1
|
Balda RS, Cogo C, Falduti O, Bongiorno FM, Brignoli D, Sandobal TJ, Althabegoiti MJ, Lodeiro AR. Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase Is Required in Bradyrhizobium diazoefficiens for Efficient Soybean Root Colonization and Competition for Nodulation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2362. [PMID: 39273846 PMCID: PMC11397080 DOI: 10.3390/plants13172362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
The Hyphomicrobiales (Rhizobiales) order contains soil bacteria with an irregular distribution of the Calvin-Benson-Bassham cycle (CBB). Key enzymes in the CBB cycle are ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), whose large and small subunits are encoded in cbbL and cbbS, and phosphoribulokinase (PRK), encoded by cbbP. These genes are often found in cbb operons, regulated by the LysR-type regulator CbbR. In Bradyrhizobium, pertaining to this order and bearing photosynthetic and non-photosynthetic species, the number of cbbL and cbbS copies varies, for example: zero in B. manausense, one in B. diazoefficiens, two in B. japonicum, and three in Bradyrhizobium sp. BTAi. Few studies addressed the role of CBB in Bradyrhizobium spp. symbiosis with leguminous plants. To investigate the horizontal transfer of the cbb operon among Hyphomicrobiales, we compared phylogenetic trees for concatenated cbbL-cbbP-cbbR and housekeeping genes (atpD-gyrB-recA-rpoB-rpoD). The distribution was consistent, indicating no horizontal transfer of the cbb operon in Hyphomicrobiales. We constructed a ΔcbbLS mutant in B. diazoefficiens, which lost most of the coding sequence of cbbL and has a frameshift creating a stop codon at the N-terminus of cbbS. This mutant nodulated normally but had reduced competitiveness for nodulation and long-term adhesion to soybean (Glycine max (L.) Merr.) roots, indicating a CBB requirement for colonizing soybean rhizosphere.
Collapse
Affiliation(s)
- Rocío S Balda
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Centro Científico Tecnológico (CCT)-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
| | - Carolina Cogo
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Centro Científico Tecnológico (CCT)-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
- Departamento de Ciencias Básicas, Facultad de Ingeniería, UNLP, La Plata 1900, Argentina
| | - Ornella Falduti
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Centro Científico Tecnológico (CCT)-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
| | - Florencia M Bongiorno
- Cátedra de Genética, Facultad de Ciencias Agrarias y Forestales, UNLP, La Plata 1900, Argentina
| | - Damián Brignoli
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Centro Científico Tecnológico (CCT)-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
- Cátedra de Genética, Facultad de Ciencias Agrarias y Forestales, UNLP, La Plata 1900, Argentina
| | - Tamara J Sandobal
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Centro Científico Tecnológico (CCT)-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
- Cátedra de Genética, Facultad de Ciencias Agrarias y Forestales, UNLP, La Plata 1900, Argentina
| | - María Julia Althabegoiti
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Centro Científico Tecnológico (CCT)-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
| | - Aníbal R Lodeiro
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Centro Científico Tecnológico (CCT)-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
- Cátedra de Genética, Facultad de Ciencias Agrarias y Forestales, UNLP, La Plata 1900, Argentina
| |
Collapse
|
2
|
Bauwe H. Photorespiration - Rubisco's repair crew. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153899. [PMID: 36566670 DOI: 10.1016/j.jplph.2022.153899] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The photorespiratory repair pathway (photorespiration in short) was set up from ancient metabolic modules about three billion years ago in cyanobacteria, the later ancestors of chloroplasts. These prokaryotes developed the capacity for oxygenic photosynthesis, i.e. the use of water as a source of electrons and protons (with O2 as a by-product) for the sunlight-driven synthesis of ATP and NADPH for CO2 fixation in the Calvin cycle. However, the CO2-binding enzyme, ribulose 1,5-bisphosphate carboxylase (known under the acronym Rubisco), is not absolutely selective for CO2 and can also use O2 in a side reaction. It then produces 2-phosphoglycolate (2PG), the accumulation of which would inhibit and potentially stop the Calvin cycle and subsequently photosynthetic electron transport. Photorespiration removes the 2-PG and in this way prevents oxygenic photosynthesis from poisoning itself. In plants, the core of photorespiration consists of ten enzymes distributed over three different types of organelles, requiring interorganellar transport and interaction with several auxiliary enzymes. It goes together with the release and to some extent loss of freshly fixed CO2. This disadvantageous feature can be suppressed by CO2-concentrating mechanisms, such as those that evolved in C4 plants thirty million years ago, which enhance CO2 fixation and reduce 2PG synthesis. Photorespiration itself provided a pioneer variant of such mechanisms in the predecessors of C4 plants, C3-C4 intermediate plants. This article is a review and update particularly on the enzyme components of plant photorespiration and their catalytic mechanisms, on the interaction of photorespiration with other metabolism and on its impact on the evolution of photosynthesis. This focus was chosen because a better knowledge of the enzymes involved and how they are embedded in overall plant metabolism can facilitate the targeted use of the now highly advanced methods of metabolic network modelling and flux analysis. Understanding photorespiration more than before as a process that enables, rather than reduces, plant photosynthesis, will help develop rational strategies for crop improvement.
Collapse
Affiliation(s)
- Hermann Bauwe
- University of Rostock, Plant Physiology, Albert-Einstein-Straße 3, D-18051, Rostock, Germany.
| |
Collapse
|
3
|
Phosphoglycolate salvage in a chemolithoautotroph using the Calvin cycle. Proc Natl Acad Sci U S A 2020; 117:22452-22461. [PMID: 32820073 PMCID: PMC7486775 DOI: 10.1073/pnas.2012288117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Calvin cycle is the most important carbon fixation pathway in the biosphere. However, its carboxylating enzyme Rubisco also accepts oxygen, thus producing 2-phosphoglycolate. Phosphoglycolate salvage pathways were extensively studied in photoautotrophs but remain uncharacterized in chemolithoautotrophs using the Calvin cycle. Here, we study phosphoglycolate salvage in the chemolithoautotrophic model bacterium Cupriavidus necator H16. We demonstrate that this bacterium mainly reassimilates 2-phosphoglycolate via the glycerate pathway. Upon disruption of this pathway, a secondary route, which we term the malate cycle, supports photorespiration by completely oxidizing 2-phosphoglycolate to CO2. While the malate cycle was not previously known to metabolize 2-phosphoglycolate in nature, a bioinformatic analysis suggests that it may support phosphoglycolate salvage in diverse chemoautotrophic bacteria. Carbon fixation via the Calvin cycle is constrained by the side activity of Rubisco with dioxygen, generating 2-phosphoglycolate. The metabolic recycling of phosphoglycolate was extensively studied in photoautotrophic organisms, including plants, algae, and cyanobacteria, where it is referred to as photorespiration. While receiving little attention so far, aerobic chemolithoautotrophic bacteria that operate the Calvin cycle independent of light must also recycle phosphoglycolate. As the term photorespiration is inappropriate for describing phosphoglycolate recycling in these nonphotosynthetic autotrophs, we suggest the more general term “phosphoglycolate salvage.” Here, we study phosphoglycolate salvage in the model chemolithoautotroph Cupriavidus necator H16 (Ralstonia eutropha H16) by characterizing the proxy process of glycolate metabolism, performing comparative transcriptomics of autotrophic growth under low and high CO2 concentrations, and testing autotrophic growth phenotypes of gene deletion strains at ambient CO2. We find that the canonical plant-like C2 cycle does not operate in this bacterium, and instead, the bacterial-like glycerate pathway is the main route for phosphoglycolate salvage. Upon disruption of the glycerate pathway, we find that an oxidative pathway, which we term the malate cycle, supports phosphoglycolate salvage. In this cycle, glyoxylate is condensed with acetyl coenzyme A (acetyl-CoA) to give malate, which undergoes two oxidative decarboxylation steps to regenerate acetyl-CoA. When both pathways are disrupted, autotrophic growth is abolished at ambient CO2. We present bioinformatic data suggesting that the malate cycle may support phosphoglycolate salvage in diverse chemolithoautotrophic bacteria. This study thus demonstrates a so far unknown phosphoglycolate salvage pathway, highlighting important diversity in microbial carbon fixation metabolism.
Collapse
|
4
|
Unrean P, Tee KL, Wong TS. Metabolic pathway analysis for in silico design of efficient autotrophic production of advanced biofuels. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0282-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractHerein, autotrophic metabolism of Cupriavidus necator H16 growing on CO2, H2 and O2 gas mixture was analyzed by metabolic pathway analysis tools, specifically elementary mode analysis (EMA) and flux balance analysis (FBA). As case studies, recombinant strains of C. necator H16 for the production of short-chain (isobutanol) and long-chain (hexadecanol) alcohols were constructed and examined by a combined tools of EMA and FBA to comprehensively identify the cell’s metabolic flux profiles and its phenotypic spaces for the autotrophic production of recombinant products. The effect of genetic perturbations via gene deletion and overexpression on phenotypic space of the organism was simulated to improve strain performance for efficient bioconversion of CO2 to products at high yield and high productivity. EMA identified multiple gene deletion together with controlling gas input composition to limit phenotypic space and push metabolic fluxes towards high product yield, while FBA identified target gene overexpression to debottleneck rate-limiting fluxes, hence pulling more fluxes to enhance production rate of the products. A combination of gene deletion and overexpression resulted in designed mutant strains with a predicted yield of 0.21–0.42 g/g for isobutanol and 0.20–0.34 g/g for hexadecanol from CO2. The in silico-designed mutants were also predicted to show high productivity of up to 38.4 mmol/cell-h for isobutanol and 9.1 mmol/cell-h for hexadecanol under autotrophic cultivation. The metabolic modeling and analysis presented in this study could potentially serve as a valuable guidance for future metabolic engineering of C. necator H16 for an efficient CO2-to-biofuels conversion.
