54 promoter -12 recognition element was altered by random substitution. The resulting promoter mutants were characterized in vivo and in vitro. Deregulated promoters were identified, implying that this core element can mediate the response to enhancer-binding proteins. These promoters had in common a substitution at position -12 (consensus C), indicating its importance for keeping basal transcription in check. In another screen, nonfunctional promoters were identified. Their analysis indicated that positions -13 (consensus G) and -15 (consensus T) are important to maintain minimal promoter function. In vitro studies showed that the -13 and -15 positions contribute to closed-complex formation, whereas the -12 position has a stronger effect on recognition of the fork junction intermediate created during open-complex formation. Overall the data indicate that the -12 region core contains specific subsequences that direct the diverse RNA polymerase interactions required both to produce RNA and to restrict this RNA synthesis in the absence of activation.
Collapse
Affiliation(s)
- L Wang
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
23
|
Barrios H, Valderrama B, Morett E. Compilation and analysis of sigma(54)-dependent promoter sequences. Nucleic Acids Res 1999; 27:4305-13. [PMID: 10536136 PMCID: PMC148710 DOI: 10.1093/nar/27.22.4305] [Citation(s) in RCA: 294] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Promoters recognized by the RNA-polymerase with the alternative sigma factor sigma(54) (Esigma54) are unique in having conserved positions around -24 and -12 nucleotides upstream from the transcriptional start site, instead of the typical -35 and -10 boxes. Here we compile 186 -24/-12 promoter sequences reported in the literature and generate an updated and extended consensus sequence. The use of the extended consensus increases the probability of identifying genuine -24/-12 promoters. The effect of several reported mutations at the -24/-12 elements on RNA-polymerase binding and promoter strength is discussed in the light of the updated consensus.
Collapse
Affiliation(s)
- H Barrios
- Departamento de Reconocimiento Molecular y Bioestructura, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62271, México
| | | | | |
Collapse
|
24
|
Hsieh M, Hsu HM, Hwang SF, Wen FC, Yu JS, Wen CC, Li C. The hydrophobic heptad repeat in Region III of Escherichia coli transcription factor sigma 54 is essential for core RNA polymerase binding. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 11):3081-3088. [PMID: 10589715 DOI: 10.1099/00221287-145-11-3081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Escherichia coli transcription factor sigma 54 contains motifs that resemble closely those used for RNA polymerase II in mammalian cells, including two hydrophobic heptad repeats, a very acidic region and a glutamine-rich region. Triple changes in hydrophobic or multiple changes in acidic residues in Region III are known to severely impair core-binding ability. To investigate whether all the changes in triple mutants are necessary for core binding, site-directed mutagenesis was performed to create single and double mutants in the leucine or isoleucine residues in the heptad repeat in Region III. Single mutants showed no discernible loss of function. Double mutants showed partial protection of the -12 promoter element of the glnAp2 promoter due to the partial loss of their ability to bind core RNA polymerase. These mutations were deleterious to the function of sigma 54, which retained only 30-40% of wild-type mRNA levels. However, double mutants retained nearly normal ability to form open complexes. Two triple mutants created during previous work lost most, if not all, of their ability to bind core RNA polymerase, to protect the -12 promoter element of the glnAp2 promoter and to open the transcription start site. The two triple mutants produced about 20% or less than 10% of the wild-type transcripts from the glnAp2 promoter. These results demonstrate that the hydrophobic heptad repeat in Region III is essential for core RNA polymerase binding. Progressive loss of hydrophobicity of the hydrophobic heptad repeat in Region III of sigma 54 resulted in a progressive loss of core-binding ability, leading to the loss of -12 promoter element recognition and mRNA production.
