1
|
Seo SO, Janssen H, Magis A, Wang Y, Lu T, Price ND, Jin YS, Blaschek HP. Genomic, Transcriptional, and Phenotypic Analysis of the Glucose Derepressed Clostridium beijerinckii Mutant Exhibiting Acid Crash Phenotype. Biotechnol J 2017; 12. [PMID: 28762642 DOI: 10.1002/biot.201700182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/07/2017] [Indexed: 01/08/2023]
Abstract
Clostridium beijerinckii is a predominant solventogenic bacterium that is used for the ABE fermentation. Various C. beijerinckii mutants are constructed for desirable phenotypes. The C. beijerinckii mutant BA105 harboring a glucose derepression phenotype was previously isolated and demonstrated the enhanced amylolytic activity in the presence of glucose. Despite its potential use, BA105 is not further characterized and utilized. Therefore, the authors investigate fermentation phenotypes of BA105 in this study. Under the typical batch fermentation conditions, BA105 consistently exhibits acid crash phenotype resulting in limited glucose uptake and cell growth. However, when the culture pH is maintained above 5.5, BA105 exhibits the increased glucose uptake and butanol production than did the wild-type. To further analyze BA105, the authors perform genome sequencing and RNA sequencing. Genome analysis identifies two SNPs unique to BA105, in the upstream region of AbrB regulator (Cbei_4885) and the ROK family glucokinase (Cbei_4895) which are involved in catabolite repression and regulation of sugar metabolism. Transcriptional analysis of BA105 reveals significant differential expression of the genes associated with the PTS sugar transport system and acid production. This study improves understanding of the acid crash phenomenon and provides the genetic basis underlying the catabolite derepression phenotype of C. beijericnkii.
Collapse
Affiliation(s)
- Seung-Oh Seo
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Holger Janssen
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Yi Wang
- Biosystems Engineering Department, Auburn University, Auburn, AL, 36849, USA
| | - Ting Lu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Bioengineering and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hans P Blaschek
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,The Integrated Bioprocessing Research Laboratory (IBRL), University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
2
|
Identification of a Novel N-Acetylmuramic Acid Transporter in Tannerella forsythia. J Bacteriol 2016; 198:3119-3125. [PMID: 27601356 DOI: 10.1128/jb.00473-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/02/2016] [Indexed: 12/11/2022] Open
Abstract
Tannerella forsythia is a Gram-negative periodontal pathogen lacking the ability to undergo de novo synthesis of amino sugars N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) that form the disaccharide repeating unit of the peptidoglycan backbone. T. forsythia relies on the uptake of these sugars from the environment, which is so far unexplored. Here, we identified a novel transporter system of T. forsythia involved in the uptake of MurNAc across the inner membrane and characterized a homolog of the Escherichia coli MurQ etherase involved in the conversion of MurNAc-6-phosphate (MurNAc-6-P) to GlcNAc-6-P. The genes encoding these components were identified on a three-gene cluster spanning Tanf_08375 to Tanf_08385 located downstream from a putative peptidoglycan recycling locus. We show that the three genes, Tanf_08375, Tanf_08380, and Tanf_08385, encoding a MurNAc transporter, a putative sugar kinase, and a MurQ etherase, respectively, are transcriptionally linked. Complementation of the Tanf_08375 and Tanf_08380 genes together in trans, but not individually, rescued the inability of an E. coli mutant deficient in the phosphotransferase (PTS) system-dependent MurNAc transporter MurP as well as that of a double mutant deficient in MurP and components of the PTS system to grow on MurNAc. In addition, complementation with this two-gene construct in E. coli caused depletion of MurNAc in the medium, further confirming this observation. Our results show that the products of Tanf_08375 and Tanf_08380 constitute a novel non-PTS MurNAc transporter system that seems to be widespread among bacteria of the Bacteroidetes phylum. To the best of our knowledge, this is the first identification of a PTS-independent MurNAc transporter in bacteria. IMPORTANCE In this study, we report the identification of a novel transporter for peptidoglycan amino sugar N-acetylmuramic acid (MurNAc) in the periodontal pathogen T. forsythia It has been known since the late 1980s that T. forsythia is a MurNAc auxotroph relying on environmental sources for this essential sugar. Most sugar transporters, and the MurNAc transporter MurP in particular, require a PTS phosphorelay to drive the uptake and concurrent phosphorylation of the sugar through the inner membrane in Gram-negative bacteria. Our study uncovered a novel type of PTS-independent MurNAc transporter, and although so far, it seems to be unique to T. forsythia, it may be present in a range of bacteria both of the oral cavity and gut, especially of the phylum Bacteroidetes.
Collapse
|
3
|
Biochemistry and regulatory functions of bacterial glucose kinases. Arch Biochem Biophys 2015; 577-578:1-10. [DOI: 10.1016/j.abb.2015.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 11/19/2022]
|
4
|
The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 2015; 78:231-56. [PMID: 24847021 DOI: 10.1128/mmbr.00001-14] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) carries out both catalytic and regulatory functions. It catalyzes the transport and phosphorylation of a variety of sugars and sugar derivatives but also carries out numerous regulatory functions related to carbon, nitrogen, and phosphate metabolism, to chemotaxis, to potassium transport, and to the virulence of certain pathogens. For these different regulatory processes, the signal is provided by the phosphorylation state of the PTS components, which varies according to the availability of PTS substrates and the metabolic state of the cell. PEP acts as phosphoryl donor for enzyme I (EI), which, together with HPr and one of several EIIA and EIIB pairs, forms a phosphorylation cascade which allows phosphorylation of the cognate carbohydrate bound to the membrane-spanning EIIC. HPr of firmicutes and numerous proteobacteria is also phosphorylated in an ATP-dependent reaction catalyzed by the bifunctional HPr kinase/phosphorylase. PTS-mediated regulatory mechanisms are based either on direct phosphorylation of the target protein or on phosphorylation-dependent interactions. For regulation by PTS-mediated phosphorylation, the target proteins either acquired a PTS domain by fusing it to their N or C termini or integrated a specific, conserved PTS regulation domain (PRD) or, alternatively, developed their own specific sites for PTS-mediated phosphorylation. Protein-protein interactions can occur with either phosphorylated or unphosphorylated PTS components and can either stimulate or inhibit the function of the target proteins. This large variety of signal transduction mechanisms allows the PTS to regulate numerous proteins and to form a vast regulatory network responding to the phosphorylation state of various PTS components.
Collapse
|
5
|
Tsakraklides V, Shaw AJ, Miller BB, Hogsett DA, Herring CD. Carbon catabolite repression in Thermoanaerobacterium saccharolyticum. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:85. [PMID: 23181505 PMCID: PMC3526391 DOI: 10.1186/1754-6834-5-85] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/25/2012] [Indexed: 02/20/2024]
Abstract
BACKGROUND The thermophilic anaerobe Thermoanaerobacterium saccharolyticum is capable of directly fermenting xylan and the biomass-derived sugars glucose, cellobiose, xylose, mannose, galactose and arabinose. It has been metabolically engineered and developed as a biocatalyst for the production of ethanol. RESULTS We report the initial characterization of the carbon catabolite repression system in this organism. We find that sugar metabolism in T. saccharolyticum is regulated by histidine-containing protein HPr. We describe a mutation in HPr, His15Asp, that leads to derepression of less-favored carbon source utilization. CONCLUSION Co-utilization of sugars can be achieved by mutation of HPr in T. saccharolyticum. Further manipulation of CCR in this organism will be instrumental in achieving complete and rapid conversion of all available sugars to ethanol.
Collapse
Affiliation(s)
| | - A Joe Shaw
- Mascoma Corporation, 67 Etna Road, Suite 300, New Hampshire, 03766, Lebanon
| | - Bethany B Miller
- Mascoma Corporation, 67 Etna Road, Suite 300, New Hampshire, 03766, Lebanon
| | - David A Hogsett
- Mascoma Corporation, 67 Etna Road, Suite 300, New Hampshire, 03766, Lebanon
| | | |
Collapse
|
6
|
Jahreis K, Pimentel-Schmitt EF, Brückner R, Titgemeyer F. Ins and outs of glucose transport systems in eubacteria. FEMS Microbiol Rev 2008; 32:891-907. [PMID: 18647176 DOI: 10.1111/j.1574-6976.2008.00125.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Glucose is the classical carbon source that is used to investigate the transport, metabolism, and regulation of nutrients in bacteria. Many physiological phenomena like nutrient limitation, stress responses, production of antibiotics, and differentiation are inextricably linked to nutrition. Over the years glucose transport systems have been characterized at the molecular level in more than 20 bacterial species. This review aims to provide an overview of glucose uptake systems found in the eubacterial kingdom. In addition, it will highlight the diverse and sophisticated regulatory features of glucose transport systems.