Collapse
|
5
|
Rai S, Lucius S, Kern R, Bauwe H, Kaplan A, Kopka J, Hagemann M. The Synechocystis sp. PCC 6803 Genome Encodes Up to Four 2-Phosphoglycolate Phosphatases. FRONTIERS IN PLANT SCIENCE 2018; 9:1718. [PMID: 30542360 PMCID: PMC6278635 DOI: 10.3389/fpls.2018.01718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/05/2018] [Indexed: 05/07/2023]
Abstract
Photorespiratory phosphoglycolate (2PG) metabolism is essential for cyanobacteria, algae, and plants. The first enzyme of the pathway, 2PG phosphatase (PGPase), is known from plants and algae but was scarcely investigated in cyanobacteria. In silico analysis revealed four candidate genes (slr0458, slr0586, sll1349, and slr1762) in the genome of the model cyanobacterium Synechocystis sp. PCC 6803 that all belong to the 2-haloacid dehalogenase (HAD) superfamily and could possibly encode PGPase proteins. However, in contrast to known algal and plant PGPases, the putative cyanobacterial PGPases belong to another HAD subfamily implying that PGPases in eukaryotic phototrophs did not originate from cyanobacterial PGPases. To verify their function, these four genes were inactivated both individually and in combination. A mild high-CO2-requiring (HCR) growth phenotype typical for photorespiratory mutants was observed only in Δsll1349. Combinatorial inactivation enhanced the HCR phenotype in specific double and triple mutants. Heterologous expression of the putative cyanobacterial PGPases in E. coli led to higher PGPase activities in crude cell extracts, but only the purified Slr0458 protein showed PGPase activity. Hence, we propose that a consortium of up to four photorespiratory PGPases may initiate photorespiratory 2PG metabolism in Synechocystis. We suggest that redundancy of this essential enzyme activity could be related to the highly adaptive lifestyle of cyanobacteria such as Synechocystis sp. PCC 6803, which allows them to grow under very diverse conditions.
Collapse
Affiliation(s)
- Snigdha Rai
- Department of Plant Physiology, University of Rostock, Rostock, Germany
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Stefan Lucius
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Ramona Kern
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Hermann Bauwe
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joachim Kopka
- Applied Metabolome Analysis, Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Martin Hagemann
- Department of Plant Physiology, University of Rostock, Rostock, Germany
- Department Life, Light and Matter, University of Rostock, Rostock, Germany
- *Correspondence: Martin Hagemann,
| |
Collapse
|
6
|
Hagemann M, Kern R, Maurino VG, Hanson DT, Weber APM, Sage RF, Bauwe H. Evolution of photorespiration from cyanobacteria to land plants, considering protein phylogenies and acquisition of carbon concentrating mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2963-76. [PMID: 26931168 DOI: 10.1093/jxb/erw063] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Photorespiration and oxygenic photosynthesis are intimately linked processes. It has been shown that under the present day atmospheric conditions cyanobacteria and all eukaryotic phototrophs need functional photorespiration to grow autotrophically. The question arises as to when this essential partnership evolved, i.e. can we assume a coevolution of both processes from the beginning or did photorespiration evolve later to compensate for the generation of 2-phosphoglycolate (2PG) due to Rubisco's oxygenase reaction? This question is mainly discussed here using phylogenetic analysis of proteins involved in the 2PG metabolism and the acquisition of different carbon concentrating mechanisms (CCMs). The phylogenies revealed that the enzymes involved in the photorespiration of vascular plants have diverse origins, with some proteins acquired from cyanobacteria as ancestors of the chloroplasts and others from heterotrophic bacteria as ancestors of mitochondria in the plant cell. Only phosphoglycolate phosphatase was found to originate from Archaea. Notably glaucophyte algae, the earliest branching lineage of Archaeplastida, contain more photorespiratory enzymes of cyanobacterial origin than other algal lineages or land plants indicating a larger initial contribution of cyanobacterial-derived proteins to eukaryotic photorespiration. The acquisition of CCMs is discussed as a proxy for assessing the timing of periods when photorespiratory activity may have been enhanced. The existence of CCMs also had marked influence on the structure and function of photorespiration. Here, we discuss evidence for an early and continuous coevolution of photorespiration, CCMs and photosynthesis starting from cyanobacteria via algae, to land plants.
Collapse
Affiliation(s)
- Martin Hagemann
- Universität Rostock, Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, A.- Einstein-Str. 3, D-18051 Rostock, Germany
| | - Ramona Kern
- Universität Rostock, Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, A.- Einstein-Str. 3, D-18051 Rostock, Germany
| | - Veronica G Maurino
- University of Düsseldorf, Institute of Developmental and Molecular Biology of Plants and Biotechnology, Cluster of Excellence on Plant Science (CEPLAS), Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - David T Hanson
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Rowan F Sage
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S3B2, Canada
| | - Hermann Bauwe
- Universität Rostock, Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, A.- Einstein-Str. 3, D-18051 Rostock, Germany
| |
Collapse
|
7
|
Bracher A, Sharma A, Starling-Windhof A, Hartl FU, Hayer-Hartl M. Degradation of potent Rubisco inhibitor by selective sugar phosphatase. NATURE PLANTS 2015; 1:14002. [PMID: 27246049 DOI: 10.1038/nplants.2014.2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/29/2014] [Indexed: 05/09/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the conversion of atmospheric carbon dioxide into organic compounds in photosynthetic organisms. Alongside carboxylating the five-carbon sugar ribulose-1,5-bisphosphate (RuBP)(1-3), Rubisco produces a small amount of xylulose-1,5-bisphosphate (XuBP), a potent inhibitor of Rubisco(4). The AAA+ protein Rubisco activase removes XuBP from the active site of Rubisco in an ATP-dependent process(5,6). However, free XuBP rapidly rebinds to Rubisco, perpetuating its inhibitory effect. Here, we combine biochemical and structural analyses to show that the CbbY protein of the photosynthetic bacterium Rhodobacter sphaeroides and Arabidopsis thaliana is a highly selective XuBP phosphatase. We also show that CbbY converts XuBP to the non-inhibitory compound xylulose-5-phosphate, which is recycled back to RuBP. We solve the crystal structures of CbbY from R. sphaeroides and A. thaliana, and through mutational analysis show that the cap domain of the protein confers the selectivity for XuBP over RuBP. Finally, in vitro experiments with CbbY from R. sphaeroides reveal that CbbY cooperates with Rubisco activase to prevent a detrimental build-up of XuBP at the Rubisco active site. We suggest that CbbY, which is conserved in algae and plants, is an important component of the cellular machinery that has evolved to deal with the shortcomings of the ancient enzyme Rubisco.
Collapse
Affiliation(s)
- Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Anurag Sharma
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Amanda Starling-Windhof
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
8
|
Haimovich-Dayan M, Lieman-Hurwitz J, Orf I, Hagemann M, Kaplan A. Does 2-phosphoglycolate serve as an internal signal molecule of inorganic carbon deprivation in the cyanobacterium Synechocystis sp. PCC 6803? Environ Microbiol 2015; 17:1794-804. [PMID: 25297829 DOI: 10.1111/1462-2920.12638] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/30/2022]
Abstract
Cyanobacteria possess CO2 -concentrating mechanisms (CCM) that functionally compensate for the poor affinity of their ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to CO2 . It was proposed that 2-phosphoglycolate (2PG), produced by the oxygenase activity of Rubisco and metabolized via photorespiratory routes, serves as a signal molecule for the induction of CCM-related genes under limiting CO2 level (LC) conditions. However, in vivo evidence is still missing. Since 2PG does not permeate the cells, we manipulated its internal concentration. Four putative phosphoglycolate phosphatases (PGPases) encoding genes (slr0458, sll1349, slr0586 and slr1762) were identified in the cyanobacterium Synechocystis PCC 6803. Expression of slr0458 in Escherichia coli led to a significant rise in PGPase activity. A Synechocystis mutant overexpressing (OE) slr0458 was constructed. Compared with the wild type (WT), the mutant grew slower under limiting CO2 concentration and the intracellular 2PG level was considerably smaller than in the wild type, the transcript abundance of LC-induced genes including cmpA, sbtA and ndhF3 was reduced, and the OE cells acclimated slower to LC - indicated by the delayed rise in the apparent photosynthetic affinity to inorganic carbon. Data obtained here implicated 2PG in the acclimation of this cyanobacterium to LC but also indicated that other, yet to be identified components, are involved.
Collapse
Affiliation(s)
- Maya Haimovich-Dayan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | | | | | | | |
Collapse
|
9
|
DeLorenzo S, Bräuer SL, Edgmont CA, Herfort L, Tebo BM, Zuber P. Ubiquitous dissolved inorganic carbon assimilation by marine bacteria in the Pacific Northwest coastal ocean as determined by stable isotope probing. PLoS One 2012; 7:e46695. [PMID: 23056406 PMCID: PMC3463544 DOI: 10.1371/journal.pone.0046695] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 09/06/2012] [Indexed: 11/25/2022] Open
Abstract
In order to identify bacteria that assimilate dissolved inorganic carbon (DIC) in the northeast Pacific Ocean, stable isotope probing (SIP) experiments were conducted on water collected from 3 different sites off the Oregon and Washington coasts in May 2010, and one site off the Oregon Coast in September 2008 and March 2009. Samples were incubated in the dark with 2 mM (13)C-NaHCO(3), doubling the average concentration of DIC typically found in the ocean. Our results revealed a surprising diversity of marine bacteria actively assimilating DIC in the dark within the Pacific Northwest coastal waters, indicating that DIC fixation is relevant for the metabolism of different marine bacterial lineages, including putatively heterotrophic taxa. Furthermore, dark DIC-assimilating assemblages were widespread among diverse bacterial classes. Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes dominated the active DIC-assimilating communities across the samples. Actinobacteria, Betaproteobacteria, Deltaproteobacteria, Planctomycetes, and Verrucomicrobia were also implicated in DIC assimilation. Alteromonadales and Oceanospirillales contributed significantly to the DIC-assimilating Gammaproteobacteria within May 2010 clone libraries. 16S rRNA gene sequences related to the sulfur-oxidizing symbionts Arctic96BD-19 were observed in all active DIC assimilating clone libraries. Among the Alphaproteobacteria, clones related to the ubiquitous SAR11 clade were found actively assimilating DIC in all samples. Although not a dominant contributor to our active clone libraries, Betaproteobacteria, when identified, were predominantly comprised of Burkholderia. DIC-assimilating bacteria among Deltaproteobacteria included members of the SAR324 cluster. Our research suggests that DIC assimilation is ubiquitous among many bacterial groups in the coastal waters of the Pacific Northwest marine environment and may represent a significant metabolic process.
