1
|
Li H, Lv Y, Teng Z, Guo R, Jiang L. Shigella Senses the Environmental Cue Leucine to Promote its Virulence Gene Expression in the Colon. J Mol Biol 2024; 436:168798. [PMID: 39303765 DOI: 10.1016/j.jmb.2024.168798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Shigella is a foodborne enteropathogenic bacteria that causes severe bacillary dysentery in humans. Shigella primarily colonizes the human colon and causes disease via invasion of colon epithelial cells. However, the signal regulatory mechanisms associated with its colonization and pathogenesis in the colon remain poorly defined. Here, we report a leucine-mediated regulatory mechanism that promotes Shigella virulence gene expression and invasion of colon epithelial cells. Shigella in response to leucine, which is highly abundant in the colon, via the leucine-responsive regulator Lrp and the binding of Lrp with leucine induces the expression of a newly identified small RNA SsrV. SsrV then activates the expression of virF and downstream invasion-related virulence genes by increasing the protein level of the LysR-type transcription regulator LrhA, therefore enabling Shigella invasion of colon epithelial cells. Shigella lacking ssrV displays impaired invasion ability. Collectively, these findings suggest that Shigella employs a leucine-responsive environmental activation mechanism to establish colonization and pathogenicity.
Collapse
Affiliation(s)
- Huiying Li
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Yongyao Lv
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Zhiqi Teng
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Rui Guo
- Shandong Center for Food and Drug Evaluation & Inspection, Jinan 250014, China
| | - Lingyan Jiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China.
| |
Collapse
|
2
|
Kago G, Turnbough CL, Salazar JC, Payne SM. (p)ppGpp is required for virulence of Shigella flexneri. Infect Immun 2024; 92:e0033423. [PMID: 38099658 PMCID: PMC10790822 DOI: 10.1128/iai.00334-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/16/2023] [Indexed: 01/17/2024] Open
Abstract
Infection by the enteric pathogen Shigella flexneri requires transit through the gastrointestinal tract and invasion of and replication within the cells of the host colonic epithelium. This process exposes the pathogen to a range of diverse microenvironments. Furthermore, the unique composition and physical environment of the eukaryotic cell cytosol represents a stressful environment for S. flexneri, and extensive physiological adaptations are needed for the bacterium to thrive. In this work, we show that disrupting synthesis of the stringent response alarmone (p)ppGpp in S. flexneri diminished expression of key virulence genes, including ipaA, ipaB, ipaC, and icsA, and it reduced bacterial invasion and intercellular spread. Deletion of the (p)ppGpp synthase gene relA alone had no effect on S. flexneri virulence, but disruption of both relA and the (p)ppGpp synthase/hydrolase gene spoT resulted in loss of (p)ppGpp synthesis and virulence. While the relA spoT deletion mutant was able to invade a cultured human epithelial cell monolayer, albeit at reduced levels, it was unable to maintain the infection and spread to adjacent cells, as indicated by loss of plaque formation. Complementation with spoT on a plasmid vector restored plaque formation. Thus, SpoT alone is sufficient to provide the necessary level of (p)ppGpp for virulence. These results indicate that (p)ppGpp is required for S. flexneri virulence and adaptation to the intracellular environment, adding to the repertoire of signaling pathways that affect Shigella pathogenesis.
Collapse
Affiliation(s)
- Grace Kago
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Charles L. Turnbough
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Juan Carlos Salazar
- Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Shelley M. Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
- John Ring LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
Haidar-Ahmad N, Manigat FO, Silué N, Pontier SM, Campbell-Valois FX. A Tale about Shigella: Evolution, Plasmid, and Virulence. Microorganisms 2023; 11:1709. [PMID: 37512882 PMCID: PMC10383432 DOI: 10.3390/microorganisms11071709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Shigella spp. cause hundreds of millions of intestinal infections each year. They target the mucosa of the human colon and are an important model of intracellular bacterial pathogenesis. Shigella is a pathovar of Escherichia coli that is characterized by the presence of a large invasion plasmid, pINV, which encodes the characteristic type III secretion system and icsA used for cytosol invasion and cell-to-cell spread, respectively. First, we review recent advances in the genetic aspects of Shigella, shedding light on its evolutionary history within the E. coli lineage and its relationship to the acquisition of pINV. We then discuss recent insights into the processes that allow for the maintenance of pINV. Finally, we describe the role of the transcription activators VirF, VirB, and MxiE in the major virulence gene regulatory cascades that control the expression of the type III secretion system and icsA. This provides an opportunity to examine the interplay between these pINV-encoded transcriptional activators and numerous chromosome-encoded factors that modulate their activity. Finally, we discuss novel chromosomal genes icaR, icaT, and yccE that are regulated by MxiE. This review emphasizes the notion that Shigella and E. coli have walked the fine line between commensalism and pathogenesis for much of their history.
Collapse
Affiliation(s)
- Nathaline Haidar-Ahmad
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - France Ourida Manigat
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Navoun Silué
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Stéphanie M Pontier
- Centre de Recherche Santé Environnementale et Biodiversité de l'Outaouais (SEBO), CEGEP de l'Outaouais, Gatineau, QC J8Y 6M4, Canada
| | - François-Xavier Campbell-Valois
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Infection, Immunity and Inflammation, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
4
|
Andrieu C, Loiseau L, Vergnes A, Gagnot S, Barré R, Aussel L, Collet JF, Ezraty B. Salmonella Typhimurium uses the Cpx stress response to detect N-chlorotaurine and promote the repair of oxidized proteins. Proc Natl Acad Sci U S A 2023; 120:e2215997120. [PMID: 36976766 PMCID: PMC10083560 DOI: 10.1073/pnas.2215997120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023] Open
Abstract
The cell envelope of gram-negative bacteria constitutes the first protective barrier between a cell and its environment. During host infection, the bacterial envelope is subjected to several stresses, including those induced by reactive oxygen species (ROS) and reactive chlorine species (RCS) produced by immune cells. Among RCS, N-chlorotaurine (N-ChT), which results from the reaction between hypochlorous acid and taurine, is a powerful and less diffusible oxidant. Here, using a genetic approach, we demonstrate that Salmonella Typhimurium uses the CpxRA two-component system to detect N-ChT oxidative stress. Moreover, we show that periplasmic methionine sulfoxide reductase (MsrP) is part of the Cpx regulon. Our findings demonstrate that MsrP is required to cope with N-ChT stress by repairing N-ChT-oxidized proteins in the bacterial envelope. By characterizing the molecular signal that induces Cpx when S. Typhimurium is exposed to N-ChT, we show that N-ChT triggers Cpx in an NlpE-dependent manner. Thus, our work establishes a direct link between N-ChT oxidative stress and the envelope stress response.
Collapse
Affiliation(s)
- Camille Andrieu
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, 13402Marseille, France
| | - Laurent Loiseau
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, 13402Marseille, France
| | - Alexandra Vergnes
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, 13402Marseille, France
| | - Séverine Gagnot
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, 13402Marseille, France
| | - Romain Barré
- Institut de Microbiologie de la Méditerranée, Plate-forme Transcriptomique, 13402Marseille, France
| | - Laurent Aussel
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, 13402Marseille, France
| | | | - Benjamin Ezraty
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, 13402Marseille, France
| |
Collapse
|
5
|
Yao Q, Xie T, Fu Y, Wan J, Zhang W, Gao X, Huang J, Sun D, Zhang F, Bei W, Lei L, Liu F. The CpxA/CpxR two-component system mediates regulation of Actinobacillus pleuropneumoniae cold growth. Front Microbiol 2022; 13:1079390. [PMID: 36619992 PMCID: PMC9816388 DOI: 10.3389/fmicb.2022.1079390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction To survive in various hostile environments, two-component system is an adaptive mechanism for diverse bacteria. Activity of the CpxA/CpxR two-component system contributes to coping with different stimuli, such as pH, osmotic and heat stress. Methods However, the role of the CpxA/CpxR system in cold resistance is little-known. In this study, we showed that CpxA/CpxRwas critical for A. pleuropneumoniae growth under cold stress. Results β-Galactosidaseanalysis showed that CpxA/CpxR positively regulated the predicted cold stress gene cspC. The mutant for cold stress gene cspC was impaired in the optimal growth of A. pleuropneumoniae under cold stress. Furthermore, electrophoretic mobility shift assays demonstrated that CpxR-P could directly regulate the transcription of the cold stress gene cspC. Discussion These results presented in this study illustrated that the CpxA/CpxR system plays an important role in cold resistance by upregulating expression of CspC. The data give new insights into how A. pleuropneumoniae survives in cold stress.
