1
|
Deal C, De Wannemaeker L, De Mey M. Towards a rational approach to promoter engineering: understanding the complexity of transcription initiation in prokaryotes. FEMS Microbiol Rev 2024; 48:fuae004. [PMID: 38383636 PMCID: PMC10911233 DOI: 10.1093/femsre/fuae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024] Open
Abstract
Promoter sequences are important genetic control elements. Through their interaction with RNA polymerase they determine transcription strength and specificity, thereby regulating the first step in gene expression. Consequently, they can be targeted as elements to control predictability and tuneability of a genetic circuit, which is essential in applications such as the development of robust microbial cell factories. This review considers the promoter elements implicated in the three stages of transcription initiation, detailing the complex interplay of sequence-specific interactions that are involved, and highlighting that DNA sequence features beyond the core promoter elements work in a combinatorial manner to determine transcriptional strength. In particular, we emphasize that, aside from promoter recognition, transcription initiation is also defined by the kinetics of open complex formation and promoter escape, which are also known to be highly sequence specific. Significantly, we focus on how insights into these interactions can be manipulated to lay the foundation for a more rational approach to promoter engineering.
Collapse
Affiliation(s)
- Cara Deal
- Centre for Synthetic Biology, Ghent University. Coupure Links 653, BE-9000 Ghent, Belgium
| | - Lien De Wannemaeker
- Centre for Synthetic Biology, Ghent University. Coupure Links 653, BE-9000 Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University. Coupure Links 653, BE-9000 Ghent, Belgium
| |
Collapse
|
2
|
John J, Jabbar J, Badjatia N, Rossi MJ, Lai WKM, Pugh BF. Genome-wide promoter assembly in E. coli measured at single-base resolution. Genome Res 2022; 32:878-892. [PMID: 35483960 PMCID: PMC9104697 DOI: 10.1101/gr.276544.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/19/2022] [Indexed: 11/04/2022]
Abstract
When detected at single-base-pair resolution, the genome-wide location, occupancy level, and structural organization of DNA-binding proteins provide mechanistic insights into genome regulation. Here we use ChIP-exo to provide a near-base-pair resolution view of the epigenomic organization of the Escherichia coli transcription machinery and nucleoid structural proteins at the time when cells are growing exponentially and upon rapid reprogramming (acute heat shock). We examined the site specificity of three sigma factors (RpoD/σ70, RpoH/σ32, and RpoN/σ54), RNA polymerase (RNAP or RpoA, -B, -C), and two nucleoid proteins (Fis and IHF). We suggest that DNA shape at the flanks of cognate motifs helps drive site specificity. We find that although RNAP and sigma factors occupy active cognate promoters, RpoH and RpoN can occupy quiescent promoters without the presence of RNAP. Thus, promoter-bound sigma factors can be triggered to recruit RNAP by a mechanism that is distinct from an obligatory cycle of free sigma binding RNAP followed by promoter binding. These findings add new dimensions to how sigma factors achieve promoter specificity through DNA sequence and shape, and further define mechanistic steps in regulated genome-wide assembly of RNAP at promoters in E. coli.
Collapse
Affiliation(s)
- Jordan John
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Javaid Jabbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Nitika Badjatia
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Matthew J Rossi
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - William K M Lai
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
- Department of Computational Biology, Cornell University, Ithaca, New York 14850, USA
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
3
|
Keseler IM, Gama-Castro S, Mackie A, Billington R, Bonavides-Martínez C, Caspi R, Kothari A, Krummenacker M, Midford PE, Muñiz-Rascado L, Ong WK, Paley S, Santos-Zavaleta A, Subhraveti P, Tierrafría VH, Wolfe AJ, Collado-Vides J, Paulsen IT, Karp PD. The EcoCyc Database in 2021. Front Microbiol 2021; 12:711077. [PMID: 34394059 PMCID: PMC8357350 DOI: 10.3389/fmicb.2021.711077] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
The EcoCyc model-organism database collects and summarizes experimental data for Escherichia coli K-12. EcoCyc is regularly updated by the manual curation of individual database entries, such as genes, proteins, and metabolic pathways, and by the programmatic addition of results from select high-throughput analyses. Updates to the Pathway Tools software that supports EcoCyc and to the web interface that enables user access have continuously improved its usability and expanded its functionality. This article highlights recent improvements to the curated data in the areas of metabolism, transport, DNA repair, and regulation of gene expression. New and revised data analysis and visualization tools include an interactive metabolic network explorer, a circular genome viewer, and various improvements to the speed and usability of existing tools.
Collapse
Affiliation(s)
- Ingrid M. Keseler
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Socorro Gama-Castro
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Amanda Mackie
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Richard Billington
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | | | - Ron Caspi
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Anamika Kothari
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Markus Krummenacker
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Peter E. Midford
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Luis Muñiz-Rascado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Wai Kit Ong
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Suzanne Paley
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Alberto Santos-Zavaleta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, México
| | - Pallavi Subhraveti
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Víctor H. Tierrafría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Julio Collado-Vides
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Ian T. Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Peter D. Karp
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| |
Collapse
|
4
|
Mejía-Almonte C, Busby SJW, Wade JT, van Helden J, Arkin AP, Stormo GD, Eilbeck K, Palsson BO, Galagan JE, Collado-Vides J. Redefining fundamental concepts of transcription initiation in bacteria. Nat Rev Genet 2020; 21:699-714. [PMID: 32665585 PMCID: PMC7990032 DOI: 10.1038/s41576-020-0254-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2020] [Indexed: 12/15/2022]
Abstract
Despite enormous progress in understanding the fundamentals of bacterial gene regulation, our knowledge remains limited when compared with the number of bacterial genomes and regulatory systems to be discovered. Derived from a small number of initial studies, classic definitions for concepts of gene regulation have evolved as the number of characterized promoters has increased. Together with discoveries made using new technologies, this knowledge has led to revised generalizations and principles. In this Expert Recommendation, we suggest precise, updated definitions that support a logical, consistent conceptual framework of bacterial gene regulation, focusing on transcription initiation. The resulting concepts can be formalized by ontologies for computational modelling, laying the foundation for improved bioinformatics tools, knowledge-based resources and scientific communication. Thus, this work will help researchers construct better predictive models, with different formalisms, that will be useful in engineering, synthetic biology, microbiology and genetics.
Collapse
Affiliation(s)
- Citlalli Mejía-Almonte
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Morelos, Cuernavaca, México
| | | | - Joseph T Wade
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Jacques van Helden
- Aix-Marseille University, INSERM UMR S 1090, Theory and Approaches of Genome Complexity (TAGC), Marseille, France
- CNRS, Institut Français de Bioinformatique, IFB-core, UMS 3601, Evry, France
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Gary D Stormo
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Karen Eilbeck
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - James E Galagan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Morelos, Cuernavaca, México.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
5
|
Bervoets I, Charlier D. Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol Rev 2019; 43:304-339. [PMID: 30721976 PMCID: PMC6524683 DOI: 10.1093/femsre/fuz001] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Gene expression occurs in two essential steps: transcription and translation. In bacteria, the two processes are tightly coupled in time and space, and highly regulated. Tight regulation of gene expression is crucial. It limits wasteful consumption of resources and energy, prevents accumulation of potentially growth inhibiting reaction intermediates, and sustains the fitness and potential virulence of the organism in a fluctuating, competitive and frequently stressful environment. Since the onset of studies on regulation of enzyme synthesis, numerous distinct regulatory mechanisms modulating transcription and/or translation have been discovered. Mostly, various regulatory mechanisms operating at different levels in the flow of genetic information are used in combination to control and modulate the expression of a single gene or operon. Here, we provide an extensive overview of the very diverse and versatile bacterial gene regulatory mechanisms with major emphasis on their combined occurrence, intricate intertwinement and versatility. Furthermore, we discuss the potential of well-characterized basal expression and regulatory elements in synthetic biology applications, where they may ensure orthogonal, predictable and tunable expression of (heterologous) target genes and pathways, aiming at a minimal burden for the host.
Collapse
Affiliation(s)
- Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
6
|
Urtecho G, Tripp AD, Insigne KD, Kim H, Kosuri S. Systematic Dissection of Sequence Elements Controlling σ70 Promoters Using a Genomically Encoded Multiplexed Reporter Assay in Escherichia coli. Biochemistry 2018; 58:1539-1551. [PMID: 29388765 DOI: 10.1021/acs.biochem.7b01069] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Promoters are the key drivers of gene expression and are largely responsible for the regulation of cellular responses to time and environment. In Escherichia coli, decades of studies have revealed most, if not all, of the sequence elements necessary to encode promoter function. Despite our knowledge of these motifs, it is still not possible to predict the strength and regulation of a promoter from primary sequence alone. Here we develop a novel multiplexed assay to study promoter function in E. coli by building a site-specific genomic recombination-mediated cassette exchange system that allows for the facile construction and testing of large libraries of genetic designs integrated into precise genomic locations. We build and test a library of 10898 σ70 promoter variants consisting of all combinations of a set of eight -35 elements, eight -10 elements, three UP elements, eight spacers, and eight backgrounds. We find that the -35 and -10 sequence elements can explain approximately 74% of the variance in promoter strength within our data set using a simple log-linear statistical model. Simple neural network models explain >95% of the variance in our data set by capturing nonlinear interactions with the spacer, background, and UP elements.