Collapse
Affiliation(s)
- Suzanne DeLorenzo
- Center for Coastal Margin Observation & Prediction and Division of Environmental & Biomolecular Systems, Oregon Health & Science University, Beaverton, Oregon, United States of America.
| | | | | | | | | | | |
Collapse
|
10
|
Seo JG, Park SW, Park H, Kim SY, Ro YT, Kim E, Cho JW, Kim YM. Cloning, characterization and expression of a gene encoding dihydroxyacetone synthase in Mycobacterium sp. strain JC1 DSM 3803. MICROBIOLOGY-SGM 2008; 153:4174-4182. [PMID: 18048931 DOI: 10.1099/mic.0.2007/011965-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dihydroxyacetone synthase (DHAS) is a key enzyme involved in the assimilation of methanol in Mycobacterium sp. strain JC1 DSM 3803. The structural gene encoding DHAS in Mycobacterium sp. strain JC1 was cloned using random-primed probes synthesized after PCR with synthetic primers based on the amino acid sequences conserved in two yeast DHASs and several transketolases. The cloned gene, dasS, had an ORF of 2193 nt, encoding a protein with a calculated molecular mass of 78,197 Da. The deduced amino acid sequence of dasS contained an internal sequence of Mycobacterium sp. strain JC1 DHAS and exhibited 29.2 and 27.3 % identity with those of Candida boidinii and Hansenula polymorpha enzymes, respectively. Escherichia coli transformed with the cloned gene produced a novel protein with a molecular mass of approximately 78 kDa, which cross-reacted with anti-DHAS antiserum and exhibited DHAS activity. Primer-extension analysis revealed that the transcriptional start site of the gene was the nucleotide A located 31 bp upstream from the dasS start codon. RT-PCR showed that dasS was transcribed as a monocistronic message. Northern hybridization and beta-galactosidase assay with the putative promoter region of dasS revealed that the gene was transcribed only in cells growing on methanol. The expression of dasS in Mycobacterium sp. strain JC1 was free from catabolite repression.
Collapse
Affiliation(s)
- Jae-Gu Seo
- Department of Biology, Yonsei University, Seoul 120-749, Korea
| | - Sae W Park
- Department of Biology, Yonsei University, Seoul 120-749, Korea
| | - Hyuk Park
- Department of Biology, Yonsei University, Seoul 120-749, Korea
| | - Seo Y Kim
- Department of Biology, Yonsei University, Seoul 120-749, Korea
| | - Young T Ro
- Laboratory of Biochemistry, Konkuk College of Medicine, Chungju 380-701, Korea
| | - Eungbin Kim
- Department of Biology, Yonsei University, Seoul 120-749, Korea
| | - Jin W Cho
- Department of Biology, Yonsei University, Seoul 120-749, Korea
| | - Young M Kim
- Department of Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
11
|
Eisenhut M, Kahlon S, Hasse D, Ewald R, Lieman-Hurwitz J, Ogawa T, Ruth W, Bauwe H, Kaplan A, Hagemann M. The plant-like C2 glycolate cycle and the bacterial-like glycerate pathway cooperate in phosphoglycolate metabolism in cyanobacteria. PLANT PHYSIOLOGY 2006; 142:333-42. [PMID: 16877700 PMCID: PMC1557606 DOI: 10.1104/pp.106.082982] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The occurrence of a photorespiratory 2-phosphoglycolate metabolism in cyanobacteria is not clear. In the genome of the cyanobacterium Synechocystis sp. strain PCC 6803, we have identified open reading frames encoding enzymes homologous to those forming the plant-like C2 cycle and the bacterial-type glycerate pathway. To study the route and importance of 2-phosphoglycolate metabolism, the identified genes were systematically inactivated by mutagenesis. With a few exceptions, most of these genes could be inactivated without leading to a high-CO(2)-requiring phenotype. Biochemical characterization of recombinant proteins verified that Synechocystis harbors an active serine hydroxymethyltransferase, and, contrary to higher plants, expresses a glycolate dehydrogenase instead of an oxidase to convert glycolate to glyoxylate. The mutation of this enzymatic step, located prior to the branching of phosphoglycolate metabolism into the plant-like C2 cycle and the bacterial-like glycerate pathway, resulted in glycolate accumulation and a growth depression already at high CO(2). Similar growth inhibitions were found for a single mutant in the plant-type C2 cycle and more pronounced for a double mutant affected in both the C2 cycle and the glycerate pathway after cultivation at low CO(2). These results suggested that cyanobacteria metabolize phosphoglycolate by the cooperative action of the C2 cycle and the glycerate pathway. When exposed to low CO(2), glycine decarboxylase knockout mutants accumulated far more glycine and lysine than wild-type cells or mutants with inactivated glycerate pathway. This finding and the growth data imply a dominant, although not exclusive, role of the C2 route in cyanobacterial phosphoglycolate metabolism.
Collapse
Affiliation(s)
- Marion Eisenhut
- Universität Rostock, Institut Biowissenschaften, Pflanzenphysiologie, D-18051 Rostock, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Teresa Pellicer M, Felisa Nuñez M, Aguilar J, Badia J, Baldoma L. Role of 2-phosphoglycolate phosphatase of Escherichia coli in metabolism of the 2-phosphoglycolate formed in DNA repair. J Bacteriol 2003; 185:5815-21. [PMID: 13129953 PMCID: PMC193966 DOI: 10.1128/jb.185.19.5815-5821.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enzyme 2-phosphoglycolate phosphatase from Escherichia coli, encoded by the gph gene, was purified and characterized. The enzyme was highly specific for 2-phosphoglycolate and showed good catalytic efficiency (k(cat)/K(m)), which enabled the conversion of this substrate even at low intracellular concentrations. A comparison of the structural and functional features of this enzyme with those of 2-phosphoglycolate phosphatases of different origins showed a high similarity of the sequences, implying the use of the same catalytic mechanism. Western blot analysis revealed constitutive expression of the gph gene, regardless of the carbon source used, growth stage, or oxidative stress conditions. We showed that this housekeeping enzyme is involved in the dissimilation of the intracellular 2-phosphoglycolate formed in the DNA repair of 3'-phosphoglycolate ends. DNA strand breaks of this kind are caused by agents such as the radiomimetic compound bleomycin. The differential response between a 2-phosphoglycolate phosphatase-deficient mutant and its parental strain after treatment with bleomycin allowed us to connect the intracellular formation of 2-phosphoglycolate with the production of glycolate, which is subsequently incorporated into general metabolism. We thus provide evidence for a salvage function of 2-phosphoglycolate phosphatase in the metabolism of a two-carbon compound generated by the cellular DNA repair machinery.
Collapse
Affiliation(s)
- Maria Teresa Pellicer
- Department of Biochemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
13
|
Arakawa K, Müller R, Mahmud T, Yu TW, Floss HG. Characterization of the early stage aminoshikimate pathway in the formation of 3-amino-5-hydroxybenzoic acid: the RifN protein specifically converts kanosamine into kanosamine 6-phosphate. J Am Chem Soc 2002; 124:10644-5. [PMID: 12207505 DOI: 10.1021/ja0206339] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The biosynthesis of 3-amino-5-hydroxybenzoic acid (AHBA), precursor of the ansamycin and mitomycin antibiotics, proceeds by the aminoshikimate pathway from 3,4-dideoxy-4-amino-D-arabino-heptulosonic acid 7-phosphate (aminoDAHP). Identification of RifN, product of one of three genes from the rifamycin biosynthetic gene cluster known to be essential for aminoDAHP formation, as a specific kanosamine (3-deoxy-3-amino-D-glucose) 6-kinase establishes kanosamine and its 6-phosphate as specific intermediates in AHBA formation. This suggests a hypothetical reaction sequence for aminoDAHP formation, and thus for the early steps of AHBA biosynthesis, starting from UDP-D-glucose and introducing the nitrogen by oxidation and transamination at C-3.
Collapse
Affiliation(s)
- Kenji Arakawa
- Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195-1700, USA
| | | | | | | | | |
Collapse
|
14
|
Yu TW, Bai L, Clade D, Hoffmann D, Toelzer S, Trinh KQ, Xu J, Moss SJ, Leistner E, Floss HG. The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci U S A 2002; 99:7968-73. [PMID: 12060743 PMCID: PMC123004 DOI: 10.1073/pnas.092697199] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2001] [Indexed: 11/18/2022] Open
Abstract
Maytansinoids are potent antitumor agents found in plants and microorganisms. To elucidate their biosynthesis at the biochemical and genetic level and to set the stage for their structure modification through genetic engineering, we have cloned two gene clusters required for the biosynthesis of the maytansinoid, ansamitocin, from a cosmid library of Actinosynnema pretiosum ssp. auranticum ATCC 31565. This is a rare case in which the genes involved in the formation of a secondary metabolite are dispersed in separate regions in an Actinomycete. A set of genes, asm22-24, asm43-45, and asm47, was identified for the biosynthesis of the starter unit, 3-amino-5-hydroxybenzoic acid (AHBA). Remarkably, there are two AHBA synthase gene homologues, which may have different functions in AHBA formation. Four type I polyketide synthase genes, asmA-D, followed by the downloading asm9, together encode eight homologous sets of enzyme activities (modules), each catalyzing a specific round of chain initiation, elongation, or termination steps, which assemble the ansamitocin polyketide backbone. Another set of genes, asm13-17, encodes the formation of an unusual "methoxymalonate" polyketide chain extension unit that, notably, seems to be synthesized on a dedicated acyl carrier protein rather than as a CoA thioester. Additional ORFs are involved in postsynthetic modifications of the initial polyketide synthase product, which include methylations, an epoxidation, an aromatic chlorination, and the introduction of acyl and carbamoyl groups. Tentative functions of several asm genes were confirmed by inactivation and heterologous expression.
