1
|
Replication stalling activates SSB for recruitment of DNA damage tolerance factors. Proc Natl Acad Sci U S A 2022; 119:e2208875119. [PMID: 36191223 PMCID: PMC9565051 DOI: 10.1073/pnas.2208875119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Translesion synthesis (TLS) polymerases bypass DNA lesions that block replicative polymerases, allowing cells to tolerate DNA damage encountered during replication. It is well known that most bacterial TLS polymerases must interact with the sliding-clamp processivity factor to carry out TLS, but recent work in Escherichia coli has revealed that single-stranded DNA-binding protein (SSB) plays a key role in enriching the TLS polymerase Pol IV at stalled replication forks in the presence of DNA damage. It remains unclear how this interaction with SSB enriches Pol IV in a stalling-dependent manner given that SSB is always present at the replication fork. In this study, we use single-molecule imaging in live E. coli cells to investigate this SSB-dependent enrichment of Pol IV. We find that Pol IV is enriched through its interaction with SSB in response to a range of different replication stresses and that changes in SSB dynamics at stalled forks may explain this conditional Pol IV enrichment. Finally, we show that other SSB-interacting proteins are likewise selectively enriched in response to replication perturbations, suggesting that this mechanism is likely a general one for enrichment of repair factors near stalled replication forks.
Collapse
|
2
|
Single-molecule imaging reveals multiple pathways for the recruitment of translesion polymerases after DNA damage. Nat Commun 2017; 8:2170. [PMID: 29255195 PMCID: PMC5735139 DOI: 10.1038/s41467-017-02333-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 11/21/2017] [Indexed: 01/08/2023] Open
Abstract
Unrepaired DNA lesions are a potent block to replication, leading to replication fork collapse, double-strand DNA breaks, and cell death. Error-prone polymerases overcome this blockade by synthesizing past DNA lesions in a process called translesion synthesis (TLS), but how TLS polymerases gain access to the DNA template remains poorly understood. In this study, we use particle-tracking PALM to image live Escherichia coli cells containing a functional fusion of the endogenous copy of Pol IV to the photoactivatable fluorescent protein PAmCherry. We find that Pol IV is strongly enriched near sites of replication only upon DNA damage. Surprisingly, we find that the mechanism of Pol IV recruitment is dependent on the type of DNA lesion, and that interactions with proteins other than the processivity factor β play a role under certain conditions. Collectively, these results suggest that multiple interactions, influenced by lesion identity, recruit Pol IV to sites of DNA damage. Translesion synthesis (TLS) enables cells to tolerate damaged DNA encountered during replication. Here the authors use super-resolution photoactivation localization microscopy to reveal a lesion type dependent mechanism of recruitment of the TLS polymerase Pol IV following DNA damage.
Collapse
|
3
|
Mertens K, Samuel JE. Defense Mechanisms Against Oxidative Stress in Coxiella burnetii: Adaptation to a Unique Intracellular Niche. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 984:39-63. [DOI: 10.1007/978-94-007-4315-1_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Al-Hadid Q, Ona K, Courcelle CT, Courcelle J. RecA433 cells are defective in recF-mediated processing of disrupted replication forks but retain recBCD-mediated functions. Mutat Res 2008; 645:19-26. [PMID: 18782580 DOI: 10.1016/j.mrfmmm.2008.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/14/2008] [Accepted: 08/01/2008] [Indexed: 05/26/2023]
Abstract
RecA is required for recombinational processes and cell survival following UV-induced DNA damage. recA433 is a historically important mutant allele that contains a single amino acid substitution (R243H). This mutation separates the recombination and survival functions of RecA. recA433 mutants remain proficient in recombination as measured by conjugation or transduction, but are hypersensitive to UV-induced DNA damage. The cellular functions carried out by RecA require either recF pathway proteins or recBC pathway proteins to initiate RecA-loading onto the appropriate DNA substrates. In this study, we characterized the ability of recA433 to carry out functions associated with either the recF pathway or recBC pathway. We show that several phenotypic deficiencies exhibited by recA433 mutants are similar to recF mutants but distinct from recBC mutants. In contrast to recBC mutants, recA433 and recF mutants fail to process or resume replication following disruption by UV-induced DNA damage. However, recA433 and recF mutants remain proficient in conjugational recombination and are resistant to formaldehyde-induced protein-DNA crosslinks, functions that are impaired in recBC mutants. The results are consistent with a model in which the recA433 mutation selectively impairs RecA functions associated with the RecF pathway, while retaining the ability to carry out RecBCD pathway-mediated functions. These results are discussed in the context of the recF and recBC pathways and the potential substrates utilized in each case.