Collapse
Affiliation(s)
- Mingli Hsieh
- Institute of Medicine1 and School of Medical Technology2, Chung Shan Medical and Dental College, Taichung, Taiwan, ROC
| | - Hsiu-Mei Hsu
- Institute of Medicine1 and School of Medical Technology2, Chung Shan Medical and Dental College, Taichung, Taiwan, ROC
| | - Shiow-Fen Hwang
- Institute of Medicine1 and School of Medical Technology2, Chung Shan Medical and Dental College, Taichung, Taiwan, ROC
| | - Feng-Chen Wen
- Institute of Medicine1 and School of Medical Technology2, Chung Shan Medical and Dental College, Taichung, Taiwan, ROC
| | - Ju-Shan Yu
- Institute of Medicine1 and School of Medical Technology2, Chung Shan Medical and Dental College, Taichung, Taiwan, ROC
| | - Chun-Chiang Wen
- Institute of Medicine1 and School of Medical Technology2, Chung Shan Medical and Dental College, Taichung, Taiwan, ROC
| | - Chuan Li
- Institute of Medicine1 and School of Medical Technology2, Chung Shan Medical and Dental College, Taichung, Taiwan, ROC
| |
Collapse
|
25
|
Oguiza JA, Gallegos MT, Chaney MK, Cannon WV, Buck M. Involvement of the sigmaN DNA-binding domain in open complex formation. Mol Microbiol 1999; 33:873-85. [PMID: 10447895 DOI: 10.1046/j.1365-2958.1999.01542.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
sigmaN (sigma54) RNA polymerase holoenzyme closed complexes isomerize to open complexes in a reaction requiring nucleoside triphosphate hydrolysis by enhancer binding activator proteins. Here, we characterize Klebsiella pneumoniae sigmaN mutants, altered in the carboxy DNA-binding domain (F354A/F355A, F402A, F403A and F402A/F403A), that fail in activator-dependent transcription. The mutant holoenzymes have altered activator-dependent interactions with promoter sequences that normally become melted. Activator-dependent stable complexes accumulated slowly in vitro (F402A) and to a reduced final level (F403A, F402A/F403A, F354A/F355A). Similar results were obtained in an assay of activator-independent stable complex formation. Premelted templates did not rescue the mutants for stable preinitiation complex formation but did for deleted region I sigmaN, suggesting different defects. The DNA-binding domain substitutions are within sigmaN sequences previously shown to be buried upon formation of the wild-type holoenzyme or closed complex, suggesting that, in the mutants, alteration of the sigmaN-core and sigmaN-DNA interfaces has occurred to change holoenzyme activity. Core-binding assays with the mutant sigmas support this view. Interestingly, an internal deletion form of sigmaN lacking the major core binding determinant was able to assemble into holoenzyme and, although unable to support activator-dependent transcription, formed a stable activator-independent holoenzyme promoter complex on premelted DNA templates.
Collapse
Affiliation(s)
- J A Oguiza
- Department of Biology, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
26
|
Abstract
Sigma subunits of bacterial RNA polymerases are closely involved in many steps of promoter-specific transcription initiation. Holoenzyme formed with the specialised minor sigma-N (sigmaN) protein binds rare promoters in a transcriptionally inactive state and functions in enhancer-dependent transcription. Using competition and dissociation assays, we show that sigmaN-holoenzyme has a stability comparable to the major sigma70-holoenzyme. Purified partial sequences of sigmaN were prepared and assayed for retention of core RNA polymerase binding activity. Two discrete fragments of sigmaN which both bind the core but with significantly different affinities were identified, demonstrating that the sigmaN interface with core RNA polymerase is extensive. The low affinity segment of sigmaN included region I sequences, an amino terminal domain which mediates activator responsiveness and formation of open promoter complexes. The higher affinity site lies within a 95 residue fragment of region III. We propose that the core to region I contact mediates properties of the sigmaN-holoenzyme important for enhancer responsiveness. Heparin is shown to dissociate sigmaN and core, indicating that disruption of the holoenzyme is involved in the heparin sensitivity of the sigmaN closed complex.
