1
|
Chetverikov S, Hkudaigulov G, Sharipov D, Starikov S. Probable New Species of Bacteria of the Genus Pseudomonas Accelerates and Enhances the Destruction of Perfluorocarboxylic Acids. TOXICS 2024; 12:930. [PMID: 39771145 PMCID: PMC11728705 DOI: 10.3390/toxics12120930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Bacteria of the genus Pseudomonas are the most studied microorganisms that biodegrade persistent perfluoroorganic pollutants, and the research of their application for the remediation of environmental sites using biotechnological approaches remains relevant. The aim of this study was to investigate the ability of a known destructor of perfluorooctane sulfonic acid from the genus Pseudomonas to accelerate and enhance the destruction of long-chain perfluorocarboxylic acids (PFCAs), specifically perfluorooctanoic acid and perfluorononanoic acid, in water and soil in association with the strain P. mosselii 5(3), which has previously confirmed genetic potential for the degrading of PFCAs. The complete genome (5.86 million base pairs) of the strain 2,4-D, probably belonging to a new species of Pseudomonas, was sequenced, assembled, and analyzed. The genomes of both strains contain genes involved in the defluorination of fluorinated compounds, including haloacetate dehalogenase H-1 (dehH1) and haloalkane dehalogenase (dhaA). The strain 2,4-D also has a multicomponent enzyme system consisting of a dioxygenase component, an electron carrier, and 2-halobenzoate 1,2-dioxygenase (CbdA) with a preference for fluorides. The strain 2,4-D was able to defluorinate PFCAs in an aqueous cultivation system within 7 days, using them as the sole source of carbon and energy and converting them to perfluorheptanoic acid. It assisted strain 5(3) to convert PFCAs to perfluoropentanoic acid, accelerating the process by 24 h. In a model experiment for the bioaugmentation of microorganisms in artificially contaminated soil, the degradation of PFCAs by the association of pseudomonads also occurred faster and deeper than by the individual strains, achieving a degree of biodestruction of 75% over 60 days, with the perfluoropentanoic acid as the main metabolite. These results are of great importance for the development of methods for the biological recultivation of fluorinated organic pollutants for environmental protection and for understanding the fundamental mechanisms of bacterial interactions with these compounds.
Collapse
Affiliation(s)
- Sergey Chetverikov
- Ufa Institute of Biology, Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia; (G.H.); (D.S.); (S.S.)
| | | | | | | |
Collapse
|
2
|
Catabolism of the groundwater micropollutant 2,6-dichlorobenzamide beyond 2,6-dichlorobenzoate is plasmid encoded in Aminobacter sp. MSH1. Appl Microbiol Biotechnol 2018; 102:7963-7979. [PMID: 29984394 DOI: 10.1007/s00253-018-9189-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 01/01/2023]
Abstract
Aminobacter sp. MSH1 uses the groundwater micropollutant 2,6-dichlorobenzamide (BAM) as sole source of carbon and energy. In the first step, MSH1 converts BAM to 2,6-dichlorobenzoic acid (2,6-DCBA) by means of the BbdA amidase encoded on the IncP-1β plasmid pBAM1. Information about the genes and degradation steps involved in 2,6-DCBA metabolism in MSH1 or any other organism is currently lacking. Here, we show that the genes for 2,6-DCBA degradation in strain MSH1 reside on a second catabolic plasmid in MSH1, designated as pBAM2. The complete sequence of pBAM2 was determined revealing that it is a 53.9 kb repABC family plasmid. The 2,6-DCBA catabolic genes on pBAM2 are organized in two main clusters bordered by IS elements and integrase genes and encode putative functions like Rieske mono-/dioxygenase, meta-cleavage dioxygenase, and reductive dehalogenases. The putative mono-oxygenase encoded by the bbdD gene was shown to convert 2,6-DCBA to 3-hydroxy-2,6-dichlorobenzoate (3-OH-2,6-DCBA). 3-OH-DCBA was degraded by wild-type MSH1 and not by a pBAM2-free MSH1 variant indicating that it is a likely intermediate in the pBAM2-encoded DCBA catabolic pathway. Based on the activity of BbdD and the putative functions of the other catabolic genes on pBAM2, a metabolic pathway for BAM/2,6-DCBA in strain MSH1 was suggested.
Collapse
|
3
|
Role of Dehalogenases in Aerobic Bacterial Degradation of Chlorinated Aromatic Compounds. J CHEM-NY 2014. [DOI: 10.1155/2014/157974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This review was conducted to provide an overview of dehalogenases involved in aerobic biodegradation of chlorinated aromatic compounds. Additionally, biochemical and molecular characterization of hydrolytic, reductive, and oxygenolytic dehalogenases was reviewed. This review will increase our understanding of the process of dehalogenation of chlorinated aromatic compounds.
Collapse
|
4
|
Hernández-Sánchez V, Lang E, Wittich RM. The Three-Species Consortium of Genetically Improved Strains Cupriavidus necator RW112, Burkholderia xenovorans RW118, and Pseudomonas pseudoalcaligenes RW120 Grows with Technical Polychlorobiphenyl, Aroclor 1242. Front Microbiol 2013; 4:90. [PMID: 23658554 PMCID: PMC3647243 DOI: 10.3389/fmicb.2013.00090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 03/08/2013] [Indexed: 12/03/2022] Open
Abstract
Burkholderia xenovorans LB400, Cupriavidus necator H850, and Pseudomonas pseudoalcaligenes KF707 are bacterial strains able to mineralize biphenyl and to co-oxidize many of its halogenated derivatives (PCBs). Only strain LB400 also mineralizes a few mono- and dichlorobiphenyls, due to the presence of a functioning chlorocatechol pathway. Here, we used a Tn5-based minitransposon shuttle system to chromosomically introduce genes tcbRCDEF, encoding the chlorocatechol pathway into KF707, and genes cbdABC encoding a 2-chlorobenzoate 1,2-dioxygenase into KF707 and LB400, as well as transposon Tn4653 from the TOL plasmid, providing genes xylXYZL, encoding a broad-range toluate (methylbenzoate) dioxygenase and its dihydrodiol dehydrogenase, to extend the range for the mineralization of halogenated benzoates in LB400 and in KF707 through co-oxidation of halobenzoates into chlorocatechols. The engineered derivatives of LB400 and KF707 thus gained the ability for the mineralization of all isomeric monochloro- and bromobenzoates of the so-called lower pathway which, consequently, also allowed the mineralization of all monochlorobiphenyls and a number of di- and trichlorobiphenyls, thus preventing the accumulation of halobenzoates and of catabolites thereof. LB400 and KF707 also grow with the two commercial PCB formulations, Aroclor 1221 and Aroclor 1232, as the sole carbon and energy sources, but not with higher halogenated PCB mixtures, similar to the already published strain RW112. Repeated exposition of the modified LB400 to short pulses of UV light, over a prolonged period of time, allowed the isolation of a derivative of LB400, termed RW118, capable of growth with Aroclor 1016 still containing only traces of biphenyl, and in co-culture with modified KF707 termed RW120, and modified H850 (RW112) with Aroclor 1242, the commercial mixture already void of biphenyl and monochlorobiphenyls.
Collapse
Affiliation(s)
- Verónica Hernández-Sánchez
- Department of Environmental Protection, Experimental Station of the Zaidín, Spanish High Council for Scientific Research Granada, Spain
| | | | | |
Collapse
|
5
|
Field-based stable isotope probing reveals the identities of benzoic acid-metabolizing microorganisms and their in situ growth in agricultural soil. Appl Environ Microbiol 2008; 74:4111-8. [PMID: 18469130 DOI: 10.1128/aem.00464-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used a combination of stable isotope probing (SIP), gas chromatography-mass spectrometry-based respiration, isolation/cultivation, and quantitative PCR procedures to discover the identity and in situ growth of soil microorganisms that metabolize benzoic acid. We added [(13)C]benzoic acid or [(12)C]benzoic acid (100 microg) once, four times, or five times at 2-day intervals to agricultural field plots. After monitoring (13)CO(2) evolution from the benzoic acid-dosed soil, field soils were harvested and used for nucleic acid extraction and for cultivation of benzoate-degrading bacteria. Exposure of soil to benzoate increased the number of culturable benzoate degraders compared to unamended soil, and exposure to benzoate shifted the dominant culturable benzoate degraders from Pseudomonas species to Burkholderia species. Isopycnic separation of heavy [(13)C]DNA from the unlabeled fraction allowed terminal restriction fragment length polymorphism (T-RFLP) analyses to confirm that distinct 16S rRNA genes were localized in the heavy fraction. Phylogenetic analysis of sequenced 16S rRNA genes revealed a predominance (15 of 58 clones) of Burkholderia species in the heavy fraction. Burkholderia sp. strain EBA09 shared 99.5% 16S rRNA sequence similarity with a group of clones representing the dominant RFLP pattern, and the T-RFLP fragment for strain EBA09 and a clone from that cluster matched the fragment enriched in the [(13)C]DNA fraction. Growth of the population represented by EBA09 during the field-dosing experiment was demonstrated by using most-probable-number-PCR and primers targeting EBA09 and the closely related species Burkholderia hospita. Thus, the target population identified by SIP not only actively metabolized benzoic acid but reproduced in the field upon the addition of the substrate.
