1
|
Daller B, Auer DL, Buchalla W, Bartsch S, Gessner A, Jakubovics NS, Al-Ahmad A, Hiergeist A, Cieplik F. Genomic and Transcriptomic Adaptation to Chlorhexidine in Streptococcus spp. J Dent Res 2025:220345251320912. [PMID: 40181292 DOI: 10.1177/00220345251320912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Antiseptics such as chlorhexidine digluconate (CHX) are widely used in clinical dental practice, but their potential risks, particularly regarding antimicrobial resistance (AMR), are not yet known. This study explores the genomic and transcriptomic mechanisms of CHX adaptation in 3 clinical isolates of Streptococcus spp. and their adapted counterparts. The genomic analysis revealed mutations in genes related to membrane structure, DNA repair, and metabolic processes. Mutations include those in diacylglycerol kinase that occurred in Streptococcus salivarius and the autolysin N-acetylmuramoyl-L-alanine amidase homologues in both Streptococcus mitis and Streptococcus vestibularis, which may contribute to enhanced CHX resistance. Our findings showed stress response genes constantly expressed in all 3 CHX-adapted strains, regardless of acute CHX exposure. Commonly upregulated genes were related to oxidative stress, DNA repair, and metabolic pathway changes, especially amino acid related metabolism. In addition, cell surface restructuring, multiple ABC transporter genes, as well as antimicrobial resistance-associated genes were constitutively expressed. Homologue genes that were significantly upregulated across all 3 species after mutation included recD (DNA repair), potE (amino acid transport), and groEL (stress response). In addition, we saw an increase in a gene associated with the penicillin-binding protein PBP2a in all strains. Beyond these conserved adaptations, we observed species-specific shifts under prolonged CHX exposure. In S. vestibularis, glutathione synthesis genes increased while fatty acid metabolism genes were downregulated. S. salivarius showed elevated expression of genes related to organic anion transport and RNA modification. S. mitis exhibited changes in pyrimidine metabolism, ion homeostasis, and pyruvate dehydrogenase complex genes. Uniquely, S. mitis also showed acute CHX response with upregulation of carbohydrate metabolism and phosphotransferase system genes. These findings highlight the complexity of CHX-induced adaptation, suggesting connections to genetic mutations and emphasizing the need for further research to understand and mitigate AMR risks.
Collapse
Affiliation(s)
- B Daller
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - D L Auer
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - W Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - S Bartsch
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center, University of Freiburg, Medical Faculty, University of Freiburg, Freiburg i. Br., Germany
| | - A Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - N S Jakubovics
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - A Al-Ahmad
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center, University of Freiburg, Medical Faculty, University of Freiburg, Freiburg i. Br., Germany
| | - A Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - F Cieplik
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center, University of Freiburg, Medical Faculty, University of Freiburg, Freiburg i. Br., Germany
| |
Collapse
|
2
|
Baker BR, Ives CM, Bray A, Caffrey M, Cochrane SA. Undecaprenol kinase: Function, mechanism and substrate specificity of a potential antibiotic target. Eur J Med Chem 2020; 210:113062. [PMID: 33310291 DOI: 10.1016/j.ejmech.2020.113062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The bifunctional undecaprenol kinase/phosphatase (UdpK) is a small, prokaryotic, integral membrane kinase, homologous with Escherichia coli diacylglycerol kinase and expressed by the dgkA gene. In Gram-positive bacteria, UdpK is involved in the homeostasis of the bacterial undecaprenoid pool, where it converts undecaprenol to undecaprenyl phosphate (C55P) and also catalyses the reverse process. C55P is the universal lipid carrier and critical to numerous glycopolymer and glycoprotein biosynthetic pathways in bacteria. DgkA gene expression has been linked to facilitating bacterial growth and survival in response to environmental stressors, as well being implicated as a resistance mechanism to the topical antibiotic bacitracin, by providing an additional route to C55P. Therefore, identification of UdpK inhibitors could lead to novel antibiotic treatments. A combination of homology modelling and mutagenesis experiments on UdpK have been used to identify residues that may be involved in kinase/phosphatase activity. In this review, we will summarise recent work on the mechanism and substrate specificity of UdpK.
Collapse
Affiliation(s)
- Brad R Baker
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Callum M Ives
- School of Medicine and School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, D02 R590, Ireland; Division of Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Ashley Bray
- School of Medicine and School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, D02 R590, Ireland
| | - Martin Caffrey
- School of Medicine and School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, D02 R590, Ireland.
| | - Stephen A Cochrane
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK.
| |
Collapse
|
3
|
Park BI, Kim BS, Kim KJ, You YO. Sabinene suppresses growth, biofilm formation, and adhesion of Streptococcus mutans by inhibiting cariogenic virulence factors. J Oral Microbiol 2019. [DOI: 10.1080/20002297.2019.1632101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Bog-Im Park
- Department of Oriental Medicine Resources, Chonbuk National University, Iksan, Republic of Korea
| | - Beom-Su Kim
- Carbon Nano Convergence Technology Center for Next Generation Engineers (CNN), Chonbuk National University, Jeonju-si, Republic of Korea
| | - Kang-Ju Kim
- Department of Oral Microbiology and Immunology, School of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Yong-Ouk You
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
4
|
Sinha A, Li Z, Sun L, Carlow CKS. Complete Genome Sequence of the Wolbachia wAlbB Endosymbiont of Aedes albopictus. Genome Biol Evol 2019; 11:706-720. [PMID: 30715337 PMCID: PMC6414309 DOI: 10.1093/gbe/evz025] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
Abstract
Wolbachia, an alpha-proteobacterium closely related to Rickettsia, is a maternally transmitted, intracellular symbiont of arthropods and nematodes. Aedes albopictus mosquitoes are naturally infected with Wolbachia strains wAlbA and wAlbB. Cell line Aa23 established from Ae. albopictus embryos retains only wAlbB and is a key model to study host–endosymbiont interactions. We have assembled the complete circular genome of wAlbB from the Aa23 cell line using long-read PacBio sequencing at 500× median coverage. The assembled circular chromosome is 1.48 megabases in size, an increase of more than 300 kb over the published draft wAlbB genome. The annotation of the genome identified 1,205 protein coding genes, 34 tRNA, 3 rRNA, 1 tmRNA, and 3 other ncRNA loci. The long reads enabled sequencing over complex repeat regions which are difficult to resolve with short-read sequencing. Thirteen percent of the genome comprised insertion sequence elements distributed throughout the genome, some of which cause pseudogenization. Prophage WO genes encoding some essential components of phage particle assembly are missing, while the remainder are found in five prophage regions/WO-like islands or scattered around the genome. Orthology analysis identified a core proteome of 535 orthogroups across all completed Wolbachia genomes. The majority of proteins could be annotated using Pfam and eggNOG analyses, including ankyrins and components of the Type IV secretion system. KEGG analysis revealed the absence of five genes in wAlbB which are present in other Wolbachia. The availability of a complete circular chromosome from wAlbB will enable further biochemical, molecular, and genetic analyses on this strain and related Wolbachia.
Collapse
Affiliation(s)
- Amit Sinha
- New England Biolabs, Ipswich, Massachusetts
| | - Zhiru Li
- New England Biolabs, Ipswich, Massachusetts
| | - Luo Sun
- New England Biolabs, Ipswich, Massachusetts
| | | |
Collapse
|
5
|
Global response of diacylglycerol kinase towards substrate binding observed by 2D and 3D MAS NMR. Sci Rep 2019; 9:3995. [PMID: 30850624 PMCID: PMC6408475 DOI: 10.1038/s41598-019-40264-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/11/2019] [Indexed: 01/01/2023] Open
Abstract
Escherichia coli diacylglycerol kinase (DGK) is an integral membrane protein, which catalyses the ATP-dependent phosphorylation of diacylglycerol (DAG) to phosphatic acid (PA). It is a unique trimeric enzyme, which does not share sequence homology with typical kinases. It exhibits a notable complexity in structure and function despite of its small size. Here, chemical shift assignment of wild-type DGK within lipid bilayers was carried out based on 3D MAS NMR, utilizing manual and automatic analysis protocols. Upon nucleotide binding, extensive chemical shift perturbations could be observed. These data provide evidence for a symmetric DGK trimer with all of its three active sites concurrently occupied. Additionally, we could detect that the nucleotide substrate induces a substantial conformational change, most likely directing DGK into its catalytic active form. Furthermore, functionally relevant interprotomer interactions are identified by DNP-enhanced MAS NMR in combination with site-directed mutagenesis and functional assays.
Collapse
|
6
|
李 转, 许 晓, 陈 璇, 吴 昕, 赵 望. [Role of SMU.2055 gene in regulating acid resistance of Streptococcus mutans UA159]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:198-204. [PMID: 29502060 PMCID: PMC6743886 DOI: 10.3969/j.issn.1673-4254.2018.02.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To evaluate the effect of SMU.2055 gene on acid resistance of Streptococcus mutans. METHODS A SMU.2055-dificient mutant strain of S. mutans was constructed using homologous recombination technique. The growth of the wild-type and mutant strains was monitored in both normal and acidic conditions. The lethal pH level, glycolysis, proton permeability, cell permeability and biofilm formation of the two strains were compared. RESULTS PCR and sequence analyses verified the successful construction of the SMU.2055-dificient mutant strain. The growth and biofilm formation capacity of the mutant strain were obviously lowered in both normal and acidic conditions. The mutant strain also showed increased lethal pH level, proton permeability, and cell permeability with impaired H+-ATPase activity in acidic conditions, but its minimum glycolytic pH remained unaffected. CONCLUSION The SMU.2055-deficient S. mutans mutant exhibits a lowered acid resistance, which affects the growth, lethal pH, proton permeability, H+-ATPase activity, cell permeability and biofilm formation but not the minimum glycolytic pH of the mutant strain.