Collapse
Affiliation(s)
- Qais Al-Hadid
- Department of Biology, Portland State University, Portland, OR 97207, USA.
| | | | | | | |
Collapse
|
5
|
Mertens K, Lantsheer L, Ennis DG, Samuel JE. Constitutive SOS expression and damage-inducible AddAB-mediated recombinational repair systems for Coxiella burnetii as potential adaptations for survival within macrophages. Mol Microbiol 2008; 69:1411-26. [PMID: 18647165 DOI: 10.1111/j.1365-2958.2008.06373.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
SUMMARY Coxiella burnetii, a Gram-negative obligate intracellular pathogen, replicates within an parasitophorous vacuole with lysosomal characteristics. To understand how C. burnetii maintains genomic integrity in this environment, a database search for genes involved in DNA repair was performed. Major components of repair, SOS response and recombination were identified, including recA and ruvABC, but lexA and recBCD were absent. Instead, C. burnetii possesses addAB orthologous genes, functional equivalents to recBCD. Survival after treatment with UV, mitomycin C (MC) or methyl methanesulfonate (MMS), as well as homologous recombination in Hfr mating was restored in Escherichia coli deletion strains by C. burnetii recA or addAB. Despite the absence of LexA, co-protease activity for C. burnetii RecA was demonstrated. Dominant-negative inhibition of C. burnetii RecA by recA mutant alleles, modelled after E. coli recA1 and recA56, was observed and more apparent with expression of C. burnetii RecAG159D mutant protein. Expression of a subset of repair genes in C. burnetii was monitored and, in contrast to the non-inducible E. coli recBCD, addAB expression was strongly upregulated under oxidative stress. Constitutive SOS gene expression due to the lack of LexA and induction of AddAB likely reflect a unique repair adaptation of C. burnetii to its hostile niche.
Collapse
Affiliation(s)
- Katja Mertens
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, College of Medicine, College Station, TX, USA
| | | | | | | |
Collapse
|
6
|
Roux CM, Booth NJ, Bellaire BH, Gee JM, Roop RM, Kovach ME, Tsolis RM, Elzer PH, Ennis DG. RecA and RadA proteins of Brucella abortus do not perform overlapping protective DNA repair functions following oxidative burst. J Bacteriol 2006; 188:5187-95. [PMID: 16816190 PMCID: PMC1539968 DOI: 10.1128/jb.01994-05] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Very little is known about the role of DNA repair networks in Brucella abortus and its role in pathogenesis. We investigated the roles of RecA protein, DNA repair, and SOS regulation in B. abortus. While recA mutants in most bacterial species are hypersensitive to UV damage, surprisingly a B. abortus recA null mutant conferred only modest sensitivity. We considered the presence of a second RecA protein to account for this modest UV sensitivity. Analyses of the Brucella spp. genomes and our molecular studies documented the presence of only one recA gene, suggesting a RecA-independent repair process. Searches of the available Brucella genomes revealed some homology between RecA and RadA, a protein implicated in E. coli DNA repair. We considered the possibility that B. abortus RadA might be compensating for the loss of RecA by promoting similar repair activities. We present functional analyses that demonstrated that B. abortus RadA complements a radA defect in E. coli but could not act in place of the B. abortus RecA. We show that RecA but not RadA was required for survival in macrophages. We also discovered that recA was expressed at high constitutive levels, due to constitutive LexA cleavage by RecA, with little induction following DNA damage. Higher basal levels of RecA and its SOS-regulated gene products might protect against DNA damage experienced following the oxidative burst within macrophages.