Collapse
|
6
|
Kweon O, Kim SJ, Baek S, Chae JC, Adjei MD, Baek DH, Kim YC, Cerniglia CE. A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases. BMC BIOCHEMISTRY 2008; 9:11. [PMID: 18387195 PMCID: PMC2358900 DOI: 10.1186/1471-2091-9-11] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 04/03/2008] [Indexed: 11/18/2022]
Abstract
BACKGROUND Rieske non-heme iron aromatic ring-hydroxylating oxygenases (RHOs) are multi-component enzyme systems that are remarkably diverse in bacteria isolated from diverse habitats. Since the first classification in 1990, there has been a need to devise a new classification scheme for these enzymes because many RHOs have been discovered, which do not belong to any group in the previous classification. Here, we present a scheme for classification of RHOs reflecting new sequence information and interactions between RHO enzyme components. RESULT We have analyzed a total of 130 RHO enzymes in which 25 well-characterized RHO enzymes were used as standards to test our hypothesis for the proposed classification system. From the sequence analysis of electron transport chain (ETC) components of the standard RHOs, we extracted classification keys that reflect not only the phylogenetic affiliation within each component but also relationship among components. Oxygenase components of standard RHOs were phylogenetically classified into 10 groups with the classification keys derived from ETC components. This phylogenetic classification scheme was converted to a new systematic classification consisting of 5 distinct types. The new classification system was statistically examined to justify its stability. Type I represents two-component RHO systems that consist of an oxygenase and an FNRC-type reductase. Type II contains other two-component RHO systems that consist of an oxygenase and an FNRN-type reductase. Type III represents a group of three-component RHO systems that consist of an oxygenase, a [2Fe-2S]-type ferredoxin and an FNRN-type reductase. Type IV represents another three-component systems that consist of oxygenase, [2Fe-2S]-type ferredoxin and GR-type reductase. Type V represents another different three-component systems that consist of an oxygenase, a [3Fe-4S]-type ferredoxin and a GR-type reductase. CONCLUSION The new classification system provides the following features. First, the new classification system analyzes RHO enzymes as a whole. RwithSecond, the new classification system is not static but responds dynamically to the growing pool of RHO enzymes. Third, our classification can be applied reliably to the classification of incomplete RHOs. Fourth, the classification has direct applicability to experimental work. Fifth, the system provides new insights into the evolution of RHO systems based on enzyme interaction.
Collapse
Affiliation(s)
- Ohgew Kweon
- Microbiology Division, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Seong-Jae Kim
- Microbiology Division, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Songjoon Baek
- Division of Personalized Nutrition & Medicine, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Jong-Chan Chae
- Biotechnology Center for Agriculture and the Environment, Cook College, Rutgers University, New Brunswick, NJ 08901, USA
| | - Michael D Adjei
- Department of Health Norfolk Department of Public Health Bureau of Laboratories, Norfolk, VA 23510, USA
| | - Dong-Heon Baek
- Department of Oral Microbiology and Immunology, School of Dentistry, Dankook University, Chonan 330-714, Republic of Korea
| | - Young-Chang Kim
- School of Life Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Carl E Cerniglia
- Microbiology Division, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| |
Collapse
|
7
|
Wittich RM, Wolff P. Growth of the genetically engineered strain Cupriavidus necator RW112 with chlorobenzoates and technical chlorobiphenyls. Microbiology (Reading) 2007; 153:186-95. [PMID: 17185547 DOI: 10.1099/mic.0.29096-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cupriavidus necator (formerly Ralstonia eutropha) strain H850 is known to grow on biphenyl, and to co-oxidize congeners of polychlorinated biphenyls (PCBs). Using a Tn5-based minitransposon shuttle system and the TOL plasmid, the rational construction of hybrids of H850 was achieved by subsequent introduction of three distinct elements carrying 11 catabolic loci from three other biodegrading bacteria into the parent strain, finally yielding C. necator RW112. The new genetic elements introduced into H850 and its derivatives were tcbRCDEF, which encode the catabolic enzymes needed for chlorocatechol biodegradation under the control of a transcriptional regulator, followed by cbdABC, encoding a 2-halobenzoate dioxygenase, and xylXYZ, encoding a broad-spectrum toluate dioxygenase. The expression of the introduced genes was demonstrated by measuring the corresponding enzymic activities. The engineered strain RW112 gained the ability to grow on all isomeric monochlorobenzoates and 3,5-dichlorobenzoate, all monochlorobiphenyls, and 3,5-dichloro-, 2,3'-dichloro- and 2,4'-dichlorobiphenyl, without accumulation of chlorobenzoates. It also grew and utilized two commercial PCB formulations, Aroclor 1221 and Aroclor 1232, as sole carbon and energy sources for growth. This is the first report on the aerobic growth of a genetically improved bacterial strain at the expense of technical Aroclor mixtures.
Collapse
Affiliation(s)
- Rolf-Michael Wittich
- Division of Microbiology, German Research Centre for Biotechnology, Braunschweig, Germany.
| | | |
Collapse
|
8
|
Choi KY, Zylstra GJ, Kim E. Benzoate catabolite repression of the phthalate degradation pathway in Rhodococcus sp. strain DK17. Appl Environ Microbiol 2006; 73:1370-4. [PMID: 17158614 PMCID: PMC1828674 DOI: 10.1128/aem.02379-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus sp. strain DK17 exhibits a catabolite repression-like response when provided simultaneously with benzoate and phthalate as carbon and energy sources. Benzoate in the medium is depleted to detection limits before the utilization of phthalate begins. The transcription of the genes encoding benzoate and phthalate dioxygenase paralleled the substrate utilization profile. Two mutant strains with defective benzoate dioxygenases were unable to utilize phthalate in the presence of benzoate, although they grew normally on phthalate in the absence of benzoate.
Collapse
Affiliation(s)
- Ki Young Choi
- Department of Biology, Yonsei University, Seoul 120-749, Korea
| | | | | |
Collapse
|
9
|
Baggi G, Bernasconi S, Zangrossi M. 3-Chloro-, 2,3- and 3,5-dichlorobenzoate co-metabolism in a 2-chlorobenzoate-degrading consortium: role of 3,5-dichlorobenzoate as antagonist of 2-chlorobenzoate degradation. Biodegradation 2005; 16:275-82. [PMID: 15865151 DOI: 10.1007/s10532-004-1397-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A study was made of the metabolic and co-metabolic intermediates of 2- and 3-chlorobenzoate, 2,3- and 3,5-dichlorobenzoate to elucidate the mechanism(s) involved in the negative effects observed on the growth of a chlorobenzoate-degrading microbial consortium in the presence of mixed chlorobenzoates. 2-Chloromuconate accumulated as the end-product in the cultural broths of the microbial consortium during growth on 2-chlorobenzoate; the same 2-chloromuconate was identified in the reaction mixtures of resting cells pregrown on 2-chlorobenzoate and exposed to 3-chloro- and 2,3-dichlorobenzoate, while in similar experiments 1,2-dihydroxy-3,5-dichloro-cyclohexa-3,5-dienoate was detected as dead-end product of 3,5-dichlorobenzoate co-metabolism. These results suggest an initial degradative attack by 2-chlorobenzoate induced dioxygenase(s). The role of 3,5-dichlorobenzoate as an antagonist of 2-chlorobenzoate degradation was also studied: in the presence of mixed 2-chloro- and 3,5-dichlorobenzoate, the 3,5-dichlorobenzoate preferential uptake by the resting cells of the chlorobenzoate-degrading consortium was observed. 2-Chlorobenzoate entered the cells only after the complete removal of the co-substrate. In growing cells experiments, the addition of 1,2-dihydroxy-3,5-dichloro-cyclohexa-3,5-dienoate, the 3,5-dichlorobenzoate co-metabolite, to 2-chlorobenzoate exerted the same antagonistic effect of the parent compound, inhibiting both the microbial growth and the degradative process. These data are discussed, allowing us to attribute the inhibitory effects observed to a substrate/co-substrate competition, though other additional causes may not be totally excluded.
Collapse
Affiliation(s)
- Grazia Baggi
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi, Via Celoria 2, Milan 20133, Italy.
| | | | | |
Collapse
|
10
|
Marohnic CC, Crowley LJ, Davis CA, Smith ET, Barber MJ. Cytochrome b5 reductase: role of the si-face residues, proline 92 and tyrosine 93, in structure and catalysis. Biochemistry 2005; 44:2449-61. [PMID: 15709757 DOI: 10.1021/bi048045q] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The conserved sequence motif "RxY(T)(S)xx(S)(N)" coordinates flavin binding in NADH:cytochrome b(5) reductase (cb(5)r) and other members of the flavin transhydrogenase superfamily of oxidoreductases. To investigate the roles of Y93, the third and only aromatic residue of the "RxY(T)(S)xx(S)(N)" motif, that stacks against the si-face of the flavin isoalloxazine ring, and P92, the second residue in the motif that is also in close proximity to the FAD moiety, a series of rat cb(5)r variants were produced with substitutions at either P92 or Y93, respectively. The proline mutants P92A, G, and S together with the tyrosine mutants Y93A, D, F, H, S, and W were recombinantly expressed in E. coli and purified to homogeneity. Each mutant protein was found to bind FAD in a 1:1 cofactor:protein stoichiometry while UV CD spectra suggested similar secondary structure organization among all nine variants. The tyrosine variants Y93A, D, F, H, and S exhibited varying degrees of blue-shift in the flavin visible absorption maxima while visible CD spectra of the Y93A, D, H, S, and W mutants exhibited similar blue-shifted maxima together with changes in absorption intensity. Intrinsic flavin fluorescence was quenched in the wild type, P92S and A, and Y93H and W mutants while Y93A, D, F, and S mutants exhibited increased fluorescence when compared to free FAD. The tyrosine variants Y93A, D, F, and S also exhibited greater thermolability of FAD binding. The specificity constant (k(cat)/K(m)(NADH)) for NADH:FR activity decreased in the order wild type > P92S > P92A > P92G > Y93F > Y93S > Y93A > Y93D > Y93H > Y93W with the Y93W variant retaining only 0.5% of wild-type efficiency. Both K(s)(H4NAD) and K(s)(NAD+) values suggested that Y93A, F, and W mutants had compromised NADH and NAD(+) binding. Thermodynamic measurements of the midpoint potential (E degrees ', n = 2) of the FAD/FADH(2) redox couple revealed that the potentials of the Y93A and S variants were approximately 30 mV more positive than that of wild-type cb(5)r (E degrees ' = -268 mV) while that of Y93H was approximately 30 mV more negative. These results indicate that neither P92 nor Y93 are critical for flavin incorporation in cb(5)r and that an aromatic side chain is not essential at position 93, but they demonstrate that Y93 forms contacts with the FAD that effectively modulate the spectroscopic, catalytic, and thermodynamic properties of the bound cofactor.
Collapse
Affiliation(s)
- Christopher C Marohnic
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
In prokaryotic genomes, related genes are frequently clustered in operons and higher-order arrangements that reflect functional context. Organization emerges despite rearrangements that constantly shuffle gene and operon order. Evidence is presented that the tandem duplication of related genes acts as a driving evolutionary force in the origin and maintenance of clusters. Gene amplification can be viewed as a dynamic and reversible regulatory mechanism that facilitates adaptation to variable environments. Clustered genes confer selective benefits via their ability to be coamplified. During evolution, rearrangements that bring together related genes can be selected if they increase the fitness of the organism in which they reside. Similarly, the benefits of gene amplification can prevent the dispersal of existing clusters. Examples of frequent and spontaneous amplification of large genomic fragments are provided. The possibility is raised that tandem gene duplication works in concert with horizontal gene transfer as interrelated evolutionary forces for gene clustering.