Collapse
Affiliation(s)
- Tin-Wein Yu
- Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195-1700, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Graham DE, Graupner M, Xu H, White RH. Identification of coenzyme M biosynthetic 2-phosphosulfolactate phosphatase. A member of a new class of Mg(2+)-dependent acid phosphatases. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5176-88. [PMID: 11589710 DOI: 10.1046/j.0014-2956.2001.02451.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Coenzyme M (CoM; 2-mercaptoethanesulfonic acid) is the terminal methyl carrier in methanogenesis. Methanogenic archaea begin the production of this essential cofactor by sulfonating phosphoenolpyruvate to form 2-phospho-3-sulfolactate. After dephosphorylation, this precursor is oxidized, decarboxylated and then reductively thiolated to form CoM. A thermostable phosphosulfolactate phosphohydrolase (EC 3.1.3.-) catalyzing the second step in CoM biosynthesis, was identified in the hyperthermophilic euryarchaeon Methanococcus jannaschii. The predicted ORF MJ1140 in the genome of M. jannaschii encodes ComB, a Mg2+-dependent acid phosphatase that is specific for 2-hydroxycarboxylic acid phosphate esters. Recombinantly expressed purified ComB efficiently hydrolyzes rac-2-phosphosulfolactate, (S)-2-phospholactate, phosphoglycolate and both enantiomers of 2-phosphomalate. In contrast to previously studied phosphoglycolate phosphatases, ComB has a low pH optimum for activity, a narrow substrate specificity and an amino acid sequence dissimilar to any biochemically characterized protein. Like other phosphatases that function via covalent phosphoenzyme intermediates, ComB can catalyze a transphosphorylation reaction. Homologs of comB are identified in all available cyanobacterial genome sequences and in genomes from phylogenetically diverse bacteria and archaea; most of these organisms lack homologs of other CoM biosynthetic genes. The broad and disparate distribution of comB homologs suggests that the gene has been recruited frequently into new metabolic pathways.
Collapse
Affiliation(s)
- D E Graham
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
16
|
Yu TW, Muller R, Muller M, Zhang X, Draeger G, Kim CG, Leistner E, Floss HG. Mutational analysis and reconstituted expression of the biosynthetic genes involved in the formation of 3-amino-5-hydroxybenzoic acid, the starter unit of rifamycin biosynthesis in amycolatopsis Mediterranei S699. J Biol Chem 2001; 276:12546-55. [PMID: 11278540 DOI: 10.1074/jbc.m009667200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate a novel branch of the shikimate biosynthesis pathway operating in the formation of 3-amino-5-hydroxybenzoic acid (AHBA), the unique biosynthetic precursor of rifamycin and related ansamycins, a series of target-directed mutations and heterologous gene expressions were investigated in Amycolatopsis mediterranei and Streptomyces coelicolor. The genes involved in AHBA formation were inactivated individually, and the resulting mutants were further examined by incubating the cell-free extracts with known intermediates of the pathway and analyzing for AHBA formation. The rifL, -M, and -N genes were shown to be involved in the step(s) from either phosphoenolpyruvate/d-erythrose 4-phosphate or other precursors to 3,4-dideoxy-4-amino-d-arabino-heptulosonate 7-phosphate. The gene products of the rifH, -G, and -J genes resemble enzymes involved in the shikimate biosynthesis pathway (August, P. R., Tang, L., Yoon, Y. J., Ning, S., Müller, R., Yu, T.-W., Taylor, M., Hoffmann, D., Kim, C.-G., Zhang, X., Hutchinson, C. R., and Floss, H. G. (1998) Chem. Biol. 5, 69-79). Mutants of the rifH and -J genes produced rifamycin B at 1% and 10%, respectively, of the yields of the wild type; inactivation of the rifG gene did not affect rifamycin production significantly. Finally, coexpressing the rifG-N and -J genes in S. coelicolor YU105 under the control of the act promoter led to significant production of AHBA in the fermented cultures, confirming that seven of these genes are indeed necessary and sufficient for AHBA formation. The effects of deletion of individual genes from the heterologous expression cassette on AHBA formation duplicated the effects of the genomic rifG-N and -J mutations on rifamycin production, indicating that all these genes encode proteins with catalytic rather than regulatory functions in AHBA formation for rifamycin biosynthesis by A. mediterranei.
Collapse
Affiliation(s)
- T W Yu
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lammers A, Kruijt E, van de Kuijt C, Nuijten PJM, Smith HE. Identification of Staphylococcus aureus genes expressed during growth in milk: a useful model for selection of genes important in bovine mastitis? MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 4):981-987. [PMID: 10784056 DOI: 10.1099/00221287-146-4-981] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Staphylococcus aureus is a major cause of bovine mastitis. Since gene expression of many bacteria is known to be regulated by the environment, milk may play an important role in the regulation of the early steps in the pathogenesis of bovine mastitis by S. aureus. To get insight into the response of S. aureus to the milk environment, a Tn917-lacZ mutant library was generated and screened for genes specifically expressed during growth in milk. Twenty-eight mutants were identified and analysed. Four groups of genes were found, involved in cell-wall synthesis, nucleotide synthesis, transcriptional regulation and carbohydrate metabolism. A fifth group contained genes with hypothetical or unknown functions. Many of the genes identified belonged to biosynthetic pathways of S. aureus and other bacterial species which have also been shown to play a role in vivo as determined in murine infection models. Therefore, growth on milk may be an attractive model for the identification of genes preferentially expressed during bovine mastitis.
Collapse
Affiliation(s)
- Aart Lammers
- Department of Bacteriology, Institute for Animal Science and Health, PO Box 65, 8200 AB Lelystad, The Netherlands1
| | - Ellard Kruijt
- Department of Bacteriology, Institute for Animal Science and Health, PO Box 65, 8200 AB Lelystad, The Netherlands1
| | - Corine van de Kuijt
- Department of Bacteriology, Institute for Animal Science and Health, PO Box 65, 8200 AB Lelystad, The Netherlands1
| | - Piet J M Nuijten
- Department of Bacteriology, Institute for Animal Science and Health, PO Box 65, 8200 AB Lelystad, The Netherlands1
| | - Hilde E Smith
- Department of Bacteriology, Institute for Animal Science and Health, PO Box 65, 8200 AB Lelystad, The Netherlands1
| |
Collapse
|
18
|
Lyngstadaas A, Løbner-Olesen A, Grelland E, Boye E. The gene for 2-phosphoglycolate phosphatase (gph) in Escherichia coli is located in the same operon as dam and at least five other diverse genes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1472:376-84. [PMID: 10572959 DOI: 10.1016/s0304-4165(99)00146-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Downstream of the dam gene in the Escherichia coli genome the following three genes are located: first rpe, then a gene encoding a 27 kDa protein and finally trpS. Here we present evidence that the 27 kDa protein has 2-phosphoglycolate phosphatase activity, and we name the gene gph. Phosphoglycolate phosphatase is needed in autotrophic organisms performing the Calvin-Benson-Bassham (CBB) reductive pentose-phosphate cycle. E. coli is not capable of autotrophic growth and probably utilizes Gph activity for other function(s) than in the CBB cycle. We found no physiological effect of deleting gph and its function in E. coli remains unclear. The use of fusion plasmids, where lacZ was inserted into gph and trpS, and deletion derivatives of these fusion plasmids, showed that rpe, gph and trpS are all members of the dam-containing operon. A novel promoter was identified in the distal part of the dam gene. The operon, which contains aroK, aroB, urf74.3, dam, rpe, gph, and trpS, can be termed a superoperon, since it consists of (at least) seven apparently unrelated genes which are under complex regulatory control.
Collapse
Affiliation(s)
- A Lyngstadaas
- Department of Cell Biology, Institute of Cancer Research, Montebello, Oslo, Norway.
| | | | | | | |
Collapse
|
19
|
Mao Y, Varoglu M, Sherman DH. Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564. CHEMISTRY & BIOLOGY 1999; 6:251-63. [PMID: 10099135 DOI: 10.1016/s1074-5521(99)80040-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND The mitomycins are natural products that contain a variety of functional groups, including aminobenzoquinone- and aziridine-ring systems. Mitomycin C (MC) was the first recognized bioreductive alkylating agent, and has been widely used clinically for antitumor therapy. Precursor-feeding studies showed that MC is derived from 3-amino-5-hydroxybenzoic acid (AHBA), D-glucosamine, L-methionine and carbamoyl phosphate. A genetically linked AHBA biosynthetic gene and MC resistance genes were identified previously in the MC producer Streptomyces lavendulae NRRL 2564. We set out to identify other genes involved in MC biosynthesis. RESULTS A cluster of 47 genes spanning 55 kilobases of S. lavendulae DNA governs MC biosynthesis. Fourteen of 22 disruption mutants did not express or overexpressed MC. Seven gene products probably assemble the AHBA intermediate through a variant of the shikimate pathway. The gene encoding the first presumed enzyme in AHBA biosynthesis is not, however, linked within the MC cluster. Candidate genes for mitosane nucleus formation and functionalization were identified. A putative MC translocase was identified that comprises a novel drug-binding and export system, which confers cellular self-protection on S. lavendulae. Two regulatory genes were also identified. CONCLUSIONS The overall architecture of the MC biosynthetic gene cluster in S. lavendulae has been determined. Targeted manipulation of a putative MC pathway regulator led to a substantial increase in drug production. The cloned genes should help elucidate the molecular basis for creation of the mitosane ring system, as well efforts to engineer the biosynthesis of novel natural products.
