1
|
Zhang W, Ushimaru R, Kanaida M, Abe I. Pyrroline Ring Assembly via N-Prenylation and Oxidative Carbocyclization during Biosynthesis of Aeruginosin Derivatives. J Am Chem Soc 2025; 147:10853-10858. [PMID: 40080531 DOI: 10.1021/jacs.5c01994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Aeruginosins are linear peptide natural products isolated from cyanobacteria and contain various arginine derivatives at their termini. 1-Amino-2-(N-amidino-3-Δ3-pyrrolinyl)ethane (Aeap) is a structurally unique arginine derivative, as it has an unusual pyrroline ring with two additional carbon atoms of unknown biosynthetic origin. Here, we demonstrate that Aer3, a member of a newly identified subfamily of prenyltransferases, catalyzes selective isopentenylation of the internal N atom of agmatine. Rieske oxygenase AerC then catalyzes both carbocyclization and C-C bond cleavage to construct the pyrroline ring in Aeap. This pyrroline ring formation in Aeap biosynthesis, involving two novel enzymes, represents a unique route for heterocycle formation in nature.
Collapse
Affiliation(s)
- Wenhe Zhang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe, Shenyang 110016, China
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
- Institute for Advanced Study and Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- FOREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Masahiro Kanaida
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
2
|
Beech JL, Fecko JA, Yennawar N, DuBois JL. Functional and spectroscopic approaches to determining thermal limitations of Rieske oxygenases. Methods Enzymol 2024; 703:299-328. [PMID: 39261001 PMCID: PMC11521362 DOI: 10.1016/bs.mie.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The biotechnological potential of Rieske Oxygenases (ROs) and their cognate reductases remains unmet, in part because these systems can be functionally short-lived. Here, we describe a set of experiments aimed at identifying both the functional and structural stability limitations of ROs, using terephthalate (TPA) dioxygenase (from Comamonas strain E6) as a model system. Successful expression and purification of a cofactor-complete, histidine-tagged TPA dioxygenase and reductase protein system requires induction with the Escherichia coli host at stationary phase as well as a chaperone inducing cold-shock and supplementation with additional iron, sulfur, and flavin. The relative stability of the Rieske cluster and mononuclear iron center can then be assessed using spectroscopic and functional measurements following dialysis in an iron chelating buffer. These experiments involve measurements of the overall lifetime of the system via total turnover number using both UV-Visible absorbance and HPLC analyses, as well specific activity as a function of temperature. Important methods for assessing the stability of these multi-cofactor, multi-protein dependent systems at multiple levels of structure (secondary to quaternary) include differential scanning calorimetry, circular dichroism, and metallospectroscopy. Results can be rationalized in terms of three-dimensional structures and bioinformatics. The experiments described here provide a roadmap to a detailed characterization of the limitations of ROs. With a few notable exceptions, these issues are not widely addressed in current literature.
Collapse
Affiliation(s)
- Jessica Lusty Beech
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Julia Ann Fecko
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Neela Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States.
| |
Collapse
|
3
|
Subramanian R. Methods used to determine the structure of the oxygenase component of naphthalene 1,2 dioxygenase. Methods Enzymol 2024; 704:27-38. [PMID: 39300651 DOI: 10.1016/bs.mie.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Rieske non-heme iron oxygenases are ubiquitously expressed in prokaryotes. These enzymes catalyze a wide variety of reactions, including cis-dihydroxylation, mono-hydroxylation, sulfoxidation, and demethylation. They contain a Rieske-type [2Fe-2S] cluster and an active site with a mono-nuclear iron bound to a 2-His carboxylate triad. Naphthalene 1,2 dioxygenase, a representative of this family, catalyzes the conversion of naphthalene to (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. This transformation requires naphthalene, two electrons, and an oxygen molecule. The first structure of the terminal oxygenase component of a Rieske non-heme iron oxygenase to be determined was naphthalene 1,2 dioxygenase (NDO-O). In this article, we describe in detail the methods used to recombinantly express and purify NDO-O in rich and minimal salts media, the crystallization of NDO-O for structure determination by X-ray crystallography, the challenges faced, and the methods used for the preparation of enzyme ligand complexes. The methods used here resulted in the determination of several NDO-O complexes with aromatic substrates, nitric oxide, oxygen molecule, and products, leading to an initial understanding of the mechanism of enzyme catalysis and the molecular determinants of the regio- and stereo-specificity of this class of enzymes.
Collapse
Affiliation(s)
- Ramaswamy Subramanian
- Department of Biological Sciences, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
4
|
Beech JL, Maurya AK, Rodrigues da Silva R, Akpoto E, Asundi A, Fecko JA, Yennawar NH, Sarangi R, Tassone C, Weiss TM, DuBois JL. Understanding the stability of a plastic-degrading Rieske iron oxidoreductase system. Protein Sci 2024; 33:e4997. [PMID: 38723110 PMCID: PMC11081424 DOI: 10.1002/pro.4997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/01/2024] [Accepted: 04/06/2024] [Indexed: 05/13/2024]
Abstract
Rieske oxygenases (ROs) are a diverse metalloenzyme class with growing potential in bioconversion and synthetic applications. We postulated that ROs are nonetheless underutilized because they are unstable. Terephthalate dioxygenase (TPADO PDB ID 7Q05) is a structurally characterized heterohexameric α3β3 RO that, with its cognate reductase (TPARED), catalyzes the first intracellular step of bacterial polyethylene terephthalate plastic bioconversion. Here, we showed that the heterologously expressed TPADO/TPARED system exhibits only ~300 total turnovers at its optimal pH and temperature. We investigated the thermal stability of the system and the unfolding pathway of TPADO through a combination of biochemical and biophysical approaches. The system's activity is thermally limited by a melting temperature (Tm) of 39.9°C for the monomeric TPARED, while the independent Tm of TPADO is 50.8°C. Differential scanning calorimetry revealed a two-step thermal decomposition pathway for TPADO with Tm values of 47.6 and 58.0°C (ΔH = 210 and 509 kcal mol-1, respectively) for each step. Temperature-dependent small-angle x-ray scattering and dynamic light scattering both detected heat-induced dissociation of TPADO subunits at 53.8°C, followed by higher-temperature loss of tertiary structure that coincided with protein aggregation. The computed enthalpies of dissociation for the monomer interfaces were most congruent with a decomposition pathway initiated by β-β interface dissociation, a pattern predicted to be widespread in ROs. As a strategy for enhancing TPADO stability, we propose prioritizing the re-engineering of the β subunit interfaces, with subsequent targeted improvements of the subunits.