Collapse
Affiliation(s)
- Guillaume Urtecho
- Molecular Biology Interdepartmental Doctoral Program , University of California , Los Angeles , California 90095 , United States
| | - Arielle D Tripp
- Department of Molecular, Cell, and Developmental Biology , University of California , Los Angeles , California 90095 , United States
| | - Kimberly D Insigne
- Bioinformatics Interdepartmental Graduate Program , University of California , Los Angeles , California 90095 , United States
| | - Hwangbeom Kim
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Sriram Kosuri
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States.,UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center , University of California , Los Angeles , California 90095 , United States
| |
Collapse
|
7
|
Yu L, Winkelman JT, Pukhrambam C, Strick TR, Nickels BE, Ebright RH. The mechanism of variability in transcription start site selection. eLife 2017; 6:32038. [PMID: 29168694 PMCID: PMC5730371 DOI: 10.7554/elife.32038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/22/2017] [Indexed: 01/24/2023] Open
Abstract
During transcription initiation, RNA polymerase (RNAP) binds to promoter DNA, unwinds promoter DNA to form an RNAP-promoter open complex (RPo) containing a single-stranded ‘transcription bubble,’ and selects a transcription start site (TSS). TSS selection occurs at different positions within the promoter region, depending on promoter sequence and initiating-substrate concentration. Variability in TSS selection has been proposed to involve DNA ‘scrunching’ and ‘anti-scrunching,’ the hallmarks of which are: (i) forward and reverse movement of the RNAP leading edge, but not trailing edge, relative to DNA, and (ii) expansion and contraction of the transcription bubble. Here, using in vitro and in vivo protein-DNA photocrosslinking and single-molecule nanomanipulation, we show bacterial TSS selection exhibits both hallmarks of scrunching and anti-scrunching, and we define energetics of scrunching and anti-scrunching. The results establish the mechanism of TSS selection by bacterial RNAP and suggest a general mechanism for TSS selection by bacterial, archaeal, and eukaryotic RNAP. Genes store the information needed to build and repair cells. This information is written in a chemical code within the structure of DNA molecules. To make use of the information, cells copy sections of a gene into a DNA-like molecule called RNA. An enzyme called RNA polymerase makes RNA molecules from DNA templates in a process called transcription. RNA polymerase can only make RNA by attaching to DNA and separating the two strands of the DNA double helix. This creates a short region of single-stranded DNA known as a “transcription bubble”. RNA polymerase can start transcription at different distances from the sites where it initially attaches to DNA, depending on the DNA sequence and the cell’s environment. It had not been known how RNA polymerase selects different transcription start sites in different cases. One hypothesis had been that differences in the size of the transcription bubble – the amount of unwound single-stranded DNA – could be responsible for differences in transcription start sites. For example, RNA polymerase could increase the size of the bubble through a process called “DNA scrunching”, in which RNA polymerase pulls in and unwinds extra DNA from further along the gene. Yu, Winkelman et al. looked for indicators of DNA scrunching to see whether it contributes to the selection of transcription start sites. By mapping the positions of the two edges of RNA polymerase relative to DNA, they saw that RNA polymerase pulls in extra DNA when selecting a transcription start site further from its initial attachment site. Next, by measuring the amount of DNA unwinding, they saw that RNA polymerase unwinds extra DNA when it selects a transcription start site further from its initial attachment site. This was the case for both RNA polymerase in a test tube and RNA polymerase in living bacterial cells. The results showed that DNA scrunching accounts for known patterns of selection of transcription start sites. The findings hint at a common theory for the selection of transcription start sites across all life by DNA scrunching. Understanding these basic principles of biology reveals more about how cells work and how cells adapt to changing conditions. The experimental methods developed for mapping the positions of proteins on DNA and for measuring DNA unwinding will help scientists to learn more about other aspects of how DNA is stored, copied, read, and controlled.
Collapse
Affiliation(s)
- Libing Yu
- Department of Chemistry, Rutgers University, Piscataway, United States.,Waksman Institute, Rutgers University, Piscataway, United States
| | - Jared T Winkelman
- Department of Chemistry, Rutgers University, Piscataway, United States.,Waksman Institute, Rutgers University, Piscataway, United States.,Department of Genetics, Rutgers University, Piscataway, United States
| | - Chirangini Pukhrambam
- Waksman Institute, Rutgers University, Piscataway, United States.,Department of Genetics, Rutgers University, Piscataway, United States
| | - Terence R Strick
- Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France.,Programme Equipe Labellisées, Ligue Contre le Cancer, Paris, France.,Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Paris, France
| | - Bryce E Nickels
- Waksman Institute, Rutgers University, Piscataway, United States.,Department of Genetics, Rutgers University, Piscataway, United States
| | - Richard H Ebright
- Department of Chemistry, Rutgers University, Piscataway, United States.,Waksman Institute, Rutgers University, Piscataway, United States
| |
Collapse
|
8
|
Hook-Barnard IG, Hinton DM. Transcription Initiation by Mix and Match Elements: Flexibility for Polymerase Binding to Bacterial Promoters. GENE REGULATION AND SYSTEMS BIOLOGY 2017. [DOI: 10.1177/117762500700100020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bacterial RNA polymerase is composed of a core of subunits (β β′, α1, α2, ω), which have RNA synthesizing activity, and a specificity factor (σ), which identifies the start of transcription by recognizing and binding to sequence elements within promoter DNA. Four core promoter consensus sequences, the –10 element, the extended –10 (TGn) element, the –35 element, and the UP elements, have been known for many years; the importance of a nontemplate G at position -5 has been recognized more recently. However, the functions of these elements are not the same. The AT-rich UP elements, the –35 elements (–35TTGACA–30), and the extended –10 (15TGn–13) are recognized as double-stranded binding elements, whereas the –5 nontemplate G is recognized in the context of single-stranded DNA at the transcription bubble. Furthermore, the –10 element (–12TATAAT–7) is recognized as both double-stranded DNA for the T:A bp at position –12 and as nontemplate, single-stranded DNA from positions –11 to –7. The single-stranded sequences at positions –11 to –7 as well as the –5 contribute to later steps in transcription initiation that involve isomerization of polymerase and separation of the promoter DNA around the transcription start site. Recent work has demonstrated that the double-stranded elements may be used in various combinations to yield an effective promoter. Thus, while some minimal number of contacts is required for promoter function, polymerase allows the elements to be mixed and matched. Interestingly, which particular elements are used does not appear to fundamentally alter the transcription bubble generated in the stable complex. In this review, we discuss the multiple steps involved in forming a transcriptionally competent polymerase/promoter complex, and we examine what is known about polymerase recognition of core promoter elements. We suggest that considering promoter elements according to their involvement in early (polymerase binding) or later (polymerase isomerization) steps in transcription initiation rather than simply from their match to conventional promoter consensus sequences is a more instructive form of promoter classification.
Collapse
Affiliation(s)
- India G. Hook-Barnard
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8 Room 2A-13, Bethesda, MD 20892-0830
| | - Deborah M. Hinton
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8 Room 2A-13, Bethesda, MD 20892-0830
| |
Collapse
|
9
|
Albersmeier A, Pfeifer-Sancar K, Rückert C, Kalinowski J. Genome-wide determination of transcription start sites reveals new insights into promoter structures in the actinomycete Corynebacterium glutamicum. J Biotechnol 2017; 257:99-109. [PMID: 28412515 DOI: 10.1016/j.jbiotec.2017.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
Abstract
The genome-wide identification of transcription start sites, enabled by high-throughput sequencing of a cDNA library enriched for native 5' transcript ends, is ideally suited for the analysis of promoters. Here, the transcriptome of Corynebacterium glutamicum, a non-pathogenic soil bacterium from the actinomycetes branch that is used in industry for the production of amino acids, was analysed by transcriptome sequencing of the 5'-ends of native transcripts. Total RNA samples were harvested from the exponential phase of growth, therefore the study mainly addressed promoters recognized by the main house-keeping sigma factor σA. The identification of 2454 transcription start sites (TSS) allowed the detailed analysis of most promoters recognized by σA and furthermore enabled us to form different promoter groups according to their location relative to protein-coding regions. These groups included leaderless transcripts (546 promoters), short-leadered (<500 bases) transcripts (917), and long-leadered (>500 bases) transcripts (173) as well as intragenic (557) and antisense transcripts (261). All promoters and the individual groups were searched for information, e.g. conserved residues and promoter motifs, and general design features as well as group-specific preferences were identified. A purine was found highly favored as TSS, whereas the -1 position was dominated by pyrimidines. The spacer between TSS and -10 region were consistently 6-7 bases and the -10 promoter motif was generally visible, whereas a recognizable -35 region was only occurring in a smaller fraction of promoters (7.5%) and enriched for leadered and antisense transcripts but depleted for leaderless transcripts. Promoters showing an extended -10 region were especially frequent in case of non-canonical -10 motifs (45.5%). Two bases downstream of the -10 core region, a G was conserved, exceeding 40% abundance in most groups. This fraction reached 74.6% for a group of putative σB-dependent promoters, thus giving a hint to a specific property of these promoters. In addition, the high number of promoters analysed allowed finding of subtle signals only showing up significantly with this large set. This included the observation of a periodically changing A+T-content with maxima spaced by a full turn of the DNA helix. This periodic structure includes the A+T-rich UP-element of bacterial promoters known before but was found to extend up to -100, indicating hitherto unknown constraints influencing promoter architecture and possibly also promoter function.
Collapse
Affiliation(s)
- Andreas Albersmeier
- Microbial Genomics Biotechnology, Centrum für Biotechnologie Universität Bielefeld, Sequenz 1, 33615 Bielefeld, Germany
| | - Katharina Pfeifer-Sancar
- Microbial Genomics Biotechnology, Centrum für Biotechnologie Universität Bielefeld, Sequenz 1, 33615 Bielefeld, Germany
| | - Christian Rückert
- Microbial Genomics Biotechnology, Centrum für Biotechnologie Universität Bielefeld, Sequenz 1, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics Biotechnology, Centrum für Biotechnologie Universität Bielefeld, Sequenz 1, 33615 Bielefeld, Germany.
| |
Collapse
|
10
|
Winkelman JT, Gourse RL. Open complex DNA scrunching: A key to transcription start site selection and promoter escape. Bioessays 2017; 39:10.1002/bies.201600193. [PMID: 28052345 PMCID: PMC5313389 DOI: 10.1002/bies.201600193] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacterial RNA polymerase-promoter open complexes can exist in a range of states in which the leading edge of the enzyme moves but the trailing edge does not, a phenomenon we refer to as "open complex scrunching." Here we describe how open complex scrunching can determine the position of the transcription start site for some promoters, modulate the level of expression, and potentially could be targeted by factors to regulate transcription. We suggest that open complex scrunching at the extraordinarily active ribosomal RNA promoters might have evolved to initiate transcription at an unusual position relative to the core promoter elements in order to maximize the rate of promoter escape.