Collapse
Affiliation(s)
- 转玲 李
- 南方医科大学南方医院口腔科,广东 广州 510515Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 晓虎 许
- 深圳市龙华新区中心医院口腔科,广东 深圳 518110Department of Stomatology, Longhua New District Central Hospital, Shenzhen 518110, China
| | - 璇 陈
- 南方医科大学口腔医院,广东 广州 510280Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - 昕彧 吴
- 南方医科大学口腔医院,广东 广州 510280Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - 望泓 赵
- 南方医科大学南方医院口腔科,广东 广州 510515Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
李 转, 许 晓, 陈 璇, 吴 昕, 赵 望. [Role of SMU.2055 gene in regulating acid resistance of Streptococcus mutans UA159]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:198-204. [PMID: 29502060 PMCID: PMC6743886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 10/15/2023]
Abstract
OBJECTIVE To evaluate the effect of SMU.2055 gene on acid resistance of Streptococcus mutans. METHODS A SMU.2055-dificient mutant strain of S. mutans was constructed using homologous recombination technique. The growth of the wild-type and mutant strains was monitored in both normal and acidic conditions. The lethal pH level, glycolysis, proton permeability, cell permeability and biofilm formation of the two strains were compared. RESULTS PCR and sequence analyses verified the successful construction of the SMU.2055-dificient mutant strain. The growth and biofilm formation capacity of the mutant strain were obviously lowered in both normal and acidic conditions. The mutant strain also showed increased lethal pH level, proton permeability, and cell permeability with impaired H+-ATPase activity in acidic conditions, but its minimum glycolytic pH remained unaffected. CONCLUSION The SMU.2055-deficient S. mutans mutant exhibits a lowered acid resistance, which affects the growth, lethal pH, proton permeability, H+-ATPase activity, cell permeability and biofilm formation but not the minimum glycolytic pH of the mutant strain.
Collapse
Affiliation(s)
- 转玲 李
- 南方医科大学南方医院口腔科,广东 广州 510515Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 晓虎 许
- 深圳市龙华新区中心医院口腔科,广东 深圳 518110Department of Stomatology, Longhua New District Central Hospital, Shenzhen 518110, China
| | - 璇 陈
- 南方医科大学口腔医院,广东 广州 510280Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - 昕彧 吴
- 南方医科大学口腔医院,广东 广州 510280Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - 望泓 赵
- 南方医科大学南方医院口腔科,广东 广州 510515Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
Huang LY, Wang SC, Cheng TJR, Wong CH. Undecaprenyl Phosphate Phosphatase Activity of Undecaprenol Kinase Regulates the Lipid Pool in Gram-Positive Bacteria. Biochemistry 2017; 56:5417-5427. [PMID: 28872301 DOI: 10.1021/acs.biochem.7b00603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacteria cell walls contain many repeating glycan structures, such as peptidoglycans, lipopolysaccharides, teichoic acids, and capsular polysaccharides. Their synthesis starts in the cytosol, and they are constructed from a glycan lipid carrier, undecaprenyl phosphate (C55P), which is essential for cell growth and survival. The lipid derivative undecaprenol (C55OH) is predominant in many Gram-positive bacteria but has not been detected in Gram-negative bacteria; its origin and role have thus remained unknown. Recently, a homologue of diacylglycerol kinase (DgkA) in Escherichia coli (E. coli) was demonstrated to be an undecaprenol kinase (UK) in the Gram-positive bacterium Streptococcus mutans (S. mutans). In this study, we found that S. mutans UK was not only an undecaprenol kinase but also a Mg-ADP-dependent undecaprenyl phosphate phosphatase (UpP), catalyzing the hydrolysis of C55P to C55OH and a free inorganic phosphate. Furthermore, the naturally undetectable C55OH was observed in E. coli cells expressing S. mutans dgkA, supporting the phosphatase activity of UK/UpP in vivo. These two activities were indispensable to each other and utilized identical essential residues binding to their substrates, suggesting that both activities share the same active site and might involve a direct phosphoryl transfer mechanism. This study revealed a unique membrane enzyme displaying bifunctional activities determined by substrate binding and C55OH production. The reciprocal conversion of C55P and the undecaprenol pool efficiently regulate cell wall synthesis, especially in Gram-positive bacteria.
Collapse
Affiliation(s)
- Lin-Ya Huang
- Genomics Research Center, Academia Sinica , Taipei 115, Taiwan
| | - Shih-Chi Wang
- Genomics Research Center, Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University , Taipei 112, Taiwan
| | | | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University , Taipei 112, Taiwan
| |
Collapse
|
9
|
Sengers Syndrome-Associated Mitochondrial Acylglycerol Kinase Is a Subunit of the Human TIM22 Protein Import Complex. Mol Cell 2017; 67:457-470.e5. [DOI: 10.1016/j.molcel.2017.06.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/28/2017] [Accepted: 06/13/2017] [Indexed: 11/19/2022]
|
10
|
Lynch DJ, Villhauer AL, Warren JJ, Marshall TA, Dawson DV, Blanchette DR, Phipps KR, Starr DE, Drake DR. Genotypic characterization of initial acquisition of Streptococcus mutans in American Indian children. J Oral Microbiol 2015; 7:27182. [PMID: 25840611 PMCID: PMC4385128 DOI: 10.3402/jom.v7.27182] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Severe-early childhood caries (S-ECC) is one of the most common infectious diseases in children and is prevalent in lower socio-economic populations. American Indian children suffer from the highest levels of S-ECC in the United States. Members of the mutans streptococci, Streptococcus mutans, in particular, are key etiologic agents in the development of caries. Children typically acquire S. mutans from their mothers and early acquisition is often associated with higher levels of tooth decay. METHODS We have conducted a 5-year birth cohort study with a Northern Plains Tribe to determine the temporality and fidelity of S. mutans transmission from mother to child in addition to the genotypic diversity of S. mutans in this community. Plaque samples were collected from 239 mother/child dyads at regular intervals from birth to 36 months and S. mutans were isolated and genotyped by arbitrarily primed-polymerase chain reaction (AP-PCR). RESULTS Here we present preliminary findings from a subset of the cohort. The focus for this paper is on initial acquisition events in the children. We identified 17 unique genotypes in 711 S. mutans isolates in our subset of 40 children, 40 mothers and 14 primary caregivers. Twelve of these genotypes were identified in more than one individual. S. mutans colonization occurred by 16 months in 57.5% of the children and early colonization was associated with higher decayed, missing and filled surface (DMFS) scores (p=0.0007). Children colonized by S. mutans shared a common genotype with their mothers 47.8% of the time. While multiple genotypes were common in adults, only 10% of children harbored multiple genotypes. CONCLUSION These children acquire S. mutans at an earlier age than the originally described 'window of infectivity' and often, but not exclusively, from their mothers. Early acquisition is associated with both the caries status of the children and the mothers.
Collapse
Affiliation(s)
- David J Lynch
- Dows Institute for Dental Research, University of Iowa, College of Dentistry, Iowa City, IA, USA
| | - Alissa L Villhauer
- Dows Institute for Dental Research, University of Iowa, College of Dentistry, Iowa City, IA, USA
| | - John J Warren
- Preventive and Community Dentistry, University of Iowa, College of Dentistry, Iowa City, IA, USA
| | - Teresa A Marshall
- Preventive and Community Dentistry, University of Iowa, College of Dentistry, Iowa City, IA, USA
| | - Deborah V Dawson
- Dows Institute for Dental Research, University of Iowa, College of Dentistry, Iowa City, IA, USA
| | - Derek R Blanchette
- Dows Institute for Dental Research, University of Iowa, College of Dentistry, Iowa City, IA, USA
| | | | - Delores E Starr
- Area Regional Dental Prevention/Research Director, Pine Ridge, SD, USA
| | - David R Drake
- Dows Institute for Dental Research, University of Iowa, College of Dentistry, Iowa City, IA, USA;
| |
Collapse
|
11
|
Manat G, Roure S, Auger R, Bouhss A, Barreteau H, Mengin-Lecreulx D, Touzé T. Deciphering the metabolism of undecaprenyl-phosphate: the bacterial cell-wall unit carrier at the membrane frontier. Microb Drug Resist 2014; 20:199-214. [PMID: 24799078 DOI: 10.1089/mdr.2014.0035] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
During the biogenesis of bacterial cell-wall polysaccharides, such as peptidoglycan, cytoplasmic synthesized precursors should be trafficked across the plasma membrane. This essential process requires a dedicated lipid, undecaprenyl-phosphate that is used as a glycan lipid carrier. The sugar is linked to the lipid carrier at the inner face of the membrane and is translocated toward the periplasm, where the glycan moiety is transferred to the growing polymer. Undecaprenyl-phosphate originates from the dephosphorylation of its precursor undecaprenyl-diphosphate, with itself generated by de novo synthesis or by recycling after the final glycan transfer. Undecaprenyl-diphosphate is de novo synthesized by the cytosolic cis-prenyltransferase undecaprenyl-diphosphate synthase, which has been structurally and mechanistically characterized in great detail highlighting the condensation process. In contrast, the next step toward the formation of the lipid carrier, the dephosphorylation step, which has been overlooked for many years, has only started revealing surprising features. In contrast to the previous step, two unrelated families of integral membrane proteins exhibit undecaprenyl-diphosphate phosphatase activity: BacA and members of the phosphatidic acid phosphatase type 2 super-family, raising the question of the significance of this multiplicity. Moreover, these enzymes establish an unexpected link between the synthesis of bacterial cell-wall polymers and other biological processes. In the present review, the current knowledge in the field of the bacterial lipid carrier, its mechanism of action, biogenesis, recycling, regulation, and future perspective works are presented.