Collapse
Affiliation(s)
- Qing Yao
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Tingting Xie
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Yu Fu
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Jiajia Wan
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Wendie Zhang
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Xuejun Gao
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Jing Huang
- School of Foreign Languages, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Diangang Sun
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Fuxian Zhang
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Liancheng Lei
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China,College of Veterinary Medicine, Jilin University, Changchun, China,Liancheng Lei, ✉
| | - Feng Liu
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China,*Correspondence: Feng Liu, ✉
| |
Collapse
|
6
|
YihE is a novel binding partner of Rho and regulates Rho-dependent transcription termination in the Cpx stress response. iScience 2022; 25:105483. [DOI: 10.1016/j.isci.2022.105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/21/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
|
7
|
Xerri NL, Payne SM. Bacteroides thetaiotaomicron Outer Membrane Vesicles Modulate Virulence of Shigella flexneri. mBio 2022; 13:e0236022. [PMID: 36102517 PMCID: PMC9600379 DOI: 10.1128/mbio.02360-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
The role of the gut microbiota in the pathogenesis of Shigella flexneri remains largely unknown. To understand the impact of the gut microbiota on S. flexneri virulence, we examined the effect of interspecies interactions with Bacteroides thetaiotaomicron, a prominent member of the gut microbiota, on S. flexneri invasion. When grown in B. thetaiotaomicron-conditioned medium, S. flexneri showed reduced invasion of human epithelial cells. This decrease in invasiveness of S. flexneri resulted from a reduction in the level of the S. flexneri master virulence regulator VirF. Reduction of VirF corresponded with a decrease in expression of a secondary virulence regulator, virB, as well as expression of S. flexneri virulence genes required for invasion, intracellular motility, and spread. Repression of S. flexneri virulence factors by B. thetaiotaomicron-conditioned medium was not caused by either a secreted metabolite or secreted protein but rather was due to the presence of B. thetaiotaomicron outer membrane vesicles (OMVs) in the conditioned medium. The addition of purified B. thetaiotaomicron OMVs to S. flexneri growth medium recapitulated the inhibitory effects of B. thetaiotaomicron-conditioned medium on invasion, virulence gene expression, and virulence protein levels. Total lipids extracted from either B. thetaiotaomicron cells or B. thetaiotaomicron OMVs also recapitulated the effects of B. thetaiotaomicron-conditioned medium on expression of the S. flexneri virulence factor IpaC, indicating that B. thetaiotaomicron OMV lipids, rather than a cargo contained in the vesicles, are the active factor responsible for the inhibition of S. flexneri virulence. IMPORTANCE Shigella flexneri is the causative agent of bacillary dysentery in humans. Shigella spp. are one of the leading causes of diarrheal morbidity and mortality, especially among children in low- and middle-income countries. The rise of antimicrobial resistance combined with the lack of an effective vaccine for Shigella heightens the importance of studies aimed at better understanding previously uncharacterized aspects of Shigella pathogenesis. Here, we show that conditioned growth medium from the commensal bacterium Bacteroides thetaiotaomicron represses the invasion of S. flexneri. This repression is due to the presence of B. thetaiotaomicron outer membrane vesicles. These findings establish a role for interspecies interactions with a prominent member of the gut microbiota in modulating the virulence of S. flexneri and identify a novel function of outer membrane vesicles in interbacterial signaling between members of the gut microbiota and an enteric pathogen.
Collapse
Affiliation(s)
- Nicholas L. Xerri
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Shelley M. Payne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
8
|
Elucidation of Key Interactions between VirF and the virB Promoter in Shigella flexneri Using E. coli MarA- and GadX-Based Homology Models and In Vitro Analysis of the DNA-Binding Domains of VirF and MarA. J Bacteriol 2022; 204:e0014322. [PMID: 36040161 PMCID: PMC9487632 DOI: 10.1128/jb.00143-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with Shigella, the organism responsible for the diarrheal disease shigellosis, leads to approximately 200,000 deaths globally annually. Virulence of this pathogen is primarily controlled by the DNA-binding transcriptional activator VirF. This AraC family protein activates transcription of two major virulence genes, virB and icsA, which lead to the pathogen's ability to invade and spread within colonic epithelial cells. While several AraC proteins have been studied, few studies of VirF's binding to its DNA promoters have been reported, and VirF's three-dimensional structure remains unsolved. Here, we used structures of two E. coli VirF homologs, GadX and MarA-marRAB, to generate homology models of the VirF DNA-binding domain in free and DNA-bound conformations. We conducted alanine scanning mutagenesis on seven residues within MarA that make base-specific interactions with its promoter, marRAB, and the corresponding residues within VirF (identified by sequence and structural homologies). In vitro DNA-binding assays studying both wild-type and mutant MarA and VirF proteins identified residues important for binding to the marRAB and virB promoters, respectively. Comparison of the effects of these DNA-binding domain mutants validated our MarA-based homology model, allowing us to identify crucial interactions between VirF and the virB promoter. Proteins with mutations to helix 3 within both MarA(W42A, R46A) and MalE-VirF(R192A, K193A) exhibited significant reductions in DNA binding, while the effects of mutations in helix 6 varied. This suggests the shared importance of helix 3 in the binding to these promoters, while helix 6 is transcription factor specific. These results can inform further development of virulence-targeting inhibitors as an alternative to traditional antimicrobial drug design. IMPORTANCE Globally, infection with Shigella flexneri is a leading cause of bacterial dysentery, particularly affecting children under the age of 5 years. The virulence of this pathogen makes it highly infectious, allowing it to spread easily within areas lacking proper sanitation or access to clean drinking water. VirF is a DNA-binding transcription factor that activates S. flexneri virulence once the bacteria infect the human colon. Development of drugs that target VirF's DNA-binding activity can be an effective treatment to combat shigellosis as an alternative or addition to traditional antibiotics. Due to the lack of structural data, analysis of VirF's DNA-binding activity is critical to the development of potent VirF inhibitors.
Collapse
|
9
|
Roles of Two-Component Signal Transduction Systems in Shigella Virulence. Biomolecules 2022; 12:biom12091321. [PMID: 36139160 PMCID: PMC9496106 DOI: 10.3390/biom12091321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Two-component signal transduction systems (TCSs) are widespread types of protein machinery, typically consisting of a histidine kinase membrane sensor and a cytoplasmic transcriptional regulator that can sense and respond to environmental signals. TCSs are responsible for modulating genes involved in a multitude of bacterial functions, including cell division, motility, differentiation, biofilm formation, antibiotic resistance, and virulence. Pathogenic bacteria exploit the capabilities of TCSs to reprogram gene expression according to the different niches they encounter during host infection. This review focuses on the role of TCSs in regulating the virulence phenotype of Shigella, an intracellular pathogen responsible for severe human enteric syndrome. The pathogenicity of Shigella is the result of the complex action of a wide number of virulence determinants located on the chromosome and on a large virulence plasmid. In particular, we will discuss how five TCSs, EnvZ/OmpR, CpxA/CpxR, ArcB/ArcA, PhoQ/PhoP, and EvgS/EvgA, contribute to linking environmental stimuli to the expression of genes related to virulence and fitness within the host. Considering the relevance of TCSs in the expression of virulence in pathogenic bacteria, the identification of drugs that inhibit TCS function may represent a promising approach to combat bacterial infections.
Collapse
|
10
|
Tsviklist V, Guest RL, Raivio TL. The Cpx Stress Response Regulates Turnover of Respiratory Chain Proteins at the Inner Membrane of Escherichia coli. Front Microbiol 2022; 12:732288. [PMID: 35154019 PMCID: PMC8831704 DOI: 10.3389/fmicb.2021.732288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/20/2021] [Indexed: 12/03/2022] Open
Abstract
The Cpx envelope stress response is a major signaling pathway monitoring bacterial envelope integrity, activated both internally by excessive synthesis of membrane proteins and externally by a variety of environmental cues. The Cpx regulon is enriched with genes coding for protein folding and degrading factors, virulence determinants, and large envelope-localized complexes. Transcriptional repression of the two electron transport chain complexes, NADH dehydrogenase I and cytochrome bo3, by the Cpx pathway has been demonstrated, however, there is evidence that additional regulatory mechanisms exist. In this study, we examine the interaction between Cpx-regulated protein folding and degrading factors and the respiratory complexes NADH dehydrogenase I and succinate dehydrogenase in Escherichia coli. Here we show that the cellular need for Cpx-mediated stress adaptation increases when respiratory complexes are more prevalent or active, which is demonstrated by the growth defect of Cpx-deficient strains on media that requires a functional electron transport chain. Interestingly, deletion of several Cpx-regulated proteolytic factors and chaperones results in similar growth-deficient phenotypes. Furthermore, we find that the stability of the NADH dehydrogenase I protein complex is lower in cells with a functional Cpx response, while in its absence, protein turnover is impaired. Finally, we demonstrated that the succinate dehydrogenase complex has reduced activity in E. coli lacking the Cpx pathway. Our results suggest that the Cpx two-component system serves as a sentry of inner membrane protein biogenesis, ensuring the function of large envelope protein complexes and maintaining the cellular energy status of the cell.
Collapse
Affiliation(s)
- Valeria Tsviklist
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Randi L. Guest
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Tracy L. Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Tracy L. Raivio,
| |
Collapse
|
11
|
Abstract
Bacteria thrive both in liquids and attached to surfaces. The concentration of bacteria on surfaces is generally much higher than in the surrounding environment, offering bacteria ample opportunity for mutualistic, symbiotic, and pathogenic interactions. To efficiently populate surfaces, they have evolved mechanisms to sense mechanical or chemical cues upon contact with solid substrata. This is of particular importance for pathogens that interact with host tissue surfaces. In this review we discuss how bacteria are able to sense surfaces and how they use this information to adapt their physiology and behavior to this new environment. We first survey mechanosensing and chemosensing mechanisms and outline how specific macromolecular structures can inform bacteria about surfaces. We then discuss how mechanical cues are converted to biochemical signals to activate specific cellular processes in a defined chronological order and describe the role of two key second messengers, c-di-GMP and cAMP, in this process.
Collapse
Affiliation(s)
| | - Urs Jenal
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland; ,
| |
Collapse
|
12
|
Zhu T, Wang Z, McMullen LM, Raivio T, Simpson DJ, Gänzle MG. Contribution of the Locus of Heat Resistance to Growth and Survival of Escherichia coli at Alkaline pH and at Alkaline pH in the Presence of Chlorine. Microorganisms 2021; 9:701. [PMID: 33800639 PMCID: PMC8067161 DOI: 10.3390/microorganisms9040701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
The locus of heat resistance (LHR) confers resistance to extreme heat, chlorine and oxidative stress in Escherichia coli. This study aimed to determine the function of the LHR in maintaining bacterial cell envelope homeostasis, the regulation of the genes comprising the LHR and the contribution of the LHR to alkaline pH response. The presence of the LHR did not affect the activity of the Cpx two-component regulatory system in E. coli, which was measured to quantify cell envelope stress. The LHR did not alter E. coli MG1655 growth rate in the range of pH 6.9 to 9.2. However, RT-qPCR results indicated that the expression of the LHR was elevated at pH 8.0 when CpxR was absent. The LHR did not improve survival of E. coli MG1655 at extreme alkaline pH (pH = 11.0 to 11.2) but improved survival at pH 11.0 in the presence of chlorine. Therefore, we conclude that the LHR confers resistance to extreme alkaline pH in the presence of oxidizing agents. Resistance to alkaline pH is regulated by an endogenous mechanism, including the Cpx envelope stress response, whereas the LHR confers resistance to extreme alkaline pH only in the presence of additional stress such as chlorine.
