1
|
Designer phospholipids – structural retrieval, chemo-/bio- synthesis and isotopic labeling. Biotechnol Adv 2022; 60:108025. [DOI: 10.1016/j.biotechadv.2022.108025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
|
2
|
Du Y, Cheng F, Wang M, Xu C, Yu H. Indirect Pathway Metabolic Engineering Strategies for Enhanced Biosynthesis of Hyaluronic Acid in Engineered Corynebacterium glutamicum. Front Bioeng Biotechnol 2022; 9:768490. [PMID: 34988066 PMCID: PMC8721151 DOI: 10.3389/fbioe.2021.768490] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Hyaluronic acid (HA) is composed of alternating d-glucuronic acid and N-acetyl-d-glucosamine, with excellent biocompatibility and water retention capacity. To achieve heterologous biosynthesis of HA, Corynebacterium glutamicum, a safe GRAS (generally recognized as safe) host, was utilized and metabolically engineered previously. In this work, to achieve further enhancement of HA yield, four strategies were proposed and performed separately first, i.e., (1) improvement of glucose uptake via iolR gene knockout, releasing the inhibition of transporter IolT1/IolT2 and glucokinases; (2) intensification of cardiolipin synthesis through overexpression of genes pgsA1/pgsA2/cls involved in cardiolipin synthesis; (3) duly expressed Vitreoscilla hemoglobin in genome, enhancing HA titer coupled with more ATP and improved NAD+/NADH (>7.5) ratio; and (4) identification of the importance of glutamine for HA synthesis through transcriptome analyses and then enhancement of the HA titer via its supplement. After that, we combined different strategies together to further increase the HA titer. As a result, one of the optimal recombinant strains, Cg-dR-CLS, yielded 32 g/L of HA at 60 h in a fed-batch culture, which was increased by 30% compared with that of the starting strain. This high value of HA titer will enable the industrial production of HA via the engineered C. glutamicum.
Collapse
Affiliation(s)
- Yan Du
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Fangyu Cheng
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Miaomiao Wang
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Chunmeng Xu
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Huimin Yu
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Dowhan W, Bogdanov M. Eugene P. Kennedy's Legacy: Defining Bacterial Phospholipid Pathways and Function. Front Mol Biosci 2021; 8:666203. [PMID: 33842554 PMCID: PMC8027125 DOI: 10.3389/fmolb.2021.666203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
In the 1950's and 1960's Eugene P. Kennedy laid out the blueprint for phospholipid biosynthesis in somatic cells and Escherichia coli, which have been coined the Kennedy Pathways for phospholipid biosynthesis. His research group continued to make seminal contributions in the area of phospholipids until his retirement in the early 1990's. During these years he mentored many young scientists that continued to build on his early discoveries and who also mentored additional scientists that continue to make important contributions in areas related to phospholipids and membrane biogenesis. This review will focus on the initial E. coli Kennedy Pathways and how his early contributions have laid the foundation for our current understanding of bacterial phospholipid genetics, biochemistry and function as carried on by his scientific progeny and others who have been inspired to study microbial phospholipids.
Collapse
Affiliation(s)
- William Dowhan
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
4
|
Trombik P, Cieślik-Boczula K. Influence of phenothiazine molecules on the interactions between positively charged poly-l-lysine and negatively charged DPPC/DPPG membranes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117563. [PMID: 31689607 DOI: 10.1016/j.saa.2019.117563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Phenothiazines are very effective antipsychotic drugs, which also have anticancer and antimicrobial activities. Despite being used in human treatment, the molecular mechanism of the biological actions of these molecules is not yet understood in detail. The role of the interactions between phenothiazines and proteins or lipid membranes has been much discussed. Herein, fourier-transform infrared (FTIR) spectroscopic studies were used to investigate the effect of three phenothiazines: fluphenazine (FPh); chlorpromazine (ChP); and propionylpromazine (PP) on the structures of a positively charged poly-l-lysine (PLL) peptide, a negatively charged dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylglycerol (DPPC/DPPG) membrane, and on the mutual interactions between electrostatically associated PLL molecules and DPPC/DPPG membranes. Phenothiazine-induced alterations in the secondary structure of PLL, the conformational state (trans/gauche) of the hydrocarbon lipid chains, and the hydration of the DPPC/DPPG membrane interface were studied on the basis of amide I' vibrations, antisymmetric and symmetric stretching vibrations of the CH2 groups of the lipid hydrocarbon chains (νsCH2), and stretching vibrations of the lipid C=O groups (νC = O), respectively. It was shown that in the presence of negatively charged DPPC/DPPG membranes, the phenothiazines were able to modify the secondary structure of charged PLL molecules. Additionally, the effect of PLL on the structure of DPPC/DPPG membranes was also altered by the presence of the phenothiazine molecules.