Collapse
Affiliation(s)
- Jared T. Winkelman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Genetics and Waksman Institute, Rutgers University, NJ, USA
| | - Richard L. Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
11
|
Interactions between RNA polymerase and the core recognition element are a determinant of transcription start site selection. Proc Natl Acad Sci U S A 2016; 113:E2899-905. [PMID: 27162333 DOI: 10.1073/pnas.1603271113] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
During transcription initiation, RNA polymerase (RNAP) holoenzyme unwinds ∼13 bp of promoter DNA, forming an RNAP-promoter open complex (RPo) containing a single-stranded transcription bubble, and selects a template-strand nucleotide to serve as the transcription start site (TSS). In RPo, RNAP core enzyme makes sequence-specific protein-DNA interactions with the downstream part of the nontemplate strand of the transcription bubble ("core recognition element," CRE). Here, we investigated whether sequence-specific RNAP-CRE interactions affect TSS selection. To do this, we used two next-generation sequencing-based approaches to compare the TSS profile of WT RNAP to that of an RNAP derivative defective in sequence-specific RNAP-CRE interactions. First, using massively systematic transcript end readout, MASTER, we assessed effects of RNAP-CRE interactions on TSS selection in vitro and in vivo for a library of 4(7) (∼16,000) consensus promoters containing different TSS region sequences, and we observed that the TSS profile of the RNAP derivative defective in RNAP-CRE interactions differed from that of WT RNAP, in a manner that correlated with the presence of consensus CRE sequences in the TSS region. Second, using 5' merodiploid native-elongating-transcript sequencing, 5' mNET-seq, we assessed effects of RNAP-CRE interactions at natural promoters in Escherichia coli, and we identified 39 promoters at which RNAP-CRE interactions determine TSS selection. Our findings establish RNAP-CRE interactions are a functional determinant of TSS selection. We propose that RNAP-CRE interactions modulate the position of the downstream end of the transcription bubble in RPo, and thereby modulate TSS selection, which involves transcription bubble expansion or transcription bubble contraction (scrunching or antiscrunching).
Collapse
|
12
|
Winkelman JT, Chandrangsu P, Ross W, Gourse RL. Open complex scrunching before nucleotide addition accounts for the unusual transcription start site of E. coli ribosomal RNA promoters. Proc Natl Acad Sci U S A 2016; 113:E1787-95. [PMID: 26976590 PMCID: PMC4822585 DOI: 10.1073/pnas.1522159113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most Escherichia coli promoters initiate transcription with a purine 7 or 8 nt downstream from the -10 hexamer, but some promoters, including the ribosomal RNA promoter rrnB P1, start 9 nt from the -10 element. We identified promoter and RNA polymerase determinants of this noncanonical rrnB P1 start site using biochemical and genetic approaches including mutational analysis of the promoter, Fe(2+) cleavage assays to monitor template strand positions near the active-site, and Bpa cross-linking to map the path of open complex DNA at amino acid and nucleotide resolution. We find that mutations in several promoter regions affect transcription start site (TSS) selection. In particular, we show that the absence of strong interactions between the discriminator region and σ region 1.2 and between the extended -10 element and σ region 3.0, identified previously as a determinant of proper regulation of rRNA promoters, is also required for the unusual TSS. We find that the DNA in the single-stranded transcription bubble of the rrnB P1 promoter complex expands and is "scrunched" into the active site channel of RNA polymerase, similar to the situation in initial transcribing complexes. However, in the rrnB P1 open complex, scrunching occurs before RNA synthesis begins. We find that the scrunched open complex exhibits reduced abortive product synthesis, suggesting that scrunching and unusual TSS selection contribute to the extraordinary transcriptional activity of rRNA promoters by increasing promoter escape, helping to offset the reduction in promoter activity that would result from the weak interactions with σ.
Collapse
Affiliation(s)
- Jared T Winkelman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| | - Pete Chandrangsu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| | - Wilma Ross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| | - Richard L Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
13
|
Winkelman JT, Vvedenskaya IO, Zhang Y, Zhang Y, Bird JG, Taylor DM, Gourse RL, Ebright RH, Nickels BE. Multiplexed protein-DNA cross-linking: Scrunching in transcription start site selection. Science 2016; 351:1090-3. [PMID: 26941320 DOI: 10.1126/science.aad6881] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In bacterial transcription initiation, RNA polymerase (RNAP) selects a transcription start site (TSS) at variable distances downstream of core promoter elements. Using next-generation sequencing and unnatural amino acid-mediated protein-DNA cross-linking, we have determined, for a library of 4(10) promoter sequences, the TSS, the RNAP leading-edge position, and the RNAP trailing-edge position. We find that a promoter element upstream of the TSS, the "discriminator," participates in TSS selection, and that, as the TSS changes, the RNAP leading-edge position changes, but the RNAP trailing-edge position does not change. Changes in the RNAP leading-edge position, but not the RNAP trailing-edge position, are a defining hallmark of the "DNA scrunching" that occurs concurrent with RNA synthesis in initial transcription. We propose that TSS selection involves DNA scrunching prior to RNA synthesis.
Collapse
Affiliation(s)
- Jared T Winkelman
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA. Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA. Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA. Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Irina O Vvedenskaya
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA. Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Yuanchao Zhang
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA. Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yu Zhang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA. Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Jeremy G Bird
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA. Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA. Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Deanne M Taylor
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA. Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA. Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. Department of Obstetrics, Gynecology and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Richard L Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Richard H Ebright
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA. Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.
| | - Bryce E Nickels
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA. Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
14
|
Vvedenskaya IO, Zhang Y, Goldman SR, Valenti A, Visone V, Taylor DM, Ebright RH, Nickels BE. Massively Systematic Transcript End Readout, "MASTER": Transcription Start Site Selection, Transcriptional Slippage, and Transcript Yields. Mol Cell 2015; 60:953-65. [PMID: 26626484 DOI: 10.1016/j.molcel.2015.10.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/14/2015] [Accepted: 10/14/2015] [Indexed: 11/24/2022]
Abstract
We report the development of a next-generation sequencing-based technology that entails construction of a DNA library comprising up to at least 4(7) (∼ 16,000) barcoded sequences, production of RNA transcripts, and analysis of transcript ends and transcript yields (massively systematic transcript end readout, "MASTER"). Using MASTER, we define full inventories of transcription start sites ("TSSomes") of Escherichia coli RNA polymerase for initiation at a consensus core promoter in vitro and in vivo; we define the TSS-region DNA sequence determinants for TSS selection, reiterative initiation ("slippage synthesis"), and transcript yield; and we define effects of DNA topology and NTP concentration. The results reveal that slippage synthesis occurs from the majority of TSS-region DNA sequences and that TSS-region DNA sequences have profound, up to 100-fold, effects on transcript yield. The results further reveal that TSSomes depend on DNA topology, consistent with the proposal that TSS selection involves transcription-bubble expansion ("scrunching") and transcription-bubble contraction ("anti-scrunching").
Collapse
Affiliation(s)
- Irina O Vvedenskaya
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA; Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Yuanchao Zhang
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA; Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19041, USA
| | - Seth R Goldman
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA; Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Anna Valenti
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, Naples 80131, Italy
| | - Valeria Visone
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, Naples 80131, Italy
| | - Deanne M Taylor
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA; Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19041, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Richard H Ebright
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Bryce E Nickels
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA; Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
15
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
16
|
Development of a Novel Plasmid-Free Thymidine Producer by Reprogramming Nucleotide Metabolic Pathways. Appl Environ Microbiol 2015; 81:7708-19. [PMID: 26319873 DOI: 10.1128/aem.02031-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/22/2015] [Indexed: 11/20/2022] Open
Abstract
A novel thymidine-producing strain of Escherichia coli was prepared by genome recombineering. Eleven genes were deleted by replacement with an expression cassette, and 7 genes were integrated into the genome. The resulting strain, E. coli HLT013, showed a high thymidine yield with a low deoxyuridine content. DNA microarrays were then used to compare the gene expression profiles of HLT013 and its isogenic parent strain. Based on microarray analysis, the pyr biosynthesis genes and 10 additional genes were selected and then expressed in HLT013 to find reasonable candidates for enhancing thymidine yield. Among these, phage shock protein A (PspA) showed positive effects on thymidine production by diminishing redox stress. Thus, we integrated pspA into the HLT013 genome, resulting in E. coli strain HLT026, which produced 13.2 g/liter thymidine for 120 h with fed-batch fermentation. Here, we also provide a basis for new testable hypotheses regarding the enhancement of thymidine productivity and the attainment of a more complete understanding of nucleotide metabolism in bacteria.
Collapse
|
17
|
Kim JS, Koo BS, Hyun HH, Lee HC. Deoxycytidine production by a metabolically engineered Escherichia coli strain. Microb Cell Fact 2015; 14:98. [PMID: 26148515 PMCID: PMC4491880 DOI: 10.1186/s12934-015-0291-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/24/2015] [Indexed: 11/10/2022] Open
Abstract
Background Rational engineering studies for deoxycytidine production were initiated due to low intracellular levels and tight regulation. To achieve high-level production of deoxycytidine, a useful precursor of decitabine, genes related to feed-back inhibition as well as the biosynthetic pathway were engineered. Additionally, we predicted the impact of individual gene expression levels on a complex metabolic network by microarray analysis. Based on these findings, we demonstrated rational metabolic engineering strategies capable of producing deoxycytidine. Results To prepare the deoxycytidine producing strain, we first deleted 3 degradation enzymes in the salvage pathway (deoA, udp, and deoD) and 4 enzymes involved in the branching pathway (dcd, cdd, codA and thyA) to completely eliminate degradation of deoxycytidine. Second, purR, pepA and argR were knocked out to prevent feedback inhibition of CarAB. Third, to enhance influx to deoxycytidine, we investigated combinatorial expression of pyrG, T4 nrdCAB and yfbR. The best strain carried pETGY (pyrG-yfbR) from the possible combinatorial plasmids. The resulting strain showed high deoxycytidine yield (650 mg/L) but co-produced byproducts. To further improve deoxycytidine yield and reduce byproduct formation, pgi was disrupted to generate a sufficient supply of NADPH and ribose. Overall, in shake-flask cultures, the resulting strain produced 967 mg/L of dCyd with decreased byproducts. Conclusions We demonstrated that deoxycytidine could be readily achieved by recombineering with biosynthetic genes and regulatory genes, which appeared to enhance the supply of precursors for synthesis of carbamoyl phosphate, based on transcriptome analysis. In addition, we showed that carbon flux rerouting, by disrupting pgi, efficiently improved deoxycytidine yield and decreased byproduct content. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0291-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin-Sook Kim
- ForBioKorea Co., Ltd., Siheung Industrial Center 22-321, Seoul, 153-701, Republic of Korea. .,Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, San 89, Wangsan-Ri, Mohyun-Myun, Yongin-Shi, 449-791, Republic of Korea.
| | - Bong-Seong Koo
- ForBioKorea Co., Ltd., Siheung Industrial Center 22-321, Seoul, 153-701, Republic of Korea.
| | - Hyung-Hwan Hyun
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, San 89, Wangsan-Ri, Mohyun-Myun, Yongin-Shi, 449-791, Republic of Korea.
| | - Hyeon-Cheol Lee
- ForBioKorea Co., Ltd., Siheung Industrial Center 22-321, Seoul, 153-701, Republic of Korea. .,Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, San 89, Wangsan-Ri, Mohyun-Myun, Yongin-Shi, 449-791, Republic of Korea.
| |
Collapse
|
18
|
Abstract
Transcription initiation is a highly regulated step of gene expression. Here, we discuss the series of large conformational changes set in motion by initial specific binding of bacterial RNA polymerase (RNAP) to promoter DNA and their relevance for regulation. Bending and wrapping of the upstream duplex facilitates bending of the downstream duplex into the active site cleft, nucleating opening of 13 bp in the cleft. The rate-determining opening step, driven by binding free energy, forms an unstable open complex, probably with the template strand in the active site. At some promoters, this initial open complex is greatly stabilized by rearrangements of the discriminator region between the -10 element and +1 base of the nontemplate strand and of mobile in-cleft and downstream elements of RNAP. The rate of open complex formation is regulated by effects on the rapidly-reversible steps preceding DNA opening, while open complex lifetime is regulated by effects on the stabilization of the initial open complex. Intrinsic DNA opening-closing appears less regulated. This noncovalent mechanism and its regulation exhibit many analogies to mechanisms of enzyme catalysis.