Collapse
Affiliation(s)
- Tongbo Zhu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (T.Z.); (Z.W.); (L.M.M.); (D.J.S.)
| | - Zhiying Wang
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (T.Z.); (Z.W.); (L.M.M.); (D.J.S.)
| | - Lynn M. McMullen
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (T.Z.); (Z.W.); (L.M.M.); (D.J.S.)
| | - Tracy Raivio
- Department of Biological Science, University of Alberta, Edmonton, AB T6G 2E9, Canada;
| | - David J. Simpson
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (T.Z.); (Z.W.); (L.M.M.); (D.J.S.)
| | - Michael G. Gänzle
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (T.Z.); (Z.W.); (L.M.M.); (D.J.S.)
| |
Collapse
|
13
|
Jaswal K, Shrivastava M, Chaba R. Revisiting long-chain fatty acid metabolism in Escherichia coli: integration with stress responses. Curr Genet 2021; 67:573-582. [PMID: 33740112 DOI: 10.1007/s00294-021-01178-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/29/2022]
Abstract
Long-chain fatty acids (LCFAs) are a tremendous source of metabolic energy, an essential component of membranes, and important effector molecules that regulate a myriad of cellular processes. As an energy-rich nutrient source, the role of LCFAs in promoting bacterial survival and infectivity is well appreciated. LCFA degradation generates a large number of reduced cofactors that may confer redox stress; therefore, it is imperative to understand how bacteria deal with this paradoxical situation. Although the LCFA utilization pathway has been studied in great detail, especially in Escherichia coli, where the earliest studies date back to the 1960s, the interconnection of LCFA degradation with bacterial stress responses remained largely unexplored. Recent work in E. coli shows that LCFA degradation induces oxidative stress and also impedes oxidative protein folding. Importantly, both issues arise due to the insufficiency of ubiquinone, a lipid-soluble electron carrier in the electron transport chain. However, to maintain redox homeostasis, bacteria induce sophisticated cellular responses. Here, we review these findings in light of our current knowledge of the LCFA metabolic pathway, metabolism-induced oxidative stress, the process of oxidative protein folding, and stress combat mechanisms. We discuss probable mechanisms for the activation of defense players during LCFA metabolism and the likely feedback imparted by them. We suggest that besides defending against intrinsic stresses, LCFA-mediated upregulation of stress response pathways primes bacteria to adapt to harsh external environments. Collectively, the interplay between LCFA metabolism and stress responses is likely an important factor that underlies the success of LCFA-utilizing bacteria in the host.
Collapse
Affiliation(s)
- Kanchan Jaswal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Megha Shrivastava
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India.
| |
Collapse
|
14
|
Srivastava A, Varshney RK, Shukla P. Sigma Factor Modulation for Cyanobacterial Metabolic Engineering. Trends Microbiol 2020; 29:266-277. [PMID: 33229204 DOI: 10.1016/j.tim.2020.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 11/18/2022]
Abstract
Sigma (σ) factors are key regulatory proteins that control the transcription initiation in prokaryotes. In response to environmental or developmental cues, σ factors initiate the transcription of necessary genes responsible for maintaining a life-sustaining metabolic balance. Due to the significant role of σ factors in bacterial metabolism, their rational engineering for commercial metabolite production in photoautotrophic, cyanobacterial cells is a desirable venture. As cyanobacterial genomes typically encode multiple σ factors, effective execution of metabolic engineering efforts largely relies on uncovering the complicated gene regulatory network and further characterization of the members of σ factor regulatory circuits. This review outlines the prospects of σ factor in metabolic engineering of cyanobacteria, summarizes the challenges in the path towards an efficient strain construction and highlights the genomic context of putative regulators of cyanobacterial σ factors.
Collapse
Affiliation(s)
- Amit Srivastava
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana, India.
| |
Collapse
|
15
|
Sun Y, Wang L, Pan X, Osire T, Fang H, Zhang H, Yang ST, Yang T, Rao Z. Improved Prodigiosin Production by Relieving CpxR Temperature-Sensitive Inhibition. Front Bioeng Biotechnol 2020; 8:344. [PMID: 32582647 PMCID: PMC7283389 DOI: 10.3389/fbioe.2020.00344] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
Prodigiosin (PG) is a typical secondary metabolite mainly produced by Serratia marcescens. CpxR protein is an OmpR family transcriptional regulator in Gram-negative bacteria. Firstly, it was found that insertion mutation of cpxR in S. marcescens JNB 5-1 by a transposon Tn5G increased the production of PG. Results from the electrophoretic mobility shift assay (EMSA) indicated that CpxR could bind to the promoter of the pig gene cluster and repress the transcription levels of genes involved in PG biosynthesis in S. marcescens JNB 5-1. In the ΔcpxR mutant strain, the transcription levels of the pig gene cluster and the genes involved in the pathways of PG precursors, such as proline, pyruvate, serine, methionine, and S-adenosyl methionine, were significantly increased, hence promoting the production of PG. Subsequently, a fusion segment composed of the genes proC, serC, and metH, responsible for proline, serine, and methionine, was inserted into the cpxR gene in S. marcescens JNB 5-1. On fermentation by the resultant engineered S. marcescens, the highest PG titer reached 5.83 g/L and increased by 41.9%, relative to the parental strain. In this study, we revealed the role of CpxR in PG biosynthesis and provided an alternative strategy for the engineering of S. marcescens to enhance PG production.
Collapse
Affiliation(s)
- Yang Sun
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Lijun Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xuewei Pan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Tolbert Osire
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Haitian Fang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Yinchuan, China.,School of Agriculture, Ningxia University, Yinchuan, China
| | - Huiling Zhang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Yinchuan, China.,School of Agriculture, Ningxia University, Yinchuan, China
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
16
|
Hews CL, Cho T, Rowley G, Raivio TL. Maintaining Integrity Under Stress: Envelope Stress Response Regulation of Pathogenesis in Gram-Negative Bacteria. Front Cell Infect Microbiol 2019; 9:313. [PMID: 31552196 PMCID: PMC6737893 DOI: 10.3389/fcimb.2019.00313] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
The Gram-negative bacterial envelope is an essential interface between the intracellular and harsh extracellular environment. Envelope stress responses (ESRs) are crucial to the maintenance of this barrier and function to detect and respond to perturbations in the envelope, caused by environmental stresses. Pathogenic bacteria are exposed to an array of challenging and stressful conditions during their lifecycle and, in particular, during infection of a host. As such, maintenance of envelope homeostasis is essential to their ability to successfully cause infection. This review will discuss our current understanding of the σE- and Cpx-regulated ESRs, with a specific focus on their role in the virulence of a number of model pathogens.
Collapse
Affiliation(s)
- Claire L Hews
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Timothy Cho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Tracy L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Thanikkal EJ, Gahlot DK, Liu J, Fredriksson Sundbom M, Gurung JM, Ruuth K, Francis MK, Obi IR, Thompson KM, Chen S, Dersch P, Francis MS. The Yersinia pseudotuberculosis Cpx envelope stress system contributes to transcriptional activation of rovM. Virulence 2019; 10:37-57. [PMID: 30518290 PMCID: PMC6298763 DOI: 10.1080/21505594.2018.1556151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Gram-negative enteropathogen Yersinia pseudotuberculosis possesses a number of regulatory systems that detect cell envelope damage caused by noxious extracytoplasmic stresses. The CpxA sensor kinase and CpxR response regulator two-component regulatory system is one such pathway. Active Cpx signalling upregulates various factors designed to repair and restore cell envelope integrity. Concomitantly, this pathway also down-regulates key determinants of virulence. In Yersinia, cpxA deletion accumulates high levels of phosphorylated CpxR (CpxR~P). Accumulated CpxR~P directly repressed rovA expression and this limited expression of virulence-associated processes. A second transcriptional regulator, RovM, also negatively regulates rovA expression in response to nutrient stress. Hence, this study aimed to determine if CpxR~P can influence rovA expression through control of RovM levels. We determined that the active CpxR~P isoform bound to the promoter of rovM and directly induced its expression, which naturally associated with a concurrent reduction in rovA expression. Site-directed mutagenesis of the CpxR~P binding sequence in the rovM promoter region desensitised rovM expression to CpxR~P. These data suggest that accumulated CpxR~P inversely manipulates the levels of two global transcriptional regulators, RovA and RovM, and this would be expected to have considerable influence on Yersinia pathophysiology and metabolism.
Collapse
Affiliation(s)
- Edvin J Thanikkal
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Dharmender K Gahlot
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Junfa Liu
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | | | - Jyoti M Gurung
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Kristina Ruuth
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Monika K Francis
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Ikenna R Obi
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Karl M Thompson
- c Department of Microbiology , College of Medicine, Howard University , Washington , DC , USA.,d Interdisciplinary Research Building , Howard University , Washington , DC , USA
| | - Shiyun Chen
- e Key Laboratory of Special Pathogens and Biosafety , Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan , China
| | - Petra Dersch
- f Department of Molecular Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Matthew S Francis
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| |
Collapse
|
18
|
Chatterjee R, Shreenivas MM, Sunil R, Chakravortty D. Enteropathogens: Tuning Their Gene Expression for Hassle-Free Survival. Front Microbiol 2019; 9:3303. [PMID: 30687282 PMCID: PMC6338047 DOI: 10.3389/fmicb.2018.03303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/19/2018] [Indexed: 12/27/2022] Open
Abstract
Enteropathogenic bacteria have been the cause of the majority of foodborne illnesses. Much of the research has been focused on elucidating the mechanisms by which these pathogens evade the host immune system. One of the ways in which they achieve the successful establishment of a niche in the gut microenvironment and survive is by a chain of elegantly regulated gene expression patterns. Studies have shown that this process is very elaborate and is also regulated by several factors. Pathogens like, enteropathogenic Escherichia coli (EPEC), Salmonella Typhimurium, Shigella flexneri, Yersinia sp. have been seen to employ various regulated gene expression strategies. These include toxin-antitoxin systems, quorum sensing systems, expression controlled by nucleoid-associated proteins (NAPs), several regulons and operons specific to these pathogens. In the following review, we have tried to discuss the common gene regulatory systems of enteropathogenic bacteria as well as pathogen-specific regulatory mechanisms.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Meghanashree M. Shreenivas
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
- Undergraduate Studies, Indian Institute of Science, Bengaluru, India
| | - Rohith Sunil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
- Undergraduate Studies, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
19
|
Control freaks-signals and cues governing the regulation of virulence in attaching and effacing pathogens. Biochem Soc Trans 2018; 47:229-238. [PMID: 30559275 PMCID: PMC6393859 DOI: 10.1042/bst20180546] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) mediates disease using a type 3 secretion system (T3SS), which is encoded on the locus of enterocyte effacement (LEE) and is tightly controlled by master regulators. This system is further modulated by a number of signals that help to fine-tune virulence, including metabolic, environmental and chemical signals. Since the LEE and its master regulator, Ler, were established, there have been numerous scientific advancements in understanding the regulation and expression of virulence factors in EHEC. This review will discuss the recent advancements in this field since our previous review, with a focus on the transcriptional regulation of the LEE.