Collapse
Affiliation(s)
- Paulina Trombik
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wroclaw, Poland
| | | |
Collapse
|
5
|
Abstract
Due to the heterogenous lipid environment in which integral membrane proteins are embedded, they should follow a set of assembly rules, which govern transmembrane protein folding and topogenesis accordingly to a given lipid profile. Recombinant strains of bacteria have been engineered to have different membrane phospholipid compositions by molecular genetic manipulation of endogenous and foreign genes encoding lipid biosynthetic enzymes. Such strains provide a means to investigate the in vivo role of lipids in many different aspects of membrane function, folding and biogenesis. In vitro and in vivo studies established a function of lipids as molecular chaperones and topological determinants specifically assisting folding and topogenesis of membrane proteins. These results led to the extension of the Positive Inside Rule to Charge Balance Rule, which incorporates a role for lipid-protein interactions in determining membrane protein topological organization at the time of initial membrane insertion and dynamically after initial assembly. Membrane protein topogenesis appears to be a thermodynamically driven process in which lipid-protein interactions affect the potency of charged amino acid residues as topological signals. Dual topology for a membrane protein can be established during initial assembly where folding intermediates in multiple topological conformations are in rapid equilibrium (thus separated by a low activation energy), which is determined by the lipid environment. Post-assembly changes in lipid composition or post-translational modifications can trigger a reorganization of protein topology by inducing destabilization and refolding of a membrane protein. The lipid-dependent dynamic nature of membrane protein organization provides a novel means of regulating protein function.
Collapse
|
6
|
Botero S, Chiaroni-Clarke R, Simon SM. Escherichia coli as a platform for the study of phosphoinositide biology. SCIENCE ADVANCES 2019; 5:eaat4872. [PMID: 30944849 PMCID: PMC6436935 DOI: 10.1126/sciadv.aat4872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Despite being a minor component of cells, phosphoinositides are essential for eukaryotic membrane biology, serving as markers of organelle identity and involved in several signaling cascades. Their many functions, combined with alternative synthesis pathways, make in vivo study very difficult. In vitro studies are limited by their inability to fully recapitulate the complexities of membranes in living cells. We engineered the biosynthetic pathway for the most abundant phosphoinositides into the bacterium Escherichia coli, which is naturally devoid of this class of phospholipids. These modified E. coli, when grown in the presence of myo-inositol, incorporate phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PI4P), phosphatidylinositol-4,5-bisphosphate (PIP2), and phosphatidylinositol-3,4,5-trisphosphate (PIP3) into their plasma membrane. We tested models of biophysical mechanisms with these phosphoinositides in a living membrane, using our system to evaluate the role of PIP2 in nonconventional protein export of human basic fibroblast growth factor 2. We found that PI alone is sufficient for the process.
Collapse
|
7
|
Cardiolipin synthases of Escherichia coli have phospholipid class specific phospholipase D activity dependent on endogenous and foreign phospholipids. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1345-1353. [DOI: 10.1016/j.bbalip.2018.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 11/23/2022]
|
8
|
Cieślik-Boczula K. Influence of resveratrol on interactions between negatively charged DPPC/DPPG membranes and positively charged poly-l-lysine. Chem Phys Lipids 2018; 214:24-34. [PMID: 29842874 DOI: 10.1016/j.chemphyslip.2018.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/17/2018] [Accepted: 05/26/2018] [Indexed: 01/03/2023]
Abstract
Resveratrol (Res), a natural polyphenol present in different plants and vegetables, exhibits potential therapeutic activity with cardioprotective, antineurodegenerative, antioxidant, and antitumor action. In this study, the effect of Res on the mutual interactions between positively charged poly-l-lysine (PLL) and negatively charged dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylglycerol (DPPC/DPPG) membranes was studied using Fourier-transform infrared (FTIR) spectroscopy supported by principal component analysis (PCA). The interactions between PLL and DPPC/DPPG membranes were strongly affected by the presence of Res molecules. Depending on the Res concentration and method of its supply (through the water or lipid phase) to the studied peptide-membrane systems, the membrane-induced transition of PLL from an α-helix to an extended left-handed polyproline II helix (PPII) occurred at different temperatures, with different cooperativity, or was even completely suppressed. The influence of PLL on the conformational (trans/gauche) state of the hydrocarbon chain region of the lipid membranes and the hydration state of the polar/apolar membrane interface was also modulated by Res, depending on the membrane phase state.