Collapse
|
19
|
Irla M, Neshat A, Brautaset T, Rückert C, Kalinowski J, Wendisch VF. Transcriptome analysis of thermophilic methylotrophic Bacillus methanolicus MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape. BMC Genomics 2015; 16:73. [PMID: 25758049 PMCID: PMC4342826 DOI: 10.1186/s12864-015-1239-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/12/2015] [Indexed: 01/27/2023] Open
Abstract
Background Bacillus methanolicus MGA3 is a thermophilic, facultative ribulose monophosphate (RuMP) cycle methylotroph. Together with its ability to produce high yields of amino acids, the relevance of this microorganism as a promising candidate for biotechnological applications is evident. The B. methanolicus MGA3 genome consists of a 3,337,035 nucleotides (nt) circular chromosome, the 19,174 nt plasmid pBM19 and the 68,999 nt plasmid pBM69. 3,218 protein-coding regions were annotated on the chromosome, 22 on pBM19 and 82 on pBM69. In the present study, the RNA-seq approach was used to comprehensively investigate the transcriptome of B. methanolicus MGA3 in order to improve the genome annotation, identify novel transcripts, analyze conserved sequence motifs involved in gene expression and reveal operon structures. For this aim, two different cDNA library preparation methods were applied: one which allows characterization of the whole transcriptome and another which includes enrichment of primary transcript 5′-ends. Results Analysis of the primary transcriptome data enabled the detection of 2,167 putative transcription start sites (TSSs) which were categorized into 1,642 TSSs located in the upstream region (5′-UTR) of known protein-coding genes and 525 TSSs of novel antisense, intragenic, or intergenic transcripts. Firstly, 14 wrongly annotated translation start sites (TLSs) were corrected based on primary transcriptome data. Further investigation of the identified 5′-UTRs resulted in the detailed characterization of their length distribution and the detection of 75 hitherto unknown cis-regulatory RNA elements. Moreover, the exact TSSs positions were utilized to define conserved sequence motifs for translation start sites, ribosome binding sites and promoters in B. methanolicus MGA3. Based on the whole transcriptome data set, novel transcripts, operon structures and mRNA abundances were determined. The analysis of the operon structures revealed that almost half of the genes are transcribed monocistronically (940), whereas 1,164 genes are organized in 381 operons. Several of the genes related to methylotrophy had highly abundant transcripts. Conclusion The extensive insights into the transcriptional landscape of B. methanolicus MGA3, gained in this study, represent a valuable foundation for further comparative quantitative transcriptome analyses and possibly also for the development of molecular biology tools which at present are very limited for this organism. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1239-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Irla
- Genetics of Prokaryotes, Faculty of Biology & Center for Biotechnology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| | - Armin Neshat
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätstr. 27, 33615, Bielefeld, Germany.
| | - Trygve Brautaset
- Department of Molecular Biology, SINTEF Materials and Chemistry, Sem Selands vei 2, 7465, Trondheim, Norway. .,Department of Biotechnology, Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491, Trondheim, Norway.
| | - Christian Rückert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätstr. 27, 33615, Bielefeld, Germany. .,Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Universitätsstr. 27, 33615, Bielefeld, Germany.
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätstr. 27, 33615, Bielefeld, Germany. .,Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Universitätsstr. 27, 33615, Bielefeld, Germany.
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & Center for Biotechnology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
20
|
Transcription start site sequence and spacing between the -10 region and the start site affect reiterative transcription-mediated regulation of gene expression in Escherichia coli. J Bacteriol 2014; 196:2912-20. [PMID: 24891446 DOI: 10.1128/jb.01753-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reiterative transcription is a reaction catalyzed by RNA polymerase, in which nucleotides are repetitively added to the 3' end of a nascent transcript due to upstream slippage of the transcript without movement of the DNA template. In Escherichia coli, the expression of several operons is regulated through mechanisms in which high intracellular levels of UTP promote reiterative transcription that adds extra U residues to the 3' end of a nascent transcript during transcription initiation. Immediately following the addition of one or more extra U residues, the nascent transcripts are released from the transcription initiation complex, thereby reducing the level of gene expression. Therefore, gene expression can be regulated by internal UTP levels, which reflect the availability of external pyrimidine sources. The magnitude of gene regulation by these mechanisms varies considerably, even when control mechanisms are analogous. These variations apparently are due to differences in promoter sequences. One of the operons regulated (in part) by UTP-sensitive reiterative transcription in E. coli is the carAB operon, which encodes the first enzyme in the pyrimidine nucleotide biosynthetic pathway. In this study, we used the carAB operon to examine the effects of nucleotide sequence at and near the transcription start site and spacing between the start site and -10 region of the promoter on reiterative transcription and gene regulation. Our results indicate that these variables are important determinants in establishing the extent of reiterative transcription, levels of productive transcription, and range of gene regulation.
Collapse
|
21
|
The δ subunit of RNA polymerase is required for rapid changes in gene expression and competitive fitness of the cell. J Bacteriol 2013; 195:2603-11. [PMID: 23543716 DOI: 10.1128/jb.00188-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase (RNAP) is an extensively studied multisubunit enzyme required for transcription of DNA into RNA, yet the δ subunit of RNAP remains an enigmatic protein whose physiological roles have not been fully elucidated. Here, we identify a novel, so far unrecognized function of δ from Bacillus subtilis. We demonstrate that δ affects the regulation of RNAP by the concentration of the initiating nucleoside triphosphate ([iNTP]), an important mechanism crucial for rapid changes in gene expression in response to environmental changes. Consequently, we demonstrate that δ is essential for cell survival when facing a competing strain in a changing environment. Hence, although δ is not essential per se, it is vital for the cell's ability to rapidly adapt and survive in nature. Finally, we show that two other proteins, GreA and YdeB, previously implicated to affect regulation of RNAP by [iNTP] in other organisms, do not have this function in B. subtilis.
Collapse
|
22
|
Robb NC, Cordes T, Hwang LC, Gryte K, Duchi D, Craggs TD, Santoso Y, Weiss S, Ebright RH, Kapanidis AN. The transcription bubble of the RNA polymerase-promoter open complex exhibits conformational heterogeneity and millisecond-scale dynamics: implications for transcription start-site selection. J Mol Biol 2012; 425:875-85. [PMID: 23274143 DOI: 10.1016/j.jmb.2012.12.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/20/2012] [Indexed: 01/04/2023]
Abstract
Bacterial transcription is initiated after RNA polymerase (RNAP) binds to promoter DNA, melts ~14 bp around the transcription start site and forms a single-stranded "transcription bubble" within a catalytically active RNAP-DNA open complex (RP(o)). There is significant flexibility in the transcription start site, which causes variable spacing between the promoter elements and the start site; this in turn causes differences in the length and sequence at the 5' end of RNA transcripts and can be important for gene regulation. The start-site variability also implies the presence of some flexibility in the positioning of the DNA relative to the RNAP active site in RP(o). The flexibility may occur in the positioning of the transcription bubble prior to RNA synthesis and may reflect bubble expansion ("scrunching") or bubble contraction ("unscrunching"). Here, we assess the presence of dynamic flexibility in RP(o) with single-molecule FRET (Förster resonance energy transfer). We obtain experimental evidence for dynamic flexibility in RP(o) using different FRET rulers and labeling positions. An analysis of FRET distributions of RP(o) using burst variance analysis reveals conformational fluctuations in RP(o) in the millisecond timescale. Further experiments using subsets of nucleotides and DNA mutations allowed us to reprogram the transcription start sites, in a way that can be described by repositioning of the single-stranded transcription bubble relative to the RNAP active site within RP(o). Our study marks the first experimental observation of conformational dynamics in the transcription bubble of RP(o) and indicates that DNA dynamics within the bubble affect the search for transcription start sites.
Collapse
Affiliation(s)
- Nicole C Robb
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jeong JH, Kim HJ, Kim KH, Shin M, Hong Y, Rhee JH, Schneider TD, Choy HE. An unusual feature associated with LEE1 P1 promoters in enteropathogenic Escherichia coli (EPEC). Mol Microbiol 2012; 83:612-22. [PMID: 22229878 PMCID: PMC3480209 DOI: 10.1111/j.1365-2958.2011.07956.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transcription start points in bacteria are influenced by the nature of the RNA polymerase·promoter interaction. For Escherichia coli RNA polymerase holoenzyme containing σ70, it is presumed that specific sequence in one or more of the -10, extended -10 and -35 elements of the promoter guides the RNAP to select the cognate start point. Here, we investigated the promoter driving expression of the LEE1 operon in enteropathogenic E. coli and found two promoters separated by 10 bp, LEE1 P1A (+1) and LEE1 P1B (+10) using various in vitro biochemical tools. A unique feature of P1B was the presence of multiple transcription starts from five neighbouring As at the initial transcribed region. The multiple products did not arise from stuttering synthesis. Analytical software based on information theory was employed to determine promoter elements. The concentration of the NTP pool altered the preferred transcription start points, albeit the underlying mechanism is elusive. Under in vivo conditions, dominant P1B, but not P1A, was subject to regulation by IHF.