Collapse
|
20
|
Dorman MJ, Dorman CJ. Regulatory Hierarchies Controlling Virulence Gene Expression in Shigella flexneri and Vibrio cholerae. Front Microbiol 2018; 9:2686. [PMID: 30473684 PMCID: PMC6237886 DOI: 10.3389/fmicb.2018.02686] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Gram-negative enteropathogenic bacteria use a variety of strategies to cause disease in the human host and gene regulation in some form is typically a part of the strategy. This article will compare the toxin-based infection strategy used by the non-invasive pathogen Vibrio cholerae, the etiological agent in human cholera, with the invasive approach used by Shigella flexneri, the cause of bacillary dysentery. Despite the differences in the mechanisms by which the two pathogens cause disease, they use environmentally-responsive regulatory hierarchies to control the expression of genes that have some features, and even some components, in common. The involvement of AraC-like transcription factors, the integration host factor, the Factor for inversion stimulation, small regulatory RNAs, the RNA chaperone Hfq, horizontal gene transfer, variable DNA topology and the need to overcome the pervasive silencing of transcription by H-NS of horizontally acquired genes are all shared features. A comparison of the regulatory hierarchies in these two pathogens illustrates some striking cross-species similarities and differences among mechanisms coordinating virulence gene expression. S. flexneri, with its low infectious dose, appears to use a strategy that is centered on the individual bacterial cell, whereas V. cholerae, with a community-based, quorum-dependent approach and an infectious dose that is several orders of magnitude higher, seems to rely more on the actions of a bacterial collective.
Collapse
Affiliation(s)
- Matthew J Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Deng Y, Su Y, Liu S, Guo Z, Cheng C, Ma H, Wu J, Feng J, Chen C. Identification of a Novel Small RNA srvg23535 in Vibrio alginolyticus ZJ-T and Its Characterization With Phenotype MicroArray Technology. Front Microbiol 2018; 9:2394. [PMID: 30349521 PMCID: PMC6186989 DOI: 10.3389/fmicb.2018.02394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 09/18/2018] [Indexed: 01/28/2023] Open
Abstract
Small non-coding RNAs (sRNAs) are important modulators of gene expression and are involved in the pathogenesis and survival of prokaryotes. However, few studies have been conducted with Vibrio alginolyticus, which limits our ability to probe the regulation of virulence and environmental adaptation by sRNAs in this opportunistic pathogen. In this study, the sRNA candidate srvg23535 was identified in V. alginolyticus ZJ-T. The precise transcript end, secondary structure, and sequence conservation were determined. A srvg23535 null mutant was constructed and characterized by using Phenotype MicroArray (PM) technology. In silico target prediction was conducted by IntaRNA and TargetRNA2. Subsequently, a 107 nt transcript was validated with a sigma70 promoter at the 5' end and a Rho-independent terminator at the 3' end. The sRNA srvg23535 had four stem-loop structures and was conserved among Vibrio harveyi, Vibrio parahaemolyticus, and Vibrio splendidus. Deletion of srvg23535 in V. alginolyticus ZJ-T led to a weaker utilization of D-mannose, D-melibiose, lactulose, and inosine as carbon sources but stronger utilization of L-cysteine as nitrogen source. Moreover, the srvg2353 mutant showed stronger resistance to osmotic stress but weaker resistance to pH stress. Additionally, a total of 22 common targets were identified and several were related to the observed phenotype of the mutant. This study indicated that the novel sRNA, srvg23535, is conserved and restricted to Vibrio spp., affecting the utilization of several carbon and nitrogen sources and the response to osmotic and pH stress. These results extend our understanding of sRNA regulation in V. alginolyticus and provide a significant resource for the further study of the precise target mRNAs of srvg23535, which may provide targets for antibacterial therapeutic or attenuated vaccines against Vibrio spp.
Collapse
Affiliation(s)
- Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Youlu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Changhong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Hongling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jinjun Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chang Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Xisha/Nansha Ocean Observation and Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
22
|
CpxR-Dependent Thermoregulation of Serratia marcescens PrtA Metalloprotease Expression and Its Contribution to Bacterial Biofilm Formation. J Bacteriol 2018; 200:JB.00006-18. [PMID: 29378892 DOI: 10.1128/jb.00006-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/20/2018] [Indexed: 12/19/2022] Open
Abstract
PrtA is the major secreted metalloprotease of Serratia marcescens Previous reports implicate PrtA in the pathogenic capacity of this bacterium. PrtA is also clinically used as a potent analgesic and anti-inflammatory drug, and its catalytic properties attract industrial interest. Comparatively, there is scarce knowledge about the mechanisms that physiologically govern PrtA expression in Serratia In this work, we demonstrate that PrtA production is derepressed when the bacterial growth temperature decreases from 37°C to 30°C. We show that this thermoregulation occurs at the transcriptional level. We determined that upstream of prtA, there is a conserved motif that is directly recognized by the CpxR transcriptional regulator. This feature is found along Serratia strains irrespective of their isolation source, suggesting an evolutionary conservation of CpxR-dependent regulation of PrtA expression. We found that in S. marcescens, the CpxAR system is more active at 37°C than at 30°C. In good agreement with these results, in a cpxR mutant background, prtA is derepressed at 37°C, while overexpression of the NlpE lipoprotein, a well-known CpxAR-inducing condition, inhibits PrtA expression, suggesting that the levels of the activated form of CpxR are increased at 37°C over those at 30°C. In addition, we establish that PrtA is involved in the ability of S. marcescens to develop biofilm. In accordance, CpxR influences the biofilm phenotype only when bacteria are grown at 37°C. In sum, our findings shed light on regulatory mechanisms that fine-tune PrtA expression and reveal a novel role for PrtA in the lifestyle of S. marcescensIMPORTANCE We demonstrate that S. marcescens metalloprotease PrtA expression is transcriptionally thermoregulated. While strongly activated below 30°C, its expression is downregulated at 37°C. We found that in S. marcescens, the CpxAR signal transduction system, which responds to envelope stress and bacterial surface adhesion, is activated at 37°C and able to downregulate PrtA expression by direct interaction of CpxR with a binding motif located upstream of the prtA gene. Moreover, we reveal that PrtA expression favors the ability of S. marcescens to develop biofilm, irrespective of the bacterial growth temperature. In this context, thermoregulation along with a highly conserved CpxR-dependent modulation mechanism gives clues about the relevance of PrtA as a factor implicated in the persistence of S. marcescens on abiotic surfaces and in bacterial host colonization capacity.
Collapse
|
23
|
Pilla G, McVicker G, Tang CM. Genetic plasticity of the Shigella virulence plasmid is mediated by intra- and inter-molecular events between insertion sequences. PLoS Genet 2017; 13:e1007014. [PMID: 28945748 PMCID: PMC5629016 DOI: 10.1371/journal.pgen.1007014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/05/2017] [Accepted: 09/08/2017] [Indexed: 11/18/2022] Open
Abstract
Acquisition of a single copy, large virulence plasmid, pINV, led to the emergence of Shigella spp. from Escherichia coli. The plasmid encodes a Type III secretion system (T3SS) on a 30 kb pathogenicity island (PAI), and is maintained in a bacterial population through a series of toxin:antitoxin (TA) systems which mediate post-segregational killing (PSK). The T3SS imposes a significant cost on the bacterium, and strains which have lost the plasmid and/or genes encoding the T3SS grow faster than wild-type strains in the laboratory, and fail to bind the indicator dye Congo Red (CR). Our aim was to define the molecular events in Shigella flexneri that cause loss of Type III secretion (T3S), and to examine whether TA systems exert positional effects on pINV. During growth at 37°C, we found that deletions of regions of the plasmid including the PAI lead to the emergence of CR-negative colonies; deletions occur through intra-molecular recombination events between insertion sequences (ISs) flanking the PAI. Furthermore, by repositioning MvpAT (which belongs to the VapBC family of TA systems) near the PAI, we demonstrate that the location of this TA system alters the rearrangements that lead to loss of T3S, indicating that MvpAT acts both globally (by reducing loss of pINV through PSK) as well as locally (by preventing loss of adjacent sequences). During growth at environmental temperatures, we show for the first time that pINV spontaneously integrates into different sites in the chromosome, and this is mediated by inter-molecular events involving IS1294. Integration leads to reduced PAI gene expression and impaired secretion through the T3SS, while excision of pINV from the chromosome restores T3SS function. Therefore, pINV integration provides a reversible mechanism for Shigella to circumvent the metabolic burden imposed by pINV. Intra- and inter-molecular events between ISs, which are abundant in Shigella spp., mediate plasticity of S. flexneri pINV.