Collapse
Affiliation(s)
- Christelle M Roux
- Department of Biology, P.O. Box 42451, University of Louisiana, Lafayette, LA 70504-2451, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yang Y, Fix D. Genetic analysis of the anti-mutagenic effect of genistein in Escherichia coli. Mutat Res 2006; 600:193-206. [PMID: 16872640 DOI: 10.1016/j.mrfmmm.2006.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 04/21/2006] [Accepted: 05/01/2006] [Indexed: 10/24/2022]
Abstract
Genistein, the main isoflavone in soy, has received considerable attention for its potential anti-carcinogenic properties. In a previous report, we investigated the possible role of genistein in anti-mutagenesis, using an Escherichia coli reversion assay system. Genistein reduced ENU-induced mutagenesis in a dose-dependent manner and the reduction of mutation frequency was differential among several categories of mutation. Most notable was a loss of transversion mutations, which require SOS functions. In this report, we further investigated the anti-mutagenic effect of genistein using a genetic approach. E. coli strains having alterations in genes involved in SOS-mutagenesis were examined, as were strains having defects in proteins that might serve as potential targets for genistein. The results showed that ENU-induced mutations produced in recA730 and lexA(Def) strains, both expressing a constitutive SOS response, were reduced by genistein to a lesser extent than in the wild-type strain. The effect of genistein was not entirely abolished, however. ENU mutagenesis in a umuC derivative, which reflects predominantly transition mutations, was unaffected by genistein. ENU-induced mutations in strains having defects in topA, gyrA, typA or uspA were not different than the wild-type, suggesting that these gene products were not involved in genistein's anti-mutagenic effect. In addition, we determined the distribution of genistein in various cellular fractions using HPLC. These studies revealed that genistein could be recovered from E. coli cells grown on agar media containing genistein; the intracellular concentration was similar to that in the agar plates. Further, most of the genistein recovered was associated with proteins in the cytosolic fraction and little partitioned in the membrane fraction. In vitro studies showed that genistein could be precipitated from a protein (BSA) containing solution. Finally, we examined the effect of genistein on formation of the RecA filament on ssDNA in vitro and observed an inhibition at high concentrations of genistein. In total, these results suggested that genistein may reduce SOS-dependent mutagenesis by reducing the interaction of RecA protein with ssDNA. As a consequence, genistein could cause a reduction in (1) the overall SOS response (confirmed using beta-galactosidase assays) and (2) trans-lesion DNA synthesis by DNA polymerase V.
Collapse
Affiliation(s)
- Yixin Yang
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, United States
| | | |
Collapse
|
8
|
Piao Z, Sze CC, Barysheva O, Iida KI, Yoshida SI. Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila. Appl Environ Microbiol 2006; 72:1613-22. [PMID: 16461717 PMCID: PMC1392928 DOI: 10.1128/aem.72.2.1613-1622.2006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fifty strains representing 38 species of the genus Legionella were examined for biofilm formation on glass, polystyrene, and polypropylene surfaces in static cultures at 25 degrees C, 37 degrees C, and 42 degrees C. Strains of Legionella pneumophila, the most common causative agent of Legionnaires' disease, were found to have the highest ability to form biofilms among the test strains. The quantity, rate of formation, and adherence stability of L. pneumophila biofilms showed considerable dependence on both temperature and surface material. Glass and polystyrene surfaces gave between two- to sevenfold-higher yields of biofilms at 37 degrees C or 42 degrees C than at 25 degrees C; conversely, polypropylene surface had between 2 to 16 times higher yields at 25 degrees C than at 37 degrees C or 42 degrees C. On glass surfaces, the biofilms were formed faster but attached less stably at 37 degrees C or 42 degrees C than at 25 degrees C. Both scanning electron microscopy and confocal laser scanning microscopy revealed that biofilms formed at 37 degrees C or 42 degrees C were mycelial mat like and were composed of filamentous cells, while at 25 degrees C, cells were rod shaped. Planktonic cells outside of biofilms or in shaken liquid cultures were rod shaped. Notably, the filamentous cells were found to be multinucleate and lacking septa, but a recA null mutant of L. pneumophila was unaffected in its temperature-regulated filamentation within biofilms. Our data also showed that filamentous cells were able to rapidly give rise to a large number of short rods in a fresh liquid culture at 37 degrees C. The possibility of this biofilm to represent a novel strategy by L. pneumophila to compete for proliferation among the environmental microbiota is discussed.