Collapse
|
9
|
Dugail I, Kayser BD, Lhomme M. Specific roles of phosphatidylglycerols in hosts and microbes. Biochimie 2017; 141:47-53. [DOI: 10.1016/j.biochi.2017.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/04/2017] [Indexed: 11/25/2022]
|
10
|
Yu C, Li M, Sun Y, Wang X, Chen Y. Phosphatidylethanolamine Deficiency ImpairsEscherichia coliAdhesion by Downregulating Lipopolysaccharide Synthesis, Which is Reversible by High Galactose/Lactose Cultivation. ACTA ACUST UNITED AC 2017; 23:1-10. [DOI: 10.1080/15419061.2017.1282468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chuan Yu
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Ming Li
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Yanan Sun
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Xingguo Wang
- Faculty of Life Sciences, Hubei University, Wuchang, Hubei, P.R. China
| | - Yong Chen
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi, P.R. China
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
11
|
Maric S, Thygesen MB, Schiller J, Marek M, Moulin M, Haertlein M, Forsyth VT, Bogdanov M, Dowhan W, Arleth L, Pomorski TG. Biosynthetic preparation of selectively deuterated phosphatidylcholine in genetically modified Escherichia coli. Appl Microbiol Biotechnol 2015; 99:241-54. [PMID: 25301578 PMCID: PMC4289089 DOI: 10.1007/s00253-014-6082-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/28/2014] [Accepted: 09/09/2014] [Indexed: 01/07/2023]
Abstract
Phosphatidylcholine (PC) is a major component of eukaryotic cell membranes and one of the most commonly used phospholipids for reconstitution of membrane proteins into carrier systems such as lipid vesicles, micelles and nanodiscs. Selectively deuterated versions of this lipid have many applications, especially in structural studies using techniques such as NMR, neutron reflectivity and small-angle neutron scattering. Here we present a comprehensive study of selective deuteration of phosphatidylcholine through biosynthesis in a genetically modified strain of Escherichia coli. By carefully tuning the deuteration level in E. coli growth media and varying the deuteration of supplemented carbon sources, we show that it is possible to achieve a controlled deuteration for three distinct parts of the PC lipid molecule, namely the (a) lipid head group, (b) glycerol backbone and (c) fatty acyl tail. This biosynthetic approach paves the way for the synthesis of specifically deuterated, physiologically relevant phospholipid species which remain difficult to obtain through standard chemical synthesis.