Collapse
Affiliation(s)
- Jessica Lusty Beech
- Department of Chemistry and BiochemistryMontana State UniversityBozemanMontanaUSA
| | - Anjani K. Maurya
- Stanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryMenlo ParkCaliforniaUSA
| | | | - Emmanuel Akpoto
- Department of Chemistry and BiochemistryMontana State UniversityBozemanMontanaUSA
| | - Arun Asundi
- Stanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryMenlo ParkCaliforniaUSA
| | - Julia Ann Fecko
- The Huck Institutes of the Life SciencesThe Pennsylvania State University, University ParkState CollegePennsylvaniaUSA
| | - Neela H. Yennawar
- The Huck Institutes of the Life SciencesThe Pennsylvania State University, University ParkState CollegePennsylvaniaUSA
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryMenlo ParkCaliforniaUSA
| | - Christopher Tassone
- Stanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryMenlo ParkCaliforniaUSA
| | - Thomas M. Weiss
- Stanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryMenlo ParkCaliforniaUSA
| | - Jennifer L. DuBois
- Department of Chemistry and BiochemistryMontana State UniversityBozemanMontanaUSA
| |
Collapse
|
5
|
Two-component carnitine monooxygenase from Escherichia coli: Functional characterization, Inhibition and mutagenesis of the molecular interface. Biosci Rep 2022; 42:231753. [PMID: 36066069 PMCID: PMC9508527 DOI: 10.1042/bsr20221102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Gut microbial production of trimethylamine (TMA) from l-carnitine is directly linked to cardiovascular disease. TMA formation is facilitated by carnitine monooxygenase, which was proposed as a target for the development of new cardioprotective compounds. Therefore, the molecular understanding of the two-component Rieske-type enzyme from Escherichia coli was intended. The redox cofactors of the reductase YeaX (FMN, plant-type [2Fe-2S] cluster) and of the oxygenase YeaW (Rieske-type [2Fe-2S] and mononuclear [Fe] center) were identified. Compounds meldonium and the garlic-derived molecule allicin were recently shown to suppress microbiota-dependent TMA formation. Based on two independent carnitine monooxygenase activity assays, enzyme inhibition by meldonium or allicin was demonstrated. Subsequently, the molecular interplay of the reductase YeaX and the oxygenase YeaW was addressed. Chimeric carnitine monooxygenase activity was efficiently reconstituted by combining YeaX (or YeaW) with the orthologous oxygenase CntA (or reductase CntB) from Acinetobacter baumannii. Partial conservation of the reductase/oxygenase docking interface was concluded. A structure guided mutagenesis approach was used to further investigate the interaction and electron transfer between YeaX and YeaW. Based on AlphaFold structure predictions, a total of 28 site-directed variants of YeaX and YeaW were kinetically analyzed. Functional relevance of YeaX residues Arg271, Lys313 and Asp320 was concluded. Concerning YeaW, a docking surface centered around residues Arg83, Lys104 and Lys117 was hypothesized. The presented results might contribute to the development of TMA-lowering strategies that could reduce the risk for cardiovascular disease.
Collapse
|
6
|
Wang S, Wang D, Yu Z, Dong X, Liu S, Cui H, Sun B. Advances in research on petroleum biodegradability in soil. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:9-27. [PMID: 33393551 DOI: 10.1039/d0em00370k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the increased demand for petroleum and petroleum products from all parts of the society, environmental pollution caused by petroleum development and production processes is becoming increasingly serious. Soil pollution caused by petroleum seriously affects environmental quality in addition to human lives and productivity. At present, petroleum in soil is mainly degraded by biological methods. In their natural state, native bacteria in the soil spontaneously degrade petroleum pollutants that enter the soil; however, when the pollution levels increase, the degradation rates decrease, and it is necessary to add nutrients, dissolved oxygen, biosurfactants and other additives to improve the degradation ability of the native bacteria in the soil. The degradation process can also be enhanced by adding exogenous petroleum-degrading bacteria, microbial immobilization technologies, and microbial fuel cell technologies.
Collapse
Affiliation(s)
- Song Wang
- School of Earth Science, Northeast Petroleum University, Daqing, China
| | - Dan Wang
- School of Earth Science, Northeast Petroleum University, Daqing, China
| | - Zhongchen Yu
- School of Civil Architecture Engineering, Northeast Petroleum University, Daqing, China.
| | - Xigui Dong
- 2nd Oil Production Plant Daqing Oilfield Co. Ltd, Daqing, China
| | - Shumeng Liu
- 2nd Oil Production Plant Daqing Oilfield Co. Ltd, Daqing, China
| | - Hongmei Cui
- School of Civil Architecture Engineering, Northeast Petroleum University, Daqing, China.
| | - Bing Sun
- 2nd Oil Production Plant Daqing Oilfield Co. Ltd, Daqing, China
| |
Collapse
|
7
|
Gao YZ, Palatucci ML, Waidner LA, Li T, Guo Y, Spain JC, Zhou NY. A Nag-like dioxygenase initiates 3,4-dichloronitrobenzene degradation via 4,5-dichlorocatechol in Diaphorobacter sp. strain JS3050. Environ Microbiol 2021; 23:1053-1065. [PMID: 33103811 DOI: 10.1111/1462-2920.15295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 11/30/2022]
Abstract
The chemical synthesis intermediate 3,4-dichloronitrobenzene (3,4-DCNB) is an environmental pollutant. Diaphorobacter sp. strain JS3050 utilizes 3,4-DCNB as a sole source of carbon, nitrogen and energy. However, the molecular determinants of its catabolism are poorly understood. Here, the complete genome of strain JS3050 was sequenced and key genes were expressed heterologously to establish the details of its degradation pathway. A chromosome-encoded three-component nitroarene dioxygenase (DcnAaAbAcAd) converted 3,4-DCNB stoichiometrically to 4,5-dichlorocatechol, which was transformed to 3,4-dichloromuconate by a plasmid-borne ring-cleavage chlorocatechol 1,2-dioxygenase (DcnC). On the chromosome, there are also genes encoding enzymes (DcnDEF) responsible for the subsequent transformation of 3,4-dichloromuconate to β-ketoadipic acid. The fact that the genes responsible for the catabolic pathway are separately located on plasmid and chromosome indicates that recent assembly and ongoing evolution of the genes encoding the pathway is likely. The regiospecificity of 4,5-dichlorocatechol formation from 3,4-DCNB by DcnAaAbAcAd represents a sophisticated evolution of the nitroarene dioxygenase that avoids misrouting of toxic intermediates. The findings enhance the understanding of microbial catabolic diversity during adaptive evolution in response to xenobiotics released into the environment.
Collapse
Affiliation(s)
- Yi-Zhou Gao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mallory L Palatucci
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514-5751, USA
| | - Lisa A Waidner
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514-5751, USA
| | - Tao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Guo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jim C Spain
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514-5751, USA
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
8
|
Wang L, Parnell A, Williams C, Bakar NA, Challand MR, van der Kamp MW, Simpson TJ, Race PR, Crump MP, Willis CL. A Rieske oxygenase/epoxide hydrolase-catalysed reaction cascade creates oxygen heterocycles in mupirocin biosynthesis. Nat Catal 2018. [DOI: 10.1038/s41929-018-0183-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Louvado A, Gomes NCM, Simões MMQ, Almeida A, Cleary DFR, Cunha A. Polycyclic aromatic hydrocarbons in deep sea sediments: Microbe-pollutant interactions in a remote environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 526:312-328. [PMID: 25965373 DOI: 10.1016/j.scitotenv.2015.04.048] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
Recalcitrant polycyclic aromatic hydrocarbons (PAHs) released into seawater end up in the deep sea sediments (DSSs). However, their fate here is often oversimplified by theoretical models. Biodegradation of PAHs in DSSs, is assumed to be similar to biodegradation in surface habitats, despite high hydrostatic pressures and low temperatures that should significantly limit PAH biodegradation. Bacteria residing in the DSSs (related mainly to α- and γ-Proteobacteria) have been shown to or predicted to possess distinct genes, enzymes and metabolic pathways, indicating an adaptation of these bacterial communities to the psychro-peizophilic conditions of the DSSs. This work summarizes some of the most recent research on DSS hydrocarbonoclastic populations and mechanisms of PAH degradation and discusses the challenges posed by future high CO2 and UV climate scenarios on biodegradation of PAHs in DSSs.