Collapse
Affiliation(s)
- Zhenyu Piao
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
9
|
Abstract
Bacterial RecA protein is required for repair of two-strand DNA lesions that disable whole chromosomes. recA mutants are viable, suggesting a considerable cellular capacity to avoid these chromosome-disabling lesions. recA-dependent mutants reveal chromosomal lesion avoidance pathways. Here we characterize one such mutant, rdgB/yggV, deficient in a putative inosine/xanthosine triphosphatase, conserved throughout kingdoms of life. The rdgB recA lethality is suppressed by inactivation of endonuclease V (gpnfi) specific for DNA-hypoxanthines/xanthines, suggesting that RdgB either intercepts improper DNA precursors dITP/dXTP or works downstream of EndoV in excision repair of incorporated hypoxathines/xanthines. We find that DNA isolated from rdgB mutants contains EndoV-recognizable modifications, whereas DNA from nfi mutants does not, substantiating the dITP/dXTP interception by RdgB. rdgB recBC cells are inviable, whereas rdgB recF cells are healthy, suggesting that chromosomes in rdgB mutants suffer double-strand breaks. Chromosomal fragmentation is indeed observed in rdgB recBC mutants and is suppressed in rdgB recBC nfi mutants. Thus, one way to avoid chromosomal lesions is to prevent hypoxanthine/xanthine incorporation into DNA via interception of dITP/dXTP.
Collapse
Affiliation(s)
- Jill S Bradshaw
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 C&LSL, 601 South Goodwin Ave., 61801-3709, USA
| | | |
Collapse
|
10
|
Yang Y, Fix D. Reduction of ENU-induced transversion mutations by the isoflavone genistein in Escherichia coli. Mutat Res 2001; 479:63-70. [PMID: 11470481 DOI: 10.1016/s0027-5107(01)00147-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In studies of mutagenesis induced by the carcinogen N-ethyl-N-nitrosourea (ENU) in the bacterium Escherichia coli FX-11, it was observed that G:C to A:T transitions did not require the inducible umuDC gene products, while a portion of the A:T to G:C transitions and all transversion mutations were dependent on a functional umuC gene. This observation suggested that the different base substitutions may result from differential processing of specific DNA adducts produced by ENU. To further understand these processes, we have investigated the effect of the soybean isoflavone genistein on the production of ENU-induced mutations. This compound, in particular, has been shown to exhibit numerous effects including the inhibition of the growth or proliferation of a variety of cancers, inhibition of angiogenesis, inhibition of tyrosine protein kinases and anti-oxidant properties. In our experiments, tyrosine defective (TyrA(-)) E. coli were exposed to ENU and a portion of the ENU-treated cells were exposed to genistein. The results showed a three-fold reduction in the overall mutation frequency when cells were treated with genistein subsequent to ENU-exposure and this anti-mutagenic effect was dependent on the dose of genistein employed. However, only certain types of base substitution mutagenesis were affected. In particular, transversion mutations were reduced an average of about 8.5-fold, while transitions were not greatly affected. In addition, UV-mutagenesis was reduced about three-fold and induction of the SOS response (as monitored with a sulA-lacZ fusion) was decreased. These results suggest that genistein may interfere with expression of the SOS response, including the UmuC-mediated lesion bypass mechanism that is necessary for UV-mutagenesis and the generation of transversions by ENU in E. coli.