Collapse
Affiliation(s)
- Selma Maric
- Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
- Center for Membrane Pumps in Cells and Disease, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Mikkel B. Thygesen
- CARB Centre, Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jürgen Schiller
- Institut für Medizinische Physik und Biophysik, Medizinische Fakultät, Universität Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Magdalena Marek
- Center for Membrane Pumps in Cells and Disease, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Martine Moulin
- Life Sciences Group, Institut Laue Langevin, 6 rue Jules Horowitz, CEDEX 9, BP156, 38042 Grenoble, France
- Faculty of Natural Sciences & Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Michael Haertlein
- Life Sciences Group, Institut Laue Langevin, 6 rue Jules Horowitz, CEDEX 9, BP156, 38042 Grenoble, France
| | - V. Trevor Forsyth
- Life Sciences Group, Institut Laue Langevin, 6 rue Jules Horowitz, CEDEX 9, BP156, 38042 Grenoble, France
- Faculty of Natural Sciences & Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - William Dowhan
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Lise Arleth
- Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Thomas Günther Pomorski
- Center for Membrane Pumps in Cells and Disease, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
12
|
Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 2013; 52:249-76. [PMID: 23500459 PMCID: PMC3665635 DOI: 10.1016/j.plipres.2013.02.002] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/29/2022]
Abstract
Membrane lipid homeostasis is a vital facet of bacterial cell physiology. For decades, research in bacterial lipid synthesis was largely confined to the Escherichia coli model system. This basic research provided a blueprint for the biochemistry of lipid metabolism that has largely defined the individual steps in bacterial fatty acid and phospholipids synthesis. The advent of genomic sequencing has revealed a surprising amount of diversity in the genes, enzymes and genetic organization of the components responsible for bacterial lipid synthesis. Although the chemical steps in fatty acid synthesis are largely conserved in bacteria, there are surprising differences in the structure and cofactor requirements for the enzymes that perform these reactions in Gram-positive and Gram-negative bacteria. This review summarizes how the explosion of new information on the diversity of biochemical and genetic regulatory mechanisms has impacted our understanding of bacterial lipid homeostasis. The potential and problems of developing therapeutics that block pathogen phospholipid synthesis are explored and evaluated. The study of bacterial lipid metabolism continues to be a rich source for new biochemistry that underlies the variety and adaptability of bacterial life styles.
Collapse
Affiliation(s)
- Joshua B Parsons
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | |
Collapse
|
13
|
Dowhan W. A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1831:471-94. [PMID: 22925633 PMCID: PMC3513495 DOI: 10.1016/j.bbalip.2012.08.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 08/07/2012] [Accepted: 08/07/2012] [Indexed: 12/11/2022]
Abstract
Although the study of individual phospholipids and their synthesis began in the 1920s first in plants and then mammals, it was not until the early 1960s that Eugene Kennedy using Escherichia coli initiated studies of bacterial phospholipid metabolism. With the base of information already available from studies of mammalian tissue, the basic blueprint of phospholipid biosynthesis in E. coli was worked out by the late 1960s. In 1970s and 1980s most of the enzymes responsible for phospholipid biosynthesis were purified and many of the genes encoding these enzymes were identified. By the late 1990s conditional and null mutants were available along with clones of the genes for every step of phospholipid biosynthesis. Most of these genes had been sequenced before the complete E. coli genome sequence was available. Strains of E. coli were developed in which phospholipid composition could be changed in a systematic manner while maintaining cell viability. Null mutants, strains in which phospholipid metabolism was artificially regulated, and strains synthesizing foreign lipids not found in E. coli have been used to this day to define specific roles for individual phospholipid. This review will trace the findings that have led to the development of E. coli as an excellent model system to study mechanisms underlying the synthesis and function of phospholipids that are widely applicable to other prokaryotic and eukaryotic systems. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- William Dowhan
- Department of Biochemistry and Molecular Biology, University of Texas Medical School-Houston, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Visualizing a multidrug resistance protein, EmrE, with major bacterial lipids using Brewster angle microscopy. Chem Phys Lipids 2013; 167-168:33-42. [DOI: 10.1016/j.chemphyslip.2013.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/22/2012] [Accepted: 01/18/2013] [Indexed: 11/17/2022]
|
15
|