Collapse
Affiliation(s)
- Guillaume Manat
- Laboratoire des Enveloppes Bactériennes et Antibiotiques, IBBMC, UMR 8619 CNRS, Université Paris Sud , Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Kaurenoic Acid from Aralia continentalis Inhibits Biofilm Formation of Streptococcus mutans. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:160592. [PMID: 23662113 PMCID: PMC3638610 DOI: 10.1155/2013/160592] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/28/2013] [Indexed: 11/22/2022]
Abstract
We isolated a single chemical compound from A. continentalis and identified it to be kaurenoic acid (KA) and investigated the influence of anticariogenic properties. Inhibitory effects of KA on cariogenic properties such as growth, acid production, biofilm formation, and the adherence of S. mutans were evaluated. Furthermore, real-time PCR analysis was performed to evaluate the influence of KA on the genetic expression of virulence factors. KA significantly inhibited the growth and acid production of S. mutans at 2–4 μg/mL and 4 μg/mL of KA, respectively. Furthermore, the adherence onto S-HAs was inhibited at 3-4 μg/mL of KA and biofilm formation was significantly inhibited when treated with 3 μg/mL KA and completely inhibited at 4 μg/mL. Also, the inhibitory effect of KA on biofilm formation was confirmed by SEM. In confocal laser scanning microscopy, bacterial viability gradually decreased by KA in a dose dependent manner. Real-time PCR analysis showed that the expressions of gtfB, gtfC, gbpB, spaP, brpA, relA, and vicR were significantly decreased in S. mutans when it was treated with KA. These results suggest that KA from A. continentalis may be a useful agent for inhibiting the cariogenic properties of S. mutans.
Collapse
|
13
|
Ahn SJ, Qu MD, Roberts E, Burne RA, Rice KC. Identification of the Streptococcus mutans LytST two-component regulon reveals its contribution to oxidative stress tolerance. BMC Microbiol 2012; 12:187. [PMID: 22937869 PMCID: PMC3507848 DOI: 10.1186/1471-2180-12-187] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/21/2012] [Indexed: 02/07/2023] Open
Abstract
Background The S. mutans LrgA/B holin-like proteins have been shown to affect biofilm formation and oxidative stress tolerance, and are regulated by oxygenation, glucose levels, and by the LytST two-component system. In this study, we sought to determine if LytST was involved in regulating lrgAB expression in response to glucose and oxygenation in S. mutans. Results Real-time PCR revealed that growth phase-dependent regulation of lrgAB expression in response to glucose metabolism is mediated by LytST under low-oxygen conditions. However, the effect of LytST on lrgAB expression was less pronounced when cells were grown with aeration. RNA expression profiles in the wild-type and lytS mutant strains were compared using microarrays in early exponential and late exponential phase cells. The expression of 40 and 136 genes in early-exponential and late exponential phase, respectively, was altered in the lytS mutant. Although expression of comYB, encoding a DNA binding-uptake protein, was substantially increased in the lytS mutant, this did not translate to an effect on competence. However, a lrgA mutant displayed a substantial decrease in transformation efficiency, suggestive of a previously-unknown link between LrgA and S. mutans competence development. Finally, increased expression of genes encoding antioxidant and DNA recombination/repair enzymes was observed in the lytS mutant, suggesting that the mutant may be subjected to increased oxidative stress during normal growth. Although the intracellular levels of reaction oxygen species (ROS) appeared similar between wild-type and lytS mutant strains after overnight growth, challenge of these strains with hydrogen peroxide (H2O2) resulted in increased intracellular ROS in the lytS mutant. Conclusions Overall, these results: (1) Reinforce the importance of LytST in governing lrgAB expression in response to glucose and oxygen, (2) Define a new role for LytST in global gene regulation and resistance to H2O2, and (3) Uncover a potential link between LrgAB and competence development in S. mutans.
Collapse
Affiliation(s)
- Sang-Joon Ahn
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | |
Collapse
|
14
|
Chun MJ, Park KJ, Ohk SH. Putative down-stream signaling molecule of GTPase in Porphyromonas gingivalis. APPL BIOCHEM MICRO+ 2012. [DOI: 10.1134/s0003683812030039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Abstract
Prokaryotic diacylglycerol kinase (DAGK) and undecaprenol kinase (UDPK) are the lone members of a family of multispan membrane enzymes that are very small, lack relationships to any other family of proteins-including water soluble kinases-and exhibit an unusual structure and active site architecture. Escherichia coli DAGK plays an important role in recycling diacylglycerol produced as a by-product of biosynthesis of molecules located in the periplasmic space. UDPK seems to play an analogous role in gram-positive bacteria, where its importance is evident because UDPK is essential for biofilm formation by the oral pathogen Streptococcus mutans. DAGK has also long served as a model system for studies of membrane protein biocatalysis, folding, stability, and structure. This review explores our current understanding of the microbial physiology, enzymology, structural biology, and folding of the prokaryotic DAGK family, which is based on over 40 years of studies.
Collapse
Affiliation(s)
- Wade D Van Horn
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
16
|
Burnside K, Rajagopal L. Aspects of eukaryotic-like signaling in Gram-positive cocci: a focus on virulence. Future Microbiol 2011; 6:747-61. [PMID: 21797690 DOI: 10.2217/fmb.11.62] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Living organisms adapt to the dynamic external environment for their survival. Environmental adaptation in prokaryotes is thought to be primarily accomplished by signaling events mediated by two-component systems, consisting of histidine kinases and response regulators. However, eukaryotic-like serine/threonine kinases (STKs) have recently been described to regulate growth, antibiotic resistance and virulence of pathogenic bacteria. This article summarizes the role of STKs and their cognate phosphatases (STPs) in Gram-positive cocci that cause invasive infections in humans. Given that a large number of inhibitors to eukaryotic STKs are approved for use in humans, understanding how serine/threonine phosphorylation regulates virulence and antibiotic resistance will be beneficial for the development of novel therapeutic strategies against bacterial infections.
Collapse
Affiliation(s)
- Kellie Burnside
- Department of Pediatric Infectious Diseases, University of Washington & Seattle Children's Hospital Research Institute, 1900 Ninth Avenue, Seattle, WA 98101-1304, USA
| | | |
Collapse
|
17
|
Darby CM, Venugopal A, Ehrt S, Nathan CF. Mycobacterium tuberculosis gene Rv2136c is dispensable for acid resistance and virulence in mice. Tuberculosis (Edinb) 2011; 91:343-7. [PMID: 21778115 DOI: 10.1016/j.tube.2011.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/16/2011] [Accepted: 06/19/2011] [Indexed: 12/31/2022]
Abstract
The gene Rv2136c is annotated to encode the Mycobacterium tuberculosis (Mtb) homolog of Escherichia coli's undecaprenyl pyrophosphate phosphatase. In previous work, a genetic screen of 10,100 Mtb transposon mutants identified Rv2136c as being involved in acid resistance in Mtb. The Rv2136c:Tn strain was also sensitive to sodium dodecyl sulfate, lipophilic antibiotics, elevated temperature and reactive oxygen and nitrogen intermediates and was attenuated for growth and persistence in mice. However, none of these phenotypes could be genetically complemented, leading us to generate an Rv2136c knockout strain to test its role in Mtb pathogenicity. Genetic deletion revealed that Rv2136c is not responsible for any of the phenotypes observed in the transposon mutant strain. An independent genomic mutation is likely to have accounted for the extreme attenuation of this strain. Identification of the mutated gene will further our understanding of acid resistance mechanisms in Mtb and may offer a target for anti-tuberculosis chemotherapy.
Collapse
Affiliation(s)
- Crystal M Darby
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
18
|
Shibata Y, Kawada-Matsuo M, Shirai Y, Saito N, Li D, Yamashita Y. Streptococcus mutans diacylglycerol kinase homologue: a potential target for anti-caries chemotherapy. J Med Microbiol 2011; 60:625-630. [DOI: 10.1099/jmm.0.026070-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yukie Shibata
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Miki Kawada-Matsuo
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | | | - Naoaki Saito
- Biosignal Research Center, Kobe University, Kobe, Japan
| | - Dan Li
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Yoshihisa Yamashita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| |
Collapse
|
19
|
Interfacial enzyme kinetics of a membrane bound kinase analyzed by real-time MAS-NMR. Nat Chem Biol 2011; 7:263-70. [PMID: 21423170 DOI: 10.1038/nchembio.543] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 01/26/2011] [Indexed: 11/08/2022]
Abstract
The simultaneous observation of interdependent reactions within different phases as catalyzed by membrane-bound enzymes is still a challenging task. One such enzyme, the Escherichia coli integral membrane protein diacylglycerol kinase (DGK), is a key player in lipid regulation. It catalyzes the generation of phosphatidic acid within the membrane through the transfer of the γ-phosphate from soluble MgATP to membrane-bound diacylglycerol. We demonstrate that time-resolved (31)P magic angle spinning NMR offers a unique opportunity to simultaneously and directly detect both ATP hydrolysis and diacylglycerol phosphorylation. This experiment demonstrates that solid-state NMR provides a general approach for the kinetic analysis of coupled reactions at the membrane interface regardless of their compartmentalization. The enzymatic activity of DGK was probed with different lipid substrates as well as ATP analogs. Our data yield conclusions about intersubunit cooperativity, reaction stoichiometries and phosphoryl transfer mechanism and are discussed in the context of known structural data.