Collapse
Affiliation(s)
- M T Gallegos
- Department of Biology, Imperial College of Science Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London, SW7 2AZ, UK
| | | |
Collapse
|
27
|
Casaz P, Buck M. Region I modifies DNA-binding domain conformation of sigma 54 within the holoenzyme. J Mol Biol 1999; 285:507-14. [PMID: 9878425 DOI: 10.1006/jmbi.1998.2328] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of transcription at sigma 54-dependent bacterial promoters proceeds via a mechanism that is independent of recruitment of RNA polymerase to the promoter, but is instead totally dependent on activator-driven conformational changes in the promoter-bound RNA polymerase. Understanding of the activation mechanism first requires a detailed description of the interactions taking place in the polymerase holoenzyme and closed complex. The interactions of sigma 54 with core RNA polymerase and promoter DNA were investigated using enzymatic and chemical (hydroxyl radical) protease footprinting of sigma. Regions of sigma were identified that are in direct contact with ligands, or whose conformation changes following ligand binding. A comparison of wild-type sigma and a mutant bearing a deletion of conserved Region I, which is required for response to activator proteins and regulated initiation, revealed differences in the protease sensitivity of free sigma indicating that Region I affects sigma conformation. Comparison of the holoenzyme and closed complex hydroxyl radical footprints revealed that residues of wild-type sigma protected by promoter DNA overlap, to a large extent, the residues of Region I-deleted sigma protected by core polymerase. Region I could thus modify DNA-binding by changing conformation of the DNA-binding domain of sigma 54 in a core polymerase-dependent manner. These differences can account for the modified promoter binding of the Region I-deleted sigma holoenzyme observed by DNA footprinting, and are likely of significance to the Region I-dependent activation of transcription.
Collapse
Affiliation(s)
- P Casaz
- Department of Biology, Imperial College of Science, Technology and Medicine, Imperial College Road, London, SW7 2AZ, UK
| | | |
Collapse
|
28
|
Leary BA, Ward-Rainey N, Hoover TR. Cloning and characterization of Planctomyces limnophilus rpoN: complementation of a Salmonella typhimurium rpoN mutant strain. Gene 1998; 221:151-7. [PMID: 9852960 DOI: 10.1016/s0378-1119(98)00423-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The rpoN gene, which encodes the alternative sigma factor sigma 54, was cloned from the budding, peptidoglycan-less bacterium Planctomyces limnophilus. P. limnophilus rpoN complemented the Ntr- phenotype of a Salmonella typhimurium rpoN mutant strain. The P. limnophilus rpoN gene encoded a predicted polypeptide that was 495 residues in length and shared a significant homology with other members of the sigma 54 family. The protein sequence displayed all of the characteristic motifs found in members of this family, including the C-terminal helix-turn-helix motif and the well-conserved RpoN box. A potential sigma 54-dependent activator was also identified in P. limnophilus. These findings extend the range of phylogenetic groups within the Domain Bacteria that are known to contain sigma 54.
Collapse
Affiliation(s)
- B A Leary
- Department of Microbiology, University of Georgia, Athens 30602, USA
| | | | | |
Collapse
|
29
|
Laskos L, Dillard JP, Seifert HS, Fyfe JA, Davies JK. The pathogenic neisseriae contain an inactive rpoN gene and do not utilize the pilE sigma54 promoter. Gene X 1998; 208:95-102. [PMID: 9479056 DOI: 10.1016/s0378-1119(97)00664-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The sigma54 promoter (P3) upstream of the pilE gene in Neisseria gonorrhoeae was shown to be non-functional by transcriptional analysis of a PpilE::lacZ fusion containing only P3. A region on the chromosome of N. gonorrhoeae strain MS11-A was identified that potentially encodes a protein with a significant similarity to the Escherichia coli RpoN protein. However, this region (designated RLS for rpoN-like sequence) does not contain a single open reading frame (ORF) capable of encoding a functional RpoN protein. It appears that RLS may have arisen from an ancestral rpoN homologue that underwent a deletion removing the sequence encoding the essential helix-turn-helix (HTH) motif, and changing the subsequent reading frame. An RLS has been identified in several strains of N. gonorrhoeae and N. meningitidis. A 90-kDa gonococcal protein has previously been shown to react with a monoclonal antibody raised against the RpoN from Salmonella typhimurium. However, mutagenesis and Western blot analysis confirmed that the gene encoding this protein is not contained within RLS.