Collapse
Affiliation(s)
- Knut Jahreis
- Department of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | | | | | | |
Collapse
|
7
|
The role of glucose kinase in carbohydrate utilization and extracellular polysaccharide production in Xanthomonas campestris pathovar campestris. Microbiology (Reading) 2007; 153:4284-4294. [DOI: 10.1099/mic.0.2007/010538-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Dordet-Frisoni E, Talon R, Leroy S. Physical and genetic map of the Staphylococcus xylosus C2a chromosome. FEMS Microbiol Lett 2007; 266:184-93. [PMID: 17233729 DOI: 10.1111/j.1574-6968.2006.00538.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Staphylococcus xylosus is a ubiquitous bacterium frequently isolated from mammalian skin and occurring naturally on meat and dairy products. A physical and genetic map of the S. xylosus C2a chromosome was constructed by pulsed-field gel electrophoresis analysis after digestion with AscI, ApaI, I-CeuI, SfiI and SmaI enzymes and hybridization analysis. The chromosome size was estimated to be 2868+/-10 kb. Thirty-three genetic markers were mapped. The probable origin of replication (oriC) was positioned. Six rrn loci were located, and their orientation was determined. The chromosomes of six additional S. xylosus strains were also analysed by I-CeuI digestion, and an intraspecies diversity of the chromosome size and the number of rrn operons was shown.
Collapse
Affiliation(s)
- Emilie Dordet-Frisoni
- INRA, Centre de Clermont-Ferrand Theix, Unité Microbiologie, Qualité et Sécurité des Aliments, Saint-Genès Champanelle, France
| | | | | |
Collapse
|
9
|
Saulnier DMA, Molenaar D, de Vos WM, Gibson GR, Kolida S. Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1 through microarrays. Appl Environ Microbiol 2007; 73:1753-65. [PMID: 17261521 PMCID: PMC1828832 DOI: 10.1128/aem.01151-06] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 01/08/2007] [Indexed: 11/20/2022] Open
Abstract
Short-chain fructooligosaccharides (scFOS) and other prebiotics are used to selectively stimulate the growth and activity of lactobacilli and bifidobacteria in the colon. However, there is little information on the mechanisms whereby prebiotics exert their specific effects upon such microorganisms. To study the genomic basis of scFOS metabolism in Lactobacillus plantarum WCFS1, two-color microarrays were used to screen for differentially expressed genes when grown on scFOS compared to glucose (control). A significant up-regulation (8- to 60-fold) was observed with a set of only five genes located in a single locus and predicted to encode a sucrose phosphoenolpyruvate transport system (PTS), a beta-fructofuranosidase, a fructokinase, an alpha-glucosidase, and a sucrose operon repressor. Several other genes were slightly overexpressed, including pyruvate dehydrogenase. For the latter, no detectable activity in L. plantarum under various growth conditions has been previously reported. A mannose-PTS likely to encode glucose uptake was 50-fold down-regulated as well as, to a lower extent, other PTSs. Chemical analysis of the different moieties of scFOS that were depleted in the growth medium revealed that the trisaccharide 1-kestose present in scFOS was preferentially utilized, in comparison with the tetrasaccharide nystose and the pentasaccharide fructofuranosylnystose. The main end products of scFOS fermentation were lactate and acetate. This is the first example in lactobacilli of the association of a sucrose PTS and a beta-fructofuranosidase that could be used for scFOS degradation.
Collapse
Affiliation(s)
- Delphine M A Saulnier
- Food Microbial Sciences Unit, School of Food Biosciences, The University of Reading, Box 226, Reading RG6 6AP, United Kingdom.
| | | | | | | | | |
Collapse
|
10
|
Conners SB, Mongodin EF, Johnson MR, Montero CI, Nelson KE, Kelly RM. Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. FEMS Microbiol Rev 2006; 30:872-905. [PMID: 17064285 DOI: 10.1111/j.1574-6976.2006.00039.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
High-throughput sequencing of microbial genomes has allowed the application of functional genomics methods to species lacking well-developed genetic systems. For the model hyperthermophile Thermotoga maritima, microarrays have been used in comparative genomic hybridization studies to investigate diversity among Thermotoga species. Transcriptional data have assisted in prediction of pathways for carbohydrate utilization, iron-sulfur cluster synthesis and repair, expolysaccharide formation, and quorum sensing. Structural genomics efforts aimed at the T. maritima proteome have yielded hundreds of high-resolution datasets and predicted functions for uncharacterized proteins. The information gained from genomics studies will be particularly useful for developing new biotechnology applications for T. maritima enzymes.
Collapse
Affiliation(s)
- Shannon B Conners
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
|
13
|
Ryan SM, Fitzgerald GF, van Sinderen D. Transcriptional regulation and characterization of a novel beta-fructofuranosidase-encoding gene from Bifidobacterium breve UCC2003. Appl Environ Microbiol 2005; 71:3475-82. [PMID: 16000751 PMCID: PMC1169055 DOI: 10.1128/aem.71.7.3475-3482.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An operon involved in fructooligosaccharide breakdown was identified in the genome of Bifidobacterium breve UCC2003. This 2.6-kb transcriptional unit was comprised of three genes that encoded a putative permease, a conserved hypothetical protein, and a beta-fructofuranosidase. Active transcription of the operon was observed when B. breve UCC2003 was grown on sucrose or Actilight, while transcription appeared to be repressed when the organism was grown on glucose, fructose, a combination of glucose and sucrose, or a combination of fructose and sucrose. The beta-fructofuranosidase encoded by this operon was purified and biochemically characterized. The optimum pH and temperature for catalytic activity were determined to be pH 6.0 and 37 degrees C, respectively, and there was a dependence on bivalent cations, particularly manganese. The Km and Vmax values for sucrose hydrolysis were determined to be 25 +/- 2 mM and 24 +/- 3 micromol min(-1) mg(-1), respectively. Interestingly, the enzyme was shown to specifically catalyze cleavage of the beta(2-1) glycosidic bond between glucose and its neighboring fructose moiety in sucrose and other fructooligosaccharides with a relatively low degree of polymerization, and there was no detectable activity towards the beta(2-1) glycosidic bond between two fructose moieties within the same substrate. To our knowledge, such an enzymatic activity has not previously been described in bifidobacteria or other gram-positive bacteria.
Collapse
Affiliation(s)
- Sinéad M Ryan
- Alimentary Pharmabiotic Centre, National University of Ireland Cork, Western Road, Cork, Ireland.
| | | | | |
Collapse
|
14
|
Guilhabert MR, Kirkpatrick BC. Identification of Xylella fastidiosa antivirulence genes: hemagglutinin adhesins contribute a biofilm maturation to X. fastidios and colonization and attenuate virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:856-68. [PMID: 16134898 DOI: 10.1094/mpmi-18-0856] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Xylella fastidosa, a gram-negative, xylem-limited bacterium, is the causal agent of several economically important plant diseases, including Pierce's disease (PD) and citrus variegated chlorosis (CVC). Until recently, the inability to transform or produce transposon mutants of X. fastidosa had been a major impediment to identifying X. fastidosa genes that mediate pathogen and plant interactions. A random transposon (Tn5) library of X. fastidosa was constructed and screened for mutants showing more severe symptoms and earlier grapevine death (hypervirulence) than did vines infected with the wild type. Seven hypervirulent mutants identified in this screen moved faster and reached higher populations than the wild type in grapevines. These results suggest that X. fastidosa attenuates its virulence in planta and that movement is important in X. fastidosa virulence. The mutated genes were sequenced and none had been described previously as antivirulence genes, although six of them showed similarity with genes of known functions in other organisms. One transposon insertion inactivated a hemagglutinin adhesin gene (PD2118), which we named HxfA. Another mutant in a second putative X. fastidosa hemagglutinin gene, PD1792 (HxfB), was constructed, and further characterization of these hxf mutants suggests that X. fastidosa hemagglutinins mediate contact between X. fastidosa cells, which results in colony formation and biofilm maturation within the xylem vessels.