Collapse
|
20
|
|
21
|
The LiaFSR system regulates the cell envelope stress response in Streptococcus mutans. J Bacteriol 2009; 191:2973-84. [PMID: 19251860 DOI: 10.1128/jb.01563-08] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Maintaining cell envelope integrity is critical for bacterial survival, including bacteria living in a complex and dynamic environment such as the human oral cavity. Streptococcus mutans, a major etiological agent of dental caries, uses two-component signal transduction systems (TCSTSs) to monitor and respond to various environmental stimuli. Previous studies have shown that the LiaSR TCSTS in S. mutans regulates virulence traits such as acid tolerance and biofilm formation. Although not examined in streptococci, homologs of LiaSR are widely disseminated in Firmicutes and function as part of the cell envelope stress response network. We describe here liaSR and its upstream liaF gene in the cell envelope stress tolerance of S. mutans strain UA159. Transcriptional analysis established liaSR as part of the pentacistronic liaFSR-ppiB-pnpB operon. A survey of cell envelope antimicrobials revealed that mutants deficient in one or all of the liaFSR genes were susceptible to Lipid II cycle interfering antibiotics and to chemicals that perturbed the cell membrane integrity. These compounds induced liaR transcription in a concentration-dependent manner. Notably, under bacitracin stress conditions, the LiaFSR signaling system was shown to induce transcription of several genes involved in membrane protein synthesis, peptidoglycan biosynthesis, envelope chaperone/proteases, and transcriptional regulators. In the absence of an inducer such as bacitracin, LiaF repressed LiaR-regulated expression, whereas supplementing cultures with bacitracin resulted in derepression of liaSR. While LiaF appears to be an integral component of the LiaSR signaling cascade, taken collectively, we report a novel role for LiaFSR in sensing cell envelope stress and preserving envelope integrity in S. mutans.
Collapse
|
22
|
Dinis M, Tavares D, Veiga-Malta I, Fonseca AJMM, Andrade EB, Trigo G, Ribeiro A, Videira A, Cabrita AMS, Ferreira P. Oral therapeutic vaccination with Streptococcus sobrinus recombinant enolase confers protection against dental caries in rats. J Infect Dis 2009; 199:116-23. [PMID: 18956975 DOI: 10.1086/594372] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Dental caries is among the more prevalent chronic human infections for which an effective human vaccine has not yet been achieved. Enolase from Streptococcus sobrinus has been identified as an immunomodulatory protein. In the present study, we used S. sobrinus recombinant enolase (rEnolase) as a target antigen and assessed its therapeutic effect in a rat model of dental caries. Wistar rats that were fed a cariogenic solid diet on day 18 after birth were orally infected with S. sobrinus on day 19 after birth and for 5 consecutive days thereafter. Five days after infection and, again, 3 weeks later, rEnolase plus alum adjuvant was delivered into the oral cavity of the rats. A sham-immunized group of rats was contemporarily treated with adjuvant alone. In the rEnolase-immunized rats, increased levels of salivary IgA and IgG antibodies specific for this recombinant protein were detected. A significant decrease in sulcal, proximal enamel, and dentin caries scores was observed in these animals, compared with sham-immunized control animals. No detectable histopathologic alterations were observed in all immunized animals. Furthermore, the antibodies produced against bacterial enolase did not react with human enolase. Overall, these results indicate that rEnolase could be a promising and safe candidate for testing in trials of vaccines against dental caries in humans.
Collapse
Affiliation(s)
- Márcia Dinis
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Shibata Y, van der Ploeg JR, Kozuki T, Shirai Y, Saito N, Kawada-Matsuo M, Takeshita T, Yamashita Y. Kinase activity of the dgk gene product is involved in the virulence of Streptococcus mutans. Microbiology (Reading) 2009; 155:557-565. [DOI: 10.1099/mic.0.023812-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
C-terminal deletion of the diacylglycerol kinase (Dgk) homologue of the cariogenic oral bacterium Streptococcus mutans resulted in loss of aciduricity. To confirm the role of the C terminus of the Dgk homologue in aciduricity, various mutants of S. mutans UA159 with a C-terminally truncated Dgk homologue were constructed. The deletion of one or two amino acid residues at the C terminus had no effect on the acid-tolerance properties of mutants. When further amino acid residues at the C terminus were removed, mutants became more acid-sensitive. The mutant with deletion of eight amino acid residues at the C terminus did not grow at pH 5.5, suggesting that the C-terminal tail of the Dgk homologue was indispensable for tolerance to acid stress in S. mutans. Kinase activity assays revealed that deletion of the C-terminal amino acids of Dgk led to a reduction of kinase activity for undecaprenol. A truncated mutant that had completely lost kinase activity was unable to grow at pH 5.5. These results suggest that the acid tolerance of S. mutans is closely related to kinase activity of the Dgk homologue. Additionally, the dgk deletion mutant exhibited markedly reduced levels of smooth-surface carious lesions in pathogen-free rats, despite there being no difference between the mutant and the parental organism in the extent of total smooth surface plaque. The results suggest that Dgk activity may play a direct role in the virulence of S. mutans.
Collapse
Affiliation(s)
- Yukie Shibata
- Department of Preventive Dentistry, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jan R. van der Ploeg
- Institute for Oral Biology, University of Zürich, Plattenstrasse 11, CH-8032 Zürich, Switzerland
| | - Takeshi Kozuki
- The Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yasuhito Shirai
- The Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Naoaki Saito
- The Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Miki Kawada-Matsuo
- Department of Preventive Dentistry, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Toru Takeshita
- Department of Preventive Dentistry, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshihisa Yamashita
- Department of Preventive Dentistry, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
24
|
Acid-susceptible mutants of Mycobacterium tuberculosis share hypersusceptibility to cell wall and oxidative stress and to the host environment. J Bacteriol 2008; 191:625-31. [PMID: 19011036 DOI: 10.1128/jb.00932-08] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis can persist in macrophage phagosomes that acidify to a pH of approximately 4.5 after activation of the macrophage with gamma interferon. How the bacterium resists the low pH of the acidified phagosome is incompletely understood. A screen of 10,100 M. tuberculosis transposon mutants for mutants hypersensitive to pH 4.5 led to the discovery of 21 genes whose disruption attenuated survival of M. tuberculosis at a low pH (41). Here, we show that acid-sensitive M. tuberculosis mutants with transposon insertions in Rv2136c, Rv2224c, ponA2, and lysX were hypersensitive to antibiotics, sodium dodecyl sulfate, heat shock, and reactive oxygen and nitrogen intermediates, indicating that acid resistance can be associated with protection against other forms of stress. The Rv2136c mutant was impaired in intrabacterial pH homeostasis and unable to maintain a neutral intrabacterial pH in activated macrophages. The Rv2136c, Rv2224c, and ponA2 mutants were attenuated in mice, with the Rv2136c mutant displaying the most severe level of attenuation. Pathways utilized by M. tuberculosis for acid resistance and intrabacterial pH maintenance are potential targets for chemotherapy.
Collapse
|
25
|
Abstract
DGKs (diacylglycerol kinases) are members of a unique and conserved family of intracellular lipid kinases that phosphorylate DAG (diacylglycerol), catalysing its conversion into PA (phosphatidic acid). This reaction leads to attenuation of DAG levels in the cell membrane, regulating a host of intracellular signalling proteins that have evolved the ability to bind this lipid. The product of the DGK reaction, PA, is also linked to the regulation of diverse functions, including cell growth, membrane trafficking, differentiation and migration. In multicellular eukaryotes, DGKs provide a link between lipid metabolism and signalling. Genetic experiments in Caenorhabditis elegans, Drosophila melanogaster and mice have started to unveil the role of members of this protein family as modulators of receptor-dependent responses in processes such as synaptic transmission and photoreceptor transduction, as well as acquired and innate immune responses. Recent discoveries provide new insights into the complex mechanisms controlling DGK activation and their participation in receptor-regulated processes. After more than 50 years of intense research, the DGK pathway emerges as a key player in the regulation of cell responses, offering new possibilities of therapeutic intervention in human pathologies, including cancer, heart disease, diabetes, brain afflictions and immune dysfunctions.
Collapse
|
26
|
Penaud S, Fernandez A, Boudebbouze S, Ehrlich SD, Maguin E, van de Guchte M. Induction of heavy-metal-transporting CPX-type ATPases during acid adaptation in Lactobacillus bulgaricus. Appl Environ Microbiol 2006; 72:7445-54. [PMID: 16997986 PMCID: PMC1694267 DOI: 10.1128/aem.01109-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus bulgaricus is a lactic acid bacteria (LAB) that, through the production of lactic acid, gradually acidifies its environment during growth. In the course of this process, L. bulgaricus acquires an improved tolerance to acidity. A survey of the recently established genome sequence shows that this bacterium possesses few of the pH control functions that have been described in other LAB and raises the question of what other mechanisms could be involved in its adaptation to the decreasing environmental pH. In some bacteria other than LAB, ion transport systems have been implicated in acid adaptation. We therefore studied the expression of this type of transport system during acid adaptation in L. bulgaricus by reverse transcription and real-time quantitative PCR and mapped transcription start sites. Intriguingly, the most significantly induced were three ATPases carrying the CPX signature of heavy-metal transporters. Protein homology and the presence of a conserved sequence motif in the promoter regions of the genes encoding these proteins strongly suggest that they are involved in copper homeostasis. Induction of this system is thought to assist in avoiding indirect damage that could result from medium acidification.