Collapse
Affiliation(s)
- Jae-Ho Jeong
- Center for Host Defense against Enteropathogenic Bacteria Infection, Chonnam National University Medical School, Kwangju 501-746, South Korea
- Department of Microbiology, Chonnam National University Medical School, Kwangju 501-746, South Korea
| | - Hyun-Ju Kim
- Center for Host Defense against Enteropathogenic Bacteria Infection, Chonnam National University Medical School, Kwangju 501-746, South Korea
- Department of Microbiology, Chonnam National University Medical School, Kwangju 501-746, South Korea
| | - Kun-Hee Kim
- Center for Host Defense against Enteropathogenic Bacteria Infection, Chonnam National University Medical School, Kwangju 501-746, South Korea
- Department of Microbiology, Chonnam National University Medical School, Kwangju 501-746, South Korea
| | - Minsang Shin
- Center for Host Defense against Enteropathogenic Bacteria Infection, Chonnam National University Medical School, Kwangju 501-746, South Korea
- Department of Microbiology, Chonnam National University Medical School, Kwangju 501-746, South Korea
| | - Yeongjin Hong
- Center for Host Defense against Enteropathogenic Bacteria Infection, Chonnam National University Medical School, Kwangju 501-746, South Korea
- Department of Microbiology, Chonnam National University Medical School, Kwangju 501-746, South Korea
| | - Joon Haeng Rhee
- Department of Microbiology, Chonnam National University Medical School, Kwangju 501-746, South Korea
| | - Thomas D. Schneider
- National Cancer Institute, National Institutes of Health, Gene Regulation and Chromosome Biology Laboratory, Building 539, Room 129A, NCI-Frederick, Maryland, United States
| | - Hyon E. Choy
- Center for Host Defense against Enteropathogenic Bacteria Infection, Chonnam National University Medical School, Kwangju 501-746, South Korea
- Department of Microbiology, Chonnam National University Medical School, Kwangju 501-746, South Korea
| |
Collapse
|
24
|
Saecker RM, Record MT, Dehaseth PL. Mechanism of bacterial transcription initiation: RNA polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. J Mol Biol 2011; 412:754-71. [PMID: 21371479 DOI: 10.1016/j.jmb.2011.01.018] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/07/2011] [Accepted: 01/08/2011] [Indexed: 10/18/2022]
Abstract
Initiation of RNA synthesis from DNA templates by RNA polymerase (RNAP) is a multi-step process, in which initial recognition of promoter DNA by RNAP triggers a series of conformational changes in both RNAP and promoter DNA. The bacterial RNAP functions as a molecular isomerization machine, using binding free energy to remodel the initial recognition complex, placing downstream duplex DNA in the active site cleft and then separating the nontemplate and template strands in the region surrounding the start site of RNA synthesis. In this initial unstable "open" complex the template strand appears correctly positioned in the active site. Subsequently, the nontemplate strand is repositioned and a clamp is assembled on duplex DNA downstream of the open region to form the highly stable open complex, RP(o). The transcription initiation factor, σ(70), plays critical roles in promoter recognition and RP(o) formation as well as in early steps of RNA synthesis.
Collapse
Affiliation(s)
- Ruth M Saecker
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
25
|
Turnbough CL. Regulation of gene expression by reiterative transcription. Curr Opin Microbiol 2011; 14:142-7. [PMID: 21334966 DOI: 10.1016/j.mib.2011.01.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
Abstract
Gene regulation involves many different types of transcription control mechanisms, including mechanisms based on reiterative transcription in which nucleotides are repetitively added to the 3' end of a nascent transcript due to upstream transcript slippage. In these mechanisms, reiterative transcription is typically modulated by interactions between RNA polymerase and its nucleoside triphosphate substrates without the involvement of regulatory proteins. This review describes the current state of knowledge of gene regulation involving reiterative transcription. It focuses on the methods by which reiterative transcription is controlled and emphasizes the different fates of transcripts produced by this reaction. The review also includes a discussion of possible new and fundamentally different mechanisms of gene regulation that rely on conditional reiterative transcription.
Collapse
Affiliation(s)
- Charles L Turnbough
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA.
| |
Collapse
|
26
|
Sojka L, Kouba T, Barvík I, Sanderová H, Maderová Z, Jonák J, Krásny L. Rapid changes in gene expression: DNA determinants of promoter regulation by the concentration of the transcription initiating NTP in Bacillus subtilis. Nucleic Acids Res 2011; 39:4598-611. [PMID: 21303765 PMCID: PMC3113569 DOI: 10.1093/nar/gkr032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In bacteria, rapid changes in gene expression can be achieved by affecting the activity of RNA polymerase with small molecule effectors during transcription initiation. An important small molecule effector is the initiating nucleoside triphosphate (iNTP). At some promoters, an increasing iNTP concentration stimulates promoter activity, while a decreasing concentration has the opposite effect. Ribosomal RNA (rRNA) promoters from Gram-positive Bacillus subtilis are regulated by the concentration of their iNTP. Yet, the sequences of these promoters do not emulate the sequence characteristics of [iNTP]-regulated rRNA promoters of Gram-negative Escherichia coli. Here, we identified the 3′-promoter region, corresponding to the transcription bubble, as key for B. subtilis rRNA promoter regulation via the concentration of the iNTP. Within this region, the conserved −5T (3 bp downstream from the −10 hexamer) is required for this regulation. Moreover, we identified a second class of [iNTP]-regulated promoters in B. subtilis where the sequence determinants are not limited to the transcription bubble region. Overall, it seems that various sequence combinations can result in promoter regulation by [iNTP] in B. subtilis. Finally, this study demonstrates how the same type of regulation can be achieved with strikingly different promoter sequences in phylogenetically distant species.
Collapse
Affiliation(s)
- Ludek Sojka
- Laboratory of Molecular Genetics of Bacteria, Institute of Microbiology, Academy of Sciences of the Czech Republic
| | | | | | | | | | | | | |
Collapse
|
27
|
The spore-specific alanine racemase of Bacillus anthracis and its role in suppressing germination during spore development. J Bacteriol 2008; 191:1303-10. [PMID: 19074397 DOI: 10.1128/jb.01098-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spores of Bacillus anthracis are enclosed by an exosporium composed of a basal layer and an external hair-like nap. The nap is apparently formed by a single glycoprotein, while the basal layer contains many different structural proteins and several enzymes. One of the enzymes is Alr, an alanine racemase capable of converting the spore germinant l-alanine to the germination inhibitor d-alanine. Unlike other characterized exosporium proteins, Alr is nonuniformly distributed in the exosporium and might have a second spore location. In this study, we demonstrated that expression of the alr gene, which encodes Alr, is restricted to sporulating cells and that the bulk of alr transcription and Alr synthesis occurs during the late stages of sporulation. We also mapped two alr promoters that are differentially active during sporulation and might be involved in the atypical localization of Alr. Finally, we constructed a Deltaalr mutant of B. anthracis that lacks Alr and examined the properties of the spores produced by this strain. Mature Deltaalr spores germinate more efficiently in the presence of l-alanine, presumably because of their inability to convert exogenous l-alanine to d-alanine, but they respond normally to other germinants. Surprisingly, the production of mature spores by the Deltaalr mutant is defective because approximately one-half of the nascent spores germinate and lose their resistance properties before they are released from the mother cell. This phenotype suggests that an important function of Alr is to produce D-alanine during the late stages of sporulation to suppress premature germination of the developing spore.
Collapse
|
28
|
Influence of operator site geometry on transcriptional control by the YefM-YoeB toxin-antitoxin complex. J Bacteriol 2008; 191:762-72. [PMID: 19028895 DOI: 10.1128/jb.01331-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YefM-YoeB is among the most prevalent and well-characterized toxin-antitoxin complexes. YoeB toxin is an endoribonuclease whose activity is inhibited by YefM antitoxin. The regions 5' of yefM-yoeB in diverse bacteria possess conserved sequence motifs that mediate transcriptional autorepression. The yefM-yoeB operator site arrangement is exemplified in Escherichia coli: a pair of palindromes with core hexamer motifs and a center-to-center distance of 12 bp overlap the yefM-yoeB promoter. YefM is an autorepressor that initially recognizes a long palindrome containing the core hexamer, followed by binding to a short repeat. YoeB corepressor greatly enhances the YefM-operator interaction. Scanning mutagenesis demonstrated that the short repeat is crucial for correct interaction of YefM-YoeB with the operator site in vivo and in vitro. Moreover, altering the relative positions of the two palindromes on the DNA helix abrogated YefM-YoeB cooperative interactions with the repeats: complex binding to the long repeat was maintained but was perturbed to the short repeat. Although YefM lacks a canonical DNA binding motif, dual conserved arginine residues embedded in a basic patch of the protein are crucial for operator recognition. Deciphering the molecular basis of toxin-antitoxin transcriptional control will provide key insights into toxin-antitoxin activation and function.
Collapse
|
29
|
Churchill PF, Morgan AC, Kitchens E. Characterization of a pyrene-degrading Mycobacterium sp. strain CH-2. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2008; 43:698-706. [PMID: 18941994 DOI: 10.1080/03601230802388801] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mycobacterium sp strain CH-2 was isolated from a manufactured gas plant contaminated with polycyclic aromatic hydrocarbons (PAHs) and was identified by analysis of 16S rDNA sequences. Strain CH-2 was capable of mineralizing 3- and 4- ring PAHs, including phenanthrene, pyrene, and fluoranthene. In addition, strain CH-2 could utilize phenanthrene, pyrene and a wide range of alkanes as a sole carbon and energy source. Primers based upon the sequences of the polycyclic aromatic hydrocarbon (PAH) dioxygenases nidAB (from Mycobacterium vanbaalenii strain PYR-1) and pdoA2B2 (from Mycobacterium sp. Strain 6PY1) were used as molecular probes to amplify the dioxygenases. Degenerate primers were used to amplify a portion of an alkane monooxygenase gene. Mineralization assays and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis indicated that the alkane monooxygenase was constitutively expressed, while nidAB and pdoA2B2 were expressed only in the presence of PAHs. A genomic library of strain CH-2 was created and then screened for the presence of biodegradative operons using the amplified PAH dioxygenases. The pdolocus included a partial pdoF, as well as pdoA2, pdoB2, orf 72, and putative genes for a ferredoxin, an araC-type regulator, and a reductase. The nid locus included a partial nidC, as well as nidB, nidA, and a putative promoter. Primer extension analysis of the nidlocus located the transcriptional start site 68bp upstream of the nidB start codon. The putatively identified promoter region and a promoter fragment lacking the -10 region were amplified, and the products were cloned into pRW50. This plasmid carries the lac operon without a promoter. The plasmid containing the full length promoter expressed the lacZ reporter gene, while expression by the promoter fragment was equivalent to the expression of cells carrying pRW50.