Collapse
|
15
|
Fields MW, Russell JB. Transcriptional regulation of beta-glucanase activity in the ruminal bacterium, Prevotella bryantii B14. Curr Microbiol 2005; 50:155-9. [PMID: 15883874 DOI: 10.1007/s00284-004-4453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 10/15/2004] [Indexed: 11/26/2022]
Abstract
The ruminal bacterium, Prevotella bryantii B(1)4, grew more rapidly with glucose as an energy source than mannose (0.73 versus 0.47 h(-1)) and had 8-fold less beta-glucanase activity (50 versus 400 nmol reducing sugar mg protein(-1) min(-1)). Cultures that were provided with glucose and mannose had little beta-glucanase activity even though both sugars were utilized simultaneously. The observation that glucose and mannose were utilized simultaneously indicated that beta-glucanase expression was not merely a simple induction or inducer exclusion. When glucose was added to cultures growing on mannose, hexose flux through the glucomannokinase increased 1.5-fold, and this increase was associated with an almost immediate decrease in beta-glucanase mRNA. After only three generation (doubling) times, the amount of beta-glucanase mRNA was comparable to that observed in cells growing only with glucose. These results indicate that beta-glucanase activity is transcriptionally regulated. However, further work will be needed to define more precisely the nature of this regulation and to identify the intermediate in this response.
Collapse
Affiliation(s)
- Matthew W Fields
- Agricultural Research Service, USDA, Cornell University, Ithaca, NY, 14853, USA
| | | |
Collapse
|
16
|
Brigham CJ, Malamy MH. Characterization of the RokA and HexA broad-substrate-specificity hexokinases from Bacteroides fragilis and their role in hexose and N-acetylglucosamine utilization. J Bacteriol 2005; 187:890-901. [PMID: 15659667 PMCID: PMC545704 DOI: 10.1128/jb.187.3.890-901.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteroides fragilis, a human gastrointestinal commensal and an opportunistic pathogen, utilizes simple and complex sugars and polysaccharides for growth in the large intestine and at sites of infection. Because B. fragilis lacks transport-linked sugar phosphorylation systems, cytoplasmic kinase(s) was expected to be required for the phosphorylation of hexoses and hexosamines. We have now identified two hexose kinases that are important for growth of B. fragilis on glucose, mannose, and other sugars. One kinase (RokA), a member of the ROK family of proteins, was found to be the sole kinase for activation of N-acetyl-D-glucosamine (NAG). The other kinase (HexA) is responsible for the majority of the glucose kinase activity in the cell, although a hexA deletion mutant strain was not defective for growth on any substrate tested. Deletion of both the rokA and hexA kinase genes resulted in inability of the cell to use glucose, mannose, NAG, and many other sugars. We purified RokA and determined its approximate molecular mass to be 36.5 kDa. The purified RokA protein was shown to phosphorylate several substrates, including glucose, NAG, and mannose, but not N-acetylmannosamine or N-acetylneuraminic acid. Phylogenetic analysis of RokA showed that it is most similar to kinases from the Cytophaga-Flavibacterium-Bacteroides group, while HexA was most similar to other bacterial hexokinases and eukaryotic hexokinases.
Collapse
Affiliation(s)
- Christopher J Brigham
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111.
| | | |
Collapse
|
17
|
Caescu CI, Vidal O, Krzewinski F, Artenie V, Bouquelet S. Bifidobacterium longum requires a fructokinase (Frk; ATP:D-fructose 6-phosphotransferase, EC 2.7.1.4) for fructose catabolism. J Bacteriol 2004; 186:6515-25. [PMID: 15375133 PMCID: PMC516584 DOI: 10.1128/jb.186.19.6515-6525.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the ability of Bifidobacterium spp. to grow on fructose as a unique carbon source has been demonstrated, the enzyme(s) needed to incorporate fructose into a catabolic pathway has hitherto not been defined. This work demonstrates that intracellular fructose is metabolized via the fructose-6-P phosphoketolase pathway and suggests that a fructokinase (Frk; EC 2.7.1.4) is the enzyme that is necessary and sufficient for the assimilation of fructose into this catabolic route in Bifidobacterium longum. The B. longum A10C fructokinase-encoding gene (frk) was expressed in Escherichia coli from a pET28 vector with an attached N-terminal histidine tag. The expressed enzyme was purified by affinity chromatography on a Co(2+)-based column, and the pH and temperature optima were determined. A biochemical analysis revealed that Frk displays the same affinity for fructose and ATP (Km(fructose) = 0.739 +/- 0.18 mM and Km(ATP) = 0.756 +/- 0.08 mM), is highly specific for D-fructose, and is inhibited by an excess of ATP (>12 mM). It was also found that frk is inducible by fructose and is subject to glucose-mediated repression. Consequently, this work presents the first characterization at the molecular and biochemical level of a fructokinase from a gram-positive bacterium that is highly specific for D-fructose.
Collapse
Affiliation(s)
- Cristina I Caescu
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS-USTL 8576, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | | | | | | | | |
Collapse
|
18
|
Ramos I, Guzmán S, Escalante L, Imriskova I, Rodríguez-Sanoja R, Sanchez S, Langley E. Glucose kinase alone cannot be responsible for carbon source regulation in Streptomyces peucetius var. caesius. Res Microbiol 2004; 155:267-74. [PMID: 15142624 DOI: 10.1016/j.resmic.2004.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 01/26/2004] [Indexed: 11/29/2022]
Abstract
Using an antibiotic enrichment procedure, eight mutants of Streptomyces peucetius var. caesius were isolated for their sensitivity to the glucose analogue 2-deoxyglucose (DOG), from a DOG-resistant strain (Dog(R)). These mutants (Dog(S)) and their parent strain were examined for growth sensitivity to DOG, glucose kinase (Glk) activity, glucose uptake, and sensitivity to repression by glucose and other catabolites derived from it. No correlation was found between Glk levels or glucose uptake and carbon catabolite repression (CCR) in these strains. However, the ratio of glucose uptake to Glk activity, and thus the flux through glycolysis, seemed responsible for this effect. Among several products of glucose catabolism tested, fructose-1,6-bis-phosphate and phosphoenolpyruvate showed significant repression of anthracycline formation. These compounds also reduced anthracycline formation in a Dog(R) mutant insensitive to glucose repression. Our data suggest that Glk alone is not sufficient to elicit CCR in this microorganism, and gives the first physiological evidence supporting the hypothesis that some products of glucose catabolism are involved in CCR in Streptomyces.
Collapse
Affiliation(s)
- Itzel Ramos
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de Mexico, Mexico, D.F. 04510, Mexico
| | | | | | | | | | | | | |
Collapse
|
19
|
Mesak LR, Mesak FM, Dahl MK. Bacillus subtilis GlcK activity requires cysteines within a motif that discriminates microbial glucokinases into two lineages. BMC Microbiol 2004; 4:6. [PMID: 15018644 PMCID: PMC365027 DOI: 10.1186/1471-2180-4-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Accepted: 02/03/2004] [Indexed: 11/10/2022] Open
Abstract
Background Bacillus subtilis glucokinase (GlcK) (GenBank NP_390365) is an ATP-dependent kinase that phosphorylates glucose to glucose 6-phosphate. The GlcK protein has very low sequence identity (13.7%) to the Escherichia coli glucokinase (Glk) (GenBank P46880) and some other glucokinases (EC 2.7.1.2), yet glucose is merely its substrate. Our lab has previously isolated and characterized the glcK gene. Results Microbial glucokinases can be grouped into two different lineages. One of the lineages contains three conserved cysteine (C) residues in a CXCGX(2)GCXE motif. This motif is also present in the B. subtilis GlcK. The GlcK protein occurs in both monomer and homodimer. Each GlcK monomer has six cysteines. All cysteine residues have been mutated, one-by-one, into alanine (A). The in vivo GlcK enzymatic activity was assayed by functional complementation in E. coli UE26 (ptsG ptsM glk). Mutation of the three motif-specific residues led to an inactive enzyme. The other mutated forms retained, or in one case (GlcKC321A) even gained, activity. The fluorescence spectra of the GlcKC321A showed a red shift and enhanced fluorescence intensity compare to the wild type's. Conclusions Our results emphasize the necessity of cysteines within the CXCGX(2)GCXE motif for GlcK activity. On the other hand, the C321A mutation led to higher GlcKC321A enzymatic activity with respect to the wild type's, suggesting more adequate glucose phosphorylation.