Collapse
Affiliation(s)
- Andrew B Reams
- Section of Microbiology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
12
|
Pieper DH. Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 2004; 67:170-91. [PMID: 15614564 DOI: 10.1007/s00253-004-1810-4] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 10/10/2004] [Accepted: 10/19/2004] [Indexed: 10/26/2022]
Abstract
The microbial degradation of polychlorinated biphenyls (PCBs) has been extensively studied in recent years. The genetic organization of biphenyl catabolic genes has been elucidated in various groups of microorganisms, their structures have been analyzed with respect to their evolutionary relationships, and new information on mobile elements has become available. Key enzymes, specifically biphenyl 2,3-dioxygenases, have been intensively characterized, structure/sequence relationships have been determined and enzymes optimized for PCB transformation. However, due to the complex metabolic network responsible for PCB degradation, optimizing degradation by single bacterial species is necessarily limited. As PCBs are usually not mineralized by biphenyl-degrading organisms, and cometabolism can result in the formation of toxic metabolites, the degradation of chlorobenzoates has received special attention. A broad set of bacterial strategies to degrade chlorobenzoates has recently been elucidated, including new pathways for the degradation of chlorocatechols as central intermediates of various chloroaromatic catabolic pathways. To optimize PCB degradation in the environment beyond these metabolic limitations, enhancing degradation in the rhizosphere has been suggested, in addition to the application of surfactants to overcome bioavailability barriers. However, further research is necessary to understand the complex interactions between soil/sediment, pollutant, surfactant and microorganisms in different environments.
Collapse
Affiliation(s)
- Dietmar H Pieper
- Department of Environmental Microbiology, German Research Center for Biotechnology, Mascheroder Weg 1, 38124, Braunschweig, Germany.
| |
Collapse
|
13
|
Gentry TJ, Wang G, Rensing C, Pepper IL. Chlorobenzoate-degrading bacteria in similar pristine soils exhibit different community structures and population dynamics in response to anthropogenic 2-, 3-, and 4-chlorobenzoate levels. MICROBIAL ECOLOGY 2004; 48:90-102. [PMID: 15085300 DOI: 10.1007/s00248-003-1048-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 09/21/2003] [Indexed: 05/24/2023]
Abstract
A study was conducted to determine the diversity of 2-, 3-, and 4-chlorobenzoate (CB) degraders in two pristine soils with similar physical and chemical characteristics. Surface soils were collected from forested sites and amended with 500 microg of 2-, 3-, or 4-CB g(-1) soil. The CB levels and degrader numbers were monitored throughout the study. Degraders were isolated, grouped by DNA fingerprints, identified via 16S rDNA sequences, and screened for plasmids. The CB genes in selected degraders were isolated and/or sequenced. In the Madera soil, 2-CB and 4-CB degraded within 11 and 42 d, respectively, but 3-CB did not degrade. In contrast, 3-CB and 4-CB degraded in the Oversite soil within 14 and 28 d, respectively, while 2-CB did not degrade. Approximately 10(7) CFU g(-1) of degraders were detected in the Madera soil with 2-CB, and the Oversite soil with 3- and 4-CB. No degraders were detected in the Madera soil with 4-CB even though the 4-CB degraded. Nearly all of the 2-CB degraders isolated from the Madera soil were identified as a Burkholderia sp. containing chromosomally encoded degradative genes. In contrast, several different 3- and 4-CB degraders were isolated from the Oversite soil, and their populations changed as CB degradation progressed. Most of these 3-CB degraders were identified as Burkholderia spp. while the majority of 4-CB degraders were identified as Bradyrhizobium spp. Several of the 3-CB degraders contained the degradative genes on large plasmids, and there was variation between the plasmids in different isolates. When a fresh sample of Madera soil was amended with 50, 100, or 200 microg 3-CB g(-1), 3-CB degradation occurred, suggesting that 500 microg 3-CB g(-1) was toxic to the degraders. Also, different 3-CB degraders were isolated from the Madera soil at each of the three lower levels of 3-CB. No 2-CB degradation was detected in the Oversite soil even at lower 2-CB levels. These results indicate that the development of 2-, 3-, and 4-CB degrader populations is site-specific and that 2-, 3-, and 4-CB are degraded by different bacterial populations in pristine soils. These results also imply that the microbial ecology of two soils that develop under similar biotic and abiotic environments can be quite different.
Collapse
Affiliation(s)
- T J Gentry
- Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
14
|
Abstract
Based on structural, biochemical, and genetic data, the soluble diiron monooxygenases can be divided into four groups: the soluble methane monooxygenases, the Amo alkene monooxygenase of Rhodococcus corallinus B-276, the phenol hydroxylases, and the four-component alkene/aromatic monooxygenases. The limited phylogenetic distribution of these enzymes among bacteria, together with available genetic evidence, indicates that they have been spread largely through horizontal gene transfer. Phylogenetic analyses reveal that the alpha- and beta-oxygenase subunits are paralogous proteins and were derived from an ancient gene duplication of a carboxylate-bridged diiron protein, with subsequent divergence yielding a catalytic alpha-oxygenase subunit and a structural beta-oxygenase subunit. The oxidoreductase and ferredoxin components of these enzymes are likely to have been acquired by horizontal transfer from ancestors common to unrelated diiron and Rieske center oxygenases and other enzymes. The cumulative results of phylogenetic reconstructions suggest that the alkene/aromatic monooxygenases diverged first from the last common ancestor for these enzymes, followed by the phenol hydroxylases, Amo alkene monooxygenase, and methane monooxygenases.
Collapse
Affiliation(s)
- Joseph G Leahy
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | | | | |
Collapse
|
15
|
Chang HK, Mohseni P, Zylstra GJ. Characterization and regulation of the genes for a novel anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1. J Bacteriol 2003; 185:5871-81. [PMID: 13129960 PMCID: PMC193950 DOI: 10.1128/jb.185.19.5871-5881.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anthranilate (2-aminobenzoate) is an important intermediate in tryptophan metabolism. In order to investigate the degradation of tryptophan through anthranilate by Burkholderia cepacia, several plasposon mutations were constructed of strain DBO1 and one mutant with the plasposon insertion in the anthranilate dioxygenase (AntDO) genes was chosen for further study. The gene sequence obtained from flanking DNA of the plasposon insertion site revealed unexpected information. B. cepacia DBO1 AntDO (designated AntDO-3C) is a three-component Rieske-type [2Fe-2S] dioxygenase composed of a reductase (AndAa), a ferredoxin (AndAb), and a two-subunit oxygenase (AndAcAd). This is in contrast to the two-component (an oxygenase and a reductase) AntDO enzyme from Acinetobacter sp. strain ADP1, P. aeruginosa PAO1, and P. putida P111. AntDO from strains ADP1, PAO1, and P111 are closely related to benzoate dioxygenase, while AntDO-3C is closely related to aromatic hydrocarbon dioxygenases from Novosphingobium aromaticivorans F199 and Sphingomonas yanoikuyae B1 and 2-chlorobenzoate dioxygenase from P. aeruginosa strains 142 and JB2. Escherichia coli cells expressing the functional AntDO-3C genes transform anthranilate and salicylate (but not 2-chlorobenzoate) to catechol. The enzyme includes a novel reductase whose absence results in less efficient transformation of anthranilate by the oxygenase and ferredoxin. AndR, a possible AraC/XylS-type transcriptional regulator, was shown to positively regulate expression of the andAcAdAbAa genes. Anthranilate was the only effector (of 12 aromatic compounds tested) that was able to induce expression of the genes.
Collapse
Affiliation(s)
- Hung-Kuang Chang
- Biotechnology Center for Agriculture and the Environment, Cook College, Rutgers University, New Brunswick, New Jersey 08901-8520, USA.
| | | | | |
Collapse
|
16
|
Ogawa N, Miyashita K, Chakrabarty AM. Microbial genes and enzymes in the degradation of chlorinated compounds. CHEM REC 2003; 3:158-71. [PMID: 12900936 DOI: 10.1002/tcr.10059] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Microorganisms are well known for degrading numerous natural compounds. The synthesis of a multitude of chlorinated compounds by the chemical industry and their release into the natural environment have created major pollution problems. Part of the cause of such pollution is the inability of natural microorganisms to efficiently degrade synthetic chlorinated compounds. Microorganisms are, however, highly adaptable to changes in the environment and have consequently evolved the genes that specify the degradation of chlorinated compounds to varying degrees. Highly selective laboratory techniques have also enabled the isolation of microbial strains capable of utilizing normally recalcitrant highly chlorinated compounds as their sole source of carbon and energy. The evolution and role of microbial genes and enzymes, as well as their mode of regulation and genetic interrelationships, have therefore been the subjects of intense study. This review emphasizes the genetic organization and the regulation of gene expression, as well as evolutionary considerations, regarding the microbial degradation of chlorobenzoates, chlorocatechols, and chlorophenoxyacetic acids.