Collapse
Affiliation(s)
- Giulia Pilla
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Gareth McVicker
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
The role of the two-component systems Cpx and Arc in protein alterations upon gentamicin treatment in Escherichia coli. BMC Microbiol 2017; 17:197. [PMID: 28923010 PMCID: PMC5604497 DOI: 10.1186/s12866-017-1100-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/05/2017] [Indexed: 01/28/2023] Open
Abstract
Background The aminoglycoside antibiotic gentamicin was supposed to induce a crosstalk between the Cpx- and the Arc-two-component systems (TCS). Here, we investigated the physical interaction of the respective TCS components and compared the results with their respective gene expression and protein abundance. The findings were interpreted in relation to the global proteome profile upon gentamicin treatment. Results We observed specific interaction between CpxA and ArcA upon treatment with the aminoglycoside gentamicin using Membrane-Strep-tagged protein interaction experiments (mSPINE). This interaction was neither accompanied by detectable phosphorylation of ArcA nor by activation of the Arc system via CpxA. Furthermore, no changes in absolute amounts of the Cpx- and Arc-TCS could be determined with the sensitive single reaction monitoring (SRM) in presence of gentamicin. Nevertheless, upon applying shotgun mass spectrometry analysis after treatment with gentamicin, we observed a reduction of ArcA ~ P-dependent protein synthesis and a significant Cpx-dependent alteration in the global proteome profile of E. coli. Conclusions This study points to the importance of the Cpx-TCS within the complex regulatory network in the E. coli response to aminoglycoside-caused stress. Electronic supplementary material The online version of this article (10.1186/s12866-017-1100-9) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Multiscale approach to the activation and phosphotransfer mechanism of CpxA histidine kinase reveals a tight coupling between conformational and chemical steps. Biochem Biophys Res Commun 2017; 498:305-312. [PMID: 28911864 DOI: 10.1016/j.bbrc.2017.09.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/23/2017] [Accepted: 09/08/2017] [Indexed: 11/21/2022]
Abstract
Sensor histidine kinases (SHKs) are an integral component of the molecular machinery that permits bacteria to adapt to widely changing environmental conditions. CpxA, an extensively studied SHK, is a multidomain homodimeric protein with each subunit consisting of a periplasmic sensor domain, a transmembrane domain, a signal-transducing HAMP domain, a dimerization and histidine phospho-acceptor sub-domain (DHp) and a catalytic and ATP-binding subdomain (CA). The key activation event involves the rearrangement of the HAMP-DHp helical core and translation of the CA towards the acceptor histidine, which presumably results in an autokinase-competent complex. In the present work we integrate coarse-grained, all-atom, and hybrid QM-MM computer simulations to probe the large-scale conformational reorganization that takes place from the inactive to the autokinase-competent state (conformational step), and evaluate its relation to the autokinase reaction itself (chemical step). Our results highlight a tight coupling between conformational and chemical steps, underscoring the advantage of CA walking along the DHp core, to favor a reactive tautomeric state of the phospho-acceptor histidine. The results not only represent an example of multiscale modelling, but also show how protein dynamics can promote catalysis.
Collapse
|
26
|
Legionella pneumophila OxyR Is a Redundant Transcriptional Regulator That Contributes to Expression Control of the Two-Component CpxRA System. J Bacteriol 2017; 199:JB.00690-16. [PMID: 27994017 DOI: 10.1128/jb.00690-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/13/2016] [Indexed: 12/27/2022] Open
Abstract
Nominally an environmental organism, Legionella pneumophila is an intracellular parasite of protozoa but is also the causative agent of the pneumonia termed Legionnaires' disease, which results from inhalation of aerosolized bacteria by susceptible humans. Coordination of gene expression by a number of identified regulatory factors, including OxyR, assists L. pneumophila in adapting to the stresses of changing environments. L. pneumophila OxyR (OxyRLp) is an ortholog of Escherichia coli OxyR; however, OxyRLp was shown elsewhere to be functionally divergent, such that it acts as a transcription regulator independently of the oxidative stress response. In this study, the use of improved gene deletion methods has enabled us to generate an unmarked in-frame deletion of oxyR in L. pneumophila Lack of OxyRLp did not affect in vitro growth or intracellular growth in Acanthamoeba castellanii protozoa and U937-derived macrophages. The expression of OxyRLp does not appear to be regulated by CpxR, even though purified recombinant CpxR bound a DNA sequence similar to that reported for CpxR elsewhere. Surprisingly, a lack of OxyRLp resulted in elevated activity of the promoters located upstream of icmR and the lpg1441-cpxA operon, and OxyRLp directly bound to these promoter regions, suggesting that OxyRLp is a direct repressor. Interestingly, a strain overexpressing OxyRLp demonstrated reduced intracellular growth in A. castellanii but not in U937-derived macrophages, suggesting that balanced expression control of the two-component CpxRA system is necessary for survival in protozoa. Taken together, this study suggests that OxyRLp is a functionally redundant transcriptional regulator in L. pneumophila under the conditions evaluated herein.IMPORTANCELegionella pneumophila is an environmental pathogen, with its transmission to the human host dependent upon its ability to replicate in protozoa and survive within its aquatic niche. Understanding the genetic factors that contribute to L. pneumophila survival within each of these unique environments will be key to limiting future point-source outbreaks of Legionnaires' disease. The transcriptional regulator L. pneumophila OxyR (OxyRLp) has been previously identified as a potential regulator of virulence traits warranting further investigation. This study demonstrated that oxyR is nonessential for L. pneumophila survival in vitro and in vivo via mutational analysis. While the mechanisms of how OxyRLp expression is regulated remain elusive, this study shows that OxyRLp negatively regulates the expression of the cpxRA two-component system necessary for intracellular survival in protozoa.
Collapse
|
27
|
Di Martino ML, Falconi M, Micheli G, Colonna B, Prosseda G. The Multifaceted Activity of the VirF Regulatory Protein in the Shigella Lifestyle. Front Mol Biosci 2016; 3:61. [PMID: 27747215 PMCID: PMC5041530 DOI: 10.3389/fmolb.2016.00061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022] Open
Abstract
Shigella is a highly adapted human pathogen, mainly found in the developing world and causing a severe enteric syndrome. The highly sophisticated infectious strategy of Shigella banks on the capacity to invade the intestinal epithelial barrier and cause its inflammatory destruction. The cellular pathogenesis and clinical presentation of shigellosis are the sum of the complex action of a large number of bacterial virulence factors mainly located on a large virulence plasmid (pINV). The expression of pINV genes is controlled by multiple environmental stimuli through a regulatory cascade involving proteins and sRNAs encoded by both the pINV and the chromosome. The primary regulator of the virulence phenotype is VirF, a DNA-binding protein belonging to the AraC family of transcriptional regulators. The virF gene, located on the pINV, is expressed only within the host, mainly in response to the temperature transition occurring when the bacterium transits from the outer environment to the intestinal milieu. VirF then acts as anti-H-NS protein and directly activates the icsA and virB genes, triggering the full expression of the invasion program of Shigella. In this review we will focus on the structure of VirF, on its sophisticated regulation, and on its role as major player in the path leading from the non-invasive to the invasive phenotype of Shigella. We will address also the involvement of VirF in mechanisms aimed at withstanding adverse conditions inside the host, indicating that this protein is emerging as a global regulator whose action is not limited to virulence systems. Finally, we will discuss recent observations conferring VirF the potential of a novel antibacterial target for shigellosis.
Collapse
Affiliation(s)
- Maria Letizia Di Martino
- Dipartimento di Biologia e Biotecnologie C. Darwin, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma Roma, Italy
| | - Maurizio Falconi
- Laboratorio di Genetica Molecolare e dei Microrganismi, Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino Camerino, Italy
| | - Gioacchino Micheli
- Istituto di Biologia e Patologia Molecolari, Consilglio Nazionale Delle Richerche Roma, Italy
| | - Bianca Colonna
- Dipartimento di Biologia e Biotecnologie C. Darwin, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma Roma, Italy
| | - Gianni Prosseda
- Dipartimento di Biologia e Biotecnologie C. Darwin, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma Roma, Italy
| |
Collapse
|
28
|
De la Cruz MA, Morgan JK, Ares MA, Yáñez-Santos JA, Riordan JT, Girón JA. The Two-Component System CpxRA Negatively Regulates the Locus of Enterocyte Effacement of Enterohemorrhagic Escherichia coli Involving σ(32) and Lon protease. Front Cell Infect Microbiol 2016; 6:11. [PMID: 26904510 PMCID: PMC4742615 DOI: 10.3389/fcimb.2016.00011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/18/2016] [Indexed: 12/05/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a significant cause of serious human gastrointestinal disease worldwide. EHEC strains contain a pathogenicity island called the locus of enterocyte effacement (LEE), which encodes virulence factors responsible for damaging the gut mucosa. The Cpx envelope stress response of E. coli is controlled by a two-component system (TCS) consisting of a sensor histidine kinase (CpxA) and a cytoplasmic response regulator (CpxR). In this study, we investigated the role of CpxRA in the expression of LEE-encoded virulence factors of EHEC. We found that a mutation in cpxA significantly affected adherence of EHEC to human epithelial cells. Analysis of this mutant revealed the presence of high levels of CpxR which repressed transcription of grlA and ler, the main positive virulence regulators of the LEE, and influenced negatively the production of the type 3 secretion system–associated EspABD translocator proteins. It is known that CpxR activates rpoH (Sigma factor 32), which in turns activates transcription of the lon protease gene. We found that transcription levels of ler and grlA were significantly increased in the lon and cpxA lon mutants suggesting that lon is involved in down-regulating LEE genes. In addition, the Galleria mellonella model of infection was used to analyze the effect of the loss of the cpx and lon genes in EHEC's ability to kill the larvae. We found that the cpxA mutant was significantly deficient at killing the larvae however, the cpxA lon mutant which overexpresses LEE genes in vitro, was unable to kill the larvae, suggesting that virulence in the G. mellonella model is T3SS independent and that CpxA modulates virulence through a yet unknown EHEC-specific factor. Our data provides new insights and broadens our scope into the complex regulatory network of the LEE in which the CpxA sensor kinase plays an important role in a cascade involving both global and virulence regulators.