Collapse
Affiliation(s)
- Perry F Churchill
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA.
| | | | | |
Collapse
|
30
|
The transcriptional factors MurR and catabolite activator protein regulate N-acetylmuramic acid catabolism in Escherichia coli. J Bacteriol 2008; 190:6598-608. [PMID: 18723630 DOI: 10.1128/jb.00642-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MurNAc etherase MurQ of Escherichia coli is essential for the catabolism of the bacterial cell wall sugar N-acetylmuramic acid (MurNAc) obtained either from the environment or from the endogenous cell wall (i.e., recycling). High-level expression of murQ is required for growth on MurNAc as the sole source of carbon and energy, whereas constitutive low-level expression of murQ is sufficient for the recycling of peptidoglycan fragments continuously released from the cell wall during growth of the bacteria. Here we characterize for the first time the expression of murQ and its regulation by MurR, a member of the poorly characterized RpiR/AlsR family of transcriptional regulators. Deleting murR abolished the extensive lag phase observed for E. coli grown on MurNAc and enhanced murQ transcription some 20-fold. MurR forms a stable multimer (most likely a tetramer) and binds to two adjacent inverted repeats within an operator region. In this way MurR represses transcription from the murQ promoter and also interferes with its own transcription. MurNAc-6-phosphate, the substrate of MurQ, was identified as a specific inducer that weakens binding of MurR to the operator. Moreover, murQ transcription depends on the activation by cyclic AMP (cAMP)-catabolite activator protein (CAP) bound to a class I site upstream of the murQ promoter. murR and murQ are divergently orientated and expressed from nonoverlapping face-to-face (convergent) promoters, yielding transcripts that are complementary at their 5' ends. As a consequence of this unusual promoter arrangement, cAMP-CAP also affects murR transcription, presumably by acting as a roadblock for RNA polymerase.
Collapse
|
31
|
Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors. Microbiol Mol Biol Rev 2008; 72:266-300, table of contents. [PMID: 18535147 DOI: 10.1128/mmbr.00001-08] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY DNA-binding repressor proteins that govern transcription initiation in response to end products generally regulate bacterial biosynthetic genes, but this is rarely true for the pyrimidine biosynthetic (pyr) genes. Instead, bacterial pyr gene regulation generally involves mechanisms that rely only on regulatory sequences embedded in the leader region of the operon, which cause premature transcription termination or translation inhibition in response to nucleotide signals. Studies with Escherichia coli and Bacillus subtilis pyr genes reveal a variety of regulatory mechanisms. Transcription attenuation via UTP-sensitive coupled transcription and translation regulates expression of the pyrBI and pyrE operons in enteric bacteria, whereas nucleotide effects on binding of the PyrR protein to pyr mRNA attenuation sites control pyr operon expression in most gram-positive bacteria. Nucleotide-sensitive reiterative transcription underlies regulation of other pyr genes. With the E. coli pyrBI, carAB, codBA, and upp-uraA operons, UTP-sensitive reiterative transcription within the initially transcribed region (ITR) leads to nonproductive transcription initiation. CTP-sensitive reiterative transcription in the pyrG ITRs of gram-positive bacteria, which involves the addition of G residues, results in the formation of an antiterminator RNA hairpin and suppression of transcription attenuation. Some mechanisms involve regulation of translation rather than transcription. Expression of the pyrC and pyrD operons of enteric bacteria is controlled by nucleotide-sensitive transcription start switching that produces transcripts with different potentials for translation. In Mycobacterium smegmatis and other bacteria, PyrR modulates translation of pyr genes by binding to their ribosome binding site. Evidence supporting these conclusions, generalizations for other bacteria, and prospects for future research are presented.
Collapse
|
32
|
Turnbough CL. Regulation of bacterial gene expression by the NTP substrates of transcription initiation. Mol Microbiol 2008; 69:10-4. [PMID: 18452582 DOI: 10.1111/j.1365-2958.2008.06272.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Many mechanisms of gene regulation in bacteria do not employ repressor or activator proteins. One class of these mechanisms includes those in which the key regulatory element is the control of transcription initiation by the availability of NTP substrates. In this commentary, several distinct examples of initiating NTP-mediated gene regulation are discussed, including a mechanism reported by Krásný et al. in this issue of Molecular Microbiology. These researchers show that during the stringent response induced by amino acid starvation of Bacillus subtilis, increases in the intracellular level of ATP permit upregulation of promoters with +1A start sites, while concurrent decreases in the intracellular level of GTP cause downregulation of promoters with +1G start sites. This regulation is restricted to stringently controlled promoters.
Collapse
Affiliation(s)
- Charles L Turnbough
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA.
| |
Collapse
|
33
|
Krásný L, Tiserová H, Jonák J, Rejman D, Sanderová H. The identity of the transcription +1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. Mol Microbiol 2008; 69:42-54. [PMID: 18433449 DOI: 10.1111/j.1365-2958.2008.06256.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We identify here a pattern in the transcription start sites (+1A or +1G) of sigma(A)-dependent promoters of genes that are up-/downregulated in response to amino acid starvation (stringent response) in Bacillus subtilis. Upregulated promoters initiate mostly with ATP and downregulated promoters with GTP. These promoters appear to be sensitive to changes in initiating nucleoside triphosphate concentrations. During the stringent response in B. subtilis, when ATP and GTP levels change reciprocally, the identity of the +1 position (A or G) of these promoters is a factor important in their regulation. Mutations that change the identity of position +1 (A for G and vice versa) change the response of the promoter to amino acid starvation.
Collapse
Affiliation(s)
- Libor Krásný
- Laboratory of Molecular Genetics of Bacteria, Institute of Microbiology ASCR, Vídenská 1083, Prague 142 20, Czech Republic.
| | | | | | | | | |
Collapse
|
34
|
Transcription initiation by mix and match elements: flexibility for polymerase binding to bacterial promoters. GENE REGULATION AND SYSTEMS BIOLOGY 2007; 1:275-93. [PMID: 19119427 PMCID: PMC2613000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacterial RNA polymerase is composed of a core of subunits (beta, beta', alpha1, alpha2, omega), which have RNA synthesizing activity, and a specificity factor (sigma), which identifies the start of transcription by recognizing and binding to sequences elements within promoter DNA. Four core promoter consensus sequences, the -10 element, the extended -10 (TGn) element, the -35 element, and the UP elements, have been known for many years; the importance of a nontemplate G at position -5 has been recognized more recently. However, the functions of these elements are not the same. The AT-rich UP elements, the -35 elements ((-35)TTGACA(-30)), and the extended -10 ((-15)TGn(-13)) are recognized as double stranded binding elements, whereas the -5 nontemplate G is recognized in the context of single-stranded DNA at the transcription bubble. Furthermore, the -10 element ((-12)TATAAT(-7)) is recognized as both double strand DNA for the T:A bp at position -12 and as nontemplate, single-strand DNA from positions -11 to -7. The single-strand sequences at positions -11 to -7 as well as the -5 contribute to later steps in transcription initiation that involve isomerization of polymerase and separation of the promoter DNA around the transcription start site. Recent work has demonstrated that the double strand elements may be used in various combinations to yield an effective promoter. Thus, while some minimal number of contacts is required for promoter function, polymerase allows the elements to be mixed and matched. Interestingly, which particular elements are used does not appear to fundamentally alter the transcription bubble generated in the stable complex. In this review, we discuss the multiple steps involved in forming a transcriptionally competent polymerase/promoter complex, and we examine what is known about polymerase recognition of core promoter elements. We suggest that considering promoter elements according to their involvement in early (polymerase binding) or later (polymerase isomerization) steps in transcription initiation rather than simply from their match to conventional promoter consensus sequences is a more instructive form of promoter classification.
Collapse
|
35
|
Hook-Barnard I, Johnson XB, Hinton DM. Escherichia coli RNA polymerase recognition of a sigma70-dependent promoter requiring a -35 DNA element and an extended -10 TGn motif. J Bacteriol 2006; 188:8352-9. [PMID: 17012380 PMCID: PMC1698240 DOI: 10.1128/jb.00853-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 09/25/2006] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli sigma70-dependent promoters have typically been characterized as either -10/-35 promoters, which have good matches to both the canonical -10 and the -35 sequences or as extended -10 promoters (TGn/-10 promoters), which have the TGn motif and an excellent match to the -10 consensus sequence. We report here an investigation of a promoter, P(minor), that has a nearly perfect match to the -35 sequence and has the TGn motif. However, P(minor) contains an extremely poor sigma70 -10 element. We demonstrate that P(minor) is active both in vivo and in vitro and that mutations in either the -35 or the TGn motif eliminate its activity. Mutation of the TGn motif can be compensated for by mutations that make the -10 element more canonical, thus converting the -35/TGn promoter to a -35/-10 promoter. Potassium permanganate footprinting on the nontemplate and template strands indicates that when polymerase is in a stable (open) complex with P(minor), the DNA is single stranded from positions -11 to +4. We also demonstrate that transcription from P(minor) incorporates nontemplated ribonucleoside triphosphates at the 5' end of the P(minor) transcript, which results in an anomalous assignment for the start site when primer extension analysis is used. P(minor) represents one of the few -35/TGn promoters that have been characterized and serves as a model for investigating functional differences between these promoters and the better-characterized -10/-35 and extended -10 promoters used by E. coli RNA polymerase.
Collapse
Affiliation(s)
- India Hook-Barnard
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8, Room 2A-13, Bethesda, MD 20892-0830, USA
| | | | | |
Collapse
|
36
|
|
37
|
Lewis DEA, Adhya S. Axiom of determining transcription start points by RNA polymerase in Escherichia coli. Mol Microbiol 2005; 54:692-701. [PMID: 15491360 DOI: 10.1111/j.1365-2958.2004.04318.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To investigate the determining factors in the selection of the transcription start points (tsp) by RNA polymerase of Escherichia coli, we systematically deleted or substituted single base pairs (bps) at 25 putative critical positions in the two extended -10 promoters, P1 and P2, of the gal operon. These changes extend downstream from -24 to +1 of the P1 promoter. In vitro transcription assays using supercoiled DNA templates revealed a preference for a purine in the non-template strand for tsp in both promoters. The optimal tsp is the 11th bp counting downstream from the -10 position. A single bp deletion anywhere from -10 to +1 switched the tsp to the next available purine 2-3 bp downstream on the non-template strand whereas deleting a single bp at position from -24 to -11 did not affect the tsp. The nature of the 10 bp sequence of the -10 to -1 region, while affecting promoter strength, did not influence tsp. The cAMP-CRP complex, which stimulates P1 and represses P2, did not affect the tsp selection process. The rules of tsp selection by RNA polymerase containing sigma70 in gal and pyr promoters discussed here may be applicable to others.