Collapse
Affiliation(s)
- A Louvado
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - N C M Gomes
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - M M Q Simões
- QOPNA, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - A Almeida
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - D F R Cleary
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - A Cunha
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
10
|
Khara P, Roy M, Chakraborty J, Ghosal D, Dutta TK. Functional characterization of diverse ring-hydroxylating oxygenases and induction of complex aromatic catabolic gene clusters in Sphingobium sp. PNB. FEBS Open Bio 2014; 4:290-300. [PMID: 24918041 PMCID: PMC4048848 DOI: 10.1016/j.fob.2014.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/03/2014] [Accepted: 03/03/2014] [Indexed: 11/27/2022] Open
Abstract
Sphingobium sp. PNB, like other sphingomonads, has multiple ring-hydroxylating oxygenase (RHO) genes. Three different fosmid clones have been sequenced to identify the putative genes responsible for the degradation of various aromatics in this bacterial strain. Comparison of the map of the catabolic genes with that of different sphingomonads revealed a similar arrangement of gene clusters that harbors seven sets of RHO terminal components and a sole set of electron transport (ET) proteins. The presence of distinctly conserved amino acid residues in ferredoxin and in silico molecular docking analyses of ferredoxin with the well characterized terminal oxygenase components indicated the structural uniqueness of the ET component in sphingomonads. The predicted substrate specificities, derived from the phylogenetic relationship of each of the RHOs, were examined based on transformation of putative substrates and their structural homologs by the recombinant strains expressing each of the oxygenases and the sole set of available ET proteins. The RHO AhdA1bA2b was functionally characterized for the first time and was found to be capable of transforming ethylbenzene, propylbenzene, cumene, p-cymene and biphenyl, in addition to a number of polycyclic aromatic hydrocarbons. Overexpression of aromatic catabolic genes in strain PNB, revealed by real-time PCR analyses, is a way forward to understand the complex regulation of degradative genes in sphingomonads.
Collapse
Affiliation(s)
| | | | | | | | - Tapan K. Dutta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VII M, Kolkata 700054, India
| |
Collapse
|
11
|
Singh D, Kumari A, Ramaswamy S, Ramanathan G. Expression, purification and substrate specificities of 3-nitrotoluene dioxygenase from Diaphorobacter sp. strain DS2. Biochem Biophys Res Commun 2014; 445:36-42. [PMID: 24491551 DOI: 10.1016/j.bbrc.2014.01.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/22/2014] [Indexed: 11/18/2022]
Abstract
3-Nitotoluene dioxygenase (3-NTDO) is the first enzyme in the degradation pathway of 3-nitrotoluene (3-NT) by Diaphorobacter sp. strain DS2. The complete gene sequences of 3-NTDO were PCR amplified from genomic DNA of Diaphorobacter sp., cloned, sequenced and expressed. The 3-NTDO gene revealed a multi component structure having a reductase, a ferredoxin and two oxygenase subunits. Clones expressing the different subunits were constructed in pET21a expression vector system and overexpressed in E. coli BL21(DE3) host. Each subunit was individually purified separately to homogeneity. The active recombinant enzyme was reconstituted in vitro by mixing all three purified subunits. The reconstituted recombinant enzyme could catalyse biotransformations on a variety of organic aromatics.
Collapse
Affiliation(s)
- Deepak Singh
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Archana Kumari
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - S Ramaswamy
- Institute of Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Gurunath Ramanathan
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India.
| |
Collapse
|
12
|
Chakraborty J, Ghosal D, Dutta A, Dutta TK. An insight into the origin and functional evolution of bacterial aromatic ring-hydroxylating oxygenases. J Biomol Struct Dyn 2012; 30:419-36. [PMID: 22694139 DOI: 10.1080/07391102.2012.682208] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Bacterial aromatic ring-hydroxylating oxygenases (RHOs) are multicomponent enzyme systems which have potential utility in bioremediation of aromatic compounds in the environment. To cope with the enormous diversity of aromatic compounds in the environment, this enzyme family has evolved remarkably exhibiting broad substrate specificity. RHOs are multicomponent enzymes comprising of a homo- or hetero-multimeric terminal oxygenase and one or more electron transport (ET) protein(s). The present study attempts in depicting the evolutionary scenarios that might have occurred during the evolution of RHOs, by analyzing a set of available sequences including those obtained from complete genomes. A modified classification scheme identifying four new RHO types has been suggested on the basis of their evolutionary and functional behaviours, in relation to structural configuration of substrates and preferred oxygenation site(s). The present scheme emphasizes on the fact that the phylogenetic affiliation of RHOs is distributed among four distinct 'Similarity classes', independent of the constituent ET components. Similar combination of RHO components that was previously considered to be equivalent and classified together [Kweon et al., BMC Biochemistry 9, 11 (2008)] were found here in distinct similarity classes indicating the role of substrate-binding terminal oxygenase in guiding the evolution of RHOs irrespective of the nature of constituent ET components. Finally, a model for evolution of the multicomponent RHO enzyme system has been proposed, beginning from genesis of the terminal oxygenase components followed by recruitment of constituent ET components, finally evolving into various 'extant' RHO types.
Collapse
|
13
|
Ben Said O, Goñi-Urriza MS, El Bour M, Dellali M, Aissa P, Duran R. Characterization of aerobic polycyclic aromatic hydrocarbon-degrading bacteria from Bizerte lagoon sediments, Tunisia. J Appl Microbiol 2007; 104:987-97. [PMID: 17973912 DOI: 10.1111/j.1365-2672.2007.03621.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To characterize polycyclic aromatic hydrocarbon (PAH)-degrading bacteria from sediments of the Bizerte lagoon, and to determine their ability to resist other pollutants such as antibiotics and heavy metals. METHODS AND RESULTS More than 100 strains were isolated for their ability to use fluoranthene as the sole carbon and energy source. Most of them showed antibiotic and heavy metal resistance; 20 representative strains were selected for further analysis. 16S rRNA coding sequences analysis showed that the majority of the selected bacteria (75%) were affiliated to the Gammaproteobacteria. The selected strains also utilized high molecular weight PAHs containing up to four benzene rings and showed different profiles of PAH substrate usage suggesting different PAH degradation pathways. These results are consistent with the fact that nah-like genes and idoA-like genes, involved in PAH degradation, were detected in 6 and 1 strains respectively. CONCLUSIONS The Bizerte lagoon, polluted by many human activities, leads to the co-selection of strains able to cope with multiple contaminants. SIGNIFICANCE AND IMPACT OF THE STUDY Polluted areas are often characterized by the concomitant presence of organic pollutants, heavy metals and antibiotics. This study is one of the first showing bacterial strains adapted to multiple contaminants, a promising potential for the development of bioremediation processes.
Collapse
Affiliation(s)
- O Ben Said
- Equipe Environnement et Microbiologie, IPREM UMR 5254, IBEAS, Université de Pau et des Pays de l'Adour, Pau Cedex, France
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The range of available arene dihydroxylating dioxygenase enzymes, their structure and mechanism, and recent examples of the application of arene cis-dihydrodiol bioproducts as chiral precursors in the synthesis of natural and unnatural products and chiral ligands are discussed.