Molecular genetic and biochemical approaches for defining lipid-dependent membrane protein folding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1097-107. [PMID: 21945882 DOI: 10.1016/j.bbamem.2011.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/30/2011] [Accepted: 09/12/2011] [Indexed: 12/12/2022]
Abstract
We provide an overview of lipid-dependent polytopic membrane protein folding and topogenesis. Lipid dependence of this process was determined by employing Escherichia coli cells in which specific lipids can be eliminated, substituted, tightly titrated or controlled temporally during membrane protein synthesis and assembly. The secondary transport protein lactose permease (LacY) was used to establish general principles underlying the molecular basis of lipid-dependent effects on protein domain folding, protein transmembrane domain (TM) orientation, and function. These principles were then extended to several other secondary transport proteins of E. coli. The methods used to follow proper conformational organization of protein domains and the topological organization of protein TMs in whole cells and membranes are described. The proper folding of an extramembrane domain of LacY that is crucial for energy dependent uphill transport function depends on specific lipids acting as non-protein molecular chaperones. Correct TM topogenesis is dependent on charge interactions between the cytoplasmic surface of membrane proteins and a proper balance of the membrane surface net charge defined by the lipid head groups. Short-range interactions between the nascent protein chain and the translocon are necessary but not sufficient for establishment of final topology. After release from the translocon short-range interactions between lipid head groups and the nascent protein chain, partitioning of protein hydrophobic domains into the membrane bilayer, and long-range interactions within the protein thermodynamically drive final membrane protein organization. Given the diversity of membrane lipid compositions throughout nature, it is tempting to speculate that during the course of evolution the physical and chemical properties of proteins and lipids have co-evolved in the context of the lipid environment of membrane systems in which both are mutually dependent on each other for functional organization of proteins. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
|
16
|
Bogdanov M, Zhang W, Xie J, Dowhan W. Transmembrane protein topology mapping by the substituted cysteine accessibility method (SCAM(TM)): application to lipid-specific membrane protein topogenesis. Methods 2005; 36:148-71. [PMID: 15894490 PMCID: PMC4104023 DOI: 10.1016/j.ymeth.2004.11.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 11/15/2004] [Accepted: 11/15/2004] [Indexed: 01/03/2023] Open
Abstract
We provide an overview of lipid-dependent polytopic membrane protein topogenesis, with particular emphasis on Escherichia coli strains genetically altered in their lipid composition and strategies for experimentally determining the transmembrane organization of proteins. A variety of reagents and experimental strategies are described including the use of lipid mutants and thiol-specific chemical reagents to study lipid-dependent and host-specific membrane protein topogenesis by substituted cysteine site-directed chemical labeling. Employing strains in which lipid composition can be controlled temporally during membrane protein synthesis and assembly provides a means to observe dynamic changes in protein topology as a function of membrane lipid composition.
Collapse
Affiliation(s)
- Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, University of Texas-Houston, Medical School, Houston, TX 77030, USA
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, University of Texas-Houston, Medical School, Houston, TX 77030, USA
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, University of Texas-Houston, Medical School, Houston, TX 77030, USA
| | - William Dowhan
- Department of Biochemistry and Molecular Biology, University of Texas-Houston, Medical School, Houston, TX 77030, USA
| |
Collapse
|
17
|
Garcia-Gonzalo FR, Bartrons R, Ventura F, Rosa JL. Requirement of phosphatidylinositol-4,5-bisphosphate for HERC1-mediated guanine nucleotide release from ARF proteins. FEBS Lett 2005; 579:343-8. [PMID: 15642342 DOI: 10.1016/j.febslet.2004.11.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 11/30/2004] [Indexed: 11/27/2022]
Abstract
HERC1 is a giant multidomain protein involved in membrane trafficking through its interaction with vesicle coat proteins such as clathrin and ARF. Previously, it has been shown that the RCC1-like domain 1 (RLD1) of HERC1 stimulates guanine nucleotide dissociation on ARF1 and Rab proteins. In this study, we have analyzed whether HERC1 may also regulate ARF6 activity. We show that HERC1, through its RLD1, stimulates GDP release from ARF6 but, unexpectedly, it inhibits GDP/GTP exchange on ARF6 under conditions where ARNO stimulates it. Furthermore, we demonstrate that the activity of HERC1 as a guanine nucleotide release factor requires the presence of PI(4,5)P(2) bound to HERC1's RLD1. In agreement with this, we find that purified HERC1 contains PI(4,5)P(2) bound to the RLD1.