Collapse
Affiliation(s)
- Naoto Ogawa
- National Institute for Agro-Environmental Sciences, 3-1-3 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan.
| | | | | |
Collapse
|
17
|
Corbella ME, Puyet A. Real-time reverse transcription-PCR analysis of expression of halobenzoate and salicylate catabolism-associated operons in two strains of Pseudomonas aeruginosa. Appl Environ Microbiol 2003; 69:2269-75. [PMID: 12676709 PMCID: PMC154809 DOI: 10.1128/aem.69.4.2269-2275.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2002] [Accepted: 01/21/2003] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa JB2 can use 2-chlorobenzoate (2-CBa), 3-CBa, 2,3-dichlorobenzoate (2,3-DCBa), and 2,5-DCBa as sole carbon and energy sources, whereas strain 142 can only grow on 2-CBa and 2,4-DCBa. Both strains, however, harbor the same halobenzoate 1,2-dioxygenase (ohbAB) and chlorocatechol (clcABD) degradation genes necessary for the metabolism of ortho-CBas. In addition, the hybABCD operon, encoding a salicylate 5-hydroxylase, is also found in both strains. The expression of ohbAB, hybABCD, and clcABD operons was measured in cultures grown on different CBas as the sole carbon source and also in glucose-grown cells supplemented with CBas as inducers. A method to standardize real-time reverse transcription-PCR experimental data was used that allows the comparison of semiquantitative mRNA accumulation in different strains and culture conditions. In both strains, the ohb and hyb systems were induced in cells grown on 2-CBa or DCBas, whereas clc was induced only by DCBas. Repression by catabolite was observed both on ohb and clc systems in glucose-grown cells. Chlorocatechol 1,2-dioxygenase activity in JB2 was detected even in clc-repressed conditions, confirming the presence of additional isofunctional genes previously detected in P. aeruginosa 142. Although similar levels of induction of ohbAB were observed in strain JB2 grown on either benzoate, monochlorobenzoates, or DCBas, the ohbAB operon of strain 142 was only strongly induced by growth on 2-CBa and, to a lesser extent, on 2,4-DCBa. This observation suggests that regulation of the ohbAB operon may be different in both strains. The concomitant induction of ohb and hyb by CBas may allow the formation of hybrid halobenzoate dioxygenase(s) composed of Ohb/Hyb dioxygenase subunits and Hyb ferredoxin/ferredoxin reductase components.
Collapse
Affiliation(s)
- M E Corbella
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain
| | | |
Collapse
|
18
|
Shigematsu T, Yumihara K, Ueda Y, Morimura S, Kida K. Purification and gene cloning of the oxygenase component of the terephthalate 1,2-dioxygenase system from Delftia tsuruhatensis strain T7. FEMS Microbiol Lett 2003; 220:255-60. [PMID: 12670689 DOI: 10.1016/s0378-1097(03)00124-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The terephthalate 1,2-dioxygenase system (TERDOS) was found in cell extracts of Delftia tsuruhatensis strain T7 (=IFO16741) grown in terephthalate-salt medium. The cell extract was separated by anion exchange chromatography to yield two fractions (R and Z) that were necessary for oxygenation of terephthalate with NADH and Fe(2+). The oxygenase component of TERDOS (TerZ) was purified from fraction Z by gel filtration chromatography to near homogeneity. An alpha(3)beta(3) subunit structure was deduced from the molecular masses of 235, 46 and 17 kDa of the native complex and the alpha- and beta-subunits, respectively. The N-terminal amino acid sequences of the two subunits of TerZ allowed polymerase chain reaction primers to be deduced and the DNA sequence of the alpha-subunit was determined. The amino acid sequence of the alpha-subunit (TerZalpha) showed significant similarities to the large subunits of multicomponent ring-hydroxylating oxygenases. Two motifs in the deduced amino acid sequence, a Rieske [2Fe-2S] center and a mononuclear Fe(II) binding site, were observed. Phylogenetic analyses indicated that TerZalpha and the large oxygenase component subunits ortho-halobenzoate 1,2-dioxygenase and salicylate-5-hydroxylase form a cluster that is distant from the rest of the large oxygenase subunits of multicomponent ring-hydroxylating oxygenases.
Collapse
Affiliation(s)
- Toru Shigematsu
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto-City, Kumamoto 860-8555, Japan.
| | | | | | | | | |
Collapse
|
19
|
Suzuki K, Ichimura A, Ogawa N, Hasebe A, Miyashita K. Differential expression of two catechol 1,2-dioxygenases in Burkholderia sp. strain TH2. J Bacteriol 2002; 184:5714-22. [PMID: 12270830 PMCID: PMC139607 DOI: 10.1128/jb.184.20.5714-5722.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia sp. strain TH2, a 2-chlorobenzoate (2CB)-degrading bacterium, metabolizes benzoate (BA) and 2CB via catechol. Two different gene clusters for the catechol ortho-cleavage pathway (cat1 and cat2) were cloned from TH2 and analyzed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis showed that while both catechol dioxygenases (CatA1 and CatA2) were produced in BA-grown cells, CatA1 was undetectable when strain TH2 was grown on 2CB or cis,cis-muconate (CCM), an intermediate of catechol degradation. However, production of CatA1 during growth on 2CB or CCM was observed when cat2 genes were disrupted. The difference in the production of CatA1 and CatA2 was apparently due to a difference in inducer recognition by the regulators of the gene clusters. The inducer of CatA1 was found to be BA, not 2CB, by using a 2-halobenzoate dioxygenase gene (cbd) disruptant, which is incapable of transforming (chloro)benzoate. It was also found that CCM or its metabolite acts as an inducer for CatA2. When cat2 genes were disrupted, the growth rate in 2CB culture was reduced while that in BA culture was not. These results suggest that although cat2 genes are not indispensable for growth of TH2 on 2CB, they are advantageous.
Collapse
Affiliation(s)
- Katsuhisa Suzuki
- National Institute for Agro-Environmental Sciences, 3-1-3 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan.
| | | | | | | | | |
Collapse
|
20
|
Hickey WJ, Sabat G. Integration of matrix-assisted laser desorption ionization-time of flight mass spectrometry and molecular cloning for the identification and functional characterization of mobile ortho-halobenzoate oxygenase genes in Pseudomonas aeruginosa strain JB2. Appl Environ Microbiol 2001; 67:5648-55. [PMID: 11722919 PMCID: PMC93356 DOI: 10.1128/aem.67.12.5648-5655.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein mass spectrometry and molecular cloning techniques were used to identify and characterize mobile o-halobenzoate oxygenase genes in Pseudomonas aeruginosa strain JB2 and Pseudomonas huttiensis strain D1. Proteins induced in strains JB2 and D1 by growth on 2-chlorobenzoate (2-CBa) were extracted from sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels and analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Two bands gave significant matches to OhbB and OhbA, which have been reported to be the alpha and beta subunits, respectively, of an ortho-1,2-halobenzoate dioxygenase of P. aeruginosa strain 142 (T. V. Tsoi, E. G. Plotnikova, J. R. Cole, W. F. Guerin, M. Bagdasarian, and J. M. Tiedje, Appl. Environ. Microbiol. 65:2151-2162, 1999). PCR and Southern hybridization experiments confirmed that ohbAB were present in strain JB2 and were transferred from strain JB2 to strain D1. While the sequences of ohbA from strains JB2, D1, and 142 were identical, the sequences of ohbB from strains JB2 and D1 were identical to each other but differed slightly from that of strain 142. PCR analyses and Southern hybridization analyses indicated that ohbAB were conserved in strains JB2 and D1 and in strain 142 but that the regions adjoining these genes were divergent. Expression of ohbAB in Escherichia coli resulted in conversion of o-chlorobenzoates to the corresponding (chloro)catechols with the following apparent affinity: 2-CBa approximately 2,5-dichlorobenzoate > 2,3,5-trichlorobenzoate > 2,4-dichlorobenzoate. The activity of OhbAB(JB2) appeared to differ from that reported for OhbAB(142) primarily in that a chlorine in the para position posed a greater impediment to catalysis with the former. Hybridization analysis of spontaneous 2-CBa(-) mutants of strains JB2 and D1 verified that ohbAB were lost along with the genes, suggesting that all of the genes may be contained in the same mobile element. Strains JB2 and 142 originated from California and Russia, respectively. Thus, ohbAB and/or the mobile element on which they are carried may have a global distribution.
Collapse
Affiliation(s)
- W J Hickey
- Department of Soil Science, University of Wisconsin-Madison, Madison, Wisconsin 53706-1299, USA.
| | | |
Collapse
|
21
|
Haddad S, Eby DM, Neidle EL. Cloning and expression of the benzoate dioxygenase genes from Rhodococcus sp. strain 19070. Appl Environ Microbiol 2001; 67:2507-14. [PMID: 11375157 PMCID: PMC92901 DOI: 10.1128/aem.67.6.2507-2514.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bopXYZ genes from the gram-positive bacterium Rhodococcus sp. strain 19070 encode a broad-substrate-specific benzoate dioxygenase. Expression of the BopXY terminal oxygenase enabled Escherichia coli to convert benzoate or anthranilate (2-aminobenzoate) to a nonaromatic cis-diol or catechol, respectively. This expression system also rapidly transformed m-toluate (3-methylbenzoate) to an unidentified product. In contrast, 2-chlorobenzoate was not a good substrate. The BopXYZ dioxygenase was homologous to the chromosomally encoded benzoate dioxygenase (BenABC) and the plasmid-encoded toluate dioxygenase (XylXYZ) of gram-negative acinetobacters and pseudomonads. Pulsed-field gel electrophoresis failed to identify any plasmid in Rhodococcus sp. strain 19070. Catechol 1,2- and 2,3-dioxygenase activity indicated that strain 19070 possesses both meta- and ortho-cleavage degradative pathways, which are associated in pseudomonads with the xyl and ben genes, respectively. Open reading frames downstream of bopXYZ, designated bopL and bopK, resembled genes encoding cis-diol dehydrogenases and benzoate transporters, respectively. The bop genes were in the same order as the chromosomal ben genes of P. putida PRS2000. The deduced sequences of BopXY were 50 to 60% identical to the corresponding proteins of benzoate and toluate dioxygenases. The reductase components of these latter dioxygenases, BenC and XylZ, are 201 residues shorter than the deduced BopZ sequence. As predicted from the sequence, expression of BopZ in E. coli yielded an approximately 60-kDa protein whose presence corresponded to increased cytochrome c reductase activity. While the N-terminal region of BopZ was approximately 50% identical in sequence to the entire BenC or XylZ reductases, the C terminus was unlike other known protein sequences.