Collapse
Affiliation(s)
- Y Mao
- University of Minnesota, Department of Microbiology, Biological ProcessTechnology Institute, 1460 Mayo Memorial Building, Box 196 UFHC, 420 Delaware Street S.E., Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
20
|
Hill KE, Marchesi JR, Weightman AJ. Investigation of two evolutionarily unrelated halocarboxylic acid dehalogenase gene families. J Bacteriol 1999; 181:2535-47. [PMID: 10198020 PMCID: PMC93682 DOI: 10.1128/jb.181.8.2535-2547.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/1998] [Accepted: 01/29/1999] [Indexed: 11/20/2022] Open
Abstract
Dehalogenases are key enzymes in the metabolism of halo-organic compounds. This paper describes a systematic approach to the isolation and molecular analysis of two families of bacterial alpha-halocarboxylic acid (alphaHA) dehalogenase genes, called group I and group II deh genes. The two families are evolutionarily unrelated and together represent almost all of the alphaHA deh genes described to date. We report the design and evaluation of degenerate PCR primer pairs for the separate amplification and isolation of group I and II deh genes. Amino acid sequences derived from 10 of 11 group I deh partial gene products of new and previously reported bacterial isolates showed conservation of five residues previously identified as essential for activity. The exception, DehD from a Rhizobium sp., had only two of these five residues. Group II deh gene sequences were amplified from 54 newly isolated strains, and seven of these sequences were cloned and fully characterized. Group II dehalogenases were stereoselective, dechlorinating L- but not D-2-chloropropionic acid, and derived amino acid sequences for all of the genes except dehII degrees P11 showed conservation of previously identified essential residues. Molecular analysis of the two deh families highlighted four subdivisions in each, which were supported by high bootstrap values in phylogenetic trees and by enzyme structure-function considerations. Group I deh genes included two putative cryptic or silent genes, dehI degrees PP3 and dehI degrees 17a, produced by different organisms. Group II deh genes included two cryptic genes and an active gene, dehIIPP3, that can be switched off and on. All alphaHA-degrading bacteria so far described were Proteobacteria, a result that may be explained by limitations either in the host range for deh genes or in isolation methods.
Collapse
Affiliation(s)
- K E Hill
- Cardiff School of Biosciences, Cardiff University, Cardiff, CF1 3TL, Wales, United Kingdom
| | | | | |
Collapse
|
21
|
Schenk G, Duggleby RG, Nixon PF. Properties and functions of the thiamin diphosphate dependent enzyme transketolase. Int J Biochem Cell Biol 1998; 30:1297-318. [PMID: 9924800 DOI: 10.1016/s1357-2725(98)00095-8] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This review highlights recent research on the properties and functions of the enzyme transketolase, which requires thiamin diphosphate and a divalent metal ion for its activity. The transketolase-catalysed reaction is part of the pentose phosphate pathway, where transketolase appears to control the non-oxidative branch of this pathway, although the overall flux of labelled substrates remains controversial. Yeast transketolase is one of several thiamin diphosphate dependent enzymes whose three-dimensional structures have been determined. Together with mutational analysis these structural data have led to detailed understanding of thiamin diphosphate catalysed reactions. In the homodimer transketolase the two catalytic sites, where dihydroxyethyl groups are transferred from ketose donors to aldose acceptors, are formed at the interface between the two subunits, where the thiazole and pyrimidine rings of thiamin diphosphate are bound. Transketolase is ubiquitous and more than 30 full-length sequences are known. The encoded protein sequences contain two motifs of high homology; one common to all thiamin diphosphate-dependent enzymes and the other a unique transketolase motif. All characterised transketolases have similar kinetic and physical properties, but the mammalian enzymes are more selective in substrate utilisation than the nonmammalian representatives. Since products of the transketolase-catalysed reaction serve as precursors for a number of synthetic compounds this enzyme has been exploited for industrial applications. Putative mutant forms of transketolase, once believed to predispose to disease, have not stood up to scrutiny. However, a modification of transketolase is a marker for Alzheimer's disease, and transketolase activity in erythrocytes is a measure of thiamin nutrition. The cornea contains a particularly high transketolase concentration, consistent with the proposal that pentose phosphate pathway activity has a role in the removal of light-generated radicals.
Collapse
Affiliation(s)
- G Schenk
- Department of Biochemistry, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
22
|
Thaller MC, Schippa S, Rossolini GM. Conserved sequence motifs among bacterial, eukaryotic, and archaeal phosphatases that define a new phosphohydrolase superfamily. Protein Sci 1998; 7:1647-52. [PMID: 9684901 PMCID: PMC2144050 DOI: 10.1002/pro.5560070722] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Members of a new molecular family of bacterial nonspecific acid phosphatases (NSAPs), indicated as class C, were found to share significant sequence similarities to bacterial class B NSAPs and to some plant acid phosphatases, representing the first example of a family of bacterial NSAPs that has a relatively close eukaryotic counterpart. Despite the lack of an overall similarity, conserved sequence motifs were also identified among the above enzyme families (class B and class C bacterial NSAPs, and related plant phosphatases) and several other families of phosphohydrolases, including bacterial phosphoglycolate phosphatases, histidinol-phosphatase domains of the bacterial bifunctional enzymes imidazole-glycerolphosphate dehydratases, and bacterial, eukaryotic, and archaeal phosphoserine phosphatases and threalose-6-phosphatases. These conserved motifs are clustered within two domains, separated by a variable spacer region, according to the pattern [FILMAVT]-D-[ILFRMVY]-D-[GSNDE]-[TV]-[ILVAM]-[AT S VILMC]-X-¿YFWHKR)-X-¿YFWHNQ¿-X( 102,191)-¿KRHNQ¿-G-D-¿FYWHILVMC¿-¿QNH¿-¿FWYGP¿-D -¿PSNQYW¿. The dephosphorylating activity common to all these proteins supports the definition of this phosphatase motif and the inclusion of these enzymes into a superfamily of phosphohydrolases that we propose to indicate as "DDDD" after the presence of the four invariant aspartate residues. Database searches retrieved various hypothetical proteins of unknown function containing this or similar motifs, for which a phosphohydrolase activity could be hypothesized.
Collapse
Affiliation(s)
- M C Thaller
- Dipartimento di Biologia, Università di Roma Tor Vergata, Rome, Italy.
| | | | | |
Collapse
|
23
|
Baker AS, Ciocci MJ, Metcalf WW, Kim J, Babbitt PC, Wanner BL, Martin BM, Dunaway-Mariano D. Insights into the mechanism of catalysis by the P-C bond-cleaving enzyme phosphonoacetaldehyde hydrolase derived from gene sequence analysis and mutagenesis. Biochemistry 1998; 37:9305-15. [PMID: 9649311 DOI: 10.1021/bi972677d] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phosphonoacetaldehyde hydrolase (phosphonatase) catalyzes the hydrolysis of phosphonoacetaldehyde to acetaldehyde and inorganic phosphate. In this study, the genes encoding phosphonatase in Bacillus cereus and in Salmonella typhimurium were cloned for high-level expression in Escherichia coli. The kinetic properties of the purified, recombinant phosphonatases were determined. The Schiff base mechanism known to operate in the B. cereus enzyme was verified for the S. typhimurium enzyme by phosphonoacetaldehyde-sodium borohydride-induced inactivation and by site-directed mutagenesis of the catalytic lysine 53. The protein sequence inferred from the B. cereus phosphonatase gene was determined, and this sequence was used along with that from the S. typhimurium phosphonatase gene sequence to search the primary sequence databases for possible structural homologues. We found that phosphonatase belongs to a novel family of hydrolases which appear to use a highly conserved active site aspartate residue in covalent catalysis. On the basis of this finding and the known stereochemical course of phosphonatase-catalyzed hydrolysis at phosphorus (retention), we propose a mechanism which involves Schiff base formation with lysine 53 followed by phosphoryl transfer to aspartate (at position 11 in the S. typhimurium enzyme and position 12 in the B. cereusphosphonatase) and last hydrolysis at the imine C(1) and acyl phosphate phosphorus.
Collapse
Affiliation(s)
- A S Baker
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kaplan A, Ronen-Tarazi M, Zer H, Schwarz R, Tchernov D, Bonfil DJ, Schatz D, Vardi A, Hassidim M, Reinhold L. The inorganic carbon-concentrating mechanism in cyanobacteria: induction and ecological significance. ACTA ACUST UNITED AC 1998. [DOI: 10.1139/b98-087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this minireview we focus on certain aspects of the induction, function, and ecophysiological significance of the inorganic carbon-concentrating mechanism in cyanobacteria. Since this entire issue is dedicated to various aspects of this mechanism, we mainly discuss some of the recent studies in our laboratory and point to open questions and perspectives.Key words: CO2, cyanobacteria, inorganic carbon-concentrating mechanism, photosynthesis.
Collapse
|
25
|
Salamon C, Chervenak M, Piatigorsky J, Sax CM. The mouse transketolase (TKT) gene: cloning, characterization, and functional promoter analysis. Genomics 1998; 48:209-20. [PMID: 9521875 DOI: 10.1006/geno.1997.5187] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transketolase (TKT) gene is expressed 30-50 times more highly in the mature mouse cornea than in other tissues. Here, we have cloned and characterized the 30- to 40-kb single-copy mouse TKT gene. Sequence analysis supports the suggestion that present-day TKT and TKT-like genes arose from the duplication of a single common ancestral gene. A 6-bp polymorphism is present between different mouse strains in the noncoding region of exon 2. 5' RACE and primer extension analyses indicated that two regions separated by 630 bp are used as transcription initiation sites; both mRNAs appear to use a common initiator ATG codon. The minor distal transcription initiation site, preceded by a TATA sequence, is utilized in liver and is followed by an untranslated exon (exon 1). The major proximal transcription initiation site lies within intron 1, is used in cornea and liver, lacks a TATA sequence, is GC rich, and initiates at multiple sites within a 10-bp span, resembling the promoters of other housekeeping genes. In transfected cornea and lens cell lines, the -49/+90 fragment fused to the CAT gene acted as a minimal promoter, with higher activity noted for the -510/+91 fragment. TKT mRNA levels increased sixfold in the mouse cornea in vivo within 1-2 days of eye opening and were elevated in a lens cell line exposed to H2O2 or the glutathione-specific oxidizing agent diamide and in whole newborn mouse eyes incubated in the presence of light, consistent with multiple consensus stress-inducible control sequences in the TKT promoter regions. Taken together, these observations suggest that oxidative stress may play a role in the regulation of this gene in the cornea.