Collapse
Affiliation(s)
- Derek R Boyd
- School of Chemistry and Centre for Theory and Application of Catalysis, Queen's University of Belfast, Belfast, UKBT9 5AG
| | | |
Collapse
|
15
|
Maruyama T, Ishikura M, Taki H, Shindo K, Kasai H, Haga M, Inomata Y, Misawa N. Isolation and characterization of o-xylene oxygenase genes from Rhodococcus opacus TKN14. Appl Environ Microbiol 2005; 71:7705-15. [PMID: 16332743 PMCID: PMC1317363 DOI: 10.1128/aem.71.12.7705-7715.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 07/27/2005] [Indexed: 11/20/2022] Open
Abstract
o-Xylene is one of the most difficult-to-degrade environmental pollutants. We report here Rhodococcus genes mediating oxygenation in the first step of o-xylene degradation. Rhodococcus opacus TKN14, isolated from soil contaminated with o-xylene, was able to utilize o-xylene as the sole carbon source and to metabolize it to o-methylbenzoic acid. A cosmid library from the genome of this strain was constructed in Escherichia coli. A bioconversion analysis revealed that a cosmid clone incorporating a 15-kb NotI fragment had the ability to convert o-xylene into o-methylbenzyl alcohol. The sequence analysis of this 15-kb region indicated the presence of a gene cluster significantly homologous to the naphthalene-inducible dioxygenase gene clusters (nidABCD) that had been isolated from Rhodococcus sp. strain I24. Complementation studies, using E. coli expressing various combinations of individual open reading frames, revealed that a gene (named nidE) for rubredoxin (Rd) and a novel gene (named nidF) encoding an auxiliary protein, which had no overall homology with any other proteins, were indispensable for the methyl oxidation reaction of o-xylene, in addition to the dioxygenase iron-sulfur protein genes (nidAB). Regardless of the presence of NidF, the enzyme composed of NidABE was found to function as a typical naphthalene dioxygenase for converting naphthalene and various (di)methylnaphthalenes into their corresponding cis-dihydrodiols. All the nidABEF genes were transcriptionally induced in R. opacus TKN14 by the addition of o-xylene to a mineral salt medium. It is very likely that these genes are involved in the degradation pathways of a wide range of aromatic hydrocarbons by Rhodococcus species as the first key enzyme.
Collapse
Affiliation(s)
- Takahiro Maruyama
- Marine Biotechnology Institute, 3-75-1 Heita, Kamaishi, Iwate 026-0001, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ferraro DJ, Gakhar L, Ramaswamy S. Rieske business: structure-function of Rieske non-heme oxygenases. Biochem Biophys Res Commun 2005; 338:175-90. [PMID: 16168954 DOI: 10.1016/j.bbrc.2005.08.222] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2005] [Accepted: 08/30/2005] [Indexed: 11/20/2022]
Abstract
Rieske non-heme iron oxygenases (RO) catalyze stereo- and regiospecific reactions. Recently, an explosion of structural information on this class of enzymes has occurred in the literature. ROs are two/three component systems: a reductase component that obtains electrons from NAD(P)H, often a Rieske ferredoxin component that shuttles the electrons and an oxygenase component that performs catalysis. The oxygenase component structures have all shown to be of the alpha3 or alpha3beta3 types. The transfer of electrons happens from the Rieske center to the mononuclear iron of the neighboring subunit via a conserved aspartate, which is shown to be involved in gating electron transport. Molecular oxygen has been shown to bind side-on in naphthalene dioxygenase and a concerted mechanism of oxygen activation and hydroxylation of the ring has been proposed. The orientation of binding of the substrate to the enzyme is hypothesized to control the substrate selectivity and regio-specificity of product formation.
Collapse
Affiliation(s)
- Daniel J Ferraro
- Department of Biochemistry, University of Iowa Roy J. and Lucille A. Carver College of Medicine, 51 Newton Road, 4-403 BSB, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
17
|
Chakraborty S, Behrens M, Herman PL, Arendsen AF, Hagen WR, Carlson DL, Wang XZ, Weeks DP. A three-component dicamba O-demethylase from Pseudomonas maltophilia, strain DI-6: purification and characterization. Arch Biochem Biophys 2005; 437:20-8. [PMID: 15820213 DOI: 10.1016/j.abb.2005.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 02/16/2005] [Indexed: 10/25/2022]
Abstract
Dicamba O-demethylase is a multicomponent enzyme that catalyzes the conversion of the herbicide 2-methoxy-3,6-dichlorobenzoic acid (dicamba) to 3,6-dichlorosalicylic acid (DCSA). The three components of the enzyme were purified and characterized. Oxygenase(DIC) is a homotrimer (alpha)3 with a subunit molecular mass of approximately 40 kDa. FerredoxinDIC and reductaseDIC are monomers with molecular weights of approximately 14 and 45 kDa, respectively. EPR spectroscopic analysis suggested the presence of a single [2Fe-2S](2+/1+) cluster in ferredoxinDIC and a single Rieske [2Fe-2S](2+; 1+) cluster within oxygenaseDIC. Consistent with the presence of a Rieske iron-sulfur cluster, oxygenaseDIC displayed a high reduction potential of E(m,7.0) = -21 mV whereas ferredoxinDIC exhibited a reduction potential of approximately E(m,7.0) = -171 mV. Optimal oxygenaseDIC activity in vitro depended on the addition of Fe2+. The identification of formaldehyde and DCSA as reaction products demonstrated that dicamba O-demethylase acts as a monooxygenase. Taken together, these data suggest that oxygenaseDIC is an important new member of the Rieske non-heme iron family of oxygenases.
Collapse
Affiliation(s)
- Sarbani Chakraborty
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0664, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Bagnéris C, Cammack R, Mason JR. Subtle difference between benzene and toluene dioxygenases of Pseudomonas putida. Appl Environ Microbiol 2005; 71:1570-80. [PMID: 15746362 PMCID: PMC1065172 DOI: 10.1128/aem.71.3.1570-1580.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Benzene dioxygenase and toluene dioxygenase from Pseudomonas putida have similar catalytic properties, structures, and gene organizations, but they differ in substrate specificity, with toluene dioxygenase having higher activity toward alkylbenzenes. The catalytic iron-sulfur proteins of these enzymes consist of two dissimilar subunits, alpha and beta; the alpha subunit contains a [2Fe-2S] cluster involved in electron transfer, the catalytic nonheme iron center, and is also responsible for substrate specificity. The amino acid sequences of the alpha subunits of benzene and toluene dioxygenases differ at only 33 of 450 amino acids. Chimeric proteins and mutants of the benzene dioxygenase alpha subunit were constructed to determine which of these residues were primarily responsible for the change in specificity. The protein containing toluene dioxygenase C-terminal region residues 281 to 363 showed greater substrate preference for alkyl benzenes. In addition, we identified four amino acid substitutions in this region, I301V, T305S, I307L, and L309V, that particularly enhanced the preference for ethylbenzene. The positions of these amino acids in the alpha subunit structure were modeled by comparison with the crystal structure of naphthalene dioxygenase. They were not in the substrate-binding pocket but were adjacent to residues that lined the channel through which substrates were predicted to enter the active site. However, the quadruple mutant also showed a high uncoupled rate of electron transfer without product formation. Finally, the modified proteins showed altered patterns of products formed from toluene and ethylbenzene, including monohydroxylated side chains. We propose that these properties can be explained by a more facile diffusion of the substrate in and out of the substrate cavity.