Collapse
Affiliation(s)
- S Haddad
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
22
|
Providenti MA, Wyndham RC. Identification and functional characterization of CbaR, a MarR-like modulator of the cbaABC-encoded chlorobenzoate catabolism pathway. Appl Environ Microbiol 2001; 67:3530-41. [PMID: 11472929 PMCID: PMC93053 DOI: 10.1128/aem.67.8.3530-3541.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Comamonas testosteroni BR60 (formerly Alcaligenes sp. strain BR60), catabolism of the pollutant 3-chlorobenzoate (3CBA) is initiated by enzymes encoded by cbaABC, an operon found on composite transposon Tn5271 of plasmid pBRC60. The cbaABC gene product CbaABC converts 3CBA to protocatechuate (PCA) and 5-Cl-PCA, which are then metabolized by the chromosomal PCA meta (extradiol) ring fission pathway. In this study, cbaA was found to possess a sigma(70) type promoter. O(2) uptake experiments with whole cells and expression studies with cbaA-lacZ constructs showed that cbaABC was induced by 3CBA. Benzoate, which is not a substrate of the 3CBA pathway, was a gratuitous inducer, and CbaR, a MarR family repressor coded for by a divergently transcribed gene upstream of cbaABC, could modulate induction mediated by benzoate. Purified CbaR bound specifically to two regions of the cbaA promoter (P(cbaA)); site I, a high-affinity site, is between the transcriptional start point (position +1) and the start codon of cbaA, while site II, a lower-affinity site, overlaps position +1. 3CBA at concentrations as low as 40 microM interfered with binding to P(cbaA). PCA also interfered with binding, while benzoate only weakly disrupted binding. Unexpectedly, benzoate with a hydroxyl or carboxyl at position 3 improved CbaR binding. Data are also presented that suggest that an unidentified regulator is encoded on the chromosome that induces cbaABC in response to benzoate and 3CBA.
Collapse
Affiliation(s)
- M A Providenti
- Institute of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | | |
Collapse
|
23
|
Puskás LG, Inui M, Kele Z, Yukawa H. Cloning of genes participating in aerobic biodegradation of p-cumate from Rhodopseudomonas palustris. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 11:9-20. [PMID: 10902905 DOI: 10.3109/10425170009033965] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Rhodopseudomonas palustris utilizes p-cumate as a carbon source both under anaerobic light and aerobic dark conditions. A gene cluster was isolated whose sequence showed high homology to genes which have been implicated the degradation of p-cumate in Pseudomonas pitida. Seven structural genes coding for dioxygenase-reductase, dihydroxy-dihydro dehydrogenase, and ring cleavage oxygenases were identified. A putative regulator and its possible recognition site was suggested on the basis of homology data. Mutant cells in which a kanamycin cassette was inserted into the dihydroxy-dihydro dehydrogenase gene could not grow aerobically on p-cumate. The mutation had no effect on growth using the para substituted benzoate derivatives 4-hydroxycinnamate, ferulate, protocatechuate, and 2,3,4-trihydroxybenzoate as sole carbon source. Moreover, mutant cells showed a growth pattern similar to wild type cells grown on these compounds under photoheterotrophic anaerobic conditions. These data suggest that genes of this operon are involved specifically in aerobic dissimilation of p-cumate. Intermediate products of p-cumate degradation could be detected from extracts of Escherichia coli heterologously expressing the first 5 genes responsible for the first two steps of p-cumate degradation in R. palustris. Primer extension analysis revealed the transcription regulation of the gene cluster which could be induced with para methyl-, ethyl- and isopropyl (cumate) benzoates. This is the first report on genes involved in aerobic degradation of these compounds in photosynthetic bacteria.
Collapse
Affiliation(s)
- L G Puskás
- Research Institute of Innovative Technology for the Earth, Soraku, Kyoto, Japan
| | | | | | | |
Collapse
|
24
|
Schmidt CL, Shaw L. A comprehensive phylogenetic analysis of Rieske and Rieske-type iron-sulfur proteins. J Bioenerg Biomembr 2001; 33:9-26. [PMID: 11460929 DOI: 10.1023/a:1005616505962] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Rieske iron-sulfur center consists of a [2Fe-2S] cluster liganded to a protein via two histidine and two cysteine residues present in conserved sequences called Rieske motifs. Two protein families possessing Rieske centers have been defined. The Rieske proteins occur as subunits in the cytochrome bc1 and cytochrome b6f complexes of prokaryotes and eukaryotes or form components of archaeal electron transport systems. The Rieske-type proteins encompass a group of bacterial oxygenases and ferredoxins. Recent studies have uncovered several new proteins containing Rieske centers, including archaeal Rieske proteins, bacterial oxygenases, bacterial ferredoxins, and, intriguingly, eukaryotic Rieske oxygenases. Since all these proteins contain a Rieske motif, they probably form a superfamily with one common ancestor. Phylogenetic analyses have, however, been generally limited to similar sequences, providing little information about relationships within the whole group of these proteins. The aim of this work is, therefore, to construct a dendrogram including representatives from all Rieske and Rieske-type protein classes in order to gain insight into their evolutionary relationships and to further define the phylogenetic niches occupied by the recently discovered proteins mentioned above.
Collapse
Affiliation(s)
- C L Schmidt
- Institut für Biochemie der Medizinischen Universität Lübeck, Germany.
| | | |
Collapse
|
25
|
Suzuki K, Ogawa N, Miyashita K. Expression of 2-halobenzoate dioxygenase genes (cbdSABC) involved in the degradation of benzoate and 2-halobenzoate in Burkholderia sp. TH2. Gene 2001; 262:137-45. [PMID: 11179677 DOI: 10.1016/s0378-1119(00)00542-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Burkholderia sp. TH2, isolated from soil, utilizes 2-chlorobenzoate (2CB) and benzoate (BA) as its sole source of carbon and energy. The genes for 2-halobenzoate dioxygenase (cbdABC) from Burkholderia sp. TH2 were cloned and sequenced. The predicted amino acid sequences of all the gene products are highly similar to the cbd gene products of Pseudomonas sp. 2CBS. Disruption of the promoter region of cbdA resulted in loss of growth on 2CB and BA, indicating that these genes are involved in the growth of TH2 on these substrates. Expression of the cbd genes was analyzed by transcriptional fusion assay. The cbdS gene, a possible araC/xylS-type transcriptional regulatory gene, was shown to positively regulate the expression of cbdA. In addition, the effectors of CbdS were shown to be 2CB, 2-bromobenzoate, o-toluate (2-methylbenzoate), 2-iodobenzoate, and BA. Primer extension analysis showed that the cbdA mRNA started at two positions, 14 and 15 nucleotides upstream from the cbdA start codon, ATG. A pair of direct repeats, identical to that of the Pm promoter of the TOL plasmid, was found upstream of -35 hexamer of the cbdA promoter.
Collapse
Affiliation(s)
- K Suzuki
- National Institute of Agro-Environmental Sciences, 3-1-1 Kan-nondai, Tsukuba, 305-8604, Ibaraki, Japan.
| | | | | |
Collapse
|
26
|
Francisco P, Ogawa N, Suzuki K, Miyashita K. The chlorobenzoate dioxygenase genes of Burkholderia sp. strain NK8 involved in the catabolism of chlorobenzoates. MICROBIOLOGY (READING, ENGLAND) 2001; 147:121-33. [PMID: 11160806 DOI: 10.1099/00221287-147-1-121] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Burkholderia sp. NK8 grows abundantly on 3-chlorobenzoate (3CB),4-chlorobenzoate (4CB) and benzoate. The genes encoding the oxidation of (chloro)benzoates (cbeABCD) and catechol (catA, catBC), the LysR-type regulatory gene cbeR and the gene cbeE with unknown function, all of which form a single cluster in NK8, were cloned and analysed. The protein sequence of chlorobenzoate 1,2-dioxygenase (CbeABC) is 50-65% identical to the benzoate dioxygenase (BenABC) of Acinetobacter sp. ADP1, toluate dioxygenase (XylXYZ) of the TOL plasmid pWW0 and 2-halobenzoate dioxygenase (CbdABC) of Burkholderia cepacia 2CBS. Disruption of the cbeA gene resulted in the simultaneous loss of the ability to grow on benzoate and monochlorobenzoates, indicating the involvement of the cbeABCD genes in the degradation of these aromatics. The cbeABCD genes are preceded by catA, the gene for catechol dioxygenase. lacZ transcriptional fusion studies in Pseudomonas putida showed that catA and cbeA are co-expressed under the positive control of cbeR, a LysR-type transcriptional regulatory gene. The cbeA::lacZ transcriptional fusion studies showed that the inducers of the genes are 3CB, 4CB, benzoate and probably cis,cis-muconate. On the other hand, 2-chlorobenzoate (2CB) did not activate the expression of the genes. The chlorobenzoate dioxygenase was able to transform 2CB, 3CB, 4CB and benzoate at considerable rates. 2CB yielded both catechol and 3-chlorocatechol (3CC), and 3CB gave rise to 4-chlorocatechol and 3CC as the major and minor intermediate products, respectively, indicating that the NK8 dioxygenase lacks absolute regiospecificity. The absence of growth of NK8 on 2CB, despite its considerable degradation activity against 2CB, is apparently due to the inability of CbeR to recognize 2CB as an inducer of the expression of the cbe genes.
Collapse
Affiliation(s)
- P Francisco
- Soil General Microbiology Laboratory, National Institute of Agro-Environmental Sciences, 3-1-1 Kannondai, Tsukuba City, Ibaraki 305-8604, Japan
| | | | | | | |
Collapse
|
27
|
Eby DM, Beharry ZM, Coulter ED, Kurtz DM, Neidle EL. Characterization and evolution of anthranilate 1,2-dioxygenase from Acinetobacter sp. strain ADP1. J Bacteriol 2001; 183:109-18. [PMID: 11114907 PMCID: PMC94856 DOI: 10.1128/jb.183-1.109-118.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The two-component anthranilate 1,2-dioxygenase of the bacterium Acinetobacter sp. strain ADP1 was expressed in Escherichia coli and purified to homogeneity. This enzyme converts anthranilate (2-aminobenzoate) to catechol with insertion of both atoms of O(2) and consumption of one NADH. The terminal oxygenase component formed an alpha(3)beta(3) hexamer of 54- and 19-kDa subunits. Biochemical analyses demonstrated one Rieske-type [2Fe-2S] center and one mononuclear nonheme iron center in each large oxygenase subunit. The reductase component, which transfers electrons from NADH to the oxygenase component, was found to contain approximately one flavin adenine dinucleotide and one ferredoxin-type [2Fe-2S] center per 39-kDa monomer. Activities of the combined components were measured as rates and quantities of NADH oxidation, substrate disappearance, product appearance, and O(2) consumption. Anthranilate conversion to catechol was stoichiometrically coupled to NADH oxidation and O(2) consumption. The substrate analog benzoate was converted to a nonaromatic benzoate 1,2-diol with similarly tight coupling. This latter activity is identical to that of the related benzoate 1, 2-dioxygenase. A variant anthranilate 1,2-dioxygenase, previously found to convey temperature sensitivity in vivo because of a methionine-to-lysine change in the large oxygenase subunit, was purified and characterized. The purified M43K variant, however, did not hydroxylate anthranilate or benzoate at either the permissive (23 degrees C) or nonpermissive (39 degrees C) growth temperatures. The wild-type anthranilate 1,2-dioxygenase did not efficiently hydroxylate methylated or halogenated benzoates, despite its sequence similarity to broad-substrate specific dioxygenases that do. Phylogenetic trees of the alpha and beta subunits of these terminal dioxygenases that act on natural and xenobiotic substrates indicated that the subunits of each terminal oxygenase evolved from a common ancestral two-subunit component.