Collapse
Affiliation(s)
- Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI-IMSSMexico City, Mexico; Emerging Pathogens Institute, University of FloridaGainesville, FL, USA
| | - Jason K Morgan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida Tampa, FL, USA
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI-IMSS Mexico City, Mexico
| | - Jorge A Yáñez-Santos
- Facultad de Estomatología, Benemerita Universidad Autonoma de Puebla Puebla, Mexico
| | - James T Riordan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida Tampa, FL, USA
| | - Jorge A Girón
- Emerging Pathogens Institute, University of FloridaGainesville, FL, USA; Centro de Deteccion Biomolecular, Benemerita Universidad Autonoma de PueblaPuebla, Mexico
| |
Collapse
|
29
|
Fris ME, Murphy ER. Riboregulators: Fine-Tuning Virulence in Shigella. Front Cell Infect Microbiol 2016; 6:2. [PMID: 26858941 PMCID: PMC4728522 DOI: 10.3389/fcimb.2016.00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/08/2016] [Indexed: 11/13/2022] Open
Abstract
Within the past several years, RNA-mediated regulation (ribo-regulation) has become increasingly recognized for its importance in controlling critical bacterial processes. Regulatory RNA molecules, or riboregulators, are perpetually responsive to changes within the micro-environment of a bacterium. Notably, several characterized riboregulators control virulence in pathogenic bacteria, as is the case for each riboregulator characterized to date in Shigella. The timing of virulence gene expression and the ability of the pathogen to adapt to rapidly changing environmental conditions is critical to the establishment and progression of infection by Shigella species; ribo-regulators mediate each of these important processes. This mini review will present the current state of knowledge regarding RNA-mediated regulation in Shigella by detailing the characterization and function of each identified riboregulator in these pathogens.
Collapse
Affiliation(s)
- Megan E Fris
- Department of Biological Science, Ohio University Athens, OH, USA
| | - Erin R Murphy
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University Athens, OH, USA
| |
Collapse
|
30
|
Abstract
The major class of integral proteins found in the outer membrane (OM) of E. coli and Salmonella adopt a β-barrel conformation (OMPs). OMPs are synthesized in the cytoplasm with a typical signal sequence at the amino terminus, which directs them to the secretion machinery (SecYEG) located in the inner membrane for translocation to the periplasm. Chaperones such as SurA, or DegP and Skp, escort these proteins across the aqueous periplasm protecting them from aggregation. The chaperones then deliver OMPs to a highly conserved outer membrane assembly site termed the Bam complex. In E. coli, the Bam complex is composed of an essential OMP, BamA, and four associated OM lipoproteins, BamBCDE, one of which, BamD, is also essential. Here we provide an overview of what we know about the process of OMP assembly and outline the various hypotheses that have been proposed to explain how proteins might be integrated into the asymmetric OM lipid bilayer in an environment that lacks obvious energy sources. In addition, we describe the envelope stress responses that ensure the fidelity of OM biogenesis and how factors, such as phage and certain toxins, have coopted this essential machine to gain entry into the cell.
Collapse
|
31
|
Abstract
Shigella species are the causative agents of bacillary dysentery in humans, an invasive disease in which the bacteria enter the cells of the epithelial layer of the large intestine, causing extensive tissue damage and inflammation. They rely on a plasmid-encoded type III secretion system (TTSS) to cause disease; this system and its regulation have been investigated intensively at the molecular level for decades. The lessons learned have not only deepened our knowledge of Shigella biology but also informed in important ways our understanding of the mechanisms used by other pathogenic bacteria to cause disease and to control virulence gene expression. In addition, the Shigella story has played a central role in the development of our appreciation of the contribution of horizontal DNA transfer to pathogen evolution.A 30-kilobase-pair "Entry Region" of the 230-kb virulence plasmid lies at the heart of the Shigella pathogenesis system. Here are located the virB and mxiE regulatory genes and most of the structural genes involved in the expression of the TTSS and its effector proteins. Expression of the virulence genes occurs in response to an array of environmental signals, including temperature, osmolarity, and pH.At the top of the regulatory hierarchy and lying on the plasmid outside the Entry Region isvirF, encoding an AraC-like transcription factor.Virulence gene expression is also controlled by chromosomal genes,such as those encoding the nucleoid-associated proteins H-NS, IHF, and Fis, the two-component regulators OmpR/EnvZ and CpxR/CpxA, the anaerobic regulator Fnr, the iron-responsive regulator Fur, and the topoisomerases of the cell that modulate DNA supercoiling. Small regulatory RNAs,the RNA chaperone Hfq,and translational modulation also affect the expression of the virulence phenotypetranscriptionally and/orposttranscriptionally.
Collapse
|
32
|
Emanuele AA, Garcia GA. Mechanism of Action and Initial, In Vitro SAR of an Inhibitor of the Shigella flexneri Virulence Regulator VirF. PLoS One 2015; 10:e0137410. [PMID: 26352269 PMCID: PMC4564171 DOI: 10.1371/journal.pone.0137410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/17/2015] [Indexed: 12/19/2022] Open
Abstract
Shigella spp. are among the main causative agents of acute diarrheal illness and claim more than 1 million lives per year worldwide. There are multiple bacterial genes that control the pathogenesis of Shigella, but the virF gene may be the most important. This gene, located on the primary pathogenicity island of Shigella, encodes VirF, an AraC-family transcriptional activator that is responsible for initiating the pathogenesis cycle in Shigella. We have previously shown that it is possible to attenuate the virulence of Shigella flexneri via small molecule inhibition of VirF. In this study, we probed the mechanism of action of our small molecule inhibitors of VirF. To enable these studies, we have developed a homologous and efficient expression and purification system for VirF and have optimized two different in vitro VirF-DNA binding assays. We have determined that one of our HTS hit compounds inhibits VirF binding to DNA with a calculated Ki similar to the effective doses seen in our transcriptional activation and virulence screens. This is consistent with inhibition of DNA binding as the mechanism of action of this hit compound. We have also screened 15 commercially sourced analogs of this compound and deduced an initial SAR from the approximately 100-fold range in activities. Our four other HTS hit compounds do not inhibit DNA binding and yet they do block VirF activity. This suggests that multiple agents with different molecular mechanisms of inhibition of VirF could be developed. Pursuing hits with different mechanisms of action could be a powerful approach to enhance activity and to circumvent resistance that could develop to any one of these agents.
Collapse
Affiliation(s)
- Anthony A. Emanuele
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States of America
| | - George A. Garcia
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
33
|
Flores-Kim J, Darwin AJ. Regulation of bacterial virulence gene expression by cell envelope stress responses. Virulence 2015; 5:835-51. [PMID: 25603429 DOI: 10.4161/21505594.2014.965580] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The bacterial cytoplasm lies within a multilayered envelope that must be protected from internal and external hazards. This protection is provided by cell envelope stress responses (ESRs), which detect threats and reprogram gene expression to ensure survival. Pathogens frequently need these ESRs to survive inside the host, where their envelopes face dangerous environmental changes and attack from antimicrobial molecules. In addition, some virulence genes have become integrated into ESR regulons. This might be because these genes can protect the cell envelope from damage by host molecules, or it might help ESRs to reduce stress by moderating the assembly of virulence factors within the envelope. Alternatively, it could simply be a mechanism to coordinate the induction of virulence gene expression with entry into the host. Here, we briefly describe some of the bacterial ESRs, followed by examples where they control virulence gene expression in both Gram-negative and Gram-positive pathogens.
Collapse
Key Words
- BFP, bundle-forming pilus
- CAMP, cationic antimicrobial peptide
- CF, cystic fibrosis
- ECF, extracytoplasmic function
- EPEC, enteropathogenic E. coli
- ESR, envelope stress response
- HMV, hypermucoviscosity
- IM, inner membrane
- LPS, lipopolysaccharide
- LTA, lipoteichoic acids
- OM, outer membrane
- OMP, outer membrane protein
- PG, phosphatidylglycerol
- T(2/3/4)SS, type II/III/IV secretion system
- UPEC, uropathogenic E. coli
- WTA, wall teichoic acids
- antimicrobial peptide
- bacterial pathogens
- cell envelope
- gene regulation
- peptidoglycan
- phospholipid
- stress response
- teichoic acid
- virulence gene
Collapse
Affiliation(s)
- Josué Flores-Kim
- a Department of Microbiology ; New York University School of Medicine ; New York , NY USA
| | | |
Collapse
|
34
|
The roles of the virulence factor IpaB in Shigella spp. in the escape from immune cells and invasion of epithelial cells. Microbiol Res 2015; 181:43-51. [PMID: 26640051 DOI: 10.1016/j.micres.2015.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/24/2015] [Accepted: 08/29/2015] [Indexed: 02/08/2023]
Abstract
Shigellosis is an acute invasive enteric infection by the Gram negative pathogen Shigella, which causes human diarrhea. Shigella, which are highly epidemic and pathogenic, have become a serious public health problem. The virulence plasmid is a large plasmid essential to the infected host cells. Many virulence factors are encoded in the ipa-mxi-spa region by the virulence plasmid. IpaB is a multifunctional and essential virulence factor in the infection process. In this review article, we introduce the recent studies of the effect of IpaB in Shigella-infected host cells. IpaB is involved in a type III secretion system (T3SS) structure. It also controls the secretion of virulence factors and Shigella adhesion to host cells. In addition, it forms the ion pore, destroys phagosomes, and induces the immune cell's apoptosis or necrosis. Moreover, IpaB can become a potential antigen for Shigella vaccine development.
Collapse
|
35
|
Keller R, Ariöz C, Hansmeier N, Stenberg-Bruzell F, Burstedt M, Vikström D, Kelly A, Wieslander Å, Daley DO, Hunke S. The Escherichia coli Envelope Stress Sensor CpxA Responds to Changes in Lipid Bilayer Properties. Biochemistry 2015; 54:3670-6. [PMID: 25993101 DOI: 10.1021/acs.biochem.5b00242] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Cpx stress response system is induced by various environmental and cellular stimuli. It is also activated in Escherichia coli strains lacking the major phospholipid, phosphatidylethanolamine (PE). However, it is not known whether CpxA directly senses changes in the lipid bilayer or the presence of misfolded proteins due to the lack of PE in their membranes. To address this question, we used an in vitro reconstitution system and vesicles with different lipid compositions to track modulations in the activity of CpxA in different lipid bilayers. Moreover, the Cpx response was validated in vivo by monitoring expression of a PcpxP-gfp reporter in lipid-engineered strains of E. coli. Our combined data indicate that CpxA responds specifically to different lipid compositions.