Collapse
Affiliation(s)
- Lili R Mesak
- Department of Microbiology, Institute for Microbiology, Biochemistry and Genetics University of Erlangen-Nuremberg, Staudstrasse 5, 91058 Erlangen, and Department of Biology, University of Konstanz, Universitaetstrasse 1, 78457 Konstanz, Germany
- Current address: 412-2870 Cedarwood Dr., Ottawa, ON, K1V 8Y5, Canada
| | - Felix M Mesak
- Centre for Cancer Therapeutics, Ottawa Regional Cancer Centre, and Faculty of Medicine, University of Ottawa, 503 Smyth Rd., Ottawa, ON, K1H 1C4, Canada
| | - Michael K Dahl
- Department of Microbiology, Institute for Microbiology, Biochemistry and Genetics University of Erlangen-Nuremberg, Staudstrasse 5, 91058 Erlangen, and Department of Biology, University of Konstanz, Universitaetstrasse 1, 78457 Konstanz, Germany
| |
Collapse
|
20
|
Dörr C, Zaparty M, Tjaden B, Brinkmann H, Siebers B. The hexokinase of the hyperthermophile Thermoproteus tenax. ATP-dependent hexokinases and ADP-dependent glucokinases, teo alternatives for glucose phosphorylation in Archaea. J Biol Chem 2003; 278:18744-53. [PMID: 12626506 DOI: 10.1074/jbc.m301914200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphorylation of glucose by different sugar kinases plays an essential role in Archaea because of the absence of a phosphoenolpyruvate-dependent transferase system characteristic for Bacteria. In the genome of the hyperthermophilic Archaeon Thermoproteus tenax a gene was identified with sequence similarity to glucokinases of the so-called ROK family (repressor protein, open reading frame, sugar kinase). The T. tenax enzyme, like the recently described ATP-dependent "glucokinase" from Aeropyrum pernix, shows the typical broad substrate specificity of hexokinases catalyzing not only phosphorylation of glucose but also of other hexoses such as fructose, mannose, or 2-deoxyglucose, and thus both enzymes represent true hexokinases. The T. tenax hexokinase shows strikingly low if at all any regulatory properties and thus fulfills no important control function at the beginning of the variant of the Embden-Meyerhof-Parnas pathway in T. tenax. Transcript analyses reveal that the hxk gene of T. tenax is cotranscribed with an upstream located orfX, which codes for an 11-kDa protein of unknown function. Growth-dependent studies and promoter analyses suggest that post-transcriptional RNA processing might be involved in the generation of the monocistronic hxk message, which is observed only under heterotrophic growth conditions. Data base searches revealed T. tenax hexokinase homologs in some archaeal, few eukaryal, and many bacterial genomes. Phylogenetic analyses confirm that the archaeal hexokinase is a member of the so-called ROK family, which, however, should be referred to as ROK group because it represents a group within the bacterial glucokinase fructokinase subfamily II of the hexokinase family. Thus, archaeal hexokinases represent a second major group of glucose-phosphorylating enzymes in Archaea beside the recently described archaeal ADP-dependent glucokinases, which were recognized as members of the ribokinase family. The distribution of the two types of sugar kinases, differing in their cosubstrate as well as substrate specificity, within Archaea is discussed on the basis of physiological constraints of the respective organisms.
Collapse
Affiliation(s)
- Christine Dörr
- Department of Microbiology, Universität Duisburg-Essen, Essen 45117, Germany
| | | | | | | | | |
Collapse
|
21
|
Hansen T, Reichstein B, Schmid R, Schönheit P. The first archaeal ATP-dependent glucokinase, from the hyperthermophilic crenarchaeon Aeropyrum pernix, represents a monomeric, extremely thermophilic ROK glucokinase with broad hexose specificity. J Bacteriol 2002; 184:5955-65. [PMID: 12374829 PMCID: PMC135380 DOI: 10.1128/jb.184.21.5955-5965.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2002] [Accepted: 07/19/2002] [Indexed: 11/20/2022] Open
Abstract
An ATP-dependent glucokinase of the hyperthermophilic aerobic crenarchaeon Aeropyrum pernix was purified 230-fold to homogeneity. The enzyme is a monomeric protein with an apparent molecular mass of about 36 kDa. The apparent K(m) values for ATP and glucose (at 90 degrees C and pH 6.2) were 0.42 and 0.044 mM, respectively; the apparent V(max) was about 35 U/mg. The enzyme was specific for ATP as a phosphoryl donor, but showed a broad spectrum for phosphoryl acceptors: in addition to glucose, which showed the highest catalytic efficiency (k(cat)/K(m)), the enzyme also phosphorylates glucosamin, fructose, mannose, and 2-deoxyglucose. Divalent cations were required for maximal activity: Mg(2+), which was most effective, could partially be replaced with Co(2+), Mn(2+), and Ni(2+). The enzyme had a temperature optimum of at least 100 degrees C and showed significant thermostability up to 100 degrees C. The coding function of open reading frame (ORF) APE2091 (Y. Kawarabayasi, Y. Hino, H. Horikawa, S. Yamazaki, Y. Haikawa, K. Jin-no, M. Takahashi, M. Sekine, S. Baba, A. Ankai, H. Kosugi, A. Hosoyama, S. Fukui, Y. Nagai, K. Nishijima, H. Nakazawa, M. Takamiya, S. Masuda, T. Funahashi, T. Tanaka, Y. Kudoh, J. Yamazaki, N. Kushida, A. Oguchi, and H. Kikuchi, DNA Res. 6:83-101, 145-152, 1999), previously annotated as gene glk, coding for ATP-glucokinase of A. pernix, was proved by functional expression in Escherichia coli. The purified recombinant ATP-dependent glucokinase showed a 5-kDa higher molecular mass on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but almost identical kinetic and thermostability properties in comparison to the native enzyme purified from A. pernix. N-terminal amino acid sequence of the native enzyme revealed that the translation start codon is a GTG 171 bp downstream of the annotated start codon of ORF APE2091. The amino acid sequence deduced from the truncated ORF APE2091 revealed sequence similarity to members of the ROK family, which comprise bacterial sugar kinases and transcriptional repressors. This is the first report of the characterization of an ATP-dependent glucokinase from the domain of Archaea, which differs from its bacterial counterparts by its monomeric structure and its broad specificity for hexoses.
Collapse
Affiliation(s)
- Thomas Hansen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, D-24118 Kiel, Am Botanischen Garten 1-9, Germany
| | | | | | | |
Collapse
|
22
|
Brückner R, Titgemeyer F. Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 2002; 209:141-8. [PMID: 12007797 DOI: 10.1111/j.1574-6968.2002.tb11123.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Carbon catabolite repression (CCR) in bacteria is generally regarded as a regulatory mechanism to ensure sequential utilization of carbohydrates. Selection of the carbon sources is mainly made at the level of carbohydrate-specific induction. Since virtually all carbohydrate catabolic genes or operons are regulated by specific control proteins and require inducers for high level expression, direct control of the activity of regulators or control of inducer formation is an efficient measure to keep them silent. By these mechanisms, bacteria are able to establish a hierarchy of sugar utilization. In addition to the control of induction processes by CCR, bacteria have developed global transcriptional regulation circuits, in which pleiotropic regulators are activated. These global control proteins, the catabolite gene activator protein (CAP), also known as cAMP receptor protein, in Escherichia coli or the catabolite control protein (CcpA) in Gram-positive bacteria with low GC content, act upon a large number of catabolic genes/operons. Since practically any carbon source is able to trigger global transcriptional control, expression of sugar utilization genes is restricted even in the sole presence of their cognate substrates. Consequently, CAP- or CcpA-dependent catabolite repression serves as an autoregulatory device to keep sugar utilization at a certain level rather than to establish preferential utilization of certain carbon sources. Together with other autoregulatory mechanisms that are not acting at the gene expression level, CCR helps bacteria to adjust sugar utilization to their metabolic capacities. Therefore, catabolic/metabolic balance would perhaps better describe the physiological role of this regulatory network than the term catabolite repression.