Collapse
Affiliation(s)
- D M Eby
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
28
|
Cowles CE, Nichols NN, Harwood CS. BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida. J Bacteriol 2000; 182:6339-46. [PMID: 11053377 PMCID: PMC94779 DOI: 10.1128/jb.182.22.6339-6346.2000] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida converts benzoate to catechol using two enzymes that are encoded on the chromosome and whose expression is induced by benzoate. Benzoate also binds to the regulator XylS to induce expression of the TOL (toluene degradation) plasmid-encoded meta pathway operon for benzoate and methylbenzoate degradation. Finally, benzoate represses the ability of P. putida to transport 4-hydroxybenzoate (4-HBA) by preventing transcription of pcaK, the gene encoding the 4-HBA permease. Here we identified a gene, benR, as a regulator of benzoate, methylbenzoate, and 4-HBA degradation genes. A benR mutant isolated by random transposon mutagenesis was unable to grow on benzoate. The deduced amino acid sequence of BenR showed high similarity (62% identity) to the sequence of XylS, a member of the AraC family of regulators. An additional seven genes located adjacent to benR were inferred to be involved in benzoate degradation based on their deduced amino acid sequences. The benABC genes likely encode benzoate dioxygenase, and benD likely encodes 2-hydro-1,2-dihydroxybenzoate dehydrogenase. benK and benF were assigned functions as a benzoate permease and porin, respectively. The possible function of a final gene, benE, is not known. benR activated expression of a benA-lacZ reporter fusion in response to benzoate. It also activated expression of a meta cleavage operon promoter-lacZ fusion inserted in an E. coli chromosome. Third, benR was required for benzoate-mediated repression of pcaK-lacZ fusion expression. The benA promoter region contains a direct repeat sequence that matches the XylS binding site previously defined for the meta cleavage operon promoter. It is likely that BenR binds to the promoter region of chromosomal benzoate degradation genes and plasmid-encoded methylbenzoate degradation genes to activate gene expression in response to benzoate. The action of BenR in repressing 4-HBA uptake is probably indirect.
Collapse
Affiliation(s)
- C E Cowles
- Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
29
|
Lu J, Nomura N, Nakajima-Kambe T, Nakahara T. Cloning and expression of genes encoding meta-cleavage enzymes from 4,6-dimethyldibenzothiophene-degrading Sphingomonas strain TZS-7. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:493-8. [PMID: 10899588 DOI: 10.1016/s0167-4781(00)00115-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sphingomonas strain TZS-7 was reported as the first strain to have the ability to degrade 4,6-dimethyldibenzothiophene (4,6-dmDBT) by the ring-destructive pathway. Two genes for meta-cleavage dioxygenases were cloned from strain TZS-7. Expression of each gene showed that one enzyme was specific for 2,3-dihydroxybiphenyl while another was more specific for catechol. The genes for the two enzymes were named dmdC and catA. The analysis of deduced amino acid sequences indicates that CatA falls into the class of meta-cleavage dioxygenases acting on dihydroxylated monocyclic compounds and DmdC falls into the class of meta-cleavage dioxygenases acting on dihydroxylated polycyclic compounds.
Collapse
Affiliation(s)
- J Lu
- Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
30
|
Mampel J, Ruff J, Junker F, Cook AM. The oxygenase component of the 2-aminobenzenesulfonate dioxygenase system from Alcaligenes sp. strain O-1. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 11):3255-3264. [PMID: 10589735 DOI: 10.1099/00221287-145-11-3255] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Growth of Alcaligenes sp. strain O-1 with 2-aminobenzenesulfonate (ABS; orthanilate) as sole source of carbon and energy requires expression of the soluble, multicomponent 2-aminobenzenesulfonate 2,3-dioxygenase system (deaminating) (ABSDOS) which is plasmid-encoded. ABSDOS was separated by anion-exchange chromatography to yield a flavin-dependent reductase component and an iron-dependent oxygenase component. The oxygenase component was purified to about 98% homogeneity and an alpha2beta2 subunit structure was deduced from the molecular masses of 134,45 and 16 kDa for the native complex, and the alpha and beta subunits, respectively. Analysis of the amount of acid labile sulfur and total iron, and the UV spectrum of the purified oxygenase component indicated one [2Fe-2S] Rieske centre per alpha subunit. The inhibition of activity by the iron-specific chelator o-phenanthroline indicated the presence of an additional iron-binding site. Recovery of active protein required strictly anoxic conditions during all purification steps. The FAD-containing reductase could not be purified. ABSDOS oxygenated nine sulfonated compounds; no oxygen uptake was detected with carboxylated aromatic compounds or with aliphatic sulfonated compounds. Km values of 29, 18 and 108 microM and Vmax values of 140, 110 and 72 pkat for ABS, benzenesulfonate and 4-toluenesulfonate, respectively, were observed. The N-terminal amino acid sequences of the alpha- and beta-subunits of the oxygenase component allowed PCR primers to be deduced and the DNA sequence of the alpha-subunit was thereafter determined. Both redox centres were detected in the deduced amino acid sequence. Sequence data and biochemical properties of the enzyme system indicate a novel member of the class IB ring-hydroxylating dioxygenases.
Collapse
Affiliation(s)
- Jörg Mampel
- Department of Biology, The University, D-78457 Konstanz, Germany1
| | - Jürgen Ruff
- Department of Biology, The University, D-78457 Konstanz, Germany1
| | - Frank Junker
- Department of Biology, The University, D-78457 Konstanz, Germany1
| | - Alasdair M Cook
- Department of Biology, The University, D-78457 Konstanz, Germany1
| |
Collapse
|
31
|
Pavlû L, Vosáhlová J, Klierová H, Prouza M, Demnerová K, Brenner V. Characterization of chlorobenzoate degraders isolated from polychlorinated biphenyl-contaminated soil and sediment in the Czech Republic. J Appl Microbiol 1999; 87:381-6. [PMID: 10540240 DOI: 10.1046/j.1365-2672.1999.00830.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two polychlorinated biphenyl-contaminated sites in the Czech Republic, a soil at Zamberk and a sediment sludge at Milevsko, were screened for the presence of chlorobenzoate degraders. Sixteen different chlorobenzoate degraders were isolated from the soil compared with only three strains isolated from the sediment. From these strains, only four soil degraders and one strain isolated from the sediment, respectively, were shown to possess a complete chlorobenzoate (CB) pathway. Bacteria isolated from the soil have expressed more flexibility for CB degradation, namely in the case of ortho-chlorinated benzoates. They all possessed large plasmids, the restriction patterns of which were compared. Plasmids in Pseudomonas sp. A7, A8, A18 and A19, respectively, were cured and found to encode at least part of the metabolic pathway involved in the growth on ortho-chlorinated benzoates.
Collapse
Affiliation(s)
- L Pavlû
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague
| | | | | | | | | | | |
Collapse
|
32
|
Tsoi TV, Plotnikova EG, Cole JR, Guerin WF, Bagdasarian M, Tiedje JM. Cloning, expression, and nucleotide sequence of the Pseudomonas aeruginosa 142 ohb genes coding for oxygenolytic ortho dehalogenation of halobenzoates. Appl Environ Microbiol 1999; 65:2151-62. [PMID: 10224014 PMCID: PMC91311 DOI: 10.1128/aem.65.5.2151-2162.1999] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned and characterized novel oxygenolytic ortho-dehalogenation (ohb) genes from 2-chlorobenzoate (2-CBA)- and 2,4-dichlorobenzoate (2,4-dCBA)-degrading Pseudomonas aeruginosa 142. Among 3,700 Escherichia coli recombinants, two clones, DH5alphaF'(pOD22) and DH5alphaF'(pOD33), converted 2-CBA to catechol and 2,4-dCBA and 2,5-dCBA to 4-chlorocatechol. A subclone of pOD33, plasmid pE43, containing the 3,687-bp minimized ohb DNA region conferred to P. putida PB2440 the ability to grow on 2-CBA as a sole carbon source. Strain PB2440(pE43) also oxidized but did not grow on 2,4-dCBA, 2,5-dCBA, or 2,6-dCBA. Terminal oxidoreductase ISPOHB structural genes ohbA and ohbB, which encode polypeptides with molecular masses of 20,253 Da (beta-ISP) and 48,243 Da (alpha-ISP), respectively, were identified; these proteins are in accord with the 22- and 48-kDa (as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) polypeptides synthesized in E. coli and P. aeruginosa parental strain 142. The ortho-halobenzoate 1,2-dioxygenase activity was manifested in the absence of ferredoxin and reductase genes, suggesting that the ISPOHB utilized electron transfer components provided by the heterologous hosts. ISPOHB formed a new phylogenetic cluster that includes aromatic oxygenases featuring atypical structural-functional organization and is distant from the other members of the family of primary aromatic oxygenases. A putative IclR-type regulatory gene (ohbR) was located upstream of the ohbAB genes. An open reading frame (ohbC) of unknown function that overlaps lengthwise with ohbB but is transcribed in the opposite direction was found. The ohbC gene codes for a 48,969-Da polypeptide, in accord with the 49-kDa protein detected in E. coli. The ohb genes are flanked by an IS1396-like sequence containing a putative gene for a 39,715-Da transposase A (tnpA) at positions 4731 to 5747 and a putative gene for a 45,247-Da DNA topoisomerase I/III (top) at positions 346 to 1563. The ohb DNA region is bordered by 14-bp imperfect inverted repeats at positions 56 to 69 and 5984 to 5997.