Collapse
Affiliation(s)
- C Salamon
- Laboratory of Molecular and Developmental Biology, National Eye Institute, Bethesda, Maryland 20892-2730, USA
| | | | | | | |
Collapse
|
26
|
Galinier A, Kravanja M, Engelmann R, Hengstenberg W, Kilhoffer MC, Deutscher J, Haiech J. New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. Proc Natl Acad Sci U S A 1998; 95:1823-8. [PMID: 9465101 PMCID: PMC19197 DOI: 10.1073/pnas.95.4.1823] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/1997] [Indexed: 02/06/2023] Open
Abstract
Carbon catabolite repression (CCR) is the prototype of a signal transduction mechanism. In enteric bacteria, cAMP was considered to be the second messenger in CCR by playing a role reminiscent of its actions in eukaryotic cells. However, recent results suggest that CCR in Escherichia coli is mediated mainly by an inducer exclusion mechanism. In many Gram-positive bacteria, CCR is triggered by fructose-1,6-bisphosphate, which activates HPr kinase, presumed to be one of the most ancient serine protein kinases. We here report cloning of the Bacillus subtilis hprK and hprP genes and characterization of the encoded HPr kinase and P-Ser-HPr phosphatase. P-Ser-HPr phosphatase forms a new family of phosphatases together with bacterial phosphoglycolate phosphatase, yeast glycerol-3-phosphatase, and 2-deoxyglucose-6-phosphate phosphatase whereas HPr kinase represents a new family of protein kinases on its own. It does not contain the domain structure typical for eukaryotic protein kinases. Although up to now the HPr modifying/demodifying enzymes were thought to exist only in Gram-positive bacteria, a sequence comparison revealed that they also are present in several Gram-negative pathogenic bacteria.
Collapse
Affiliation(s)
- A Galinier
- Institut de Biologie et Chimie des Protéines, Unité Propre de Recherche 412, Centre National de la Recherche Scientifique, F-69367 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
27
|
August PR, Tang L, Yoon YJ, Ning S, Müller R, Yu TW, Taylor M, Hoffmann D, Kim CG, Zhang X, Hutchinson CR, Floss HG. Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. CHEMISTRY & BIOLOGY 1998; 5:69-79. [PMID: 9512878 DOI: 10.1016/s1074-5521(98)90141-7] [Citation(s) in RCA: 268] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The ansamycin class of antibiotics are produced by various Actinomycetes. Their carbon framework arises from the polyketide pathway via a polyketide synthase (PKS) that uses an unusual starter unit. Rifamycin (rif), produced by Amycolatopsis mediterranei, is the archetype ansamycin and it is medically important. Although its basic precursors (3-amino-5-hydroxy benzoic acid AHBA, and acetic and propionic acids) had been established, and several biosynthetic intermediates had been identified, very little was known about the origin of AHBA nor had the PKS and the various genes and enzymes that modify the initial intermediate been characterized. RESULTS A set of 34 genes clustered around the rifK gene encoding AHBA synthase were defined by sequencing all but 5 kilobases (kb) of a 95 kb contiguous region of DNA from A. mediterranei. The involvement of some of the genes in the biosynthesis of rifamycin B was examined. At least five genes were shown to be essential for the synthesis of AHBA, five genes were determined to encode the modular type I PKS that uses AHBA as the starter unit, and 20 or more genes appear to govern modification of the polyketide-derived framework, and rifamycin resistance and export. Putative regulatory genes were also identified. Disruption of the PKS genes at the end of rifA abolished rifamycin B production and resulted in the formation of P8/1-OG, a known shunt product of rifamycin biosynthesis, whereas disruption of the orf6 and orf9 genes, which may encode deoxysugar biosynthesis enzymes, had no apparent effect. CONCLUSIONS Rifamycin production in A. mediterranei is governed by a single gene cluster consisting of structural, resistance and export, and regulatory genes. The genes characterized here could be modified to produce novel forms of the rifamycins that may be effective against rifamycin-resistant microorganisms.
Collapse
Affiliation(s)
- P R August
- Department of Chemistry, University of Washington, Seattle 98195-1700, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kusian B, Bowien B. Organization and regulation of cbb CO2 assimilation genes in autotrophic bacteria. FEMS Microbiol Rev 1997; 21:135-55. [PMID: 9348665 DOI: 10.1111/j.1574-6976.1997.tb00348.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Calvin-Benson-Bassham cycle constitutes the principal route of CO2 assimilation in aerobic chemoautotrophic and in anaerobic phototrophic purple bacteria. Most of the enzymes of the cycle are found to be encoded by cbb genes. Despite some conservation of the internal gene arrangement cbb gene clusters of the various organisms differ in size and operon organization. The cbb operons of facultative autotrophs are more strictly regulated than those of obligate autotrophs. The major control is exerted by the cbbR gene, which codes for a transcriptional activator of the LysR family. This gene is typically located immediately upstream of and in divergent orientation to the regulated cbb operon, forming a control region for both transcriptional units. Recent studies suggest that additional protein factors are involved in the regulation. Although the metabolic signal(s) received by the regulatory components of the operons is (are) still unknown, the redox state of the cell is believed to play a key role. It is proposed that the control of the cbb operon expression is integrated into a regulatory network.
Collapse
Affiliation(s)
- B Kusian
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | |
Collapse
|
29
|
Taghavi S, Mergeay M, Nies D, van der Lelie D. Alcaligenes eutrophus as a model system for bacterial interactions with heavy metals in the environment. Res Microbiol 1997; 148:536-51. [PMID: 9765840 DOI: 10.1016/s0923-2508(97)88361-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- S Taghavi
- Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol, Belgium
| | | | | | | |
Collapse
|
30
|
Meijer WG, de Boer P, van Keulen G. Xanthobacter flavus employs a single triosephosphate isomerase for heterotrophic and autotrophic metabolism. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 6):1925-1931. [PMID: 9202469 DOI: 10.1099/00221287-143-6-1925] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The expression of the cbb and gap-pgk operons of Xanthobacter flavus encoding enzymes of the Calvin cycle is regulated by the transcriptional regulator CbbR. In order to identify other genes involved in the regulation of these operons, a mutant was isolated with a lowered activity of a fusion between the promoter of the cbb operon and the reporter gene lacZ. This mutant was unable to grow autotrophically and had a reduced growth rate on medium supplemented with gluconate or succinate. The regulation of the gap-pgk operon in the mutant was indistinguishable from the wild-type strain, but induction of the cbb operon upon transition to autotrophic growth conditions was delayed. Complementation of the mutant with a genomic library of X. flavus resulted in the isolation of a 1.1 kb ApaI fragment which restored autotrophic growth of the mutant. One open reading frame (ORF) was present on the ApaI fragment, which could encode a protein highly similar to triosephosphate isomerase proteins from other bacteria. Cell extracts of the mutant grown under glycolytic or gluconeogenic conditions had severely reduced triosephosphate isomerase activities. The ORF was therefore identified as tpi, encoding triosephosphate isomerase. The tpi gene is not linked to the previously identified operons encoding Calvin cycle enzymes and therefore represents a third transcriptional unit required for autotrophic metabolism.
Collapse
Affiliation(s)
- Wim G Meijer
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Paulo de Boer
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Geertje van Keulen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| |
Collapse
|
31
|
Betzler M, Tlolka I, Schrempf H. Amplification of a Streptomyces lividans 4.3 kb DNA element causes overproduction of a novel hypha- and vesicle-associated protein. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 4):1243-1252. [PMID: 9141687 DOI: 10.1099/00221287-143-4-1243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The wild-type Streptomyces lividans 66 genome contains a 4.3 kb amplifiable DNA unit (AUD), and its four ORFs encode proteins that could not be identified by sequence comparison with databases. One of the gene products (encoded by orf-2) was purified and determined to be a novel 23 kDa protein. This protein is synthesized by the wild-type strain, absent in a variant lacking the AUD and overproduced in a variant in which the AUD is amplified (ADS). Immunological studies and analyses by confocal laser microscopy showed that the 23 kDa protein is associated with the substrate hyphae of the wild-type and the ADS-containing variant. Examination by microscopy revealed that the strain carrying the ADS forms bulges within the substrate hyphae and apical vesicles. These bulges have high levels of associated 23 kDa protein and contain storage-like material.
Collapse
Affiliation(s)
- Michael Betzler
- FB Biologie/Chemie, Universität Osnabrück, Barbarastraße 11, 49069 Osnabrück, Germany
| | - Inge Tlolka
- FB Biologie/Chemie, Universität Osnabrück, Barbarastraße 11, 49069 Osnabrück, Germany
| | - Hildgund Schrempf
- FB Biologie/Chemie, Universität Osnabrück, Barbarastraße 11, 49069 Osnabrück, Germany
| |
Collapse
|
32
|
Abstract
Three genes, cbbX, cbbY, and cbbZ were found downstream from the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) genes of Rhodobacter sphaeroides. As in chemoautotrophic bacteria, cbbZ was shown to encode phosphoglycolate phosphatase (PGP), whereas the identities of cbbX and cbbY are not known. To determine the physiological function of the cbbXYZ gene products, we constructed R. sphaeroides strains in which the genes were inactivated and characterized the resultant mutant strains according to growth phenotype and levels of RubisCO and PGP. Only a mutation in cbbX resulted in a discernible phenotype, namely, impaired photoautotrophic growth. No PGP activity was observed in any of the mutants, suggesting that the three genes are transcriptionally linked. Studies with a spontaneous chemoautotrophic competent derivative of the CBBX mutant suggested that the cbbXYZ gene products are not essential for chemoautotrophic growth. PGP activity determined in the wild-type strain grown under a variety of growth conditions, and in various strains containing mutations in Calvin-Benson-Bassham cycle structural and regulatory genes, indicated that transcription of the cbb(I) operon influenced expression of the downstream cbbXYZ operon.