Collapse
Affiliation(s)
- Dale E A Lewis
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| | | |
Collapse
|
38
|
Walker KA, Mallik P, Pratt TS, Osuna R. The Escherichia coli Fis promoter is regulated by changes in the levels of its transcription initiation nucleotide CTP. J Biol Chem 2004; 279:50818-28. [PMID: 15385561 DOI: 10.1074/jbc.m406285200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the Escherichia coli nucleoid-associated protein Fis (factor for inversion stimulation) is controlled at the transcriptional level in accordance with the nutritional availability. It is highly expressed during early logarithmic growth phase in cells growing in rich medium but poorly expressed in late logarithmic and stationary phase. However, fis mRNA expression is prolonged at high levels throughout the logarithmic and early stationary phase when the preferred transcription initiation site (+1C) is replaced with A or G, indicating that initiation with CTP is a required component of the regulation pattern. We show that RNA polymerase-fis promoter complexes are short lived and that transcription is stimulated over 20-fold from linear or supercoiled DNA if CTP is present during formation of initiation complexes, which serves to stabilize these complexes. Use of fis promoter fusions to lacZ indicated that fis promoter transcription is sensitive to the intracellular pool of the predominant initiating NTP. Growth conditions resulting in increases in CTP pools also result in corresponding increases in fis mRNA levels. Measurements of NTP pools performed throughout the growth of the bacterial culture in rich medium revealed a dramatic increase in all four NTP levels during the transition from stationary to logarithmic growth phase, followed by reproducible oscillations in their levels during logarithmic growth, which later decrease during the transition from logarithmic to stationary phase. In particular, CTP pools fluctuate in a manner consistent with a role in regulating fis expression. These observations support a model whereby fis expression is subject to regulation by the availability of its initiating NTP.
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- Chromatography, Thin Layer
- Cytidine/chemistry
- Cytidine Triphosphate/chemistry
- DNA Primers/chemistry
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA-Directed RNA Polymerases/chemistry
- DNA-Directed RNA Polymerases/metabolism
- Dose-Response Relationship, Drug
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Factor For Inversion Stimulation Protein/genetics
- Gene Expression Regulation, Enzymologic
- Kinetics
- Lac Operon
- Models, Biological
- Models, Genetic
- Molecular Sequence Data
- Oscillometry
- Plasmids/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Salts/pharmacology
- Time Factors
- Transcription, Genetic
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Kimberly A Walker
- Department of Biological Sciences, University at Albany, Albany, New York 12222, USA
| | | | | | | |
Collapse
|
39
|
Abstract
In bacteria, genes are often expressed from multiple promoters to allow for a greater spectrum of regulation. Transcription of rRNA genes in Escherichia coli uses two promoters, rrn P1 and rrn P2. Under the conditions examined previously, the P1 and P2 promoters were regulated in response to many of the same changes in nutritional conditions. We report here that rrn P2 promoters play unique roles in rRNA expression during transitional situations. rrn P2 promoters play a dominant role in rRNA synthesis as cells enter into and persist in stationary phase. rrn P2 promoters also play a role in the rapid increases in rRNA synthesis that occur during outgrowth from stationary phase and during the initial stages of rapid shifts to richer media. We demonstrate that rrnB P2 directly senses the concentrations of guanosine 5'-disphosphate 3'-diphosphate (ppGpp) and the initiating nucleoside triphosphate (iNTP), thereby accounting, at least in part, for the observed patterns of regulation. Our work significantly extends previous information about the regulators responsible for control of the rrn P2 promoters and the relationship between the tandem rRNA promoters.
Collapse
Affiliation(s)
- Heath D Murray
- Department of Bacteriology, University of Wisconsin, 420 Henry Mall, Madison, WI 53706, USA
| | | |
Collapse
|
40
|
Abeyta M, Hardy GG, Yother J. Genetic alteration of capsule type but not PspA type affects accessibility of surface-bound complement and surface antigens of Streptococcus pneumoniae. Infect Immun 2003; 71:218-25. [PMID: 12496169 PMCID: PMC143148 DOI: 10.1128/iai.71.1.218-225.2003] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Streptococcus pneumoniae capsular polysaccharides and pneumococcal surface protein A (PspA) are major determinants of virulence that are antigenically variable and capable of eliciting protective immune responses. By genetically switching the pspA genes of the capsule type 2 strain D39 and the capsule type 3 strain WU2, we showed that the different abilities of antibody to PspA to protect against these strains was not related to the PspA type expressed. Similarly, the level of specific antibody binding to PspA, other surface antigens, and surface-localized C3b did not depend on the PspA type but instead was correlated with the capsule type. The type 3 strain WU2 and an isogenic derivative of D39 that expresses the type 3 capsule bound nearly identical amounts of antibody to PspA and other surface antigens, and these amounts were less than one-half the amount observed with the type 2 parent strain D39. Expression of the type 3 capsule in D39 also reduced the amount of C3b deposited and its accessibility to antibody, resulting in a level intermediate between the levels observed with WU2 and D39. Despite these effects, the capsule type was not the determining factor in anti-PspA-mediated protection, as both D39 and its derivative expressing the type 3 capsule were more resistant to protection than WU2. The specific combination of PspA and capsule type also did not determine the level of protection. The capsule structure is thus a major determinant in accessibility of surface antigens to antibody, but certain strains appear to express other factors that can influence antibody-mediated protection.
Collapse
Affiliation(s)
- Melanie Abeyta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
41
|
Abstract
Transcription initiation with CTP is an uncommon feature among Escherichia coli sigma(70) promoters. The fis promoter (fis P), which is subject to growth phase-dependent regulation, is among the few that predominantly initiate transcription with CTP. Mutations in this promoter that cause a switch from utilization of CTP to either ATP or GTP as the initiation nucleotide drastically alter its growth phase regulation pattern, suggesting that the choice of the primary initiating nucleotide can significantly affect its regulation. To better understand what factors influence this choice in fis P, we made use of a series of promoter mutations that altered the nucleotide or position used for initiation. Examination of these promoters indicates that start site selection is determined by a combination of factors that include preference for a nucleotide distance from the -10 region (8 > 7 > 9 >> 6 >> 10 > 11), initiation nucleotide preference (A = G >> CTP > or = UTP), the DNA sequence surrounding the initiation region, the position of the -35 region, and changes in the intracellular nucleoside triphosphate pools. We describe the effects that each of these factors has on start site selection in the fis P and discuss the interplay between position and nucleotide preference in this important process.
Collapse
Affiliation(s)
- Kimberly A Walker
- Department of Biological Sciences SUNY, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | | |
Collapse
|
42
|
Nasser W, Rochman M, Muskhelishvili G. Transcriptional regulation of fis operon involves a module of multiple coupled promoters. EMBO J 2002; 21:715-24. [PMID: 11847119 PMCID: PMC125868 DOI: 10.1093/emboj/21.4.715] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The transcription of the Escherichia coli fis gene is strongly activated during the outgrowth of cells from stationary phase. The high activity of the promoter of the fis operon requires the transcription factor IHF. Previously, we identified a divergent promoter, div, located upstream of the fis promoter. In this study we demonstrate that at least two additional promoters, designated fis P2 and fis P3, are located in the control region of the fis operon. The fis P2 and div promoters overlap completely, whereas fis P3 and div P are arranged as face-to-face divergent promoters. We show that the div and the tandem fis promoters counterbalance each other, such that their activity is kept on a lower than potentially attainable level. Furthermore, we demonstrate an unusual activation mechanism by IHF, involving a coordinated shift in the balance of promoter activities. We infer that these coupled promoters represent a regulatory module and propose a novel "dynamic balance" mechanism involved in the transcriptional control of the fis operon.
Collapse
Affiliation(s)
- William Nasser
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany
Present address: UMG, UMR-CNRS5122, INSA bât Louis Pasteur, 11 Av. Jean Cappelle, F-69621 Villeurbanne Cedex, France Present address: Department of Cellular Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem 90101, Israel Corresponding author e-mail:
| | - Mark Rochman
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany
Present address: UMG, UMR-CNRS5122, INSA bât Louis Pasteur, 11 Av. Jean Cappelle, F-69621 Villeurbanne Cedex, France Present address: Department of Cellular Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem 90101, Israel Corresponding author e-mail:
| | - Georgi Muskhelishvili
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany
Present address: UMG, UMR-CNRS5122, INSA bât Louis Pasteur, 11 Av. Jean Cappelle, F-69621 Villeurbanne Cedex, France Present address: Department of Cellular Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem 90101, Israel Corresponding author e-mail:
| |
Collapse
|
43
|
Barker MM, Gourse RL. Regulation of rRNA transcription correlates with nucleoside triphosphate sensing. J Bacteriol 2001; 183:6315-23. [PMID: 11591676 PMCID: PMC100125 DOI: 10.1128/jb.183.21.6315-6323.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that the activity of the Escherichia coli rRNA promoter rrnB P1 in vitro depends on the concentration of the initiating nucleotide, ATP, and can respond to changes in ATP pools in vivo. We have proposed that this nucleoside triphosphate (NTP) sensing might contribute to regulation of rRNA transcription. To test this model, we have measured the ATP requirements for transcription from 11 different rrnB P1 core promoter mutants in vitro and compared them with the regulatory responses of the same promoters in vivo. The seven rrnB P1 variants that required much lower ATP concentrations than the wild-type promoter for efficient transcription in vitro were defective for response to growth rate changes in vivo (growth rate-dependent regulation). In contrast, the four variants requiring high ATP concentrations in vitro (like the wild-type promoter) were regulated with the growth rate in vivo. We also observed a correlation between NTP sensing in vitro and the response of the promoters in vivo to deletion of the fis gene (an example of homeostatic control), although this relationship was not as tight as for growth rate-dependent regulation. We conclude that the kinetic features responsible for the high ATP concentration dependence of the rrnB P1 promoter in vitro are responsible, at least in part, for the promoter's regulation in vivo, consistent with the model in which rrnB P1 promoter activity can be regulated by changes in NTP pools in vivo (or by hypothetical factors that work at the same kinetic steps that make the promoter sensitive to NTPs).