Collapse
Affiliation(s)
- T V Tsoi
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Hrywna Y, Tsoi TV, Maltseva OV, Quensen JF, Tiedje JM. Construction and characterization of two recombinant bacteria that grow on ortho- and para-substituted chlorobiphenyls. Appl Environ Microbiol 1999; 65:2163-9. [PMID: 10224015 PMCID: PMC91312 DOI: 10.1128/aem.65.5.2163-2169.1999] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cloning and expression of the aromatic ring dehalogenation genes in biphenyl-growing, polychlorinated biphenyl (PCB)-cometabolizing Comamonas testosteroni VP44 resulted in recombinant pathways allowing growth on ortho- and para-chlorobiphenyls (CBs) as a sole carbon source. The recombinant variants were constructed by transformation of strain VP44 with plasmids carrying specific genes for dehalogenation of chlorobenzoates (CBAs). Plasmid pE43 carries the Pseudomonas aeruginosa 142 ohb genes coding for the terminal oxygenase (ISPOHB) of the ortho-halobenzoate 1,2-dioxygenase, whereas plasmid pPC3 contains the Arthrobacter globiformis KZT1 fcb genes, which catalyze the hydrolytic para-dechlorination of 4-CBA. The parental strain, VP44, grew only on low concentrations of 2- and 4-CB by using the products from the fission of the nonchlorinated ring of the CBs (pentadiene) and accumulated stoichiometric amounts of the corresponding CBAs. The recombinant strains VP44(pPC3) and VP44(pE43) grew on, and completely dechlorinated high concentrations (up to 10 mM), of 4-CBA and 4-CB and 2-CBA and 2-CB, respectively. Cell protein yield corresponded to complete oxidation of both biphenyl rings, thus confirming mineralization of the CBs. Hence, the use of CBA dehalogenase genes appears to be an effective strategy for construction of organisms that will grow on at least some congeners important for remediation of PCBs.
Collapse
Affiliation(s)
- Y Hrywna
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824-1325, USA
| | | | | | | | | |
Collapse
|
34
|
de Marco P, Moradas-Ferreira P, Higgins TP, McDonald I, Kenna EM, Murrell JC. Molecular analysis of a novel methanesulfonic acid monooxygenase from the methylotroph Methylosulfonomonas methylovora. J Bacteriol 1999; 181:2244-51. [PMID: 10094704 PMCID: PMC93639 DOI: 10.1128/jb.181.7.2244-2251.1999] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/1998] [Accepted: 01/26/1999] [Indexed: 11/20/2022] Open
Abstract
Methylosulfonomonas methylovora M2 is an unusual gram-negative methylotrophic bacterium that can grow on methanesulfonic acid (MSA) as the sole source of carbon and energy. Oxidation of MSA by this bacterium is carried out by a multicomponent MSA monooxygenase (MSAMO). Cloning and sequencing of a 7.5-kbp SphI fragment of chromosomal DNA revealed four tightly linked genes encoding this novel monooxygenase. Analysis of the deduced MSAMO polypeptide sequences indicated that the enzyme contains a two-component hydroxylase of the mononuclear-iron-center type. The large subunit of the hydroxylase, MsmA (48 kDa), contains a typical Rieske-type [2Fe-2S] center with an unusual iron-binding motif and, together with the small subunit of the hydroxylase, MsmB (20 kDa), showed a high degree of identity with a number of dioxygenase enzymes. However, the other components of the MSAMO, MsmC, the ferredoxin component, and MsmD, the reductase, more closely resemble those found in other classes of oxygenases. MsmC has a high degree of identity to ferredoxins from toluene and methane monooxygenases, which are enzymes characterized by possessing hydroxylases containing mu-oxo bridge binuclear iron centers. MsmD is a reductase of 38 kDa with a typical chloroplast-like [2Fe-2S] center and conserved flavin adenine dinucleotide- and NAD-binding motifs and is similar to a number of mono- and dioxygenase reductase components. Preliminary analysis of the genes encoding MSAMO from a marine MSA-degrading bacterium, Marinosulfonomonas methylotropha, revealed the presence of msm genes highly related to those found in Methylosulfonomonas, suggesting that MSAMO is a novel type of oxygenase that may be conserved in all MSA-utilizing bacteria.
Collapse
Affiliation(s)
- P de Marco
- ICBAS and IBMC, University of Porto, 4150 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
35
|
Bundy BM, Campbell AL, Neidle EL. Similarities between the antABC-encoded anthranilate dioxygenase and the benABC-encoded benzoate dioxygenase of Acinetobacter sp. strain ADP1. J Bacteriol 1998; 180:4466-74. [PMID: 9721284 PMCID: PMC107456 DOI: 10.1128/jb.180.17.4466-4474.1998] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter sp. strain ADP1 can use benzoate or anthranilate as a sole carbon source. These structurally similar compounds are independently converted to catechol, allowing further degradation to proceed via the beta-ketoadipate pathway. In this study, the first step in anthranilate catabolism was characterized. A mutant unable to grow on anthranilate, ACN26, was selected. The sequence of a wild-type DNA fragment that restored growth revealed the antABC genes, encoding 54-, 19-, and 39-kDa proteins, respectively. The deduced AntABC sequences were homologous to those of class IB multicomponent aromatic ring-dihydroxylating enzymes, including the dioxygenase that initiates benzoate catabolism. Expression of antABC in Escherichia coli, a bacterium that normally does not degrade anthranilate, enabled the conversion of anthranilate to catechol. Unlike benzoate dioxygenase (BenABC), anthranilate dioxygenase (AntABC) catalyzed catechol formation without requiring a dehydrogenase. In Acinetobacter mutants, benC substituted for antC during growth on anthranilate, suggesting relatively broad substrate specificity of the BenC reductase, which transfers electrons from NADH to the terminal oxygenase. In contrast, the benAB genes did not substitute for antAB. An antA point mutation in ACN26 prevented anthranilate degradation, and this mutation was independent of a mucK mutation in the same strain that prevented exogenous muconate degradation. Anthranilate induced expression of antA, although no associated transcriptional regulators were identified. Disruption of three open reading frames in the immediate vicinity of antABC did not prevent the use of anthranilate as a sole carbon source. The antABC genes were mapped on the ADP1 chromosome and were not linked to the two known supraoperonic gene clusters involved in aromatic compound degradation.
Collapse
Affiliation(s)
- B M Bundy
- Department of Microbiology, University of Georgia, Athens, Georgia 30602-2605, USA
| | | | | |
Collapse
|
36
|
Gallegos MT, Schleif R, Bairoch A, Hofmann K, Ramos JL. Arac/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 1997; 61:393-410. [PMID: 9409145 PMCID: PMC232617 DOI: 10.1128/mmbr.61.4.393-410.1997] [Citation(s) in RCA: 366] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ArC/XylS family of prokaryotic positive transcriptional regulators includes more than 100 proteins and polypeptides derived from open reading frames translated from DNA sequences. Members of this family are widely distributed and have been found in the gamma subgroup of the proteobacteria, low- and high-G + C-content gram-positive bacteria, and cyanobacteria. These proteins are defined by a profile that can be accessed from PROSITE PS01124. Members of the family are about 300 amino acids long and have three main regulatory functions in common: carbon metabolism, stress response, and pathogenesis. Multiple alignments of the proteins of the family define a conserved stretch of 99 amino acids usually located at the C-terminal region of the regulator and connected to a nonconserved region via a linker. The conserved stretch contains all the elements required to bind DNA target sequences and to activate transcription from cognate promoters. Secondary analysis of the conserved region suggests that it contains two potential alpha-helix-turn-alpha-helix DNA binding motifs. The first, and better-fitting motif is supported by biochemical data, whereas existing biochemical data neither support nor refute the proposal that the second region possesses this structure. The phylogenetic relationship suggests that members of the family have recruited the nonconserved domain(s) into a series of existing domains involved in DNA recognition and transcription stimulation and that this recruited domain governs the role that the regulator carries out. For some regulators, it has been demonstrated that the nonconserved region contains the dimerization domain. For the regulators involved in carbon metabolism, the effector binding determinants are also in this region. Most regulators belonging to the AraC/XylS family recognize multiple binding sites in the regulated promoters. One of the motifs usually overlaps or is adjacent to the -35 region of the cognate promoters. Footprinting assays have suggested that these regulators protect a stretch of up to 20 bp in the target promoters, and multiple alignments of binding sites for a number of regulators have shown that the proteins recognize short motifs within the protected region.
Collapse
Affiliation(s)
- M T Gallegos
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaìdín, Granada, Spain
| | | | | | | | | |
Collapse
|
37
|
Liebl U, Sled V, Brasseur G, Ohnishi T, Daldal F. Conserved nonliganding residues of the Rhodobacter capsulatus Rieske iron-sulfur protein of the bc1 complex are essential for protein structure, properties of the [2Fe-2S] cluster, and communication with the quinone pool. Biochemistry 1997; 36:11675-84. [PMID: 9305957 DOI: 10.1021/bi970776l] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The iron-sulfur (Fe-S) protein subunit of the bc1 complex, known as the Rieske protein, contains a high-potential [2Fe-2S] cluster ligated by two nitrogen and two sulfur atoms to its apoprotein. Earlier work indicated that in Rhodobacter capsulatus these atoms are provided by two cysteine (C133 and C153) and two histidine (H135 and H156) residues, located at the carboxyl-terminal end of the protein [Davidson, E., Ohnishi, T., Atta-Asafo-Adjei, E., & Daldal, F. (1992) Biochemistry 31, 3342-3351]. These ligands are part of the conserved sequences C133THLGC138 (box I) and C153PCHGS158 (box II) and affect the properties of the Fe-S protein and its [2Fe-2S] cluster. In this work, the role of amino acid side chains at positions 134 and 136, adjacent to the cluster ligands in box I, was probed by using site-directed mutagenesis and biophysical analyses. These positions were substituted with R, D, H, and G to probe the effect of charged, polar, large, and small amino acid side chains on the properties of the [2Fe-2S] cluster. Of the mutants obtained T134R, -H, and -G were photosynthetically competent (Ps+) but contained Fe-S proteins with redox midpoint potentials (Em7) 50-100 mV lower than that of a wild type strain. In contrast, T134D was Ps- and contained no detectable [2Fe-2S] cluster, although it reverted frequently to Ps+ by substitution of D with N. On the other hand, all L136 mutants were Ps-, the EPR characteristics of their [2Fe-2S] cluster were perturbed, and they were unable to sense the Qpool redox state or to bind stigmatellin properly. The overall data indicated that replacement of the amino acid side chain at position 134 of the Fe-S protein affects mainly the Em7 and oxygen sensitivity of the [2Fe-2S] cluster without abolishing its function, while substitutions at position 136 perturb drastically its ability to monitor the Qpool redox state and its interaction with the Qo site inhibitor stigmatellin. These two distinct phenotypes of box I T134 and L136 mutants are discussed with regard to the recently published three-dimensional structure of the water soluble part of the bovine heart mitochondrial Rieske Fe-S protein.