Collapse
Affiliation(s)
- Francesc R Garcia-Gonzalo
- Departament de Ciències Fisiològiques II, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, E-08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | |
Collapse
|
18
|
Bakholdina SI, Sanina NM, Krasikova IN, Popova OB, Solov'eva TF. The impact of abiotic factors (temperature and glucose) on physicochemical properties of lipids from Yersinia pseudotuberculosis. Biochimie 2004; 86:875-81. [PMID: 15667937 DOI: 10.1016/j.biochi.2004.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Accepted: 10/25/2004] [Indexed: 10/26/2022]
Abstract
The impact of the availability of glucose in nutrition medium and growth temperature on the composition and thermotropic behavior of lipids from Yersinia pseudotuberculosis (Enterobacteriaceae) was studied. Y. pseudotuberculosis was grown in nutrition broth (NB) with/without glucose at 8 and 37 degrees C, corresponding to the temperatures of saprophytic and parasitic phases of this bacterium life. The decrease of phosphatidylethanolamine, phosphatidylglycerol and unsaturated fatty acids and the parallel increase of lysophosphatidylethanolamine and diphosphatidylglycerol and saturated and cyclopropane acids were the most significant changes with temperature in bacterial phospholipid (PL) classes and fatty acids, respectively. Glucose did not effect the direction of temperature-induced changes in the contents of PLs, fatty acids, however it enhanced (for PLs) or diminished (for fatty acids) intensity of these changes. The thermally induced transitions of lipids were studied by differential scanning calorimetry (DSC). It was revealed that the addition of glucose to NB induced a sharp shift of DSC thermograms to lower temperatures in the "warm" variants of bacteria. The peak maximum temperature (Tmax) of thermal transitions dropped from 50 to 26 degrees C that is the optimal growth temperature of Y. pseudotuberculosis. Tmax of total lipids of the cells grown at 8 degrees C without glucose in NB was equal to growth temperature that corresponded to the classical mechanism of homeoviscous adaptation of bacteria. An addition of glucose to NB at this growth temperature caused the subsequent reduction of Tmax to -8 degrees C, while the temperature ranges of thermograms were not substantially changed. So, not only the temperature growth of bacteria, but also the presence of glucose in NB can modify the physical state of lipids from Y. pseudotuberculosis. In this case, both factors affect additively. It is suggested that glucose influences some membrane-associated proteins and then the fluidity of lipid matrix through temperature-inducible genes.
Collapse
Affiliation(s)
- S I Bakholdina
- Pacific Institute of Bioorganic Chemistry, Far East Branch of Russian Academy of Sciences, prospect 100-let Vladivostoku, 159, Vladivostok 690022, Russia
| | | | | | | | | |
Collapse
|
19
|
Aboulwafa M, Saier MH. Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidyl glycerol in Escherichia coli: studies with a pgsA mutant lacking phosphatidyl glycerophosphate synthase. Res Microbiol 2002; 153:667-77. [PMID: 12558186 DOI: 10.1016/s0923-2508(02)01376-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It has been reported that phosphatidyl glycerol (PG) is specifically required for the in vitro activities of the hexose-phosphorylating Enzymes II of the Escherichia coli phosphoenolpyruvate-dependent sugar transporting phosphotransferase system (PTS). We have examined this possibility by measuring the properties of a null pgsA mutant that lacks detectable PG. The mutant showed lower in vitro phosphorylation activities towards several sugars when both PEP-dependent and sugar-phosphate-dependent [14C]sugar phosphorylation reactions were measured. The order of dependency on PG for the different enzymes II was: IIMannose > IIGlucose > IIFructose > IIMannitol. Nonsedimentable (40000 rpm for 2 h) Enzymes II exhibited a greater dependency on PG than pelletable Enzymes II. Western blot analyses showed that the glucose Enzyme II is present in normal amounts. Transport and fermentation measurements revealed diminished activities for all Enzymes II. Thermal stability of all of these enzymes except the mannitol-specific Enzyme II was significantly decreased by the pgsA mutation, and sensitivity to detergent treatments was enhanced. Sugar transport proved to be the most sensitive indicator of proper Enzyme II-phospholipid association. Our results show that PG stimulates but is not required for Enzyme II function in E. coli.
Collapse
Affiliation(s)
- Mohammad Aboulwafa
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
20
|
Collin S, Justin AM, Cantrel C, Arondel V, Kader JC. Identification of AtPIS, a phosphatidylinositol synthase from Arabidopsis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:652-8. [PMID: 10411624 DOI: 10.1046/j.1432-1327.1999.00378.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphatidylinositol synthase is the enzyme responsible for the synthesis of phosphatidylinositol, a key phospholipid component of all eukaryotic membranes and the precursor of messenger molecules involved in signal transduction pathways for calcium-dependent responses in the cell. Using the amino acid sequence of the yeast enzyme as a probe, we identified an Arabidopsis expressed sequence tag potentially encoding the plant enzyme. Sequencing the entire cDNA confirmed the homology between the two proteins. Functional assays, performed by overexpression of the plant cDNA in Escherichia coli, a bacteria which lacks phosphatidylinositol and phosphatidylinositol synthase activity, showed that the plant protein induced the accumulation of phosphatidylinositol in the bacterial cells. Analysis of the enzymatic activity in vitro showed that synthesis of phosphatidylinositol occurs when CDP-diacylglycerol and myo-inositol only are provided as substrates, that it requires manganese or magnesium ions for activity, and that it is at least in part located to the bacterial membrane fraction. These data allowed us to conclude that the Arabidopsis cDNA codes for a phosphatidylinositol synthase. A single AtPIS genetic locus was found, which we mapped to Arabidopsis chromosome 1.