Collapse
Affiliation(s)
- M M Barker
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
44
|
Cabrera JE, Jin DJ. Growth phase and growth rate regulation of the rapA gene, encoding the RNA polymerase-associated protein RapA in Escherichia coli. J Bacteriol 2001; 183:6126-34. [PMID: 11567013 PMCID: PMC99692 DOI: 10.1128/jb.183.20.6126-6134.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli rapA gene encodes the RNA polymerase (RNAP)-associated protein RapA, which is a bacterial member of the SWI/SNF helicase-like protein family. We have studied the rapA promoter and its regulation in vivo and determined the interaction between RNAP and the promoter in vitro. We have found that the expression of rapA is growth phase dependent, peaking at the early log phase. The growth phase control of rapA is determined at least by one particular feature of the promoter: it uses CTP as the transcription-initiating nucleotide instead of a purine, which is used for most E. coli promoters. We also found that the rapA promoter is subject to growth rate regulation in vivo and that it forms intrinsic unstable initiation complexes with RNAP in vitro. Furthermore, we have shown that a GC-rich or discriminator sequence between the -10 and +1 positions of the rapA promoter is responsible for its growth rate control and the instability of its initiation complexes with RNAP.
Collapse
Affiliation(s)
- J E Cabrera
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
45
|
Cheng Y, Dylla SM, Turnbough CL. A long T. A tract in the upp initially transcribed region is required for regulation of upp expression by UTP-dependent reiterative transcription in Escherichia coli. J Bacteriol 2001; 183:221-8. [PMID: 11114920 PMCID: PMC94869 DOI: 10.1128/jb.183.1.221-228.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, pyrimidine-mediated regulation of upp expression occurs by UTP-sensitive selection of alternative transcriptional start sites, which produces transcripts that differ in the ability to be elongated. The upp initially transcribed region contains the sequence GATTTTTTTTG (nontemplate strand). Initiation can occur at either the first or the second base in this sequence (designated G6 and A7, with numbering from the promoter -10 region). High intracellular UTP levels favor initiation at position A7; however, the resulting transcripts are subject to reiterative transcription (i.e., repetitive UMP addition) within the 8-bp T. A tract in the initially transcribed region and are aborted. In contrast, low intracellular UTP levels favor initiation at position G6, which results in transcripts that can, in part, avoid reiterative transcription and be elongated normally. In this study, we examined the regulatory requirement for the long T. A tract in the upp initially transcribed region. We constructed upp promoter mutations that shorten the T. A tract to 7, 6, 5, 4, 3, or 2 bp and examined the effects of these mutations on upp expression and regulation. The results indicate that pyrimidine-mediated regulation is gradually reduced as the T. A tract is shortened from 7 to 3 bp; at which point regulation ceases. This reduction in regulation is due to large-percentage increases in upp expression in cells grown under conditions of pyrimidine excess. Quantitation of cellular transcripts and in vitro transcription studies indicate that the observed effects of a shortened T. A tract on upp expression and regulation are due to increases in the fraction of both G6- and A7-initiated transcripts that avoid reiterative transcription and are elongated normally.
Collapse
Affiliation(s)
- Y Cheng
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
46
|
Walker KA, Atkins CL, Osuna R. Functional determinants of the Escherichia coli fis promoter: roles of -35, -10, and transcription initiation regions in the response to stringent control and growth phase-dependent regulation. J Bacteriol 1999; 181:1269-80. [PMID: 9973355 PMCID: PMC93506 DOI: 10.1128/jb.181.4.1269-1280.1999] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli Fis is a small DNA binding and bending protein that has been implicated in a variety of biological processes. A minimal promoter sequence consisting of 43 bp is sufficient to generate its characteristic growth phase-dependent expression pattern and is also subject to negative regulation by stringent control. However, information about the precise identification of nucleotides contributing to basal promoter activity and its regulation has been scant. In this work, 72 independent mutations were generated in the fis promoter (fis P) region from -108 to +78 using both random and site-directed PCR mutagenesis. beta-Galactosidase activities from mutant promoters fused to the (trp-lac)W200 fusion on a plasmid were used to conclusively identify the sequences TTTCAT and TAATAT as the -35 and -10 regions, respectively, which are optimally separated by 17 bp. We found that four consecutive substitutions within the GC-rich sequence just upstream of +1 and mutations in the -35 region, but not in the -10 region, significantly reduced the response to stringent control. Analysis of the effects of mutations on growth phase-dependent regulation showed that replacing the predominant transcription initiation nucleotide +1C with a preferred nucleotide (A or G) profoundly altered expression such that high levels of fis P mRNA were detected during late logarithmic and early stationary phases. A less dramatic effect was seen with improvements in the -10 and -35 consensus sequences. These results suggest that the acute growth phase-dependent regulation pattern observed with this promoter requires an inefficient transcription initiation process that is achieved with promoter sequences deviating from the -10 and -35 consensus sequences and, more importantly, a dependence upon the availability of the least favored transcription initiation nucleotide, CTP.
Collapse
Affiliation(s)
- K A Walker
- Department of Biological Sciences, University at Albany, SUNY, Albany, New York
| | | | | |
Collapse
|
47
|
Qi F, Chen P, Caufield PW. Functional analyses of the promoters in the lantibiotic mutacin II biosynthetic locus in Streptococcus mutans. Appl Environ Microbiol 1999; 65:652-8. [PMID: 9925596 PMCID: PMC91075 DOI: 10.1128/aem.65.2.652-658.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1998] [Accepted: 11/17/1998] [Indexed: 02/02/2023] Open
Abstract
The lantibiotic bacteriocin mutacin II is produced by the group II Streptococcus mutans. The mutacin II biosynthetic locus consists of seven genes, mutR, -A, -M, -T, -F, -E, and -G, organized as two operons. The mutAMTFEG operon is transcribed from the mutA promoter 55 bp upstream of the translation start codon for MutA, while the mutR promoter is 76 bp upstream of the mutR structural gene. Expression of the mutA promoter is regulated by the components of the growth medium, while the mutR promoter activity does not seem to be affected by these conditions. Inactivation of mutR abolishes transcription of the mutA operon but does not affect its own promoter activity. The expressions of both mutA and mutR promoters are independent of the growth stage, while the production of mutacin II is only elevated at the early stationary phase. Taken together, these results suggest that expression of the mutacin operon is regulated by a complex system involving transcriptional and posttranscriptional or posttranslational controls.
Collapse
Affiliation(s)
- F Qi
- Department of Oral Biology, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | |
Collapse
|
48
|
Guajardo R, Lopez P, Dreyfus M, Sousa R. NTP concentration effects on initial transcription by T7 RNAP indicate that translocation occurs through passive sliding and reveal that divergent promoters have distinct NTP concentration requirements for productive initiation. J Mol Biol 1998; 281:777-92. [PMID: 9719634 DOI: 10.1006/jmbi.1998.1988] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hypothesis that active site translocation during initial transcription occurs by a passive sliding mechanism which allows the pre- and post-translocated states to equilibrate on the time scale of bond formation was tested by evaluating the effects of NTP concentration on individual transcript extension steps in the presence of translocation roadblocks created by proteins bound immediately downstream of a T7 promoter, as well as by evaluating the effects of NTP concentration on competing transcript extension pathways (iterative synthesis and "normal" extension). Results are consistent with a passive sliding mechanism for translocation which is driven by NTP binding, and are inconsistent with mechanisms in which the pre- and post-translocated states fail to equilibrate with each other on the time scale of bond formation or in which translocation is driven by NTP hydrolysis. We also find, in agreement with many previous studies, that divergence from consensus in the ITS (initially transcribed sequence) of the T7 promoter decreases productive initiation. However, this appears to be largely due to increases in the NTP concentration requirements for efficient transcription on the divergent ITSs.
Collapse
Affiliation(s)
- R Guajardo
- Dept. of Biochemistry, University of Texas Health Science Ctr., 7703 Floyd Curl Drive, San Antonio, TX 78284-7760, USA
| | | | | | | |
Collapse
|
49
|
Mooney RA, Artsimovitch I, Landick R. Information processing by RNA polymerase: recognition of regulatory signals during RNA chain elongation. J Bacteriol 1998; 180:3265-75. [PMID: 9642176 PMCID: PMC107278 DOI: 10.1128/jb.180.13.3265-3275.1998] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- R A Mooney
- Department of Bacteriology, University of Wisconsin, Madison 53706-1567, USA
| | | | | |
Collapse
|
50
|
Forsyth MH, Atherton JC, Blaser MJ, Cover TL. Heterogeneity in levels of vacuolating cytotoxin gene (vacA) transcription among Helicobacter pylori strains. Infect Immun 1998; 66:3088-94. [PMID: 9632570 PMCID: PMC108317 DOI: 10.1128/iai.66.7.3088-3094.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/1997] [Accepted: 04/24/1998] [Indexed: 02/07/2023] Open
Abstract
Broth culture supernatants from Tox+ Helicobacter pylori strains induce vacuolation of HeLa cells in vitro and contain VacA in concentrations that are higher than those found in supernatants from Tox- H. pylori strains. To investigate the basis for this phenomenon, we analyzed the transcription of the vacuolating cytotoxin gene (vacA) in eight Tox+ strains (each with a type s1/m1 vacA genotype) and nine Tox- strains (each with a type s2/m2 vacA genotype). Most of the Tox+ and Tox- strains tested used the same vacA transcriptional start point, but Tox+ strains yielded significantly stronger primer extension signal intensities than did Tox- strains (mean densitometry values of 15.8 +/- 1.9 versus 8.9 +/- 1.7, P = 0. 0016). Correspondingly, when we introduced vacA::xylE transcriptional fusions into the chromosomes of a Tox+ strain (60190) and a Tox- strain (86-313), the level of XylE activity in 60190 vacA::xylE was about 30-fold higher than that in 86-313 vacA::xylE. Sequence analysis and promoter exchange experiments indicated that the different levels of vacA transcription in these two strains cannot be explained solely by a difference in promoter strength. These data indicate that Tox+ and Tox- H. pylori strains typically differ not only in the VacA amino acid sequence but also in the level of vacA transcription.
Collapse
Affiliation(s)
- M H Forsyth
- Departments of Medicine and Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|