Collapse
Affiliation(s)
- Reinhold Brückner
- Mikrobiologie, Universität Kaiserslautern, Paul-Ehrlich-Strasse 23, Germany.
| | | |
Collapse
|
23
|
The Glucomannokinase of the Gram-Negative Ruminal Bacterium, Prevotella bryantii B14, and its Sequence Conservation with Regulatory Glucokinases of Gram-Positive Bacteria. Anaerobe 2002. [DOI: 10.1006/anae.2002.0420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Fields MW, Russell JB. The glucomannokinase of Prevotella bryantii B(1)4 and its potential role in regulating beta-glucanase expression. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1035-1043. [PMID: 11283299 DOI: 10.1099/00221287-147-4-1035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prevotella bryantii B(1)4 has a transport system for glucose and mannose, but beta-glucanase expression is only catabolite-repressed by glucose. P bryantii B(1)4 cell extracts had ATP-dependent gluco- and mannokinase activities, and significant phosphoenolpyruvate- or GTP-dependent hexose phosphorylation was not observed. Mannose inhibited glucose phosphorylation (and vice versa), and activity gels indicated that a single protein was responsible for both activities. Glucose was phosphorylated at a faster rate than was mannose [V(max) 280 nmol hexose (mg protein)(-1) min(-1) versus 60 nmol hexose (mg protein)(-1) min(-1), respectively] and glucose was a better substrate for the kinase (K(m) 0.12 mM versus 1.2 mM, respectively). The purified glucomannokinase (1250-fold) had a molecular mass of 68 kDa, but SDS-PAGE gels indicated that it was a dimer (monomer 34.5 kDa). The N-terminus (25 residues) had an 8 amino acid segment that was homologous to other bacterial glucokinases. The glucomannokinase was competitively inhibited by the nonmetabolizable glucose analogue 2-deoxyglucose (2DG), and cells grown with glucose and 2DG had lower rates of glucose consumption than did cells given only glucose. When the ratio of 2DG to glucose was increased, the glucose consumption rate decreased and the beta-glucanase activity increased. The glucose consumption rate and the glucomannokinase activity of cells treated with 2DG were highly correlated (r(2)=0.98). This result suggested that glucomannokinase activity was either directly or indirectly regulating beta-glucanase expression.
Collapse
Affiliation(s)
- Matthew W Fields
- Department of Microbiology, Cornell University and 2Agricultural Research Service, USDA, Ithaca, NY 14853, USA
| | - James B Russell
- Department of Microbiology, Cornell University and 2Agricultural Research Service, USDA, Ithaca, NY 14853, USA
| |
Collapse
|
25
|
Jankovic I, Egeter O, Brückner R. Analysis of catabolite control protein A-dependent repression in Staphylococcus xylosus by a genomic reporter gene system. J Bacteriol 2001; 183:580-6. [PMID: 11133951 PMCID: PMC94913 DOI: 10.1128/jb.183.2.580-586.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2000] [Accepted: 10/27/2000] [Indexed: 11/20/2022] Open
Abstract
A single-copy reporter system for Staphylococcus xylosus has been developed, that uses a promoterless version of the endogenous beta-galactosidase gene lacH as a reporter gene and that allows integration of promoters cloned in front of lacH into the lactose utilization gene cluster by homologous recombination. The system was applied to analyze carbon catabolite repression of S. xylosus promoters by the catabolite control protein CcpA. To test if lacH is a suitable reporter gene, beta-galactosidase activities directed by two promoters known to be subject to CcpA regulation were measured. In these experiments, repression of the malRA maltose utilization operon promoter and autoregulation of the ccpA promoters were confirmed, proving the applicability of the system. Subsequently, putative CcpA operators, termed catabolite-responsive elements (cres), from promoter regions of several S. xylosus genes were tested for their ability to confer CcpA regulation upon a constitutive promoter, P(vegII). For that purpose, cre sequences were placed at position +3 or +4 within the transcribed region of P(vegII). Measurements of beta-galactosidase activities in the presence or absence of glucose yielded repression ratios between two- and eightfold. Inactivation of ccpA completely abolished glucose-dependent regulation. Therefore, the tested cres functioned as operator sites for CcpA. With promoters exclusively regulated by CcpA, signal transduction leading to CcpA activation in S. xylosus was examined. Glucose-dependent regulation was measured in a set of isogenic mutants showing defects in genes encoding glucose kinase GlkA, glucose uptake protein GlcU, and HPr kinase HPrK. GlkA and GlcU deficiency diminished glucose-dependent CcpA-mediated repression, but loss of HPr kinase activity abolished regulation. These results clearly show that HPr kinase provides the essential signal to activate CcpA in S. xylosus. Glucose uptake protein GlcU and glucose kinase GlkA participate in activation, but they are not able to trigger CcpA-mediated regulation independently from HPr kinase.
Collapse
Affiliation(s)
- I Jankovic
- Mikrobielle Genetik, Universität Tübingen, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
26
|
Weber BA, Klein JR, Henrich B. Expression of the phospho-beta-glycosidase ArbZ from Lactobacillus delbrueckii subsp. lactis in Lactobacillus helveticus: substrate induction and catabolite repression. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 8):1941-1948. [PMID: 10931898 DOI: 10.1099/00221287-146-8-1941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
ArbZ from Lactobacillus delbrueckii subsp. lactis was previously shown to enable utilization of the beta-glucoside arbutin by Escherichia coli. The arbZ gene was cloned and expressed in the industrially used beta-glucoside-negative strain Lactobacillus helveticus 3036(62). The transformants were able to ferment not only arbutin, but also cellobiose, salicin and methyl-beta-glucoside (MbetaGlc). Cleavage of beta-glucosides by the transformants depended on the integrity of the cytoplasmic membrane, whereas in cell-free extracts only C(6)-phosphorylated substrates were hydrolysed. This suggested that ArbZ is a phospho-beta-glycosidase. ArbZ activity in transformants of Lb. helveticus was subject to substrate induction mediated by the beta-glucosides arbutin, salicin and MbetaGlc, whereas cellobiose or the beta-galactoside lactose had no inducing effect. Northern blot analysis proved that induction by MbetaGlc was due to enhanced transcription of arbZ. Catabolite repression of arbZ induction was observed with glucose, mannose, fructose and galactose. The induction kinetics observed in the presence of these sugars indicated that at least two different mechanisms are operative in catabolite repression of arbZ in Lb. helveticus.
Collapse
Affiliation(s)
- Beate A Weber
- Universität Kaiserslautern, Fachbereich Biologie, Abteilung Mikrobiologie, PO Box 3049, D-67653 Kaiserslautern, Germany1
| | - Jürgen R Klein
- Universität Kaiserslautern, Fachbereich Biologie, Abteilung Mikrobiologie, PO Box 3049, D-67653 Kaiserslautern, Germany1
| | - Bernhard Henrich
- Universität Kaiserslautern, Fachbereich Biologie, Abteilung Mikrobiologie, PO Box 3049, D-67653 Kaiserslautern, Germany1
| |
Collapse
|
27
|
Park SY, Kim HK, Yoo SK, Oh TK, Lee JK. Characterization of glk, a gene coding for glucose kinase of Corynebacterium glutamicum. FEMS Microbiol Lett 2000; 188:209-15. [PMID: 10913707 DOI: 10.1111/j.1574-6968.2000.tb09195.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The glk gene from Corynebacterium glutamicum was isolated by complementation using Escherichia coli ZSC113 (ptsG ptsM glk). We sequenced a total of 3072 bp containing the 969-bp open reading frame encoding glucose kinase (Glk). The glk gene has a deduced molecular mass of 34.2 kDa and contains a typical ATP binding site. Comparison with protein sequences revealed homologies to Glk from Streptomyces coelicolor (43%) and Bacillus megaterium (35%). The glk gene in C. glutamicum was inactivated on the chromosome via single crossover homologous recombination and the resulting glk mutant was characterized. Interestingly, the C. glutamicum glk mutant showed poor growth on rich medium such as LB medium or brain heart infusion medium in the presence or absence of glucose, fructose, maltose or sucrose as the sole carbon source. Growth yield was reduced significantly when maltose was used as the sole carbon source using minimal medium. The growth defect of glk mutant on rich medium was complemented by a plasmid-encoded glk gene. A chromosomal glk-lacZ fusion was constructed and used to monitor glk expression, and it was found that glk was expressed constitutively under all tested conditions with different carbon sources.