Collapse
Affiliation(s)
- S Penaud
- Génétique Microbienne, INRA-CRJ, 78352 Jouy en Josas cedex, France
| | | | | | | | | | | |
Collapse
|
27
|
Shibata Y, Kawada M, Nakano Y, Toyoshima K, Yamashita Y. Identification and characterization of an autolysin-encoding gene of Streptococcus mutans. Infect Immun 2005; 73:3512-20. [PMID: 15908380 PMCID: PMC1111888 DOI: 10.1128/iai.73.6.3512-3520.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified a gene (atlA) encoding autolytic activity from Streptococcus mutans Xc. The AtlA protein predicted to be encoded by atlA is composed of 979 amino acids with a molecular weight of 107,279 and has a conserved beta-1,4-N-acetylmuramidase (lysozyme) domain in the C-terminal portion. Sodium dodecyl sulfate extracts of strain Xc showed two major bacteriolytic bands with molecular masses of 107 and 79 kDa, both of which were absent from a mutant with inactivated atlA. Western blot analysis revealed that the 79-kDa band was derived from the 107-kDa peptide by cleavage of its N-terminal portion. The inactivation of atlA resulted in a marked decrease in autolysis and the formation of very long chains of cells compared to the case for the parent strain. Although both the parent and mutant strains formed biofilms in the presence of sucrose, the biofilms formed by the mutant had a sponge-like architecture with large gaps and contained 30% less biomass than those formed by the parent strain. Furthermore, strain Xc formed glucose-dependent, loose biofilms in the absence of sucrose, but the mutant lost this ability. These results suggest that AtlA may play an important role in biofilm formation by S. mutans. The antibody produced against the C-terminal peptide containing the beta-1,4-N-acetylmuramidase domain drastically inhibited the autolytic activity of strain Xc. This inhibition was specific among the oral streptococci to S. mutans. These results indicate that the catalytic domain of AtlA is located at the C terminus, suggesting that further characterization of this domain may provide a means to control cariogenic dental plaque formation.
Collapse
Affiliation(s)
- Yukie Shibata
- Department of Preventive Dentistry, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
28
|
Lis M, Kuramitsu HK. Characterization of a suppressor mutation complementing an acid-sensitive mutation inStreptococcus mutans. FEMS Microbiol Lett 2003; 229:179-82. [PMID: 14680696 DOI: 10.1016/s0378-1097(03)00818-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We isolated a spontaneous suppressor mutant complementing the acid-sensitive phenotype of Streptococcus mutans strain Tn-1, a mutant previously generated in this laboratory, defective in the activity of the dgk-encoded putative undecaprenol kinase. A relatively simple genetic method was developed to identify the suppressor mutation, based on selection for transformants containing two closely linked markers: a selectable allele of the unknown suppressor gene and an antibiotic resistance gene introduced on a suicide plasmid at random sites into the chromosome via homologous recombination. While we have not actually identified the original suppressor mutation, another mutated gene restoring acid resistance has been isolated, which suggests a possible mechanism of suppression.
Collapse
Affiliation(s)
- Maciej Lis
- Department of Oral Biology, State University of New York, Buffalo, NY 14214, USA
| | | |
Collapse
|
29
|
Wang B, Kuramitsu HK. Control of enzyme IIscr and sucrose-6-phosphate hydrolase activities in Streptococcus mutans by transcriptional repressor ScrR binding to the cis-active determinants of the scr regulon. J Bacteriol 2003; 185:5791-9. [PMID: 13129950 PMCID: PMC193960 DOI: 10.1128/jb.185.19.5791-5799.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Streptococcus mutans, enzyme II(scr) and sucrose-6-phosphate hydrolase are two important enzymes in the transport and metabolism of dietary sucrose. The scr regulon of S. mutans is composed of three genes, scrA and scrB, which code for enzyme II(scr) and sucrose-6-phosphate hydrolase, respectively, and scrR, which codes for a GalR-LacI-type transcription regulator. It was previously shown that expression of both scrA and scrB is similarly induced by sucrose. Mutation in the scrR gene resulted in increased expression of scrB relative to that in the wild-type strain. In this study, we employed DNA mobility shift and DNase I protection assays with a purified ScrR-histidine tag fusion protein to examine the DNA binding properties of ScrR to the promoter regions of the scrA and scrB genes. The results showed that ScrR bound specifically to the promoter regions of both scrA and scrB. Two regions with high affinity for ScrR in the promoter sequences of the scrA and scrB genes were identified by DNase I protection assays. One, O(C), which includes a 20-bp imperfect inverted-repeat sequence, is located between the two promoters, and the other, O(B), is located within the scrB promoter region containing a 37-bp imperfect direct-repeat sequence. Mutations of O(B) and O(C) resulted in constitutive transcription and expression of both the scrA and scrB genes. Our results indicated that S. mutans coordinates the activities of enzyme II(scr) and sucrose-6-phosphate hydrolase by transcriptional repressor ScrR binding to the promoter regions of the scr regulon.
Collapse
Affiliation(s)
- Bing Wang
- Department of Oral Biology, State University of New York, Buffalo, New York 14214, USA
| | | |
Collapse
|
30
|
Cotter PD, Hill C. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev 2003; 67:429-53, table of contents. [PMID: 12966143 PMCID: PMC193868 DOI: 10.1128/mmbr.67.3.429-453.2003] [Citation(s) in RCA: 791] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-positive bacteria possess a myriad of acid resistance systems that can help them to overcome the challenge posed by different acidic environments. In this review the most common mechanisms are described: i.e., the use of proton pumps, the protection or repair of macromolecules, cell membrane changes, production of alkali, induction of pathways by transcriptional regulators, alteration of metabolism, and the role of cell density and cell signaling. We also discuss the responses of Listeria monocytogenes, Rhodococcus, Mycobacterium, Clostridium perfringens, Staphylococcus aureus, Bacillus cereus, oral streptococci, and lactic acid bacteria to acidic environments and outline ways in which this knowledge has been or may be used to either aid or prevent bacterial survival in low-pH environments.
Collapse
Affiliation(s)
- Paul D Cotter
- Department of Microbiology and National Food Biotechnology Centre, University College Cork, Cork, Ireland
| | | |
Collapse
|
31
|
Shibata Y, Ozaki K, Seki M, Kawato T, Tanaka H, Nakano Y, Yamashita Y. Analysis of loci required for determination of serotype antigenicity in Streptococcus mutans and its clinical utilization. J Clin Microbiol 2003; 41:4107-12. [PMID: 12958233 PMCID: PMC193837 DOI: 10.1128/jcm.41.9.4107-4112.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently identified the genes responsible for the serotype c-specific glucose side chain formation of rhamnose-glucose polysaccharide (RGP) in Streptococcus mutans. These genes were located downstream from the rgpA through rgpF locus that is involved in the synthesis of RGP. In the present study, the corresponding chromosomal regions were isolated from serotype e and f strains and characterized. The rgpA through rgpF homologs were well conserved among the three serotypes. By contrast, the regions downstream from the rgpF homolog differed considerably among the three serotypes. Replacement of these regions in the different serotype strains converted their serotypic phenotypes, suggesting that these regions participated in serotype-specific glucose side chain formation in each serotype strain. Based on the differences among the DNA sequences of these regions, a PCR method was developed to determine serotypes. S. mutans was isolated from 198 of 432 preschool children (3 to 4 years old). The serotypes of all but one S. mutans isolate were identified by serotyping PCR. Serotype c predominated (84.8%), serotype e was the next most common (13.3%), and serotype f occured rarely (1.9%) in Japanese preschool children. Caries experience in the group with a mixed infection by multiple serotypes of S. mutans was significantly higher than that in the group with a monoinfection by a single serotype.
Collapse
Affiliation(s)
- Yukie Shibata
- Department of Preventive Dentistry, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Lis M, Kuramitsu HK. The stress-responsive dgk gene from Streptococcus mutans encodes a putative undecaprenol kinase activity. Infect Immun 2003; 71:1938-43. [PMID: 12654811 PMCID: PMC152025 DOI: 10.1128/iai.71.4.1938-1943.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed a previously constructed stress-sensitive Streptococcus mutans mutant Tn-1 strain resulting from disruption by transposon Tn916 of a gene encoding a protein exhibiting amino acid sequence similarity to the Escherichia coli diacylglycerol kinase. It was confirmed that the mutation led to significantly reduced lipid kinase activity, while expression of the intact gene on a plasmid restored both kinase activity and the wild-type phenotype. Further analysis revealed that the product of the dgk gene in S. mutans predominantly recognizes a lipid substrate other than diacylglycerol, most likely undecaprenol, as demonstrated by its efficient phosphorylation and the resistance of the product of the reaction to saponification. The physiological role of the product of the dgk gene as a putative undecaprenol kinase was further supported by a significantly higher sensitivity of the mutant to bacitracin compared with that of the parental strain.
Collapse
Affiliation(s)
- Maciej Lis
- Department of Oral Biology, State University of New York, Buffalo, NY 14214, USA
| | | |
Collapse
|
33
|
Yoshida A, Kuramitsu HK. Multiple Streptococcus mutans Genes Are Involved in Biofilm Formation. Appl Environ Microbiol 2002; 68:6283-91. [PMID: 12450853 PMCID: PMC134449 DOI: 10.1128/aem.68.12.6283-6291.2002] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans has been strongly implicated as the principal etiological agent in dental caries. One of the important virulence properties of these organisms is their ability to form biofilms known as dental plaque on tooth surfaces. Since the roles of sucrose and glucosyltransferases in S. mutans biofilm formation have been well documented, we focused our attention on sucrose-independent factors. We have initially identified several mutants that appear to be defective in biofilm formation on abiotic surfaces by an insertional inactivation mutagenesis strategy applied to S. mutans. A total of 27 biofilm-defective mutants were isolated and analyzed in this study. From these mutants, three genes were identified. One of the mutants was defective in the Bacillus subtilis lytR homologue. Another of the biofilm-defective mutants isolated was a yulF homologue, which encodes a hypothetical protein of B. subtilis whose function in biofilm formation is unknown. The vast majority of the mutants were defective in the comB gene required for competence. We therefore have constructed and examined comACDE null mutants. These mutants were also found to be attenuated in biofilm formation. Biofilm formation by several other regulatory gene mutants were also characterized using an in vitro biofilm-forming assay. These results suggest that competence genes as well as the sgp and dgk genes may play important roles in S. mutans biofilm formation.