Collapse
Affiliation(s)
- S Collin
- Université Pierre et Marie Curie, Laboratoire de Physiologie Cellulaire et Moléculaire, Paris, France.
| | | | | | | | | |
Collapse
|
21
|
Basu SS, York JD, Raetz CRH. A phosphotransferase that generates phosphatidylinositol 4-phosphate (PtdIns-4-P) from phosphatidylinositol and lipid A in Rhizobium leguminosarum. A membrane-bound enzyme linking lipid a and ptdins-4-p biosynthesis. J Biol Chem 1999; 274:11139-49. [PMID: 10196199 PMCID: PMC2548417 DOI: 10.1074/jbc.274.16.11139] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membranes of Rhizobium leguminosarum contain a 3-deoxy-D-manno-octulosonic acid (Kdo)-activated lipid A 4'-phosphatase required for generating the unusual phosphate-deficient lipid A found in this organism. The enzyme has been solubilized with Triton X-100 and purified 80-fold. As shown by co-purification and thermal inactivation studies, the 4'-phosphatase catalyzes not only the hydrolysis of (Kdo)2-[4'-32P]lipid IVA but also the transfer the 4'-phosphate of Kdo2-[4'-32P]lipid IVA to the inositol headgroup of phosphatidylinositol (PtdIns) to generate PtdIns-4-P. Like the 4'-phosphatase, the phosphotransferase activity is not present in Escherichia coli, Rhizobium meliloti, or the nodulation-defective mutant 24AR of R. leguminosarum. The specific activity for the phosphotransferase reaction is about 2 times higher than that of the 4'-phosphatase. The phosphotransferase assay conditions are similar to those used for PtdIns kinases, except that ATP and Mg2+ are omitted. The apparent Km for PtdIns is approximately 500 microM versus 20-100 microM for most PtdIns kinases, but the phosphotransferase specific activity in crude cell extracts is higher than that of most PtdIns kinases. The phosphotransferase is absolutely specific for the 4-position of PtdIns and is highly selective for PtdIns as the acceptor. The 4'-phosphatase/phosphotransferase can be eluted from heparin- or Cibacron blue-agarose with PtdIns. A phosphoenzyme intermediate may account for the dual function of this enzyme, since a single 32P-labeled protein species (Mr approximately 68,000) can be trapped and visualized by SDS gel electrophoresis of enzyme preparations incubated with Kdo2-[4'-32P]lipid IVA. Although PtdIns is not detected in cultures of R. leguminosarum/etli (CE3), PtdIns may be synthesized during nodulation or supplied by plant membranes, given that soybean PtdIns is an excellent phosphate acceptor. A bacterial enzyme for generating PtdIns-4-P and a direct link between lipid A and PtdIns-4-P biosynthesis have not been reported previously.
Collapse
Affiliation(s)
- Shib Sankar Basu
- Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - John D. York
- Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Christian R. H. Raetz
- Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
- To whom correspondence should be addressed. Tel.: 919-684-5326; Fax: 919-684-8885; E-mail:
| |
Collapse
|
22
|
DiRusso CC, Black PN, Weimar JD. Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria. Prog Lipid Res 1999; 38:129-97. [PMID: 10396600 DOI: 10.1016/s0163-7827(98)00022-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- C C DiRusso
- Department of Biochemistry and Molecular Biology, Albany Medical College, New York, USA.
| | | | | |
Collapse
|
23
|
Dowhan W. Genetic analysis of lipid-protein interactions in Escherichia coli membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1376:455-66. [PMID: 9805009 DOI: 10.1016/s0304-4157(98)00013-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Phospholipids play essential roles in defining the membrane permeability barrier, in regulating cellular processes, in providing a support for organization of many membrane-associated processes, and in providing precursors for the synthesis of macromolecules. Although in vitro experiments have provided important information on the role of protein-lipid interactions in cell function, such approaches are limited by the lack of a direct measure for phospholipid function. Genetic approaches can provide direct evidence for a specific role for phospholipids in cell function provided cell viability or membrane structure is not compromised. This review will summarize recent genetic approaches that when coupled with biochemical studies have led to a better understanding of specific functions for phospholipids at the molecular level.