Collapse
Affiliation(s)
- S Y Park
- Environmental Bioresources Laboratory, Korea Research Institute of Bioscience and Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
| | | | | | | | | |
Collapse
|
28
|
Concha MI, León G. Cloning, functional expression and partial characterization of the glucose kinase from Renibacterium salmoninarum. FEMS Microbiol Lett 2000; 186:97-101. [PMID: 10779719 DOI: 10.1111/j.1574-6968.2000.tb09088.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The complete glcK gene from the fish pathogen Renibacterium salmoninarum, encoding a glucose kinase, was analyzed and expressed. The partial characterization of the recombinant enzyme confirmed that it belongs to a group of glucose kinases involved in carbon catabolite repression. Multiple sequence alignments were used to deduce a new consensus sequence for this family of bacterial proteins, characterized by several conserved Cys residues. This sequence was more specific and allowed the detection of the first eukaryotic protein of this family. The recombinant enzyme was inhibited by N-ethylmaleimide and the substrates protected the enzyme from this inhibition, suggesting the presence of Cys residues in or close to the active site.
Collapse
Affiliation(s)
- M I Concha
- Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile.
| | | |
Collapse
|
29
|
Huynh PL, Jankovic I, Schnell NF, Brückner R. Characterization of an HPr kinase mutant of Staphylococcus xylosus. J Bacteriol 2000; 182:1895-902. [PMID: 10714994 PMCID: PMC101872 DOI: 10.1128/jb.182.7.1895-1902.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/1999] [Accepted: 12/29/1999] [Indexed: 11/20/2022] Open
Abstract
The Staphylococcus xylosus gene hprK, encoding HPr kinase (HPrK), has been isolated from a genomic library. The HPrK enzyme, purified as a His(6) fusion protein, phosphorylated HPr, the phosphocarrier protein of the bacterial phosphotransferase system, at a serine residue in an ATP-dependent manner, and it also catalyzed the reverse reaction. Therefore, the enzyme constitutes a bifunctional HPr kinase/phosphatase. Insertional inactivation of the gene in the genome of S. xylosus resulted in the concomitant loss of both HPr kinase and His serine-phosphorylated-HPr phosphatase activities in cell extracts, strongly indicating that the HPrK enzyme is also responsible for both reactions in vivo. HPrK deficiency had a profound pleiotropic effect on the physiology of S. xylosus. The hprK mutant strain showed a severe growth defect in complex medium upon addition of glucose. Glucose uptake in glucose-grown cells was strongly enhanced compared with the wild type. Carbon catabolite repression of three tested enzyme activities by glucose, sucrose, and fructose was abolished. These results clearly demonstrate the prominent role of HPr kinase in global control to adjust catabolic capacities of S. xylosus according to the availability of preferred carbon sources.
Collapse
Affiliation(s)
- P L Huynh
- Mikrobielle Genetik, Universität Tübingen, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
30
|
Fiegler H, Bassias J, Jankovic I, Brückner R. Identification of a gene in Staphylococcus xylosus encoding a novel glucose uptake protein. J Bacteriol 1999; 181:4929-36. [PMID: 10438764 PMCID: PMC93981 DOI: 10.1128/jb.181.16.4929-4936.1999] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By transposon Tn917 mutagenesis, two mutants of Staphylococcus xylosus were isolated that showed higher levels of beta-galactosidase activity in the presence of glucose than the wild type. Both transposons integrated in a gene, designated glcU, encoding a protein involved in glucose uptake in S. xylosus, which is followed by a glucose dehydrogenase gene (gdh). Glucose-mediated repression of beta-galactosidase, alpha-glucosidase, and beta-glucuronidase activities was partially relieved in the mutant strains, while repression by sucrose or fructose remained as strong as in the wild type. In addition to the pleiotropic regulatory effect, integration of the transposons into glcU reduced glucose dehydrogenase activity, suggesting cotranscription of glcU and gdh. Insertional inactivation of the gdh gene and deletion of the glcU gene without affecting gdh expression showed that loss of GlcU function is exclusively responsible for the regulatory defect. Reduced glucose repression is most likely the consequence of impaired glucose uptake in the glcU mutant strains. With cloned glcU, an Escherichia coli mutant deficient in glucose transport could grow with glucose as sole carbon source, provided a functional glucose kinase was present. Therefore, glucose is internalized by glcU in nonphosphorylated form. A gene from Bacillus subtilis, ycxE, that is homologous to glcU, could substitute for glcU in the E. coli glucose growth experiments and restored glucose repression in the S. xylosus glcU mutants. Three more proteins with high levels of similarity to GlcU and YcxE are currently in the databases. It appears that these proteins constitute a novel family whose members are involved in bacterial transport processes. GlcU and YcxE are the first examples whose specificity, glucose, has been determined.
Collapse
Affiliation(s)
- H Fiegler
- Mikrobielle Genetik, Universität Tübingen, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
31
|
Zalieckas JM, Wray LV, Fisher SH. trans-acting factors affecting carbon catabolite repression of the hut operon in Bacillus subtilis. J Bacteriol 1999; 181:2883-8. [PMID: 10217782 PMCID: PMC93733 DOI: 10.1128/jb.181.9.2883-2888.1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis, CcpA-dependent carbon catabolite repression (CCR) mediated at several cis-acting carbon repression elements (cre) requires the seryl-phosphorylated form of both the HPr (ptsH) and Crh (crh) proteins. During growth in minimal medium, the ptsH1 mutation, which prevents seryl phosphorylation of HPr, partially relieves CCR of several genes regulated by CCR. Examination of the CCR of the histidine utilization (hut) enzymes in cells grown in minimal medium showed that neither the ptsH1 nor the crh mutation individually had any affect on hut CCR but that hut CCR was abolished in a ptsH1 crh double mutant. In contrast, the ptsH1 mutation completely relieved hut CCR in cells grown in Luria-Bertani medium. The ptsH1 crh double mutant exhibited several growth defects in glucose minimal medium, including reduced rates of growth and growth inhibition by high levels of glycerol or histidine. CCR is partially relieved in B. subtilis mutants which synthesize low levels of active glutamine synthetase (glnA). In addition, these glnA mutants grow more slowly than wild-type cells in glucose minimal medium. The defects in growth and CCR seen in these mutants are suppressed by mutational inactivation of TnrA, a global nitrogen regulatory protein. The inappropriate expression of TnrA-regulated genes in this class of glnA mutants may deplete intracellular pools of carbon metabolites and thereby result in the reduction of the growth rate and partial relief of CCR.
Collapse
Affiliation(s)
- J M Zalieckas
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
32
|
Abstract
Carbon catabolite repression (CCR) is a regulatory mechanism by which the expression of genes required for the utilization of secondary sources of carbon is prevented by the presence of a preferred substrate. This enables bacteria to increase their fitness by optimizing growth rates in natural environments providing complex mixtures of nutrients. In most bacteria, the enzymes involved in sugar transport and phosphorylation play an essential role in signal generation leading through different transduction mechanisms to catabolite repression. The actual mechanisms of regulation are substantially different in various bacteria. The mechanism of lactose-glucose diauxie in Escherichia coli has been reinvestigated and was found to be caused mainly by inducer exclusion. In addition, the gene encoding HPr kinase, a key component of CCR in many bacteria, was discovered recently.