Collapse
Affiliation(s)
- Y Yang
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901-6508, USA
| | | |
Collapse
|
11
|
Mustard JA, Little JW. Analysis of Escherichia coli RecA interactions with LexA, lambda CI, and UmuD by site-directed mutagenesis of recA. J Bacteriol 2000; 182:1659-70. [PMID: 10692372 PMCID: PMC94464 DOI: 10.1128/jb.182.6.1659-1670.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An early event in the induction of the SOS system of Escherichia coli is RecA-mediated cleavage of the LexA repressor. RecA acts indirectly as a coprotease to stimulate repressor self-cleavage, presumably by forming a complex with LexA. How complex formation leads to cleavage is not known. As an approach to this question, it would be desirable to identify the protein-protein interaction sites on each protein. It was previously proposed that LexA and other cleavable substrates, such as phage lambda CI repressor and E. coli UmuD, bind to a cleft located between two RecA monomers in the crystal structure. To test this model, and to map the interface between RecA and its substrates, we carried out alanine-scanning mutagenesis of RecA. Twenty double mutations were made, and cells carrying them were characterized for RecA-dependent repair functions and for coprotease activity towards LexA, lambda CI, and UmuD. One mutation in the cleft region had partial defects in cleavage of CI and (as expected from previous data) of UmuD. Two mutations in the cleft region conferred constitutive cleavage towards CI but not towards LexA or UmuD. By contrast, no mutations in the cleft region or elsewhere in RecA were found to specifically impair the cleavage of LexA. Our data are consistent with binding of CI and UmuD to the cleft between two RecA monomers but do not provide support for the model in which LexA binds in this cleft.
Collapse
Affiliation(s)
- J A Mustard
- Department of Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
12
|
Ennis DG, Woodgate R, Shi M. Selective inhibition of RecA functions by the Hc1 nucleoid condensation protein from Chlamydia trachomatis. FEMS Microbiol Lett 2000; 182:279-83. [PMID: 10620679 DOI: 10.1111/j.1574-6968.2000.tb08908.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
During the normal biphasic life cycle of Chlamydia trachomatis, the histone-like protein Hc1 promotes the condensation of nucleoids in elementary bodies, it may also displace nucleoproteins, including repair functions from chromatin. Hc1 was found to effectively inhibit the recombination and repair of the weak binding RecA430 mutant protein from Escherichia coli, but had minimal effects on the parental RecA(+) protein. Expression of Hc1 was also found to inhibit the repair activities of the C. trachomatis RecA protein but not recombination. These results suggest that chlamydial RecA may have evolved mechanisms to minimize Hc1 competition for recombinational activities.
Collapse
Affiliation(s)
- D G Ennis
- Department of Biology, P.O. Box 42451, University of Louisiana, Lafayette, LA 70504-2451, USA.
| | | | | |
Collapse
|
13
|
Lussier M, White AM, Sheraton J, di Paolo T, Treadwell J, Southard SB, Horenstein CI, Chen-Weiner J, Ram AF, Kapteyn JC, Roemer TW, Vo DH, Bondoc DC, Hall J, Zhong WW, Sdicu AM, Davies J, Klis FM, Robbins PW, Bussey H. Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics 1997; 147:435-50. [PMID: 9335584 PMCID: PMC1208169 DOI: 10.1093/genetics/147.2.435] [Citation(s) in RCA: 301] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The sequenced yeast genome offers a unique resource for the analysis of eukaryotic cell function and enables genome-wide screens for genes involved in cellular processes. We have identified genes involved in cell surface assembly by screening transposon-mutagenized cells for altered sensitivity to calcofluor white, followed by supplementary screens to further characterize mutant phenotypes. The mutated genes were directly retrieved from genomic DNA and then matched uniquely to a gene in the yeast genome database. Eighty-two genes with apparent perturbation of the cell surface were identified, with mutations in 65 of them displaying at least one further cell surface phenotype in addition to their modified sensitivity to calcofluor. Fifty of these genes were previously known, 17 encoded proteins whose function could be anticipated through sequence homology or previously recognized phenotypes and 15 genes had no previously known phenotype.