Collapse
Affiliation(s)
- Claire Bagnéris
- Molecular Genetics and Microbiology Group, Division of Life Sciences, King's College London, London, United Kingdom.
| | | | | |
Collapse
|
19
|
|
20
|
|
21
|
Wolfe MD, Parales JV, Gibson DT, Lipscomb JD. Single turnover chemistry and regulation of O2 activation by the oxygenase component of naphthalene 1,2-dioxygenase. J Biol Chem 2001; 276:1945-53. [PMID: 11056161 DOI: 10.1074/jbc.m007795200] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Naphthalene 1,2-dioxygenase (NDOS) is a three-component enzyme that catalyzes cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene formation from naphthalene, O2, and NADH. We have determined the conditions for a single turnover of NDOS for the first time and studied the regulation of catalysis. As isolated, the alpha3beta3 oxygenase component (NDO) has up to three catalytic pairs of metal centers (one mononuclear Fe2+ and one diferric Rieske iron-sulfur cluster). This form of NDO is unreactive with O2. However, upon reduction of the Rieske cluster and exposure to naphthalene and O2, approximately 0.85 cis-diol product per occupied mononuclear iron site rapidly forms. Substrate binding is required for oxygen reactivity. Stopped-flow and chemical quench analyses indicate that the rate constant of the single turnover product-forming reaction significantly exceeds the NDOS turnover number. UV-visible and electron paramagnetic resonance spectroscopies show that during catalysis, one mononuclear iron and one Rieske cluster are oxidized per product formed, satisfying the two-electron reaction stoichiometry. The addition of oxidized or reduced NDOS ferredoxin component (NDF) increases both the product yield and rate of oxidation of formerly unreactive Rieske clusters. The results show that NDO alone catalyzes dioxygenase chemistry, whereas NDF appears to serve only an electron transport role, in this case redistributing electrons to competent active sites.
Collapse
Affiliation(s)
- M D Wolfe
- Department of Biochemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
22
|
Lee K. Benzene-induced uncoupling of naphthalene dioxygenase activity and enzyme inactivation by production of hydrogen peroxide. J Bacteriol 1999; 181:2719-25. [PMID: 10217759 PMCID: PMC93710 DOI: 10.1128/jb.181.9.2719-2725.1999] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Naphthalene dioxygenase (NDO) is a multicomponent enzyme system that oxidizes naphthalene to (+)-cis-(1R,2S)-1,2-dihydroxy-1, 2-dihydronaphthalene with consumption of O2 and two electrons from NAD(P)H. In the presence of benzene, NADH oxidation and O2 utilization were partially uncoupled from substrate oxidation. Approximately 40 to 50% of the consumed O2 was detected as hydrogen peroxide. The rate of benzene-dependent O2 consumption decreased with time, but it was partially increased by the addition of catalase in the course of the O2 consumption by NDO. Detailed experiments showed that the total amount of O2 consumed and the rate of benzene-induced O2 consumption increased in the presence of hydrogen peroxide-scavenging agents, and further addition of the terminal oxygenase component (ISPNAP) of NDO. Kinetic studies showed that ISPNAP was irreversibly inactivated in the reaction that contained benzene, but the inactivation was relieved to a high degree in the presence of catalase and partially relieved in the presence of 0.1 mM ferrous ion. Benzene- and naphthalene-reacted ISPNAP gave almost identical visible absorption spectra. In addition, hydrogen peroxide added at a range of 0.1 to 0.6 mM to the reaction mixtures inactivated the reduced ISPNAP containing mononuclear iron. These results show that hydrogen peroxide released during the uncoupling reaction acts both as an inhibitor of benzene-dependent O2 consumption and as an inactivator of ISPNAP. It is proposed that the irreversible inactivation of ISPNAP occurs by a Fenton-type reaction which forms a strong oxidizing agent, hydroxyl radicals (. OH), from the reaction of hydrogen peroxide with ferrous mononuclear iron at the active site. Furthermore, when [14C]benzene was used as the substrate, cis-benzene 1,2-dihydrodiol formed by NDO was detected. This result shows that NDO also couples a trace amount of benzene to both O2 consumption and NADH oxidation.
Collapse
Affiliation(s)
- K Lee
- Department of Microbiology and Center for Biocatalysis and Bioprocessing, University of Iowa, Iowa City, Iowa 52242, USA.
| |
Collapse
|
23
|
|
24
|
Geiselbrecht AD, Hedlund BP, Tichi MA, Staley JT. Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of puget sound Cycloclasticus strains. Appl Environ Microbiol 1998; 64:4703-10. [PMID: 9835552 PMCID: PMC90912 DOI: 10.1128/aem.64.12.4703-4710.1998] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phenanthrene- and naphthalene-degrading bacteria were isolated from four offshore and nearshore locations in the Gulf of Mexico by using a modified most-probable-number technique. The concentrations of these bacteria ranged from 10(2) to 10(6) cells per ml of wet surficial sediment in mildly contaminated and noncontaminated sediments. A total of 23 strains of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria were obtained. Based on partial 16S ribosomal DNA sequences and phenotypic characteristics, these 23 strains are members of the genus Cycloclasticus. Three representatives were chosen for a complete phylogenetic analysis, which confirmed the close relationship of these isolates to type strain Cycloclasticus pugetii PS-1, which was isolated from Puget Sound. PAH substrate utilization tests which included high-molecular-weight PAHs revealed that these isolates had similar, broad substrate ranges which included naphthalene, substituted naphthalenes, phenanthrene, biphenyl, anthracene, acenaphthene, and fluorene. Degradation of pyrene and fluoranthene occurred only when the strains were incubated with phenanthrene. Two distinct partial PAH dioxygenase iron sulfur protein (ISP) gene sequences were PCR amplified from Puget Sound and Gulf of Mexico Cycloclasticus strains. Phylogenetic analyses of these sequences revealed that one ISP type is related to the bph type of ISP sequences, while the other ISP type is related to the nah type of ISP sequences. The predicted ISP amino acid sequences for the Gulf of Mexico and Puget Sound strains are identical, which supports the hypothesis that these geographically separated isolates are closely related phylogentically. Cycloclasticus species appear to be numerically important and widespread PAH-degrading bacteria in both Puget Sound and the Gulf of Mexico.