Collapse
Affiliation(s)
- L Laskos
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia
| | | | | | | | | |
Collapse
|
30
|
Casaz P, Buck M. Probing the assembly of transcription initiation complexes through changes in sigmaN protease sensitivity. Proc Natl Acad Sci U S A 1997; 94:12145-50. [PMID: 9342377 PMCID: PMC23731 DOI: 10.1073/pnas.94.22.12145] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The alternative bacterial sigmaN RNA polymerase holoenzyme binds promoters as a transcriptionally inactive complex that is activated by enhancer-binding proteins. Little is known about how sigma factors respond to their ligands or how the responses lead to transcription. To examine the liganded state of sigmaN, the assembly of end-labeled Klebsiella pneumoniae sigmaN into holoenzyme, closed promoter complexes, and initiated transcription complexes was analyzed by enzymatic protein footprinting. V8 protease-sensitive sites in free sigmaN were identified in the acidic region II and bordering or within the minimal DNA binding domain. Interaction with core RNA polymerase prevented cleavage at noncontiguous sites in region II and at some DNA binding domain sites, probably resulting from conformational changes. Formation of closed complexes resulted in further protections within the DNA binding domain, suggesting close contact to promoter DNA. Interestingly, residue E36 becomes sensitive to proteolysis in initiated transcription complexes, indicating a conformational change in holoenzyme during initiation. Residue E36 is located adjacent to an element involved in nucleating strand separation and in inhibiting polymerase activity in the absence of activation. The sensitivity of E36 may reflect one or both of these functions. Changing patterns of protease sensitivity strongly indicate that sigmaN can adjust conformation upon interaction with ligands, a property likely important in the dynamics of the protein during transcription initiation.
Collapse
Affiliation(s)
- P Casaz
- Department of Biology, Imperial College of Science, Technology and Medicine, Prince Consort Road, London, SW7 2BB, United Kingdom
| | | |
Collapse
|
31
|
Cannon WV, Chaney MK, Wang X, Buck M. Two domains within sigmaN (sigma54) cooperate for DNA binding. Proc Natl Acad Sci U S A 1997; 94:5006-11. [PMID: 9144180 PMCID: PMC24621 DOI: 10.1073/pnas.94.10.5006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The sigma-N (sigmaN) subunit of the bacterial RNA polymerase is a sequence specific DNA-binding protein. The RNA polymerase holoenzyme formed with sigmaN binds to promoters in an inactive form and only initiates transcription when activated by enhancer-binding positive control proteins. We now provide evidence to show that the DNA-binding activity of sigmaN involves two distinct domains: a C-terminal DNA-binding domain that directly contacts DNA and an adjacent domain that enhances DNA-binding activity. The sequences required for the enhancement of DNA binding can be separated from the sequences required for core RNA polymerase binding. These results provide strong evidence for communication between domains within a transcription factor, likely to be important for the function of sigmaN in enhancer-dependent transcription.
Collapse
Affiliation(s)
- W V Cannon
- Department of Biology, Imperial College of Science, Technology and Medicine, London, SW7 2BB, United Kingdom
| | | | | | | |
Collapse
|
32
|
Ashraf SI, Kelly MT, Wang YK, Hoover TR. Genetic analysis of the Rhizobium meliloti nifH promoter, using the P22 challenge phage system. J Bacteriol 1997; 179:2356-62. [PMID: 9079923 PMCID: PMC178974 DOI: 10.1128/jb.179.7.2356-2362.1997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In several genera of bacteria, the sigma54-RNA polymerase holoenzyme (E sigma54) is a minor form of RNA polymerase that is responsible for transcribing genes whose products are involved in diverse metabolic processes. E sigma54 binds to the promoters of these genes to form a closed promoter complex. An activator protein is required for the transition of this closed promoter complex to an open complex that is transcriptionally competent. In this study, the P22-based challenge phage system was used to investigate interactions between E sigma54 and the Rhizobium meliloti nifH promoter. Challenge phages were constructed in which the R. meliloti nifH promoter replaced the binding site for the Mnt protein, a repressor of the phage P22 ant gene. When a Salmonella typhimurium strain that overexpressed sigma54 was infected with these challenge phages, E sigma54 bound to the nifH promoter and repressed transcription of the ant gene as seen by the increased frequency of lysogeny. Following mutagenesis of challenge phages that carried the R. meliloti nifH promoter, mutant phages that could form plaques on an S. typhimurium strain that overexpressed sigma54 were isolated. These phages had mutations within the nifH promoter that decreased the affinity of the promoter for E sigma54. The mutations were clustered in seven highly conserved residues within the -12 and -24 regions of the nifH promoter.