Collapse
Affiliation(s)
- M Lussier
- Department of Biology, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Frank EG, Gonzalez M, Ennis DG, Levine AS, Woodgate R. In vivo stability of the Umu mutagenesis proteins: a major role for RecA. J Bacteriol 1996; 178:3550-6. [PMID: 8655553 PMCID: PMC178125 DOI: 10.1128/jb.178.12.3550-3556.1996] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Escherichia coli Umu proteins play critical roles in damage-inducible SOS mutagenesis. To avoid any gratuitous mutagenesis, the activity of the Umu proteins is normally kept to a minimum by tight transcriptional and posttranslational regulation. We have, however, previously observed that compared with an isogenic recA+ strain, the steady-state levels of the Umu proteins are elevated in a recA730 background (R. Woodgate and D. G. Ennis, Mol. Gen. Genet. 229:10-16, 1991). We have investigated this phenomenon further and find that another coprotease-constitutive (recA*) mutant, a recA432 strain, exhibits a similar phenotype. Analysis revealed that the increased steady-state levels of the Umu proteins in the recA* strains do indeed reflect an in vivo stabilization of the proteins. We have investigated the basis for the phenomenon and find that the mutant RecA* protein stabilizes the Umu proteins by not only converting the labile UmuD protein to the much more stable (and mutagenically active) UmuD' protein but by directly stabilizing UmuD' itself. In contrast, UmuC does not appear to be directly stabilized by RecA* but is instead dramatically stabilized in the presence of UmuD'. On the basis of these observations, we suggest that formation of a UmuD'C-RecA*-DNA quaternary complex protects the UmuD'C proteins from proteolytic degradation and as a consequence helps to promote the switch from error-free to error-prone mechanisms of DNA repair.
Collapse
Affiliation(s)
- E G Frank
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-2725, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
The Escherichia coli RecA protein has at least three roles in SOS mutagenesis: (1) derepression of the SOS regulon by mediating LexA cleavage; (2) activation of the UmuD mutagenesis protein by mediating its cleavage; and (3) targeting the Umu-like mutagenesis proteins to DNA. Using a combined approach of molecular and physiological assays, it is now possible to determine which of the three defined steps has been altered in any recA mutant. In this study, we have focused on the ability of six particular recA mutants (recA85, recA430, recA432, recA433, recA435 and recA730) to perform these functions. Phenotypically, recA85 and recA730 were similar in that in lexA+ and lexA(Def) backgrounds, they exhibited constitutive coprotease activity towards the UmuD mutagenesis protein. Somewhat surprisingly, in a lexA(Ind-) background, UmuD cleavage was damage inducible, suggesting that the repressed level of the RecA* protein cannot spontaneously achieve a fully activated state. Although isolated in separate laboratories, the nucleotide sequence of the recA85 and recA730 mutants revealed that they were identical, with both alleles possessing a Glu38-->Lys change in the mutant protein. The recA430, recA433 and recA435 mutants were found to be defective for both lambda mutagenesis and UmuD cleavage. lambda mutagenesis was fully restored, however, to the recA433 and recA435 strains by a low copy plasmid expressing the mutagenically active UmuD' protein. In contrast, lambda mutagenesis was only partially restored to a recA430 strain by a high copy UmuD' plasmid, suggesting that RecA430 may also be additionally defective in targeting the Umu proteins to DNA. Sequence analysis of the recA433 and recA435 alleles revealed identical substitutions resulting in Arg243-->His. The recA432 mutation had a complex phenotype in that its coprotease activity towards UmuD depended upon the lexA background: inducible in lexA+ strains, inefficient in lexA(Ind-) cells and constitutive in a lexA(Def) background. The recA432 mutant was found to carry a Pro119-->Ser substitution, a residue believed to be at the RecA subunit interface; thus this complex phenotype may result from alterations in the assembly of RecA multimers.
Collapse
Affiliation(s)
- D G Ennis
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725
| | | | | | | |
Collapse
|
16
|
Nastri HG, Knight KL. Identification of residues in the L1 region of the RecA protein which are important to recombination or coprotease activities. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47195-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|