Collapse
Affiliation(s)
- Rebecca Keller
- †Department of Pharmacy and Biochemistry, Johannes Gutenberg-University, D-55128 Mainz, Germany
| | - Candan Ariöz
- ‡Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Nicole Hansmeier
- §Department of Microbiology, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Filippa Stenberg-Bruzell
- ‡Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Malin Burstedt
- ‡Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - David Vikström
- ‡Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Amelie Kelly
- ‡Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Åke Wieslander
- ‡Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Daniel O Daley
- ‡Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Sabine Hunke
- ∥Molecular Microbiology, University of Osnabrück, D-49076 Osnabrück, Germany
| |
Collapse
|
36
|
The Cpx system regulates virulence gene expression in Vibrio cholerae. Infect Immun 2015; 83:2396-408. [PMID: 25824837 DOI: 10.1128/iai.03056-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/21/2015] [Indexed: 12/30/2022] Open
Abstract
Bacteria possess signal transduction pathways capable of sensing and responding to a wide variety of signals. The Cpx envelope stress response, composed of the sensor histidine kinase CpxA and the response regulator CpxR, senses and mediates adaptation to insults to the bacterial envelope. The Cpx response has been implicated in the regulation of a number of envelope-localized virulence determinants across bacterial species. Here, we show that activation of the Cpx pathway in Vibrio cholerae El Tor strain C6706 leads to a decrease in expression of the major virulence factors in this organism, cholera toxin (CT) and the toxin-coregulated pilus (TCP). Our results indicate that this occurs through the repression of production of the ToxT regulator and an additional upstream transcription factor, TcpP. The effect of the Cpx response on CT and TCP expression is mostly abrogated in a cyclic AMP receptor protein (CRP) mutant, although expression of the crp gene is unaltered. Since TcpP production is controlled by CRP, our data suggest a model whereby the Cpx response affects CRP function, which leads to diminished TcpP, ToxT, CT, and TCP production.
Collapse
|
37
|
Acidosis potentiates the host proinflammatory interleukin-1β response to Pseudomonas aeruginosa infection. Infect Immun 2014; 82:4689-97. [PMID: 25156732 DOI: 10.1128/iai.02024-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Infection by Pseudomonas aeruginosa, and bacteria in general, frequently promotes acidification of the local microenvironment, and this is reinforced by pulmonary exertion and exacerbation. However, the consequence of an acidic environment on the host inflammatory response to P. aeruginosa infection is poorly understood. Here we report that the pivotal cellular and host proinflammatory interleukin-1β (IL-1β) response, which enables host clearance of the infection but can produce collateral inflammatory damage, is increased in response to P. aeruginosa infection within an acidic environment. Synergistic mechanisms that promote increased IL-1β release in response to P. aeruginosa infection in an acidic environment are increased pro-IL-1β induction and increased caspase-1 activity, the latter being dependent upon a functional type III secretion system of the bacteria and the NLRC4 inflammasome of the host. Using an in vivo peritonitis model, we have validated that the IL-1β inflammatory response is increased in mice in response to P. aeruginosa infection within an acidic microenvironment. These data reveal novel insights into the regulation and exacerbation of inflammatory responses to P. aeruginosa.
Collapse
|
38
|
Tanabe T, Kato A, Shiuchi K, Miyamoto K, Tsujibo H, Maki J, Yamamoto S, Funahashi T. Regulation of the expression of the Vibrio parahaemolyticus peuA gene encoding an alternative ferric enterobactin receptor. PLoS One 2014; 9:e105749. [PMID: 25148374 PMCID: PMC4141801 DOI: 10.1371/journal.pone.0105749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/27/2014] [Indexed: 11/18/2022] Open
Abstract
A pvsB-vctA-irgA triple deletion mutant of Vibrio parahaemolyticus can utilize enterobactin under iron-limiting conditions by inducing a previously undescribed receptor, PeuA (VPA0150), in response to extracellular alkaline pH and enterobactin. In silico analyses revealed the existence of a two-component regulatory system operon, peuRS, immediately upstream of peuA, which constitutes an operon with the TonB2 system genes. Both the peuRS and peuA-tonB2 operons were found to be upregulated under iron-limiting conditions in a ferric uptake regulator (Fur)-dependent manner. The involvement of peuA and peuRS in enterobactin utilization was analyzed by complementation experiments using deletion mutants. Primer extension analysis indicated that, under iron-limiting conditions, the transcription of peuA was initiated from the +1 site at pH 7.0 and from both the +1 and +39 sites at pH 8.0 in the presence of enterobactin. The +39 transcript was absent from the peuRS deletion mutant. Secondary structure prediction of their 5′-untranslated regions suggested that translation initiation is blocked in the +1 transcript, but not in the +39 transcript. Consistent with this, in vitro translation analysis demonstrated that production of PeuA was determined only by the +39 transcript. These studies establish a novel gene regulation mechanism in which the two-component regulatory system PeuRS enhances expression of the alternative +39 transcript that possesses non-inhibitory structure, allowing the peuA expression to be regulated at the translation stage.
Collapse
Affiliation(s)
- Tomotaka Tanabe
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
- * E-mail:
| | - Ayaka Kato
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Keiichi Shiuchi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Katsushiro Miyamoto
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Hiroshi Tsujibo
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Jun Maki
- Laboratory of Infectious Diseases, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Shigeo Yamamoto
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Tatsuya Funahashi
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| |
Collapse
|
39
|
Elongation factor P and modifying enzyme PoxA are necessary for virulence of Shigella flexneri. Infect Immun 2014; 82:3612-21. [PMID: 24935977 DOI: 10.1128/iai.01532-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Elongation factor P (EF-P) is a universally conserved bacterial translation factor. In many bacteria, EF-P is posttranslationally modified by PoxA, which covalently attaches a β-lysine to a conserved lysine residue of EF-P. Here we show that both EF-P and PoxA are necessary for virulence of the human diarrheal pathogen Shigella flexneri. Loss of either EF-P or PoxA leads to an impaired ability of S. flexneri to invade epithelial cells and form plaques in an epithelial cell monolayer. Proteomic analysis of efp and poxA deletion mutants revealed decreased levels of several virulence effector proteins, including IpaA, -B, and -C and IcsA. Additionally, mRNA levels of virB and virF, which encode master virulence regulators, were decreased in the efp mutant. The reduction in virF transcription was at least partially due to decreased levels of CpxA, which activates virF through the response regulator CpxR. The role of CpxAR in reduced synthesis of VirF and its downstream effectors was indicated by restoration of invasion when a mutation resulting in constitutively activated CpxR was introduced into the efp mutant. Thus, modified EF-P is required for appropriate synthesis of proteins involved in the virulence of this bacterial pathogen.
Collapse
|
40
|
NtrBC and Nac contribute to efficient Shigella flexneri intracellular replication. J Bacteriol 2014; 196:2578-86. [PMID: 24794563 DOI: 10.1128/jb.01613-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri two-component regulatory systems (TCRS) are responsible for sensing changes in environmental conditions and regulating gene expression accordingly. We examined 12 TCRS that were previously uncharacterized for potential roles in S. flexneri growth within the eukaryotic intracellular environment. We demonstrate that the TCRS EvgSA, NtrBC, and RstBA systems are required for wild-type plaque formation in cultured epithelial cells. The phenotype of the NtrBC mutant depended in part on the Nac transcriptional regulator. Microarray analysis was performed to identify S. flexneri genes differentially regulated by the NtrBC system or Nac in the intracellular environment. This study contributes to our understanding of the transcriptional regulation necessary for Shigella to effectively adapt to the mammalian host cell.
Collapse
|
41
|
Vogt SL, Raivio TL. Hfq reduces envelope stress by controlling expression of envelope-localized proteins and protein complexes in enteropathogenic Escherichia coli. Mol Microbiol 2014; 92:681-97. [PMID: 24628810 DOI: 10.1111/mmi.12581] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 12/25/2022]
Abstract
Gram-negative bacteria possess several envelope stress responses that detect and respond to damage to this critical cellular compartment. The σ(E) envelope stress response senses the misfolding of outer membrane proteins (OMPs), while the Cpx two-component system is believed to detect the misfolding of periplasmic and inner membrane proteins. Recent studies in several Gram-negative organisms found that deletion of hfq, encoding a small RNA chaperone protein, activates the σ(E) envelope stress response. In this study, we assessed the effects of deleting hfq upon activity of the σ(E) and Cpx responses in non-pathogenic and enteropathogenic (EPEC) strains of Escherichia coli. We found that the σ(E) response was activated in Δhfq mutants of all E. coli strains tested, resulting from the misregulation of OMPs. The Cpx response was activated by loss of hfq in EPEC, but not in E. coli K-12. Cpx pathway activation resulted in part from overexpression of the bundle-forming pilus (BFP) in EPEC Δhfq. We found that Hfq repressed expression of the BFP via PerA, a master regulator of virulence in EPEC. This study shows that Hfq has a more extensive role in regulating the expression of envelope proteins and horizontally acquired virulence genes in E. coli than previously recognized.
Collapse
Affiliation(s)
- Stefanie L Vogt
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | | |
Collapse
|
42
|
Role of intracellular carbon metabolism pathways in Shigella flexneri virulence. Infect Immun 2014; 82:2746-55. [PMID: 24733092 DOI: 10.1128/iai.01575-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri, which replicates in the cytoplasm of intestinal epithelial cells, can use the Embden-Meyerhof-Parnas, Entner-Doudoroff, or pentose phosphate pathway for glycolytic carbon metabolism. To determine which of these pathways is used by intracellular S. flexneri, mutants were constructed and tested in a plaque assay for the ability to invade, replicate intracellularly, and spread to adjacent epithelial cells. Mutants blocked in the Embden-Meyerhof-Parnas pathway (pfkAB and pykAF mutants) invaded the cells but formed very small plaques. Loss of the Entner-Doudoroff pathway gene eda resulted in small plaques, but the double eda edd mutant formed normal-size plaques. This suggested that the plaque defect of the eda mutant was due to buildup of the toxic intermediate 2-keto-3-deoxy-6-phosphogluconic acid rather than a specific requirement for this pathway. Loss of the pentose phosphate pathway had no effect on plaque formation, indicating that it is not critical for intracellular S. flexneri. Supplementation of the epithelial cell culture medium with pyruvate allowed the glycolysis mutants to form larger plaques than those observed with unsupplemented medium, consistent with data from phenotypic microarrays (Biolog) indicating that pyruvate metabolism was not disrupted in these mutants. Interestingly, the wild-type S. flexneri also formed larger plaques in the presence of supplemental pyruvate or glucose, with pyruvate yielding the largest plaques. Analysis of the metabolites in the cultured cells showed increased intracellular levels of the added compound. Pyruvate increased the growth rate of S. flexneri in vitro, suggesting that it may be a preferred carbon source inside host cells.