Collapse
Affiliation(s)
- S I Ashraf
- Department of Microbiology, University of Georgia, Athens 30602, USA
| | | | | | | |
Collapse
|
33
|
Abstract
PCR mutagenesis was used to obtain libraries of mutations in the region between amino acids 300 and 400 in the DNA-binding domain of Escherichia coli sigma 54. Two hundred changes that did not alter function were identified. These were compared with a somewhat smaller number of changes that did alter function. Several important regions were identified. Single point mutations in two of these, near amino acids 363 and 383, destroyed the ability of sigma to bind DNA, as assayed by band shift analysis. A third segment from amino acids 327 to 347 is also a candidate for contributing to DNA binding. Comparison with data in the literature leads to testable proposals for the complex mode of DNA binding that is associated with sigma 54.
Collapse
Affiliation(s)
- Y Guo
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 90095-1569, USA
| | | |
Collapse
|
34
|
Cannon W, Austin S, Moore M, Buck M. Identification of close contacts between the sigma N (sigma 54) protein and promoter DNA in closed promoter complexes. Nucleic Acids Res 1995; 23:351-6. [PMID: 7885829 PMCID: PMC306682 DOI: 10.1093/nar/23.3.351] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The complexes forming between the alternative sigma factor protein sigma N (sigma 54), its holoenzyme and promoter DNA were analysed using the hydroxyl radical probe and by photochemical footprinting of bromouridine-substituted DNA. Close contacts between the promoter, sigma N and its holoenzyme appear to be restricted predominantly to one face of the DNA helix, extending from -31 to -5. They all appear attributable to sigma N and no extra close contacts from the core RNA polymerase subunits in the holoenzyme-promoter DNA complex were detected. We suggest that the apparent absence of close core RNA polymerase contacts in the region of the promoter DNA to be melted during open complex formation is important for maintaining the closed complex. Results of the hydroxyl radical footprinting imply that sigma N makes multiple DNA backbone contacts across and beyond the -12, -24 consensus promoter elements, and the photochemical footprints indicate that consensus thymidine residues contribute important major groove contacts to sigma N. Formation of the open complex is shown to involve a major structural transition in the DNA contacted by sigma N, establishing a direct role for sigma N in formation of the activated promoter complex.
Collapse
Affiliation(s)
- W Cannon
- AFRC-IPSR Nitrogen Fixation Laboratory, University of Sussex, Falmer, Brighton, UK
| | | | | | | |
Collapse
|
35
|
Abstract
This review presents a comparison between the complex genetic regulatory networks that control nitrogen fixation in three representative rhizobial species, Rhizobium meliloti, Bradyrhizobium japonicum, and Azorhizobium caulinodans. Transcription of nitrogen fixation genes (nif and fix genes) in these bacteria is induced primarily by low-oxygen conditions. Low-oxygen sensing and transmission of this signal to the level of nif and fix gene expression involve at least five regulatory proteins, FixL, FixJ, FixK, NifA, and RpoN (sigma 54). The characteristic features of these proteins and their functions within species-specific regulatory pathways are described. Oxygen interferes with the activities of two transcriptional activators, FixJ and NifA. FixJ activity is modulated via phosphorylation-dephosphorylation by the cognate sensor hemoprotein FixL. In addition to the oxygen responsiveness of the NifA protein, synthesis of NifA is oxygen regulated at the level of transcription. This type of control includes FixLJ in R. meliloti and FixLJ-FixK in A. caulinodans or is brought about by autoregulation in B. japonicum. NifA, in concert with sigma 54 RNA polymerase, activates transcription from -24/-12-type promoters associated with nif and fix genes and additional genes that are not directly involved in nitrogen fixation. The FixK proteins constitute a subgroup of the Crp-Fnr family of bacterial regulators. Although the involvement of FixLJ and FixK in nifA regulation is remarkably different in the three rhizobial species discussed here, they constitute a regulatory cascade that uniformly controls the expression of genes (fixNOQP) encoding a distinct cytochrome oxidase complex probably required for bacterial respiration under low-oxygen conditions. In B. japonicum, the FixLJ-FixK cascade also controls genes for nitrate respiration and for one of two sigma 54 proteins.