Collapse
Affiliation(s)
- Akihiro Yoshida
- Department of Oral Biology, State University of New York, Buffalo 14214, USA
| | | |
Collapse
|
34
|
Tsuda H, Yamashita Y, Shibata Y, Nakano Y, Koga T. Genes involved in bacitracin resistance in Streptococcus mutans. Antimicrob Agents Chemother 2002; 46:3756-64. [PMID: 12435673 PMCID: PMC132740 DOI: 10.1128/aac.46.12.3756-3764.2002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans is resistant to bacitracin, which is a peptide antibiotic produced by certain species of Bacillus. The purpose of this study was to clarify the bacitracin resistance mechanism of S. mutans. We cloned and sequenced two S. mutans loci that are involved in bacitracin resistance. The rgp locus, which is located downstream from rmlD, contains six rgp genes (rgpA to rgpF) that are involved in rhamnose-glucose polysaccharide (RGP) synthesis in S. mutans. The inactivation of RGP synthesis in S. mutans resulted in an approximately fivefold-higher sensitivity to bacitracin relative to that observed for the wild-type strain Xc. The second bacitracin resistance locus comprised four mbr genes (mbrA, mbrB, mbrC, and mbrD) and was located immediately downstream from gtfC, which encodes the water-insoluble glucan-synthesizing enzyme. Although the bacitracin sensitivities of mutants that had defects in flanking genes were similar to that of the parental strain Xc, mutants that were defective in mbrA, mbrB, mbrC, or mbrD were about 100 to 120 times more sensitive to bacitracin than strain Xc. In addition, a mutant that was defective in all of the mbrABCD genes and rgpA was more sensitive to bacitracin than either the RGP or Mbr mutants. We conclude that RGP synthesis is related to bacitracin resistance in S. mutans and that the mbr genes modulate resistance to bacitracin via an unknown mechanism that is independent of RGP synthesis.
Collapse
Affiliation(s)
- Hiromasa Tsuda
- Department of Preventive Dentistry, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
35
|
Oxenoid K, Sönnichsen FD, Sanders CR. Topology and secondary structure of the N-terminal domain of diacylglycerol kinase. Biochemistry 2002; 41:12876-82. [PMID: 12379131 DOI: 10.1021/bi020335o] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prokaryotic diacylglycerol kinase (DAGK) functions as a homotrimer of 13 kDa subunits, each of which has three transmembrane segments. This enzyme is conditionally essential to some bacteria and serves as a model system for studies of membrane protein biocatalysis, stability, folding, and misfolding. In this work, the detailed topology and secondary structure of DAGK's N-terminus up through the loop following the first transmembrane domain were probed by NMR spectroscopy. Secondary structure was mapped by measuring 13C NMR chemical shifts. Residue-to-residue topology was probed by measuring 19F NMR relaxation rates for site-specifically labeled samples in the presence and absence of polar and hydrophobic paramagnetic probes. Most of DAGK's N-terminal cytoplasmic and first transmembrane segments are alpha-helical. The first and second transmembrane helices are separated by a short loop from residues 48 to 52. The first transmembrane segment extends from residues 32 to 48. Most of the N-terminal cytoplasmic domain lies near the interface but does not extend deeply into the membrane. Finally, catalytic activities measured for the single cysteine mutants before and after chemical labeling suggest that the N-terminal cytoplasmic domain likely contains a number of critical active site residues. The results, therefore, suggest that DAGK's active site lies very near to the water/bilayer interface.
Collapse
Affiliation(s)
- Kirill Oxenoid
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106-4970, USA
| | | | | |
Collapse
|
36
|
Shibata Y, Yamashita Y, Ozaki K, Nakano Y, Koga T. Expression and characterization of streptococcal rgp genes required for rhamnan synthesis in Escherichia coli. Infect Immun 2002; 70:2891-8. [PMID: 12010977 PMCID: PMC128017 DOI: 10.1128/iai.70.6.2891-2898.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Six genes (rgpA through rgpF) that were involved in assembling the rhamnose-glucose polysaccharide (RGP) in Streptococcus mutans were previously identified (Y. Yamashita, Y. Tsukioka, K. Tomihisa, Y. Nakano, and T. Koga, J. Bacteriol. 180:5803-5807, 1998). The group-specific antigens of Lancefield group A, C, and E streptococci and the polysaccharide antigen of Streptococcus sobrinus have the same rhamnan backbone as the RGP of S. mutans. Escherichia coli harboring plasmid pRGP1 containing all six rgp genes did not synthesize complete RGP. However, E. coli carrying a plasmid with all of the rgp genes except for rgpE synthesized the rhamnan backbone of RGP without glucose side chains, suggesting that in addition to rgpE, another gene is required for glucose side-chain formation. Synthesis of the rhamnan backbone in E. coli required the initiation of transfer of N-acetylglucosamine to a lipid carrier and the expression of the rgpC and rgpD genes encoding the putative ABC transporter specific for RGP. The similarities in RGP synthesis between E. coli and S. mutans suggest common pathways for rhamnan synthesis. Therefore, we evaluated the rhamnosyl polymerization process in E. coli by high-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the lipooligosaccharide (LOS). An E. coli transformant harboring rgpA produced the LOS modified by the addition of a single rhamnose residue. Furthermore, the rgpA, rgpB, and rgpF genes of pRGP1 were independently mutated by an internal deletion, and the LOS chemotypes of their transformants were examined. The transformant with an rgpA deletion showed the same LOS profile as E. coli without a plasmid. The transformant with an rgpB deletion showed the same LOS profile as E. coli harboring rgpA alone. The transformant with an rgpF deletion showed the LOS band with the most retarded migration. On the basis of these results, we speculated that RgpA, RgpB, and RgpF, in that order, function in rhamnan polymerization.
Collapse
Affiliation(s)
- Yukie Shibata
- Department of Preventive Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
37
|
Quivey RG, Kuhnert WL, Hahn K. Genetics of acid adaptation in oral streptococci. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 12:301-14. [PMID: 11603503 DOI: 10.1177/10454411010120040201] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A growing body of information has provided insights into the mechanisms by which the oral streptococci maintain their niches in the human mouth. In at least one case, Streptococcus mutans, the organism apparently uses a panel of proteins to survive in acidic conditions while it promotes the formation of dental caries. Oral streptococci, which are not as inherently resistant to acidification, use protective schemes to ameliorate acidic plaque pH values. Existing information clearly shows that while the streptococci are highly related, very different strategies have evolved for them to take advantage of their particular location in the oral cavity. The picture that emerges is that the acid-adaptive regulatory mechanisms of the oral streptococci differ markedly from those used by Gram-negative bacteria. What future research must determine is the extent and complexity of the acid-adaptive systems in these organisms and how they permit the organisms to maintain themselves in the face of a low-pH environment and the microbial competition present in their respective niches.
Collapse
Affiliation(s)
- R G Quivey
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, NY 14642, USA.
| | | | | |
Collapse
|
38
|
Rogers JD, Palmer RJ, Kolenbrander PE, Scannapieco FA. Role of Streptococcus gordonii amylase-binding protein A in adhesion to hydroxyapatite, starch metabolism, and biofilm formation. Infect Immun 2001; 69:7046-56. [PMID: 11598080 PMCID: PMC100085 DOI: 10.1128/iai.69.11.7046-7056.2001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions between bacteria and salivary components are thought to be important in the establishment and ecology of the oral microflora. alpha-Amylase, the predominant salivary enzyme in humans, binds to Streptococcus gordonii, a primary colonizer of the tooth. Previous studies have implicated this interaction in adhesion of the bacteria to salivary pellicles, catabolism of dietary starches, and biofilm formation. Amylase binding is mediated at least in part by the amylase-binding protein A (AbpA). To study the function of this protein, an erythromycin resistance determinant [erm(AM)] was inserted within the abpA gene of S. gordonii strains Challis and FAS4 by allelic exchange, resulting in abpA mutant strains Challis-E1 and FAS4-E1. Comparison of the wild-type and mutant strains did not reveal any significant differences in colony morphology, biochemical metabolic profiles, growth in complex or defined media, surface hydrophobicity, or coaggregation properties. Scatchard analysis of adhesion isotherms demonstrated that the wild-type strains adhered better to human parotid-saliva- and amylase-coated hydroxyapatite than did the AbpA mutants. In contrast, the mutant strains bound to whole-saliva-coated hydroxyapatite to a greater extent than did the wild-type strains. While the wild-type strains preincubated with purified salivary amylase grew well in defined medium with potato starch as the sole carbohydrate source, the AbpA mutants did not grow under the same conditions even after preincubation with amylase. In addition, the wild-type strain produced large microcolonies in a flow cell biofilm model, while the abpA mutant strains grew much more poorly and produced relatively small microcolonies. Taken together, these results suggest that AbpA of S. gordonii functions as an adhesin to amylase-coated hydroxyapatite, in salivary-amylase-mediated catabolism of dietary starches and in human saliva-supported biofilm formation by S. gordonii.