Collapse
Affiliation(s)
- W Dowhan
- Department of Biochemistry and Molecular Biology, University of Texas-Houston, Medical School, 6431 Fannin, P.O. Box 20708, Houston, TX 77225, USA.
| |
Collapse
|
24
|
Lewis RN, McElhaney RN. The structure and organization of phospholipid bilayers as revealed by infrared spectroscopy. Chem Phys Lipids 1998. [DOI: 10.1016/s0009-3084(98)00077-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Zhang YP, Lewis RN, McElhaney RN. Calorimetric and spectroscopic studies of the thermotropic phase behavior of the n-saturated 1,2-diacylphosphatidylglycerols. Biophys J 1997; 72:779-93. [PMID: 9017203 PMCID: PMC1185601 DOI: 10.1016/s0006-3495(97)78712-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The polymorphic phase behavior of a homologous series of n-saturated 1,2-diacyl phosphatidylglycerols (PGs) was studied by differential scanning calorimetry and Fourier transform infrared and 31P-nuclear magnetic resonance spectroscopy. When dispersed in aqueous media under physiologically relevant conditions, these compounds exhibit two thermotropic phase transitions that are structurally equivalent to the well-characterized pretransitons and gel/liquid-crystalline phase transitions exhibited by bilayers of the corresponding 1,2-diacyl phosphatidylcholines. Furthermore, when incubated at low temperatures, their gel phases spontaneously transform into one or more solid-like phases that appear to be highly ordered, quasicrystalline bilayers that are probably partially dehydrated. The quasicrystalline structures, which form upon short-term, low-temperature annealing of these lipids, are meta-stable with respect to more stable structures, to which they eventually transform upon prolonged low-temperature incubation. The rates of formation of the quasicrystalline phases of the PGs generally tend to decrease as hydrocarbon chain length increases, and PGs whose hydrocarbon chains contain an odd number of carbon atoms tend to be slower than those of neighboring even-numbered homologs. The calorimetric data also indicate that the quasicrystalline phases of these compounds become progressively less stable relative to both their gel and liquid-crystalline phases as the length of the hydrocarbon chain increases and that they decompose either to the liquid-crystalline phase (short- and medium-chain compounds) or to the normal gel phase (long-chain compounds) upon heating. The spectroscopic data indicate that although there is odd-even alternation in the structures of the quasicrystalline phases formed upon short-term low-temperature incubation of these compounds, the structural features of the stable quasicrystalline phases eventually formed are all similar. Furthermore, the degree of hydration and the nature of hydrogen bonding interactions in the headgroup and interfacial regions of these PG bilayers differ significantly from that observed in all other phospholipid bilayers studied so far. We suggest that many of the properties of PG bilayers can be rationalized by postulating that the glycerol moiety of the polar headgroup is directly involved in shielding the negative charges at the surface of the bilayer by means of hydration-like hydrogen bonding interactions with the phosphate moiety.
Collapse
Affiliation(s)
- Y P Zhang
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
26
|
Abstract
Phospholipids play multiple roles in cells by establishing the permeability barrier for cells and cell organelles, by providing the matrix for the assembly and function of a wide variety of catalytic processes, by acting as donors in the synthesis of macromolecules, and by actively influencing the functional properties of membrane-associated processes. The function, at the molecular level, of phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin in specific cellular processes is reviewed, with a focus on the results of combined molecular genetic and biochemical studies in Escherichia coli. These results are compared with primarily biochemical data supporting similar functions for these phospholipids in eukaryotic organisms. The wide range of processes in which specific involvement of phospholipids has been documented explains the need for diversity in phospholipid structure and why there are so many membrane lipids.
Collapse
Affiliation(s)
- W Dowhan
- Department of Biochemistry and Molecular Biology, University of Texas-Houston, Medical School 77225, USA.
| |
Collapse
|