Collapse
Affiliation(s)
- H M Fischer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| |
Collapse
|
36
|
Ehrt S, Ornston LN, Hillen W. RpoN (sigma 54) is required for conversion of phenol to catechol in Acinetobacter calcoaceticus. J Bacteriol 1994; 176:3493-9. [PMID: 8206826 PMCID: PMC205536 DOI: 10.1128/jb.176.12.3493-3499.1994] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Members of the sigma 54 protein family, encoded by rpoN, are required for the transcription of genes associated with specialized metabolic functions. The ability to grow with phenol appears to be a specialized trait because it is expressed by few of the microorganisms that grow with catechol, the metabolic product of phenol monooxygenase. A mutation preventing the expression of phenol monooxygenase in the bacterial strain Acinetobacter calcoaceticus NCIB8250 was complemented by wild-type DNA segments containing an open reading frame encoding a member of the sigma 54 protein family. DNA sequencing revealed a second open reading frame, designated ORF2, directly downstream of A. calcoaceticus rpoN. The locations of both ORF2 and the 113-residue amino acid sequence of its product are highly conserved in other bacteria. The mutation preventing the expression of rpoN results in an opal codon that terminates the translation of RpoN at a position corresponding to Trp-91 in the 483-residue amino acid sequence of the wild-type protein. Negative autoregulation of rpoN was suggested by the fact that the mutation inactivating RpoN enhanced the transcription of rpoN. Primer extension revealed independent transcription start sites for rpoN and ORF2.
Collapse
Affiliation(s)
- S Ehrt
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | | | | |
Collapse
|
37
|
Morris L, Cannon W, Claverie-Martin F, Austin S, Buck M. DNA distortion and nucleation of local DNA unwinding within sigma-54 (sigma N) holoenzyme closed promoter complexes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)78161-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Cannon W, Claverie-Martin F, Austin S, Buck M. Identification of a DNA-contacting surface in the transcription factor sigma-54. Mol Microbiol 1994; 11:227-36. [PMID: 8170385 DOI: 10.1111/j.1365-2958.1994.tb00303.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The transcription factor sigma-54 (sigma 54) is a sequence-specific DNA-binding protein that directs RNA polymerase to a particular class of promoter. The interaction of sigma 54 with promoter DNA has been analysed by protein-DNA crosslinking and enzymatic and chemical proteolysis. Direct physical evidence for a DNA-contacting surface within the carboxy-terminal one-third of the protein has been obtained. This region of sigma 54 is likely to be close to the surface of the protein, and contacts DNA when either sigma 54 or the sigma 54-holoenzyme bind specifically to promoter DNA. The amino-terminal region of sigma 54 appears to be highly susceptible to proteolysis, and its integrity influences the accessibility towards proteolysis of a second region of sigma 54, which includes the DNA-contacting surface. Thus the amino-terminal region of sigma 54 may have a role in influencing its DNA-binding properties, the major determinants of which appear to reside in the carboxy-terminal one-third of the protein.