Collapse
Affiliation(s)
- J Stülke
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik der Friedrich-Alexander-Universität, Erlangen-Nüurnberg, Staudtstr.5, D-91058, Erlangen, Germany
| | | |
Collapse
|
33
|
Rosana-Ani L, Skarlatos P, Dahl MK. Putative contribution of glucose kinase fromBacillus subtilisto carbon catabolite repression (CCR): a link between enzymatic regulation and CCR? FEMS Microbiol Lett 1999. [DOI: 10.1111/j.1574-6968.1999.tb13416.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
34
|
Behari J, Youngman P. A homolog of CcpA mediates catabolite control in Listeria monocytogenes but not carbon source regulation of virulence genes. J Bacteriol 1998; 180:6316-24. [PMID: 9829942 PMCID: PMC107718 DOI: 10.1128/jb.180.23.6316-6324.1998] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Readily utilizable sugars down-regulate virulence gene expression in Listeria monocytogenes, which has led to the proposal that this regulation may be an aspect of global catabolite regulation (CR). We recently demonstrated that the metabolic enzyme alpha-glucosidase is under CR in L. monocytogenes. Here, we report the cloning and characterization from L. monocytogenes of an apparent ortholog of ccpA, which encodes an important mediator of CR in several low-G+C-content gram-positive bacteria. L. monocytogenes ccpA (ccpALm) is predicted to encode a 335-amino-acid protein with nearly 65% identity to the gene product of Bacillus subtilis ccpA (ccpABs). Southern blot analysis with a probe derived from ccpALm revealed a single strongly hybridizing band and also a second band of much lower intensity, suggesting that there may be other closely related sequences in the L. monocytogenes chromosome, as is the case in B. subtilis. Disruption of ccpALm resulted in the inability of the mutant to grow on glucose-containing minimal medium or increase its growth rate in the presence of preferred sugars, and it completely eliminated CR of alpha-glucosidase activity in liquid medium. However, alpha-glucosidase activity was only partially relieved from CR on solid medium. These results suggest that ccpA is an important element of carbon source regulation in L. monocytogenes. Nevertheless, utilizable sugars still down-regulate the expression of hly, which encodes the virulence factor hemolysin, in a ccpALm mutant, indicating that CcpA is not involved in carbon source regulation of virulence genes.
Collapse
Affiliation(s)
- J Behari
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
35
|
Behari J, Youngman P. Regulation of hly expression in Listeria monocytogenes by carbon sources and pH occurs through separate mechanisms mediated by PrfA. Infect Immun 1998; 66:3635-42. [PMID: 9673243 PMCID: PMC108396 DOI: 10.1128/iai.66.8.3635-3642.1998] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Expression of the PrfA-controlled virulence gene hly (encoding the pore-forming cytolysin listeriolysin) is under negative regulation by readily metabolized carbon sources in Listeria monocytogenes. However, the hyperhemolytic strain NCTC 7973 exhibits deregulated hly expression in the presence of repressing sugars, raising the possibility that a defect in carbon source regulation is responsible for its anomalous behavior. We show here that the activity of a second glucose-repressed enzyme, alpha-glucosidase, is 10-fold higher in NCTC 7973 than in 10403S. Using hly-gus fusions, we show that the prfA allele from NCTC 7973 causes deregulated hly-gus expression in the presence of sugars in either the wild-type or the NCTC 7973 background, while the 10403S prfA allele restores carbon source regulation. However, the prfA genotype does not affect the regulation of alpha-glucosidase activity by repressing sugars. Of the two mutational differences in PrfA, only a Gly145Ser change is important for regulation of hly-gus. Therefore, NCTC 7973 and 10403S have genetic differences in at least two loci: one in prfA that affects carbon source regulation of virulence genes and another in an unidentified gene(s) that up-regulates alpha-glucosidase activity. We also show that the decrease in pH associated with utilization of sugars negatively regulates hly-gus expression, although sugars can affect hly-gus expression by another mechanism that is independent of pH.
Collapse
Affiliation(s)
- J Behari
- Department of Genetics, University of Georgia, Athens, Georgia, 30602, USA
| | | |
Collapse
|
36
|
Abstract
The open reading frame yqgR (now termed glcK), which had been sequenced as part of the genome project, encodes a glucose kinase of Bacillus subtilis. A 1.1-kb DNA fragment containing glcK complemented an Escherichia coli strain deficient in glucose kinase activity. Insertional mutagenesis of glcK resulted in a complete inactivation of glucose kinase activity in crude protein extracts, indicating that B. subtilis contains one major glucose kinase. The glcK gene encodes a 321-residue protein with a molecular mass of 33.5 kDa. The glucose kinase was overexpressed as a fusion protein to a six-His affinity tag and purified to homogeneity. The enzyme had K(m) values for ATP and glucose of 0.77 and 0.24 mM, respectively, and a Vmax of 93 mumol min-1 mg-1. A B. subtilis strain deficient for glucose kinase grew at the same rate on different carbon sources tested, including disaccharides such as maltose, trehalose, and sucrose.
Collapse
Affiliation(s)
- P Skarlatos
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | |
Collapse
|
37
|
Schönert S, Buder T, Dahl MK. Identification and enzymatic characterization of the maltose-inducible alpha-glucosidase MalL (sucrase-isomaltase-maltase) of Bacillus subtilis. J Bacteriol 1998; 180:2574-8. [PMID: 9573215 PMCID: PMC107205 DOI: 10.1128/jb.180.9.2574-2578.1998] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/1997] [Accepted: 03/03/1998] [Indexed: 02/07/2023] Open
Abstract
A gene coding for a putative alpha-glucosidase has been identified in the open reading frame yvdL (now termed malL), which was sequenced as part of the Bacillus subtilis genome project. The enzyme was overproduced in Escherichia coli and purified. Further analyses indicate that MalL is a specific oligo-1,4-1,6-alpha-glucosidase (sucrase-maltase-isomaltase). MalL expression in B. subtilis requires maltose induction and is subject to carbon catabolite repression by glucose and fructose. Insertional mutagenesis of malL resulted in a complete inactivation of the maltose-inducible alpha-glucosidase activity in crude protein extracts and a Mal- phenotype.
Collapse
Affiliation(s)
- S Schönert
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
38
|
Abstract
The lactose utilization genes of Staphylococcus xylosus have been isolated and characterized. The system is comprised of two structural genes, lacP and lacH, encoding the lactose permease and the beta-galactosidase proteins, respectively, and a regulatory gene, lacR, coding for an activator of the AraC/XylS family. The lactose utilization genes are divergently arranged, the lacPH genes being opposite to lacR. The lacPH genes are cotranscribed from one promoter in front of lacP, whereas lacR is transcribed from two promoters of different strengths. Lactose transport as well as beta-galactosidase activity are inducible by the addition of lactose to the growth medium. Primer extension experiments demonstrated that regulation is achieved at the level of lacPH transcription initiation. Inducibility and efficient lacPH transcription are dependent on a functional lacR gene. Inactivation of lacR resulted in low and constitutive lacPH expression. Expression of lacR itself is practically constitutive, since transcription initiated at the major lacR promoter does not respond to the availability of lactose. Only the minor lacR promoter is lactose inducible. Apart from lactose-specific, LacR-dependent control, the lacPH promoter is also subject to carbon catabolite repression mediated by the catabolite control protein CcpA. When glucose is present in the growth medium, lacPH transcription initiation is reduced. Upon ccpA inactivation, repression at the lacPH promoter is relieved. Despite this loss of transcriptional regulation in the ccpA mutant strain, beta-galactosidase activity is still reduced by glucose, suggesting another level of control.
Collapse
Affiliation(s)
- J Bassias
- Mikrobielle Genetik, Universität Tübingen, Germany
| | | |
Collapse
|
39
|
Späth C, Kraus A, Hillen W. Contribution of glucose kinase to glucose repression of xylose utilization in Bacillus megaterium. J Bacteriol 1997; 179:7603-5. [PMID: 9393732 PMCID: PMC179718 DOI: 10.1128/jb.179.23.7603-7605.1997] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The glk gene from Bacillus megaterium, which encodes glucose kinase, was isolated and analyzed. Disruption by a transcriptional glk-luxAB fusion indicated that glk is the only glucose kinase gene in that strain but did not affect growth of that mutant on glucose. Determination of luciferase activity under various growth conditions revealed constitutive transcription of glk. Expression of a xylA-lacZ fusion was repressed by glucose in the strain with the glk disruption about twofold less efficiently than in the wild type. The potential contribution of glk expression to glucose repression is discussed.