Collapse
Affiliation(s)
- A D Geiselbrecht
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|
25
|
Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S. Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1,2-dioxygenase. Structure 1998; 6:571-86. [PMID: 9634695 DOI: 10.1016/s0969-2126(98)00059-8] [Citation(s) in RCA: 373] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pseudomonas sp. NCIB 9816-4 utilizes a multicomponent enzyme system to oxidize naphthalene to (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. The enzyme component catalyzing this reaction, naphthalene 1,2-dioxygenase (NDO), belongs to a family of aromatic-ring-hydroxylating dioxygenases that oxidize aromatic hydrocarbons and related compounds to cis-arene diols. These enzymes utilize a mononuclear non-heme iron center to catalyze the addition of dioxygen to their respective substrates. The present study was conducted to provide essential structural information necessary for elucidating the mechanism of action of NDO. RESULTS The three-dimensional structure of NDO has been determined at 2.25 A resolution. The molecule is an alpha 3 beta 3 hexamer. The alpha subunit has a beta-sheet domain that contains a Rieske [2Fe-2S] center and a catalytic domain that has a novel fold dominated by an antiparallel nine-stranded beta-pleated sheet against which helices pack. The active site contains a non-heme ferrous ion coordinated by His208, His213, Asp362 (bidentate) and a water molecule. Asn201 is positioned further away, 3.75 A, at the missing axial position of an octahedron. In the Rieske [2Fe-2S] center, one iron is coordinated by Cys81 and Cys101 and the other by His83 and His104. CONCLUSIONS The domain structure and iron coordination of the Rieske domain is very similar to that of the cytochrome bc1 domain. The active-site iron center of one of the alpha subunits is directly connected by hydrogen bonds through a single amino acid, Asp205, to the Rieske [2Fe-2S] center in a neighboring alpha subunit. This is likely to be the main route for electron transfer.
Collapse
Affiliation(s)
- B Kauppi
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
26
|
Parales RE, Emig MD, Lynch NA, Gibson DT. Substrate specificities of hybrid naphthalene and 2,4-dinitrotoluene dioxygenase enzyme systems. J Bacteriol 1998; 180:2337-44. [PMID: 9573183 PMCID: PMC107173 DOI: 10.1128/jb.180.9.2337-2344.1998] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacterial three-component dioxygenase systems consist of reductase and ferredoxin components which transfer electrons from NAD(P)H to a terminal oxygenase. In most cases, the oxygenase consists of two different subunits (alpha and beta). To assess the contributions of the alpha and beta subunits of the oxygenase to substrate specificity, hybrid dioxygenase enzymes were formed by coexpressing genes from two compatible plasmids in Escherichia coli. The activities of hybrid naphthalene and 2,4-dinitrotoluene dioxygenases containing four different beta subunits were tested with four substrates (indole, naphthalene, 2,4-dinitrotoluene, and 2-nitrotoluene). In the active hybrids, replacement of small subunits affected the rate of product formation but had no effect on the substrate range, regiospecificity, or enantiomeric purity of oxidation products with the substrates tested. These studies indicate that the small subunit of the oxygenase is essential for activity but does not play a major role in determining the specificity of these enzymes.
Collapse
Affiliation(s)
- R E Parales
- Department of Microbiology and Center for Biocatalysis and Bioprocessing, University of Iowa, Iowa City 52242, USA.
| | | | | | | |
Collapse
|
27
|
Fuenmayor SL, Wild M, Boyes AL, Williams PA. A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. J Bacteriol 1998; 180:2522-30. [PMID: 9573207 PMCID: PMC107197 DOI: 10.1128/jb.180.9.2522-2530.1998] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas sp. strain U2 was isolated from oil-contaminated soil in Venezuela by selective enrichment on naphthalene as the sole carbon source. The genes for naphthalene dioxygenase were cloned from the plasmid DNA of strain U2 on an 8.3-kb BamHI fragment. The genes for the naphthalene dioxygenase genes nagAa (for ferredoxin reductase), nagAb (for ferredoxin), and nagAc and nagAd (for the large and small subunits of dioxygenase, respectively) were located by Southern hybridizations and by nucleotide sequencing. The genes for nagB (for naphthalene cis-dihydrodiol dehydrogenase) and nagF (for salicylaldehyde dehydrogenase) were inferred from subclones by their biochemical activities. Between nagAa and nagAb were two open reading frames, homologs of which have also been identified in similar locations in two nitrotoluene-using strains (J. V. Parales, A. Kumar, R. E. Parales, and D. T. Gibson, Gene 181:57-61, 1996; W.-C. Suen, B. Haigler, and J. C. Spain, J. Bacteriol. 178:4926-4934, 1996) and a naphthalene-using strain (G. J. Zylstra, E. Kim, and A. K. Goyal, Genet. Eng. 19:257-269, 1997). Recombinant Escherichia coli strains with plasmids carrying this region were able to convert salicylate to gentisate, which was identified by a combination of gas chromatography-mass spectrometry and nuclear magnetic resonance. The first open reading frame, designated nagG, encodes a protein with characteristics of a Rieske-type iron-sulfur center homologous to the large subunits of dihydroxylating dioxygenases, and the second open reading frame, designated nagH, encodes a protein with limited homology to the small subunits of the same dioxygenases. Cloned together in E. coli, nagG, nagH, and nagAb, were able to convert salicylate (2-hydroxybenzoate) into gentisate (2,5-dihydroxybenzoate) and therefore encode a salicylate 5-hydroxylase activity. Single-gene knockouts of nagG, nagH, and nagAb demonstrated their functional roles in the formation of gentisate. It is proposed that NagG and NagH are structural subunits of salicylate 5-hydroxylase linked to an electron transport chain consisting of NagAb and NagAa, although E. coli appears to be able to partially substitute for the latter. This constitutes a novel mechanism for monohydroxylation of the aromatic ring. Salicylate hydroxylase and catechol 2,3-dioxygenase in strain U2 could not be detected either by enzyme assay or by Southern hybridization. However growth on both naphthalene and salicylate caused induction of gentisate 1,2-dioxygenase, confirming this route for salicylate catabolism in strain U2. Sequence comparisons suggest that the novel gene order nagAa-nagG-nagH-nagAb-nagAc-nagAd-++ +nagB-nagF represents the archetype for naphthalene strains which use the gentisate pathway rather than the meta cleavage pathway of catechol.
Collapse
Affiliation(s)
- S L Fuenmayor
- School of Biological Sciences, University of Wales, Bangor, Gwynedd, United Kingdom
| | | | | | | |
Collapse
|
28
|
Russell BL, Rathinasabapathi B, Hanson AD. Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. PLANT PHYSIOLOGY 1998; 116:859-65. [PMID: 9489025 PMCID: PMC35146 DOI: 10.1104/pp.116.2.859] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/1997] [Accepted: 10/22/1997] [Indexed: 05/18/2023]
Abstract
Choline monooxygenase (CMO) catalyzes the committing step in the synthesis of glycine betaine, an osmoprotectant accumulated by many plants in response to salinity and drought. To investigate how these stresses affect CMO expression, a spinach (Spinacia oleracea L., Chenopodiaceae) probe was used to isolate CMO cDNAs from sugar beet (Beta vulgaris L., Chenopodiaceae), a salt- and drought-tolerant crop. The deduced beet CMO amino acid sequence comprised a transit peptide and a 381-residue mature peptide that was 84% identical (97% similar) to that of spinach and that showed the same consensus motif for coordinating a Rieske-type [2Fe-2S] cluster. A mononuclear Fe-binding motif was also present. When water was withheld, leaf relative water content declined to 59% and the levels of CMO mRNA, protein, and enzyme activity rose 3- to 5-fold; rewatering reversed these changes. After gradual salinization (NaCl:CaCl2 = 5.7:1, mol/mol), CMO mRNA, protein, and enzyme levels in leaves increased 3- to 7-fold at 400 mM salt, and returned to uninduced levels when salt was removed. Beet roots also expressed CMO, most strongly when salinized. Salt-inducible CMO mRNA, protein, and enzyme activity were readily detected in leaves of Amaranthus caudatus L. (Amaranthaceae). These data show that CMO most probably has a mononuclear Fe center, is inducibly expressed in roots as well as in leaves of Chenopodiaceae, and is not unique to this family.