Collapse
Affiliation(s)
- J L Gibson
- Department of Microbiology and the Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
33
|
Schäferjohann J, Bednarski R, Bowien B. Regulation of CO2 assimilation in Ralstonia eutropha: premature transcription termination within the cbb operon. J Bacteriol 1996; 178:6714-9. [PMID: 8955287 PMCID: PMC178566 DOI: 10.1128/jb.178.23.6714-6719.1996] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the facultatively chemoautotrophic bacterium Ralstonia eutropha (formerly Alcaligenes eutrophus), most genes required for CO2 assimilation via the Calvin cycle are organized within two highly homologous cbb operons located on the chromosome and on megaplasmid pHG1, respectively, of strain H16. These operons are subject to tight control exerted by a promoter upstream of the 5'-terminal cbbL gene that is regulated by the activator CbbR. The existence of subpromoters within the operons was now excluded, as determined with lacZ operon fusions to suitable cbb gene fragments in the promoter-probe vector pBK. Nevertheless, marked differential expression of the promoter-proximal ribulose-1,5-bisphosphate carboxylase-oxygenase genes cbbLS and the remaining distal genes occurs within the operons. Computer analysis revealed a potential stem-loop structure immediately downstream of cbbS that was suspected to be involved in the differential gene expression. Nuclease S1 mapping identified a major 3' end and a minor 3' end of the relatively stable cbbLS partial transcript just downstream of this structure. Moreover, operon fusions containing progressively deleted stem-loop structures showed that the structure primarily caused transcriptional termination downstream of cbbS rather than increased the segmental stability of the cbbLS transcript. Premature transcription termination thus represents an important mechanism leading to differential gene expression within the cbb operons.
Collapse
Affiliation(s)
- J Schäferjohann
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | | | |
Collapse
|
34
|
de Sury d'Aspremont R, Toussaint B, Vignais PM. Isolation of Rhodobacter capsulatus transketolase: cloning and sequencing of its structural tktA gene. Gene 1996; 169:81-4. [PMID: 8635754 DOI: 10.1016/0378-1119(95)00796-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Rhodobacter capsulatus transketolase (Tkt) protein has been isolated from strain B10 by heparin affinity chromatography. Oligodeoxyribonucleotides (oligo) constructed as based on the amino-acid sequences were used for polymerase chain reaction (PCR) amplification on total genomic DNA. Southern hybridization with the PCR product as a probe allowed the isolation of a 5-kb PstI DNA fragment containing the structural Tkt-encoding gene (tktA) which was cloned and sequenced. The deduced tktA product of 671 aa (72815 Da) shares 59% identity with Rhodobacter sphaeroides Tkt.
Collapse
Affiliation(s)
- R de Sury d'Aspremont
- CEA Grenoble, Biochimie Microbienne, Département de Biologie Moléculaire et Structurale, France
| | | | | |
Collapse
|
35
|
Meijer WG, van den Bergh ER, Smith LM. Induction of the gap-pgk operon encoding glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase of Xanthobacter flavus requires the LysR-type transcriptional activator CbbR. J Bacteriol 1996; 178:881-7. [PMID: 8550526 PMCID: PMC177738 DOI: 10.1128/jb.178.3.881-887.1996] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In a previous study, a gene (pgk) encoding phosphoglycerate kinase was isolated from a genomic library of Xanthobacter flavus. Although this gene is essential for autotrophic growth, it is not located within the cbb operon encoding other Calvin cycle enzymes. An analysis of the nucleotide sequence upstream from pgk showed the presence of a gene encoding glyceraldehyde-3-phosphate dehydrogenase and the 3' end of an open reading frame encoding a protein which is 50% identical to transketolase encoded by cbbT of X. flavus. Gene fusions between pgk and lacZ demonstrated that the gap and pgk genes are organized in an operon. Induction of the Calvin cycle in heterotrophically growing cells resulted in a sixfold increase in phosphoglycerate kinase activity in parallel with the appearance of ribulosebisphosphate carboxylase activity. This superinduction of phosphoglycerate kinase did not occur in an X. flavus strain in which cbbR, encoding the transcriptional activator of the cbb operon, was disrupted. The failure to superinduce the gap-pgk operon is not caused by the absence of a functional Calvin cycle, since the expression of this operon in an X. flavus strain with a defective ribulosebisphosphate carboxylase enzyme was the same as the expression in the wild type. It is therefore concluded that the expression of both the cbb and gap-pgk operons is controlled by CbbR.
Collapse
Affiliation(s)
- W G Meijer
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, NN Haren, The Netherlands
| | | | | |
Collapse
|
36
|
van den Bergh ER, Baker SC, Raggers RJ, Terpstra P, Woudstra EC, Dijkhuizen L, Meijer WG. Primary structure and phylogeny of the Calvin cycle enzymes transketolase and fructosebisphosphate aldolase of Xanthobacter flavus. J Bacteriol 1996; 178:888-93. [PMID: 8550527 PMCID: PMC177739 DOI: 10.1128/jb.178.3.888-893.1996] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Xanthobacter flavus, a gram-negative facultatively autotrophic bacterium, employs the Calvin cycle for the fixation of carbon dioxide. Cells grown under autotrophic growth conditions possess an Fe(2+)-dependent fructosebisphosphate (FBP) aldolase (class II) in addition to a class I FBP aldolase. By nucleotide sequencing and heterologous expression in Escherichia coli, genes encoding transketolase (EC 2.2.1.1.; CbbT) and class II FBP aldolase (EC 4.1.2.13; CbbA) were identified. A partial open reading frame encoding a protein similar to pentose-5-phosphate 3-epimerase was identified downstream from cbbA. A phylogenetic tree of transketolase proteins displays a conventional branching order. However, the class II FBP aldolase protein from X. flavus is only distantly related to that of E. coli. The autotrophic FBP aldolase proteins from X. flavus, Alcaligenes eutrophus, and Rhodobacter sphaeroides form a tight cluster, with the proteins from gram-positive bacteria as the closest relatives.
Collapse
Affiliation(s)
- E R van den Bergh
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, NN Haren, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The pentose-phosphate pathway of Escherichia coli K-12, in addition to its role as a route for the breakdown of sugars such as glucose or pentoses, provides the cell with intermediates for the anabolism of amino acids, vitamins, nucleotides, and cell wall constituents. Through its oxidative branch, it is a major source of NADPH. The expression of the gene for NADP-dependent 6-phosphogluconate dehydrogenase (gnd) is regulated by the growth rate in E. coli. The recently identified gene for ribulose-5-phosphate 3-epimerase (rpe) is part of a large operon that comprises among other genes for the biosynthesis of aromatic amino acids. In recent years, genes for all enzymes of the pathway have been cloned and sequenced. Isoenzymes have been found for transketolase (genes tktA and tktB), ribose-5-phosphate isomerase (rpiA and rpiB) and transaldolase (talA and talB).
Collapse
Affiliation(s)
- G A Sprenger
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH
| |
Collapse
|
38
|
Kusian B, Bowien B. Operator binding of the CbbR protein, which activates the duplicate cbb CO2 assimilation operons of Alcaligenes eutrophus. J Bacteriol 1995; 177:6568-74. [PMID: 7592435 PMCID: PMC177510 DOI: 10.1128/jb.177.22.6568-6574.1995] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The regulatory protein CbbR, which activates the transcription of the duplicate, chromosomally and megaplasmid pHG1-borne cbb CO2 assimilation operons of Alcaligenes eutrophus H16, was purified to homogeneity from Escherichia coli after heterologous expression of the cloned cbbR gene. The pure protein occurred as either a 63-kDa dimer at room temperature or a 125-kDa tetramer at 4 degrees C. CbbR bound to the 167-bp cbb control region separating the divergently oriented cbbR gene (defective copy on pHG1) from the cbb operon. DNase I footprinting revealed binding of the protein between position -29 and -74 relative to the transcriptional start point of the cbb operon, with a hypersensitive site at positions -47 and -48, suggesting potential DNA bending. Hydroxyl radical footprinting disclosed the same central binding region. The region was found to consist of two subsites to which the activator apparently bound in a cooperative manner. At higher CbbR concentrations, the binding region extended to position +13. The overlapping arrangement of the operon promoter and CbbR-binding region (operator) suggests an interaction between CbbR and RNA polymerase to cause transcription activation. Transcriptional fusions with fragments carrying 1- or 2-bp insertions within the central region showed no operon promoter activity, although CbbR binding was not prevented by these mutations. Dissection of the central region enabled the differentiation of two apparently independent binding subsites. Strongly increased cbbR promoter activity originating from a fragment that contained only a part of the central region indicated negative autoregulation of cbbR transcription.
Collapse
Affiliation(s)
- B Kusian
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | |
Collapse
|
39
|
Kusian B, Bednarski R, Husemann M, Bowien B. Characterization of the duplicate ribulose-1,5-bisphosphate carboxylase genes and cbb promoters of Alcaligenes eutrophus. J Bacteriol 1995; 177:4442-50. [PMID: 7543477 PMCID: PMC177195 DOI: 10.1128/jb.177.15.4442-4450.1995] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Autotrophic CO2 fixation via the Calvin carbon reduction cycle in Alcaligenes eutrophus H16 is genetically determined by two highly homologous cbb operons, one of which is located on the chromosome and the other on megaplasmid pHG1 of the organism. An activator gene, cbbR, lies in divergent orientation only 167 bp upstream of the chromosomal operon and controls the expression of both cbb operons. The two 5'-terminal genes of the operons, cbbLS, coding for ribulose-1,5-bisphosphate carboxylase/oxygenase, were sequenced. Mapping of the 5' termini of the 2.1-kb cbbLS transcripts by primer extension and by nuclease S1 treatment revealed a single transcriptional start point at the same relative position for the chromosomal and plasmid-borne cbb operons. The derived cbb operon promoter showed similarity to sigma 70-dependent promoters of Escherichia coli. For the 1.4-kb transcripts of cbbR, the transcriptional start points were different in autotrophic and heterotrophic cells. The two corresponding cbbR promoters overlapped the cbb operon promoter and also displayed similarities to sigma 70-dependent promoters. The deficient cbbR gene located on pHG1 was transcribed as well. A newly constructed double operon fusion vector was used to determine the activities of the cbb promoters. Fusions with fragments carrying the cbb intergenic control regions demonstrated that the cbb operon promoters were strongly regulated in response to autotrophic versus heterotrophic growth conditions. In contrast, the cbbR promoters displayed low constitutive activities. The data suggest that the chromosomal and plasmid-borne cbb promoters of A. eutrophus H16 are functionally equivalent despite minor structural differences.