Collapse
Affiliation(s)
- J D Rogers
- Department of Oral Biology, School of Dental Medicine, The State University of New York, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
39
|
Brailsford SR, Shah B, Simons D, Gilbert S, Clark D, Ines I, Adams SE, Allison C, Beighton D. The predominant aciduric microflora of root-caries lesions. J Dent Res 2001; 80:1828-33. [PMID: 11926242 DOI: 10.1177/00220345010800091101] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The etiology of root caries is not fully understood, and although mutans streptococci, lactobacilli, and A. naeslundii have been implicated in its initiation and progression, this study was designed to determine the potential role of other microbial species and the nature of predominant aciduric microflora in the root caries process. We isolated the predominant aciduric microflora from root-caries lesions (n = 14) and sound root surfaces in subjects with (n = 13) or without (n = 10) root caries, using both a "most probable numbers" method and conventional plating methods. The predominant aciduric bacteria from root lesions were lactobacilli and A. israelii, while from sound root surfaces in subjects with root caries, A. gerencseriae comprised over 60% of aciduric isolates. Mutans streptococci were not among the aciduric isolates. Subjects without root caries harbored fewer bacteria, and S. anginosus (pH 4.8) and S. oralis (pH 5.2) were the predominant aciduric bacteria. The microbial etiology of root caries is more complex than was previously appreciated, and factors underlying the microbial succession occurring during the disease process are not known. Taxa with previously unrecognized aciduric characteristics have been isolated routinely, and the role of these organisms in the root caries process requires further investigation.
Collapse
Affiliation(s)
- S R Brailsford
- Caries Research Group, GKT Dental Institute, Denmark Hill, London, England.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wilkins JC, Homer KA, Beighton D. Altered protein expression of Streptococcus oralis cultured at low pH revealed by two-dimensional gel electrophoresis. Appl Environ Microbiol 2001; 67:3396-405. [PMID: 11472910 PMCID: PMC93034 DOI: 10.1128/aem.67.8.3396-3405.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus oralis is the predominant aciduric nonmutans streptococcus isolated from the human dentition, but the role of this organism in the initiation and progression of dental caries has yet to be established. To identify proteins that are differentially expressed by S. oralis growing under conditions of low pH, soluble cellular proteins extracted from bacteria grown in batch culture at pH 5.2 or 7.0 were analyzed by two-dimensional (2-D) gel electrophoresis. Thirty-nine proteins had altered expression at low pH; these were excised, digested with trypsin using an in-gel protocol, and further analyzed by peptide mass fingerprinting using matrix-assisted laser desorption ionization mass spectrometry. The resulting fingerprints were compared with the genomic database for Streptococcus pneumoniae, an organism that is phylogenetically closely related to S. oralis, and putative functions for the majority of these proteins were determined on the basis of functional homology. Twenty-eight proteins were up-regulated following growth at pH 5.2; these included enzymes of the glycolytic pathway (glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase), the polypeptide chains comprising ATP synthase, and proteins that are considered to play a role in the general stress response of bacteria, including the 60-kDa chaperone, Hsp33, and superoxide dismutase, and three distinct ABC transporters. These data identify, for the first time, gene products that may be important in the survival and proliferation of nonmutans aciduric S. oralis under conditions of low pH that are likely to be encountered by this organism in vivo.
Collapse
Affiliation(s)
- J C Wilkins
- Department of Oral Microbiology, GKT Dental Institute, King's College London, London United Kingdom.
| | | | | |
Collapse
|
41
|
Rogers JD, Scannapieco FA. RegG, a CcpA homolog, participates in regulation of amylase-binding protein A gene (abpA) expression in Streptococcus gordonii. J Bacteriol 2001; 183:3521-5. [PMID: 11344161 PMCID: PMC99651 DOI: 10.1128/jb.183.11.3521-3525.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2000] [Accepted: 01/12/2001] [Indexed: 11/20/2022] Open
Abstract
The amylase-binding protein A (AbpA) of Streptococcus gordonii was found to be undetectable in supernatants of mid-log-phase cultures containing >1% glucose but abundant in supernatants of cultures made with brain heart infusion (BHI), which contains 0.2% glucose. A 10-fold decrease in the level of abpA mRNA in S. gordonii cells cultured in BHI was noted after the addition of glucose to 1%. Analysis of the abpA sequence revealed a potential catabolite responsive element CRE 153 bp downstream of the putative translational start site. A catabolite control protein A gene (ccpA) homolog from S. gordonii, designated regG, was cloned. A regG mutant strain demonstrated moderately less repression of abpA transcription in the presence of 1% glucose. Diauxic growth with glucose and lactose was not affected in the RegG mutant compared to the wild-type parental strain. These results suggest that while RegG plays a role in abpA expression, other mechanisms of catabolite repression are present.
Collapse
Affiliation(s)
- J D Rogers
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | | |
Collapse
|
42
|
Chia JS, Lee YY, Huang PT, Chen JY. Identification of stress-responsive genes in Streptococcus mutans by differential display reverse transcription-PCR. Infect Immun 2001; 69:2493-501. [PMID: 11254612 PMCID: PMC98184 DOI: 10.1128/iai.69.4.2493-2501.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans, which causes dental caries in the human oral cavity and occasionally causes infective endocarditis in the heart, withstands adverse environmental stress through diverse alterations in protein synthesis. Differential gene expression in response to environmental stress was analyzed by RNA fingerprinting using arbitrarily primed PCR with a panel of 11mer primers designed for differential display in Enterobacteriaceae. Dot and Northern blot hybridization confirmed that the transcription of several genes was up- or down-regulated following exposure to acid shock from pH 7.5 to 5.5. RNA of a gene designated AP-185 (acid-stress protein) was induced specifically by acid treatment, while RNA of GSP-781 (general-stress protein) was up-regulated significantly when bacteria were exposed to high osmolarity and temperature, as well as low pH. The deduced amino acid sequence of AP-185 shares homology (78% identity) with branched-chain amino acid aminotransferase. Cloning and sequence analysis of GSP-781 revealed a potential secreted protein of a molecular mass of about 43 kDa and with a pI predicted to be 5.5. Transcriptional levels of another gene, designated AR-186 (acid-repressed protein), which encodes putative aconitase, were repressed by acid treatment but were enhanced by plasma or serum components. Analogous results were identified in icd and citZ genes, and repression of these genes, along with AR-186, was also observed when they were exposed to high osmolarity and temperature. These results indicate that differential regulation of specific genes at the transcriptional level is triggered by different stress and that genes responsible for glutamate biosynthesis in the citrate pathway are coordinately regulated during the stress response of S. mutans.
Collapse
Affiliation(s)
- J S Chia
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
43
|
Abstract
The strategies employed by oral streptococci to resist the inimical influences of acidification reflect the diverse and dynamic niches of the human mouth. All of the oral streptococci are capable of rapid degradation of sugar to acidic end-products. As a result, the pH value of their immediate environment can plummet to levels where glycolysis and growth cease. At this point, the approaches for survival in acid separate the organisms. Streptococcus mutans, for example, relies on its F-ATPase, to protect itself from acidification by pumping protons out of the cells. S. salivarius responds by degrading urea to ammonia and S. sanguis produces ammonia by arginolysis. The mechanisms by which these organisms regulate their particular escape route are now being explored experimentally. The picture that emerges is that the acid-adaptive regulatory mechanisms of the oral streptococci differ markedly from those employed by Gram-negative bacteria. What remains to be elucidated are the breadth of the acid-response systems in these organisms and how they permit the microbes to sustain themselves in the face of low pH and the bacterial competition present in their respective niches. In this article, we summarize reports concerning the means by which oral streptococci either utilize acidification to subdue their competitors or protect themselves until pH values return to a more favorable level.
Collapse
Affiliation(s)
- R G Quivey
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | | | |
Collapse
|
44
|
Meier TI, Peery RB, McAllister KA, Zhao G. Era GTPase of Escherichia coli: binding to 16S rRNA and modulation of GTPase activity by RNA and carbohydrates. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 5):1071-1083. [PMID: 10832634 DOI: 10.1099/00221287-146-5-1071] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Era, an essential GTPase, appears to play an important role in the regulation of the cell cycle and protein synthesis of bacteria and mycoplasmas. In this study, native Era, His-tagged Era (His-Era) and glutathione S-transferase (GST)-fusion Era (GST-Era) proteins from Escherichia coli were expressed and purified. It was shown that the GST-Era and His-Era proteins purified by 1-step affinity column chromatographic methods were associated with RNA and exhibited a higher GTPase activity. However, the native Era protein purified by a 3-step column chromatographic method had a much lower GTPase activity and was not associated with RNA which had been removed during purification. Purified GST-Era protein was shown to be present as a high- and a low-molecular-mass forms. The high-molecular-mass form of GST-Era was associated with RNA and exhibited a much higher GTPase activity. Removal of the RNA associated with GST-Era resulted in a significant reduction in the GTPase activity. The RNA associated with GST-Era was shown to be primarily 16S rRNA. A purified native Era protein preparation, when mixed with total cellular RNA, was found to bind to some of the RNA. The native Era protein isolated directly from the cells of a wild-type E. coli strain was also present as a high-molecular-mass form complexed with RNA and RNase treatment converted the high-molecular-mass form into a 32 kDa low-molecular-mass form, a monomer of Era. Furthermore, a C-terminally truncated Era protein, when expressed in E. coli, did not bind RNA. Finally, the GTPase activity of the Era protein free of RNA, but not the Era protein associated with the RNA, was stimulated by acetate and 3-phosphoglycerate. These carbohydrates, however, failed to activate the GTPase activity of the C-terminally truncated Era protein. Thus, the results of this study establish that the C-terminus of Era is essential for the RNA-binding activity and that the RNA and carbohydrates modulate the GTPase activity of Era possibly through a similar mechanism.