Collapse
Affiliation(s)
- W Cannon
- Agricultural and Food Research Council, University of Sussex, Brighton, UK
| | | | | | | |
Collapse
|
39
|
Cullen PJ, Foster-Hartnett D, Gabbert KK, Kranz RG. Structure and expression of the alternative sigma factor, RpoN, in Rhodobacter capsulatus; physiological relevance of an autoactivated nifU2-rpoN superoperon. Mol Microbiol 1994; 11:51-65. [PMID: 8145646 DOI: 10.1111/j.1365-2958.1994.tb00289.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The alternative sigma factor, RpoN (sigma 54) is responsible for recruiting core RNA polymerase to the promoters of genes required for diverse physiological functions in a variety of eubacterial species. The RpoN protein in Rhodobacter capsulatus is a putative sigma factor specific for nitrogen fixation (nif) genes. Insertional mutagenesis was used to define regions important for the function of the R. capsulatus RpoN protein. Insertions of four amino acids in the predicted helixturn-helix or in the highly conserved C-terminal eight amino acid residues (previously termed the RpoN box), and an in-frame deletion of the glutamine-rich N-terminus completely inactivated the R. capsulatus RpoN protein. Two separate insertions in the second hydrophobic heptad repeat, a putative leucine zipper, resulted in a partially functional RpoN protein. Eight other linkers in the rpoN open reading frame (ORF) resulted in a completely or partially functional RpoN protein. The rpoN gene in R. capsulatus is downstream from the nifHDKU2 genes, in a nifU2-rpoN operon. Results of genetic experiments on the nifU2-rpoN locus show that the rpoN gene is organized in a nifU2-rpoN superoperon. A primary promoter directly upstream of the rpoN ORF is responsible for the initial expression of rpoN. Deletion analysis and insertional mutagenesis were used to define the primary promoter to 50 bp, between 37 and 87 nucleotides upstream of the predicted rpoN translational start site. This primary promoter is expressed constitutively with respect to nitrogen, and it is necessary and sufficient for growth under nitrogen-limiting conditions typically used in the laboratory. A secondary promoter upstream of nifU2 is autoactivated by RpoN and NifA to increase the expression of rpoN, which ultimately results in higher expression of RpoN-dependent genes. Moreover, rpoN expression from this secondary promoter is physiologically beneficial under certain stressful conditions, such as nitrogen-limiting environments that contain high salt (> 50 mM NaCl) or low iron (< 400 nM FeSO4).
Collapse
Affiliation(s)
- P J Cullen
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | | | | | |
Collapse
|
40
|
Abstract
Bacteria synthesize a number of different sigma factors which allow the co-ordinate expression of groups of genes owing to the ability of sigma to confer promoter-specific transcription initiation on RNA polymerase. In nearly all cases these sigmas belong to a single family of proteins which appear to be related structurally and functionally to the major Escherichia coli sigma factor, sigma 70. A clear exception is the sigma factor sigma 54 (sigma N), encoded by rpoN, which represents a second family of sigmas that is widely distributed in prokaryotes. Studies of sigma 54 (sigma N) have demonstrated that this sigma is quite distinct both structurally and functionally from the sigma 70 family and the mode of transcription initiation which it mediates may have more in common with that found in eukaryotes than that which occurs with sigma 70 and its relatives.
Collapse
Affiliation(s)
- M J Merrick
- AFRC Nitrogen Fixation Laboratory, University of Sussex, Brighton, UK
| |
Collapse
|
41
|
Glass RE, Hayward RS. Bacterial RNA polymerases: structural and functional relationships. World J Microbiol Biotechnol 1993; 9:403-13. [DOI: 10.1007/bf00328028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/1993] [Indexed: 11/30/2022]
|
42
|
Cannon W, Claverie-Martin F, Austin S, Buck M. Core RNA polymerase assists binding of the transcription factor sigma 54 to promoter DNA. Mol Microbiol 1993; 8:287-98. [PMID: 8316081 DOI: 10.1111/j.1365-2958.1993.tb01573.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The sigma subunit of bacterial RNA polymerase is necessary for the specific binding of RNA polymerase holoenzyme to promoter DNA. Promoter complexes which form with holoenzyme containing sigma 54 remain as closed complexes unless they are activated by one class of enhancer binding protein. The sigma 54 transcription factor can bind specifically to certain promoter sites in the absence of the core RNA polymerase subunits. This property has allowed demonstration of a new role for core polymerase in transcription, namely that it assists the binding of sigma 54 to promoter DNA. An altered form of sigma 54 with a deletion within the amino-terminal region showed increased affinity for specific DNA-binding sites. Although able to complex with core RNA polymerase the mutant sigma 54 failed to respond to core polymerase in the manner characteristic of the wild-type sigma 54 by altering its footprint. This result indicates that sigma 54 has a latent DNA-binding activity which is revealed by core RNA polymerase, and possibly involves a change in sigma 54 conformation. Promoter complexes which formed with sigma 54-holoenzyme appeared to be qualitatively different, depending upon the target promoter sequence, suggesting that different activatable complexes form at different promoter sequences.
Collapse
Affiliation(s)
- W Cannon
- AFRC Nitrogen Fixation Laboratory, University of Sussex, Falmer, Brighton, UK
| | | | | | | |
Collapse
|
43
|
|