Collapse
Affiliation(s)
- B Kusian
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | | | | | |
Collapse
|
40
|
Yoo JG, Bowien B. Analysis of the cbbF genes from Alcaligenes eutrophus that encode fructose-1,6-/sedoheptulose-1,7-bisphosphatase. Curr Microbiol 1995; 31:55-61. [PMID: 7767230 DOI: 10.1007/bf00294635] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cbbF genes of the facultative chemoautotroph Alcaligenes eutrophus H16 are part of two highly homologous cbb operons. Both the chromosomal and the megaplasmid pHG1-borne copy of cbbF were cloned and sequenced. Subsequent analyses including comparison with known sequences from other organisms and heterologous expression in Escherichia coli revealed that each of the genes encodes fructose-1,6-bisphosphatase (FBPase). A closely related activity likewise operating in the Calvin carbon reduction cycle, sedoheptulose-1,7-bisphosphatase, was also catalyzed by the two isoenzymes which were purified from autotrophically grown cells of A. eutrophus. Two-dimensional gel electrophoresis allowed the separation of the cbbF gene products. Preliminary physical evidence by Southern hybridization with a heterologous gene probe was obtained for the existence of a third FBPase gene, fbp, on the chromosome of the organism. Its product is probably involved in the heterotrophic carbon metabolism.
Collapse
Affiliation(s)
- J G Yoo
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | |
Collapse
|
41
|
Lyngstadaas A, Løbner-Olesen A, Boye E. Characterization of three genes in the dam-containing operon of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:546-54. [PMID: 7603433 DOI: 10.1007/bf00290345] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The dam-containing operon in Escherichia coli is located at 74 min on the chromosomal map and contains the genes aroK, aroB, a gene called urf74.3, dam and trpS. We have determined the nucleotide sequence between the dam and trpS genes and show that it encodes two proteins with molecular weights of 24 and 27 kDa. Furthermore, we characterize the three genes urf74.3, 24kDa, 27kDa and the proteins they encode. The predicted amino acid sequences of the 24 and 27 kDa proteins are similar to those of the CbbE and CbbZ proteins, respectively, of the Alcaligenes eutrophus cbb operon, which encodes enzymes involved in the Calvin cycle. In separate experiments, we have shown that the 24 kDa protein has d-ribulose-5-phosphate epimerase activity (similar to CbbE), and we call the gene rpe. Similarly, the 27 kDa protein has 2-phosphoglycolate phosphatase activity (similar to CbbZ), and we name the gene gph. The Urf74.3 protein, with a predicted molecular weight of 46 kDa, migrated as a 70 kDa product under denaturing conditions. Overexpression of Urf74.3 induced cell filamentation, indicating that Urf74.3 directly or indirectly interferes with cell division. We present evidence for translational coupling between aroB and urf74.3 and also between rpe and gph. Proteins encoded in the dam superoperon appear to be largely unrelated: Dam, and perhaps Urf74.3, are involved in cell cycle regulation, AroK, AroB, and TrpS function in aromatic amino acid biosynthesis, whereas Rpe and Gph are involved in carbohydrate metabolism.
Collapse
Affiliation(s)
- A Lyngstadaas
- Department of Biophysics, Institute for Cancer Research, Montebello, Oslo, Norway
| | | | | |
Collapse
|
42
|
Schäferjohann J, Yoo JG, Bowien B. Analysis of the genes forming the distal parts of the two cbb CO2 fixation operons from Alcaligenes eutrophus. Arch Microbiol 1995; 163:291-9. [PMID: 7763137 DOI: 10.1007/bf00393383] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the facultative chemoautotroph Alcaligenes eutrophus H16, most of the genes (cbb genes) encoding enzymes of the Calvin carbon reduction cycle are organized within two highly homologous cbb operons, one located on the chromosome and the other on the megaplasmid pHG1. Nucleotide sequencing of the promoter-distal part of the operons revealed three open reading frames, designated cbbG, cbbK, and cbbA. Similarity searches in databases and heterologous expressions of the subcloned genes in Escherichia coli identified them as genes encoding the Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and a class II fructose-1,6-bisphosphate aldolase, respectively. The aldolase could be grouped together with the enzymes from Rhodobacter sphaeroides and Bacillus subtilis as a new subtype of class II aldolases. A phenotypic complementation analysis with a cbb operon mutant of A. eutrophus showed that the cbbG product is essential for autotrophic growth of the organism, whereas the products of cbbK and cbbA can apparently be substituted by isoenzymes encoded elsewhere on the chromosome. No or only low constitutive promoter activity was associated with cbbK and cbbA, respectively, confirming the two genes as parts of the cbb operon. Downstream of cbbA, the very high overall nucleotide sequence identity (about 94%) prevailing throughout the two cbb operons discontinues, suggesting that cbbA is the most promoter-distal gene of the operon.
Collapse
Affiliation(s)
- J Schäferjohann
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | | | |
Collapse
|
43
|
Meijer WG. The Calvin cycle enzyme phosphoglycerate kinase of Xanthobacter flavus required for autotrophic CO2 fixation is not encoded by the cbb operon. J Bacteriol 1994; 176:6120-6. [PMID: 7928974 PMCID: PMC196832 DOI: 10.1128/jb.176.19.6120-6126.1994] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
During autotrophic growth of Xanthobacter flavus, energy derived from the oxidation of hydrogen methanol or formate is used to drive the assimilation of CO2 via the Calvin cycle. The genes encoding the Calvin cycle enzymes are organized in the cbb operon, which is expressed only during autotrophic growth. Although it has been established that the transcriptional activator CbbR is required for the expression of the cbb operon, it is unclear whether CbbR is the only factor contributing to the regulation of the cbb operon. This paper describes the isolation of X. flavus mutants which were affected in the regulation of the cbb operon. One of the mutant strains was subject to an enhanced repression of the cbb operon promoter by the gluconeogenic substrate succinate and in addition failed to grow autotrophically. The rate of growth of the X. flavus mutant on succinate-containing medium was lower than that of the wild-type strain, but rates of growth on medium supplemented with gluconate were identical. A genomic library of X. flavus was constructed and was used to complement the mutant strain. The nucleotide sequence of the DNA fragment required to restore autotrophic growth of the X. flavus mutant was determined. One open reading frame that displayed extensive similarities to phosphoglycerate kinase-encoding genes (pgk) was identified. The X. flavus mutant lacked phosphoglycerate kinase activity following growth on gluconate or succinate. Introduction of the pgk gene into the X. flavus mutant partially restored the activity of phosphoglycerate kinase. Induction of the cbb operon of the X. flavus wild-type strain resulted in a simultaneous and parallel increase in the activities of ribulose-1,5-biphosphate carboxylase and phosphoglycerate kinase, whereas the latter activity remained absent in the X. flavus pgk mutant. It is concluded that X. flavus employees a single phosphoglycerate kinase enzyme and this is not encoded within the cbb operon.
Collapse
Affiliation(s)
- W G Meijer
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| |
Collapse
|
44
|
Buchholz B, Nordsiek G, Meister M, Bowien B. Transfer of genes fromPseudomonas saccharophila to construct xylose-utilizing strains ofAlcaligenes eutrophus. Curr Microbiol 1994. [DOI: 10.1007/bf01570757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Freter A, Bowien B. Identification of a novel gene, aut, involved in autotrophic growth of Alcaligenes eutrophus. J Bacteriol 1994; 176:5401-8. [PMID: 8071217 PMCID: PMC196727 DOI: 10.1128/jb.176.17.5401-5408.1994] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The aerobic facultative chemoautotroph Alcaligenes eutrophus was found to possess a novel gene, designated aut, required for both lithoautotrophic (hydrogen plus carbon dioxide) and organoautotrophic (formate) growth (Aut+ phenotype). Insertional mutagenesis by transposon Tn5-Mob localized the gene on a chromosomal 13-kbp EcoRI fragment. Physiological characterization of various Aut- mutants revealed pleiotropic effects caused by the transposon insertion. Heterotrophic growth of the mutants on substrates catabolized via the glycolytic pathway was slower than that of the parent strains, and the colony morphology of the mutants was altered when grown on nutrient agar. The heterotrophic derepression of the cbb operons encoding Calvin cycle enzymes was abolished, although their expression was still inducible in the presence of formate. Apparently, the mutation did not affect the cbb genes directly but impaired the autotrophic growth in a more general manner. The conjugally transferred wild-type EcoRI fragment allowed phenotypic in trans complementation of the mutants. Further subcloning and sequencing identified a single open reading frame (aut) of 495 bp that was sufficient for complementation. The monocistronic aut gene was constitutively transcribed into a 0.65-kb mRNA. However, its expression appeared to be low. Heterologous expression of aut was achieved in Escherichia coli, resulting in overproduction of an 18-kDa protein. Database searches yielded weak partial sequence similarities of the deduced Aut protein sequence to some cytidylyltransferases, but no indication for the exact function of the aut gene was obtained. Hybridizing DNA sequences that might be similar to the aut gene were detected by Southern hybridization in the genome of two other autotrophic bacteria.
Collapse
Affiliation(s)
- A Freter
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | |
Collapse
|
46
|
Strecker M, Sickinger E, English RS, Shively JM. Calvin cycle genes inNitrobacter vulgarisT3. FEMS Microbiol Lett 1994. [DOI: 10.1111/j.1574-6968.1994.tb07005.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|