Collapse
Affiliation(s)
- B L Russell
- Horticultural Sciences Department, University of Florida, Gainesville 32611, USA
| | | | | |
Collapse
|
29
|
Russell BL, Rathinasabapathi B, Hanson AD. Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. PLANT PHYSIOLOGY 1998; 116:859-865. [PMID: 9489025 DOI: 10.2307/4278159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Choline monooxygenase (CMO) catalyzes the committing step in the synthesis of glycine betaine, an osmoprotectant accumulated by many plants in response to salinity and drought. To investigate how these stresses affect CMO expression, a spinach (Spinacia oleracea L., Chenopodiaceae) probe was used to isolate CMO cDNAs from sugar beet (Beta vulgaris L., Chenopodiaceae), a salt- and drought-tolerant crop. The deduced beet CMO amino acid sequence comprised a transit peptide and a 381-residue mature peptide that was 84% identical (97% similar) to that of spinach and that showed the same consensus motif for coordinating a Rieske-type [2Fe-2S] cluster. A mononuclear Fe-binding motif was also present. When water was withheld, leaf relative water content declined to 59% and the levels of CMO mRNA, protein, and enzyme activity rose 3- to 5-fold; rewatering reversed these changes. After gradual salinization (NaCl:CaCl2 = 5.7:1, mol/mol), CMO mRNA, protein, and enzyme levels in leaves increased 3- to 7-fold at 400 mM salt, and returned to uninduced levels when salt was removed. Beet roots also expressed CMO, most strongly when salinized. Salt-inducible CMO mRNA, protein, and enzyme activity were readily detected in leaves of Amaranthus caudatus L. (Amaranthaceae). These data show that CMO most probably has a mononuclear Fe center, is inducibly expressed in roots as well as in leaves of Chenopodiaceae, and is not unique to this family.
Collapse
Affiliation(s)
- B L Russell
- Horticultural Sciences Department, University of Florida, Gainesville 32611, USA
| | | | | |
Collapse
|
30
|
Junker F, Kiewitz R, Cook AM. Characterization of the p-toluenesulfonate operon tsaMBCD and tsaR in Comamonas testosteroni T-2. J Bacteriol 1997; 179:919-27. [PMID: 9006050 PMCID: PMC178777 DOI: 10.1128/jb.179.3.919-927.1997] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Comamonas testosteroni T-2 uses a standard, if seldom examined, attack on an aromatic compound and oxygenates the side chain of p-toluenesulfonate (TS) (or p-toluenecarboxylate) to p-sulfobenzoate (or terephthalate) prior to complete oxidation. The expression of the first three catabolic enzymes in the pathway, the TS methyl-monooxygenase system (comprising reductase B and oxygenase M; TsaMB), p-sulfobenzyl alcohol dehydrogenase (TsaC), and p-sulfobenzaldehyde dehydrogenase (TsaD), is coregulated as regulatory unit R1 (H. R. Schlafli Oppenberg, G. Chen, T. Leisinger, and A. M. Cook, Microbiology [Reading] 141:1891-1899, 1995). The components of the oxygenase system were repurified, and the N-terminal amino acid sequences were confirmed and extended. An internal sequence of TsaM was obtained, and the identity of the [2Fe-2S] Rieske center was confirmed by electron paramagnetic resonance spectroscopy. We purified both dehydrogenases (TsaC and TsaD) and determined their molecular weights and N-terminal amino acid sequences. Oligonucleotides derived from the partial sequences of TsaM were used to identify cloned DNA from strain T-2, and about 6 kb of contiguous cloned DNA was sequenced. Regulatory unit R1 was presumed to represent a four-gene operon (tsaMBCD) which was regulated by the LysR-type regulator, TsaR, encoded by a deduced one-gene transcriptional unit. The genes for the inducible TS transport system were not at this locus. The oxygenase system was confirmed to be a class IA mononuclear iron oxygenase, and class IA can now be seen to have two evolutionary groups, the monooxygenases and the dioxygenases, though the divergence is limited to the oxygenase components. The alcohol dehydrogenase TsaC was confirmed to belong to the short-chain, zinc-independent dehydrogenases, and the aldehyde dehydrogenase TsaD was found to resemble several other aldehyde dehydrogenases. The operon and its putative regulator are compared with units of the TOL plasmid.
Collapse
Affiliation(s)
- F Junker
- Institute of Microbiology, Swiss Federal Institute of Technology, ETH-Zentrum, Zürich, Switzerland
| | | | | |
Collapse
|
31
|
|
32
|
Diverse reactions catalyzed by naphthalene dioxygenase fromPseudomonas sp strain NCIB 9816. J Ind Microbiol Biotechnol 1996. [DOI: 10.1007/bf01574775] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Lee K, Gibson DT. Toluene and ethylbenzene oxidation by purified naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Appl Environ Microbiol 1996; 62:3101-6. [PMID: 8795196 PMCID: PMC168101 DOI: 10.1128/aem.62.9.3101-3106.1996] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Purified naphthalene dioxygenase (NDO) from Pseudomonas sp. strain NCIB 9816-4 oxidized toluene to benzyl alcohol and benzaldehyde by reactions involving benzylic monooxygenation and dioxygen-dependent alcohol oxidation, respectively. Xylene and nitrotoluene isomers were also oxidized to substituted benzyl alcohol and benzaldehyde derivatives. NDO oxidized ethylbenzene sequentially through (S)-1-phenethyl alcohol (77% enantiomeric excess) and acetophenone to 2-hydroxyacetophenone. In addition, NDO also oxidized ethylbenzene through styrene to (R)-1-phenyl-1,2-ethanediol (74% enantiomeric excess) by reactions involving desaturation and dihydroxylation, respectively. Isotope experiments with 18O2, H2 18O, and D2O suggest that 1-phenethyl alcohol is oxidized to acetophenone by a minor reaction involving desaturation followed by tautomerization. The major reaction in the conversion of 1-phenethyl alcohol and benzyl alcohol to acetophenone and benzaldehyde, respectively, probably involves monohydroxylation to form a gem-diol intermediate which stereospecifically loses the incoming hydroxyl group to leave the carbonyl product. These results are compared with similar reactions catalyzed by cytochrome P-450.
Collapse
Affiliation(s)
- K Lee
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
34
|
Lee K, Gibson DT. Stereospecific dihydroxylation of the styrene vinyl group by purified naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. J Bacteriol 1996; 178:3353-6. [PMID: 8655521 PMCID: PMC178093 DOI: 10.1128/jb.178.11.3353-3356.1996] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Naphthalene dioxygenase (NDO) from Pseudomonas sp. strain NCIB 9816-4 adds both atoms of the dioxygen molecule to styrene to form (R)-l-phenyl-1,2-ethanediol. Product formation is tightly coupled to dioxygen consumption and NADH oxidation. NDO oxidizes styrene-d8 at almost the same initial rate as styrene. The results indicate that dioxygen activation by NDO is different from that by cytochrome P-450 and other monooxygenases, which oxidize styrene to styrene 1,2-oxide.