Collapse
|
43
|
Analysis of the proteome of intracellular Shigella flexneri reveals pathways important for intracellular growth. Infect Immun 2013; 81:4635-48. [PMID: 24101689 DOI: 10.1128/iai.00975-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Global proteomic analysis was performed with Shigella flexneri strain 2457T in association with three distinct growth environments: S. flexneri growing in broth (in vitro), S. flexneri growing within epithelial cell cytoplasm (intracellular), and S. flexneri that were cultured with, but did not invade, Henle cells (extracellular). Compared to in vitro and extracellular bacteria, intracellular bacteria had increased levels of proteins required for invasion and cell-to-cell spread, including Ipa, Mxi, and Ics proteins. Changes in metabolic pathways in response to the intracellular environment also were evident. There was an increase in glycogen biosynthesis enzymes, altered expression of sugar transporters, and a reduced amount of the carbon storage regulator CsrA. Mixed acid fermentation enzymes were highly expressed intracellularly, while tricarboxylic acid (TCA) cycle oxidoreductive enzymes and most electron transport chain proteins, except CydAB, were markedly decreased. This suggested that fermentation and the CydAB system primarily sustain energy generation intracellularly. Elevated levels of PntAB, which is responsible for NADPH regeneration, suggested a shortage of reducing factors for ATP synthesis. These metabolic changes likely reflect changes in available carbon sources, oxygen levels, and iron availability. Intracellular bacteria showed strong evidence of iron starvation. Iron acquisition systems (Iut, Sit, FhuA, and Feo) and the iron starvation, stress-associated Fe-S cluster assembly (Suf) protein were markedly increased in abundance. Mutational analysis confirmed that the mixed-acid fermentation pathway was required for wild-type intracellular growth and spread of S. flexneri. Thus, iron stress and changes in carbon metabolism may be key factors in the S. flexneri transition from the extra- to the intracellular milieu.
Collapse
|
44
|
Darwin AJ. Stress relief during host infection: The phage shock protein response supports bacterial virulence in various ways. PLoS Pathog 2013; 9:e1003388. [PMID: 23853578 PMCID: PMC3708866 DOI: 10.1371/journal.ppat.1003388] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Andrew J Darwin
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America.
| |
Collapse
|
45
|
Abstract
The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.
Collapse
Affiliation(s)
- Hannah H. Tuson
- Department of Biochemistry, University of Wisconsin-Madison, Madison,
WI 53706
| | - Douglas B. Weibel
- Department of Biochemistry, University of Wisconsin-Madison, Madison,
WI 53706
- Department of Biomedical Engineering, University of Wisconsin-Madison,
Madison, WI 53706
| |
Collapse
|
46
|
The Cpx stress response system potentiates the fitness and virulence of uropathogenic Escherichia coli. Infect Immun 2013; 81:1450-9. [PMID: 23429541 DOI: 10.1128/iai.01213-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Strains of uropathogenic Escherichia coli (UPEC) are the primary cause of urinary tract infections, representing one of the most widespread and successful groups of pathogens on the planet. To colonize and persist within the urinary tract, UPEC must be able to sense and respond appropriately to environmental stresses, many of which can compromise the bacterial envelope. The Cpx two-component envelope stress response system is comprised of the inner membrane histidine kinase CpxA, the cytosolic response regulator CpxR, and the periplasmic auxiliary factor CpxP. Here, by using deletion mutants along with mouse and zebrafish infection models, we show that the Cpx system is critical to the fitness and virulence of two reference UPEC strains, the cystitis isolate UTI89 and the urosepsis isolate CFT073. Specifically, deletion of the cpxRA operon impaired the ability of UTI89 to colonize the murine bladder and greatly reduced the virulence of CFT073 during both systemic and localized infections within zebrafish embryos. These defects coincided with diminished host cell invasion by UTI89 and increased sensitivity of both strains to complement-mediated killing and the aminoglycoside antibiotic amikacin. Results obtained with the cpxP deletion mutants were more complicated, indicating variable strain-dependent and niche-specific requirements for this well-conserved auxiliary factor.
Collapse
|
47
|
Piek S, Kahler CM. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis. Front Cell Infect Microbiol 2012; 2:162. [PMID: 23267440 PMCID: PMC3526765 DOI: 10.3389/fcimb.2012.00162] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/01/2012] [Indexed: 01/13/2023] Open
Abstract
The Gram-negative bacterial cell envelope consists of an inner membrane (IM) that surrounds the cytoplasm and an asymmetrical outer-membrane (OM) that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS), phospholipids, outer membrane proteins (OMPs), and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella, and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation, and isomerization pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, the pathways required for the biosynthesis of the OM and the regulatory circuits that control them have evolved to suit the lifestyle of each organism.
Collapse
Affiliation(s)
- Susannah Piek
- Department of Pathology and Laboratory Medicine, The University of Western Australia Perth, WA, Australia
| | | |
Collapse
|
48
|
Flores-Kim J, Darwin AJ. Links between type III secretion and extracytoplasmic stress responses in Yersinia. Front Cell Infect Microbiol 2012; 2:125. [PMID: 23087910 PMCID: PMC3467454 DOI: 10.3389/fcimb.2012.00125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/24/2012] [Indexed: 11/13/2022] Open
Abstract
The cell envelope of pathogenic bacteria is a barrier against host environmental conditions and immunity molecules, as well as the site where many virulence factors are assembled. Extracytoplasmic stress responses (ESRs) have evolved to help maintain its integrity in conditions where it might be compromised. These ESRs also have important links to the production of envelope-associated virulence systems by the bacteria themselves. One such virulence factor is the type III secretion system (T3SS), the first example of which was provided by the pathogenic Yersinia. This article reviews the reported links between four different ESRs and T3SS function in Yersinia. Components of three of these ESRs affect the function and/or regulation of two different T3SSs. The response regulator of the Rcs ESR is involved in positive regulation of the Ysa-Ysp T3SS found in the highly pathogenic 1B biogroup of Y. enterocolitica. Conversely, the response regulator of the Y. pseudotuberculosis Cpx ESR can down-regulate production of the Ysc-Yop T3SS, and at least one other envelope virulence factor (invasin), by direct repression. Also in Y. pseudotuberculosis, there is some evidence suggesting that an intact RpoE ESR might be important for normal Yersinia outer proteins (Yop) production and secretion. Besides these regulatory links between ESRs and T3SSs, perhaps the most striking connection between T3SS function and an ESR is that between the phage shock protein (Psp) and Ysc-Yop systems of Y. enterocolitica. The Psp response does not affect the regulation or function of the Ysc-Yop system. Instead, Ysc-Yop T3SS production induces the Psp system, which then mitigates T3SS-induced envelope stress. Consequently, the Y. enterocolitica Psp system is essential when the Ysc-Yop T3SS is produced.
Collapse
Affiliation(s)
- Josué Flores-Kim
- Department of Microbiology, New York University School of Medicine New York, NY, USA
| | | |
Collapse
|
49
|
VirB-mediated positive feedback control of the virulence gene regulatory cascade of Shigella flexneri. J Bacteriol 2012; 194:5264-73. [PMID: 22821978 DOI: 10.1128/jb.00800-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri is a facultative intracellular pathogen that relies on a type III secretion system and its associated effector proteins to cause bacillary dysentery in humans. The genes that encode this virulence system are located on a 230-kbp plasmid and are transcribed in response to thermal, osmotic, and pH signals that are characteristic of the human lower gut. The virulence genes are organized within a regulatory cascade, and the nucleoid-associated protein H-NS represses each of the key promoters. Transcription derepression depends first on the VirF AraC-like transcription factor, a protein that antagonizes H-NS-mediated repression at the intermediate regulatory gene virB. The VirB protein in turn remodels the H-NS-DNA nucleoprotein complexes at the promoters of the genes encoding the type III secretion system and effector proteins, causing these genes to become derepressed. In this study, we show that the VirB protein also positively regulates the expression of its own gene (virB) via a cis-acting regulatory sequence. In addition, VirB positively regulates the gene coding for the VirF protein. This study reveals two hitherto uncharacterized feedback regulatory loops in the S. flexneri virulence cascade that provide a mechanism for the enhanced expression of the principal virulence regulatory genes.
Collapse
|
50
|
VirF-independent regulation of Shigella virB transcription is mediated by the small RNA RyhB. PLoS One 2012; 7:e38592. [PMID: 22701677 PMCID: PMC3372517 DOI: 10.1371/journal.pone.0038592] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/11/2012] [Indexed: 01/12/2023] Open
Abstract
Infection of the human host by Shigella species requires the coordinated production of specific Shigella virulence factors, a process mediated largely by the VirF/VirB regulatory cascade. VirF promotes the transcription of virB, a gene encoding the transcriptional activator of several virulence-associated genes. This study reveals that transcription of virB is also regulated by the small RNA RyhB, and importantly, that this regulation is not achieved indirectly via modulation of VirF activity. These data are the first to demonstrate that the regulation of virB transcription can be uncoupled from the master regulator VirF. It is also established that efficient RyhB-dependent regulation of transcription is facilitated by specific nucleic acid sequences within virB. This study not only reveals RyhB-dependent regulation of virB transcription as a novel point of control in the central regulatory circuit modulating Shigella virulence, but also highlights the versatility of RyhB in controlling bacterial gene expression.
Collapse
|