Collapse
Affiliation(s)
- C Späth
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | | | | |
Collapse
|
40
|
Ni X, Westpheling J. Direct repeat sequences in the Streptomyces chitinase-63 promoter direct both glucose repression and chitin induction. Proc Natl Acad Sci U S A 1997; 94:13116-21. [PMID: 9371809 PMCID: PMC24272 DOI: 10.1073/pnas.94.24.13116] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The chi63 promoter directs glucose-sensitive, chitin-dependent transcription of a gene involved in the utilization of chitin as carbon source. Analysis of 5' and 3' deletions of the promoter region revealed that a 350-bp segment is sufficient for wild-type levels of expression and regulation. The analysis of single base changes throughout the promoter region, introduced by random and site-directed mutagenesis, identified several sequences to be important for activity and regulation. Single base changes at -10, -12, -32, -33, -35, and -37 upstream of the transcription start site resulted in loss of activity from the promoter, suggesting that bases in these positions are important for RNA polymerase interaction. The sequences centered around -10 (TATTCT) and -35 (TTGACC) in this promoter are, in fact, prototypical of eubacterial promoters. Overlapping the RNA polymerase binding site is a perfect 12-bp direct repeat sequence. Some base changes within this direct repeat resulted in constitutive expression, suggesting that this sequence is an operator for negative regulation. Other base changes resulted in loss of glucose repression while retaining the requirement for chitin induction, suggesting that this sequence is also involved in glucose repression. The fact that cis-acting mutations resulted in glucose resistance but not inducer independence rules out the possibility that glucose repression acts exclusively by inducer exclusion. The fact that mutations that affect glucose repression and chitin induction fall within the same direct repeat sequence module suggests that the direct repeat sequence facilitates both chitin induction and glucose repression.
Collapse
Affiliation(s)
- X Ni
- Genetics Department, University of Georgia, Athens 30602, USA
| | | |
Collapse
|
41
|
Monedero V, Gosalbes MJ, Pérez-Martínez G. Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA. J Bacteriol 1997; 179:6657-64. [PMID: 9352913 PMCID: PMC179592 DOI: 10.1128/jb.179.21.6657-6664.1997] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The chromosomal ccpA gene from Lactobacillus casei ATCC 393 has been cloned and sequenced. It encodes the CcpA protein, a central catabolite regulator belonging to the LacI-GalR family of bacterial repressors, and shows 54% identity with CcpA proteins from Bacillus subtilis and Bacillus megaterium. The L. casei ccpA gene was able to complement a B. subtilis ccpA mutant. An L. casei ccpA mutant showed increased doubling times and a relief of the catabolite repression of some enzymatic activities, such as N-acetylglucosaminidase and phospho-beta-galactosidase. Detailed analysis of CcpA activity was performed by using the promoter region of the L. casei chromosomal lacTEGF operon which is subject to catabolite repression and contains a catabolite responsive element (cre) consensus sequence. Deletion of this cre site or the presence of the ccpA mutation abolished the catabolite repression of a lacp::gusA fusion. These data support the role of CcpA as a common regulatory element mediating catabolite repression in low-GC-content gram-positive bacteria.
Collapse
Affiliation(s)
- V Monedero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Burjassot, Valencia, Spain
| | | | | |
Collapse
|
42
|
Abstract
A system for high-efficiency gene replacement in Staphylococcus carnosus and Staphylococcus xylosus has been developed, that is based on temperature-sensitive Escherichia coli-Staphylococcus shuttle vectors for fragment delivery and erythromycin resistance cassettes to facilitate selection of genomic copies of disrupted genes. The approach was tested by constructing a phosphotransferase-deficient mutant of S. carnosus and an S. xylosus mutant strain unable to utilize sucrose. Allelic replacements were observed at rather high frequencies, ranging from approximately 10% for the ptsI gene in S. carnosus up to 50% for the scrB gene in S. xylosus. These differences most likely reflect the length of homology rather than strain-specific variations in recombination efficiencies. Apart from the staphylococcal species tested in this study, the system appears to be applicable in other staphylococci.
Collapse
Affiliation(s)
- R Brückner
- Mikrobielle Genetik, Universität Tübingen, Germany.
| |
Collapse
|
43
|
Fiegler H, Brückner R. Identification of the serine acetyltransferase gene of Staphylococcus xylosus. FEMS Microbiol Lett 1997; 148:181-7. [PMID: 9084146 DOI: 10.1111/j.1574-6968.1997.tb10286.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A transposon Tn917-induced mutant strain of Staphylococcus xylosus was isolated that required exogenous cysteine for growth. The transposon was found to reside within a gene, designated cysE, encoding a protein of 216 amino acids with a high level of similarity to bacterial serine acetyltransferases. The cysE::Tn917 mutant completely lost serine acetyltransferase activity, which is easily detectable in the wild-type strain. In addition, the mutant strain could no longer grow in minimal medium without cysteine. Therefore, the cysE gene product is essential for the de novo synthesis of cysteine via O-acetyl-L-serine in S. xylosus. The cysE gene is surrounded by genes encoding glutamyl-tRNA synthetase (gltX) and cysteinyl-tRNA synthetase (cysS), as deduced from sequence comparisons. The genetic organisation in S. xylosus, gltX-cysE-cysS, is identical to that found in Bacillus subtilis and Bacillus stearothermophilus.
Collapse
Affiliation(s)
- H Fiegler
- Mikrobielle Genetik, Universität Tübingen, Germany
| | | |
Collapse
|
44
|
Meyer D, Schneider-Fresenius C, Horlacher R, Peist R, Boos W. Molecular characterization of glucokinase from Escherichia coli K-12. J Bacteriol 1997; 179:1298-306. [PMID: 9023215 PMCID: PMC178829 DOI: 10.1128/jb.179.4.1298-1306.1997] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
glk, the structural gene for glucokinase of Escherichia coli, was cloned and sequenced. Overexpression of glk resulted in the synthesis of a cytoplasmic protein with a molecular weight of 35,000. The enzyme was purified, and its kinetic parameters were determined. Its Km values for glucose and ATP were 0.78 and 3.76 mM, respectively. Its Vmax was 158 U/mg of protein. A chromosomal glk-lacZ fusion was constructed and used to monitor glk expression. Under all conditions tested, only growth on glucose reduced the expression of glk by about 50%. A fruR mutation slightly increased the expression of glk-lacZ, whereas the overexpression of plasmid-encoded fruR+ weakly decreased expression. A FruR consensus binding motif was found 123 bp upstream of the potential transcriptional start site of glk. Overexpression of glk interfered with the expression of the maltose system. Repression was strongest in strains that exhibited constitutive mal gene expression due to endogenous induction and, in the absence of a functional MalK protein, the ATP-hydrolyzing subunit of the maltose transport system. It was least effective in wild-type strains growing on maltose or in strains constitutive for the maltose system due to a mutation in malT rendering the mal gene expression independent of inducer. This demonstrates that free internal glucose plays an essential role in the formation of the endogenous inducer of the maltose system.
Collapse
Affiliation(s)
- D Meyer
- Department of Biology, University of Konstanz, Germany
| | | | | | | | | |
Collapse
|
45
|
Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NS, Venter JC. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 1996; 273:1058-73. [PMID: 8688087 DOI: 10.1126/science.273.5278.1058] [Citation(s) in RCA: 1785] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The complete 1.66-megabase pair genome sequence of an autotrophic archaeon, Methanococcus jannaschii, and its 58- and 16-kilobase pair extrachromosomal elements have been determined by whole-genome random sequencing. A total of 1738 predicted protein-coding genes were identified; however, only a minority of these (38 percent) could be assigned a putative cellular role with high confidence. Although the majority of genes related to energy production, cell division, and metabolism in M. jannaschii are most similar to those found in Bacteria, most of the genes involved in transcription, translation, and replication in M. jannaschii are more similar to those found in Eukaryotes.
Collapse
Affiliation(s)
- C J Bult
- Microbiology Department, University of Illinois, Champaign-Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Commentary by M.H. Saier, Jr.:. Res Microbiol 1996. [DOI: 10.1016/s0923-2508(96)90152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Commentary by I.T. Paulsen:. Res Microbiol 1996. [DOI: 10.1016/s0923-2508(96)90159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|