Collapse
MESH Headings
- Acetates/pharmacology
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Blotting, Western
- Carbohydrates/pharmacology
- Chromatography, Affinity
- Chromatography, Gel
- Chromatography, Ion Exchange
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins
- GTP-Binding Proteins/chemistry
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Glutathione Transferase/chemistry
- Glutathione Transferase/isolation & purification
- Glutathione Transferase/metabolism
- Glyceric Acids/pharmacology
- Molecular Weight
- Polymerase Chain Reaction
- Protein Binding
- RNA, Bacterial/analysis
- RNA, Bacterial/metabolism
- RNA, Bacterial/pharmacology
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 16S/pharmacology
- RNA-Binding Proteins
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- Timothy I Meier
- Lilly Research Laboratories, Infectious Diseases Research, Eli Lilly and Company, Indianapolis, IN 46285-0438, USA1
| | - Robert B Peery
- Lilly Research Laboratories, Infectious Diseases Research, Eli Lilly and Company, Indianapolis, IN 46285-0438, USA1
| | - Kelly A McAllister
- Lilly Research Laboratories, Infectious Diseases Research, Eli Lilly and Company, Indianapolis, IN 46285-0438, USA1
| | - Genshi Zhao
- Lilly Research Laboratories, Infectious Diseases Research, Eli Lilly and Company, Indianapolis, IN 46285-0438, USA1
| |
Collapse
|
45
|
Baev D, Ohk SH, Kuramitsu HK. Protein interactions of SGP, an essential Streptococcus mutans GTPase, revealed by biochemical and yeast two-hybrid system analyses. FEMS Microbiol Lett 2000; 184:149-53. [PMID: 10713413 DOI: 10.1111/j.1574-6968.2000.tb09006.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
SGP, a Streptococcus mutans essential GTPase, plays a role in the stress response of the organism. Recently, we proposed that one of the physiological functions of the SGP is the modulation of the GTP/GDP ratio under different growth conditions. In order to further determine the functions of SGP and its possible interactions with other molecules, we carried out immunoprecipitation, SGP binding, and the yeast two-hybrid system analyses. These approaches suggest that SGP may oligomerize and such interactions could be important for the function of this regulatory protein.
Collapse
Affiliation(s)
- D Baev
- Department of Oral Biology, State University of New York, 3435 Main Street, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
46
|
Rallu F, Gruss A, Ehrlich SD, Maguin E. Acid- and multistress-resistant mutants of Lactococcus lactis : identification of intracellular stress signals. Mol Microbiol 2000; 35:517-28. [PMID: 10672175 DOI: 10.1046/j.1365-2958.2000.01711.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lactococcus lactis growth is accompanied by lactic acid production, which results in acidification of the medium and arrest of cell multiplication. Despite growth limitation at low pH, there is evidence that lactococci do have inducible responses to an acid pH. In order to characterize the genes involved in acid tolerance responses, we selected acid-resistant insertional mutants of the L. lactis strain MG1363. Twenty-one independent characterized mutants were affected in 18 different loci, some of which are implicated in transport systems or base metabolism. None of these genes was identified previously as involved in lactococcal acid tolerance. The various phenotypes obtained by acid stress selection allowed us to define four classes of mutants, two of which comprise multistress-resistant strains. Our results reveal that L. lactis has several means of protecting itself against low pH, at least one of which results in multiple stress resistance. In particular, intracellular phosphate and guanine nucleotide pools, notably (p)ppGpp, are likely to act as signals that determine the level of lactococcal stress response induction. Our results provide a link between the physiological state of the cell and the level of stress tolerance and establish a role for the stringent response in acid stress response regulation.
Collapse
Affiliation(s)
- F Rallu
- Génétique Microbienne; Génétique Appliquée URLGA, INRA, Domaine de Vilvert, 78352 Jouy en Josas Cedex, France
| | | | | | | |
Collapse
|
47
|
Yamashita Y, Shibata Y, Nakano Y, Tsuda H, Kido N, Ohta M, Koga T. A novel gene required for rhamnose-glucose polysaccharide synthesis in Streptococcus mutans. J Bacteriol 1999; 181:6556-9. [PMID: 10515952 PMCID: PMC103797 DOI: 10.1128/jb.181.20.6556-6559.1999] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene rgpG is required for biosynthesis of rhamnose-glucose polysaccharide (RGP) in Streptococcus mutans. Its deduced amino acid sequence had similarity to WecA, which initiates syntheses of enterobacterial common antigen and some O antigens in Escherichia coli. Gene rgpG complemented a wecA mutation of E. coli, suggesting that rgpG may function similarly in RGP synthesis.
Collapse
Affiliation(s)
- Y Yamashita
- Department of Preventive Dentistry, Kyushu University Faculty of Dentistry, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Baev D, England R, Kuramitsu HK. Stress-induced membrane association of the Streptococcus mutans GTP-binding protein, an essential G protein, and investigation of its physiological role by utilizing an antisense RNA strategy. Infect Immun 1999; 67:4510-6. [PMID: 10456893 PMCID: PMC96771 DOI: 10.1128/iai.67.9.4510-4516.1999] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SGP (for Streptococcus GTP-binding protein) is a Streptococcus mutans essential GTPase which has significant sequence identity to the previously identified Escherichia coli Era protein and to numerous other prokaryotic GTPase proteins of unknown function. Recent studies in our laboratory have addressed the possible role of SGP in the stress response of the oral pathogen S. mutans. Here we report that during growth in the early stationary phase, and in response to elevated temperatures or acidic pH, the distribution of SGP between the cytoplasm and the membranes of S. mutans cells varies. Immunoblot analysis of soluble and membrane protein fractions collected from the mid-log and early stationary growth phases of bacterial populations grown at normal temperature (37 degrees C) and at the elevated temperature of 43 degrees C, or at acidic pH, demonstrated that the total amount of SGP increased with the age of the bacterial culture, elevated temperature, or acidic pH. Furthermore, it was established that a substantial amount of SGP is associated with the membrane fraction under stress conditions. In order to investigate the physiological role of SGP, we constructed an S. mutans strain capable of chromosomal sgp antisense RNA expression, which interferes with the normal information processing of the sgp gene. Utilizing this strain, we determined conditions whereby the streptococcal cells can be depleted of SGP, thus avoiding the problem of constructing a conditional lethal system. From the results of measurements of the nucleotide pools extracted from the antisense strain and its isogenic counterpart, we propose that one of the physiological roles of SGP is regulation and modulation of the GTP/GDP ratio under different growth conditions. Moreover, we observed that in SGP-depleted cells the levels of glucan-binding protein A (GbpA) substantially increased, suggesting that GbpA may have stress response-related physiological functions. Finally, the potential applications of the antisense RNA approach that we employed are discussed.
Collapse
Affiliation(s)
- D Baev
- Department of Oral Biology, State University of New York, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
49
|
Cappiello MG, Hantman MJ, Zuccon FM, Peruzzi F, Amjad M, Piggot PJ, Daneo-Moore L. Physical and genetic map of Streptococcus mutans GS-5 and localization of five rRNA operons. ORAL MICROBIOLOGY AND IMMUNOLOGY 1999; 14:225-32. [PMID: 10551166 DOI: 10.1034/j.1399-302x.1999.140405.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The physical map of the 2.1 megabase chromosome of Streptococcus mutans GS-5 has been refined by including all ApaI and SmaI fragments of 5 kbp or greater, and by positioning the fragments generated by the endonuclease I-CeuI. Sixty-three new genetic loci have been added to the map, so that it now contains 90 loci. The new loci include those for 35 cloned streptococcal genes of established function and for 23 S. mutans genes of putative function. In addition, five rrn operons were identified and placed on the map of the chromosome. The presence of a SmaI site in each of the rrn operons allowed the direction of transcription of each operon to be deduced. The orientation of the rrn loci indicates that their transcription is directed away from a small region of the chromosome, identifying a possible region for the initiation of chromosome replication.
Collapse
Affiliation(s)
- M G Cappiello
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Yamashita Y, Tomihisa K, Nakano Y, Shimazaki Y, Oho T, Koga T. Recombination between gtfB and gtfC is required for survival of a dTDP-rhamnose synthesis-deficient mutant of Streptococcus mutans in the presence of sucrose. Infect Immun 1999; 67:3693-7. [PMID: 10377163 PMCID: PMC116568 DOI: 10.1128/iai.67.7.3693-3697.1999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rml genes are involved in dTDP-rhamnose synthesis in Streptococcus mutans. A gene fusion between gtfB and gtfC, which both encode extracellular water-insoluble glucan-synthesizing enzymes, accompanied by inactivation of the rml genes was observed for cells grown in the presence of sucrose. The survival rates of rml mutants isolated in the absence of sucrose were drastically reduced in the presence of sucrose. The rates were consistent with the frequency of spontaneous gene fusions between gtfB and gtfC, suggesting that the spontaneous recombinant organisms were selected in the presence of sucrose. The rml mutants with a gtfB-gtfC fusion gene had markedly reduced water-insoluble glucan synthetic activity and lost the ability to colonize glass surfaces in the presence of sucrose. These results suggest that the rml mutants of S. mutans, which are defective in dTDP-rhamnose synthesis, can survive only in the absence of water-insoluble glucan synthesis.
Collapse
Affiliation(s)
- Y Yamashita
- Department of Preventive Dentistry, Kyushu University Faculty of Dentistry, Fukuoka 812-8582, Japan.
| | | | | | | | | | | |
Collapse
|