Collapse
Affiliation(s)
- K Lee
- Department of Microbiology, University of Iowa, Iowa City, 52242, USA
| | | |
Collapse
|
35
|
Hurtubise Y, Barriault D, Sylvestre M. Characterization of active recombinant his-tagged oxygenase component of Comamonas testosteroni B-356 biphenyl dioxygenase. J Biol Chem 1996; 271:8152-6. [PMID: 8626504 DOI: 10.1074/jbc.271.14.8152] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Biphenyl (BPH) dioxygenase oxidizes BPH to 2,3-dihydro-2,3-dihydroxybiphenyl in Comamonas testosteroni B-356. The enzyme comprises a two-subunit iron-sulfur protein (ISPBPH), a ferredoxin FERBPH, and a ferredoxin reductase REDBPH. REDBPH and FERBPH transfer electrons from NADH to an Fe-S active center of ISPBPH which activates molecular oxygen for insertion into the substrate. In this work B-356 ISPBPH complex and its alpha and beta subunits were purified from recombinant Escherichia coli strains using the His-bind QIAGEN system. His-tagged B-356 ISPBPH construction carrying a single His tail on the N-terminal portion of the alpha subunit was active. Its major features were compared to the untagged enzyme. In both cases, the native form is an alpha3beta3 heteromer, with each alphabeta unit containing a [2Fe-2S] Rieske center (epsilon455 = 8,300 M-1 cm-1) and a mononuclear Fe2+. Although purified His-tagged alpha subunit showed the characteristic absorption spectra of Rieske-type protein, reassociation of this enzyme component and His-tagged beta subunit to reconstitute active ISPBPH was weak. However, when His-tagged alpha and beta subunits were reassembled in vitro in crude cell extracts from E. coli recombinants, active ISPBPH could be purified on Ni-nitrilotriacetic acid resin.
Collapse
Affiliation(s)
- Y Hurtubise
- INRS-Santé, Institut National de la Recherche Scientifique, Pointe-Claire, Québec, H9R 1G6 Canada
| | | | | |
Collapse
|
36
|
Butler CS, Mason JR. Structure-function analysis of the bacterial aromatic ring-hydroxylating dioxygenases. Adv Microb Physiol 1996; 38:47-84. [PMID: 8922118 DOI: 10.1016/s0065-2911(08)60155-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- C S Butler
- Division of Life Sciences, King's College London, UK
| | | |
Collapse
|
37
|
Rosche B, Fetzner S, Lingens F, Nitschke W, Riedel A. The 2Fe2S centres of the 2-oxo-1,2-dihydroquinoline 8-monooxygenase from Pseudomonas putida 86 studied by EPR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1252:177-9. [PMID: 7578219 DOI: 10.1016/0167-4838(95)00151-j] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The 2-oxo-1,2-dihydroquinoline 8-monooxygenase from Pseudomonas putida 86 comprises two components with four redox active sites necessary for activity. We present an EPR characterization of the iron-sulfur centres in the purified reductase and oxygenase component of this novel enzyme system. The oxygenase component was identified as a Rieske [2Fe2S] protein on the basis of its characteristic EPR spectrum with gz,y,x = 2.01, 1.91, 1.76 and gav = 1.893. The reductase component, an iron-sulfur flavoprotein, contained a [2Fe2S] cluster with gz,y,x = 2.03, 1.94, 1.89 and the average g-value (gav) of 1.953, typical of a ferredoxin-type centre. In redox titrations at pH 7, the midpoint potentials were determined to be -180 mV +/- 30 mV and -100 mV +/- 10 mV for the reductase and oxygenase component, respectively. A detailed comparison to other multicomponent enzyme systems is presented pointing out the EPR and redox properties of the FeS centres involved.
Collapse
Affiliation(s)
- B Rosche
- Institut für Mikrobiologie, Universität Hohenheim, Stuttgart, Germany
| | | | | | | | | |
Collapse
|
38
|
Gibson DT, Resnick SM, Lee K, Brand JM, Torok DS, Wackett LP, Schocken MJ, Haigler BE. Desaturation, dioxygenation, and monooxygenation reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp. strain 9816-4. J Bacteriol 1995; 177:2615-21. [PMID: 7751268 PMCID: PMC176929 DOI: 10.1128/jb.177.10.2615-2621.1995] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The stereospecific oxidation of indan and indene was examined with mutant and recombinant strains expressing naphthalene dioxygenase of Pseudomonas sp. strain 9816-4. Pseudomonas sp. strain 9816/11 and Escherichia coli JM109(DE3)[pDTG141] oxidized indan to (+)-(1S)-indanol, (+)-cis-(1R,2S)-indandiol, (+)-(1S)-indenol, and 1-indanone. The same strains oxidized indene to (+)-cis-(1R,2S)-indandiol and (+)-(1S)-indenol. Purified naphthalene dioxygenase oxidized indan to the same four products formed by strains 9816/11 and JM109(DE3)[pDTG141]. In addition, indene was identified as an intermediate in indan oxidation. The major products formed from indene by purified naphthalene dioxygenase were (+)-(1S)-indenol and (+)-(1R,2S)-indandiol. The results show that naphthalene dioxygenase catalyzes the enantiospecific monooxygenation of indan to (+)-(1S)-indanol and the desaturation of indan to indene, which then serves as a substrate for the formation of (+)-(1R,2S)-indandiol and (+)-(1S)-indenol. The relationship of the desaturase, monooxygenase, and dioxygenase activities of naphthalene dioxygenase is discussed with reference to reactions catalyzed by toluene dioxygenase, plant desaturases, cytochrome P-450, methane monooxygenase, and other bacterial monooxygenases.
Collapse
Affiliation(s)
- D T Gibson
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Suen WC, Gibson DT. Recombinant Escherichia coli strains synthesize active forms of naphthalene dioxygenase and its individual alpha and beta subunits. Gene X 1994; 143:67-71. [PMID: 8200540 DOI: 10.1016/0378-1119(94)90606-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pseudomonas sp. strain NCIB 9816-4 utilizes naphthalene dioxygenase (NDO), a multicomponent enzyme system, to initiate naphthalene degradation. The terminal component of NDO is an iron-sulfur protein (ISPNAP) with an alpha 2 beta 2 subunit composition. The structural genes encoding the alpha (nahAc) and beta (nahAd) subunits were cloned separately and together into expression vectors where transcription is under the control of the T7 promoter. The recombinant plasmids were transformed into Escherichia coli JM109[pGP1-2] and the synthesis of ISPNAP and its alpha and beta subunits was determined by SDS-PAGE. Low expression of nahAd was shown to be due to inefficient initiation of translation, but a sixfold increase in the amount of beta subunit synthesized was achieved in a coupled translation system. Inclusion bodies were found in all recombinants. Increased levels of soluble active proteins were obtained when E. coli JM109(DE3), used as the host strain for recombinant plasmid, was grown at 25 degrees C. ISPNAP from JM109(DE3)[pDTG121] was purified to homogeneity and shown to have the same properties as those determined for the enzyme purified from NCIB 9816-4. Active ISPNAP was also obtained by mixing cell extracts from separate strains that synthesized the alpha and beta subunits. The availability of large amounts of purified ISPNAP and its alpha and beta subunits will facilitate future studies on the mechanism of oxygen fixation by NDO.
Collapse
Affiliation(s)
- W C Suen
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | |
Collapse
|