Collapse
Affiliation(s)
- U Liebl
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
38
|
Nakatsu CH, Providenti M, Wyndham RC. The cis-diol dehydrogenase cbaC gene of Tn5271 is required for growth on 3-chlorobenzoate but not 3,4-dichlorobenzoate. Gene 1997; 196:209-18. [PMID: 9322760 DOI: 10.1016/s0378-1119(97)00229-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nucleotide sequence of cbaC, the 1-carboxy-3-chloro-4,5-dihydroxycyclohexa-2,6-diene (cis-diol) dehydrogenase gene from the 3-chlorobenzoate (3-Cba) catabolic transposon Tn5271 was determined. The functional significance of the deduced open reading frame was evaluated by deletion of an internal BstEII restriction site in cbaC and by the creation of nested deletions using exonuclease III. Expression studies were carried out with Alcaligenes sp. strain BR6024, a chloramphenicol-resistant, tryptophan auxotroph derived from the wild-type isolate BR60. BR6024 hosts carrying complete cbaAB (3-Cba 3,4-(4,5)-dioxygenase and reductase) genes, with deletions of cbaC, metabolized 3Cba to the cis-4,5-diol metabolite. These mutants failed to grow on 3-Cba; however, they grew on 3,4-dichlorobenzoate, accumulating 5-chloroprotocatechuate transiently. These results indicated the cbaC dehydrogenase was not required for re-aromatization of the unstable 3,4-dCba cis-4,5-diol metabolite. Spontaneous elimination of HCl from this metabolite is proposed to generate 5-chloroprotocatechuate, which is a substrate for the protocatechuate metaring fission pathway in Alcaligenes sp. BR60. The relationship of the deduced amino acid sequence of cbaC with 15 other oxidoreductases and sequences of unknown function from bacteria, plants and animals revealed a conserved N-terminal GxxGxG dinucleotide-binding domain and a conserved region with a H(x11)KHVLxEKPxA consensus flanked by alpha-helical domains. o-Phthalate cis-diol dehydrogenase (Pseudomonas putida), glucose-fructose oxidoreductase (Zymomonas mobilis), myo-inositol-2-dehydrogenase (Bacillus subtilis) and D-galactose-1-dehydrogenase (Pseudomonas fluorescens) are related proteins. These dehydrogenases are unrelated to the Type I, II and III dehydrogenase superfamilies that include the cis-diol dehydrogenases involved in benzoate, toluene, biphenyl and naphthalene catabolism (Type II) and benzene catabolism (Type III).
Collapse
Affiliation(s)
- C H Nakatsu
- Institute of Biology, Carleton University, Ottawa, Canada
| | | | | |
Collapse
|
39
|
Rosche B, Tshisuaka B, Hauer B, Lingens F, Fetzner S. 2-oxo-1,2-dihydroquinoline 8-monooxygenase: phylogenetic relationship to other multicomponent nonheme iron oxygenases. J Bacteriol 1997; 179:3549-54. [PMID: 9171399 PMCID: PMC179147 DOI: 10.1128/jb.179.11.3549-3554.1997] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
2-Oxo-1,2-dihydroquinoline 8-monooxygenase, an enzyme involved in quinoline degradation by Pseudomonas putida 86, had been identified as a class IB two-component nonheme iron oxygenase based on its biochemical and biophysical properties (B. Rosche, B. Tshisuaka, S. Fetzner, and F. Lingens, J. Biol. Chem. 270:17836-17842, 1995). The genes oxoR and oxoO, encoding the reductase and the oxygenase components of the enzyme, were sequenced and analyzed. oxoR was localized approximately 15 kb downstream of oxoO. Expression of both genes was detected in a recombinant Pseudomonas strain. In the deduced amino acid sequence of the NADH:(acceptor) reductase component (OxoR, 342 amino acids), putative binding sites for a chloroplast-type [2Fe-2S] center, for flavin adenine dinucleotide, and for NAD were identified. The arrangement of these cofactor binding sites is conserved in all known class IB reductases. A dendrogram of reductases confirmed the similarity of OxoR to other class IB reductases. The oxygenase component (OxoO, 446 amino acids) harbors the conserved amino acid motifs proposed to bind the Rieske-type [2Fe-2S] cluster and the mononuclear iron. In contrast to known class IB oxygenase components, which are composed of differing subunits, OxoO is a homomultimer, which is typical for class IA oxygenases. Sequence comparison of oxygenases indeed revealed that OxoO is more related to class IA than to class IB oxygenases. Thus, 2-oxo-1,2-dihydroquinoline 8-monooxygenase consists of a class IB-like reductase and a class IA-like oxygenase. These results support the hypothesis that multicomponent enzymes may be composed of modular elements having different phylogenetic origins.
Collapse
Affiliation(s)
- B Rosche
- Universität Hohenheim, Institut für Mikrobiologie, Stuttgart, Germany
| | | | | | | | | |
Collapse
|
40
|
Dutta TK, Gunsalus IC. Reductase gene sequences and protein structures: p-cymene methyl hydroxylase. Biochem Biophys Res Commun 1997; 233:502-6. [PMID: 9144566 DOI: 10.1006/bbrc.1997.6493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oxygenases are critical to cycling carbon in the biosphere and dependent on reductase action, principally from flavoprotein enzymes. Oxygenase diversity among organisms and strains carries a common theme of protein sequence and folding. p-Cymene (para-isopropyl toluene) was chosen as a point of convergence in terpene-aromatic mineralization to characterize a methyl hydroxylase electron transport system with the aerobe Pseudomonas aureofaciens. The cymA hydroxylase reductase gene was isolated and sequenced and the protein primary structure deduced. Optimized amino acid sequence alignments of flavoprotein reductases revealed major similarities over protein length, in the binding domains for NAD(P)H, and the flavine centers of pro- and eukaryote systems.
Collapse
Affiliation(s)
- T K Dutta
- NHEERL, Gulf Ecology Division, U.S. EPA, Gulf Breeze, Florida 32561-5299, USA
| | | |
Collapse
|
41
|
Fukumori F, Saint CP. Nucleotide sequences and regulational analysis of genes involved in conversion of aniline to catechol in Pseudomonas putida UCC22(pTDN1). J Bacteriol 1997; 179:399-408. [PMID: 8990291 PMCID: PMC178709 DOI: 10.1128/jb.179.2.399-408.1997] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A 9,233-bp HindIII fragment of the aromatic amine catabolic plasmid pTDN1, isolated from a derivative of Pseudomonas putida mt-2 (UCC22), confers the ability to degrade aniline on P. putida KT2442. The fragment encodes six open reading frames which are arranged in the same direction. Their 5' upstream region is part of the direct-repeat sequence of pTDN1. Nucleotide sequence of 1.8 kb of the repeat sequence revealed only a single base pair change compared to the known sequence of IS1071 which is involved in the transposition of the chlorobenzoate genes (C. Nakatsu, J. Ng, R. Singh, N. Straus, and C. Wyndham, Proc. Natl. Acad. Sci. USA 88:8312-8316, 1991). Four open reading frames encode proteins with considerable homology to proteins found in other aromatic-compound degradation pathways. On the basis of sequence similarity, these genes are proposed to encode the large and small subunits of aniline oxygenase (tdnA1 and tdnA2, respectively), a reductase (tdnB), and a LysR-type regulatory gene (tdnR). The putative large subunit has a conserved [2Fe-2S]R Rieske-type ligand center. Two genes, tdnQ and tdnT, which may be involved in amino group transfer, are localized upstream of the putative oxygenase genes. The tdnQ gene product shares about 30% similarity with glutamine synthetases; however, a pUC-based plasmid carrying tdnQ did not support the growth of an Escherichia coli glnA strain in the absence of glutamine. TdnT possesses domains that are conserved among amidotransferases. The tdnQ, tdnA1, tdnA2, tdnB, and tdnR genes are essential for the conversion of aniline to catechol.
Collapse
Affiliation(s)
- F Fukumori
- Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| | | |
Collapse
|
42
|
Jiang H, Parales RE, Lynch NA, Gibson DT. Site-directed mutagenesis of conserved amino acids in the alpha subunit of toluene dioxygenase: potential mononuclear non-heme iron coordination sites. J Bacteriol 1996; 178:3133-9. [PMID: 8655491 PMCID: PMC178063 DOI: 10.1128/jb.178.11.3133-3139.1996] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The terminal oxygenase component of toluene dioxygenase from Pseudomonas putida F1 is an iron-sulfur protein (ISP(TOL)) that requires mononuclear iron for enzyme activity. Alignment of all available predicted amino acid sequences for the large (alpha) subunits of terminal oxygenases showed a conserved cluster of potential mononuclear iron-binding residues. These were between amino acids 210 and 230 in the alpha subunit (TodC1) of ISP(TOL). The conserved amino acids, Glu-214, Asp-219, Tyr-221, His-222, and His-228, were each independently replaced with an alanine residue by site-directed mutagenesis. Tyr-266 in TodC1, which has been suggested as an iron ligand, was treated in an identical manner. To assay toluene dioxygenase activity in the presence of TodC1 and its mutant forms, conditions for the reconstitution of wild-type ISP(TOL) activity from TodC1 and purified TodC2 (beta subunit) were developed and optimized. A mutation at Glu-214, Asp-219, His-222, or His-228 completely abolished toluene dioxygenase activity. TodC1 with an alanine substitution at either Tyr-221 or Tyr-266 retained partial enzyme activity (42 and 12%, respectively). In experiments with [14C]toluene, the two Tyr-->Ala mutations caused a reduction in the amount of Cis-[14C]-toluene dihydrodiol formed, whereas a mutation at Glu-214, Asp-219, His-222, or His-228 eliminated cis-toluene dihydrodiol formation. The expression level of all of the mutated TWO proteins was equivalent to that of wild-type TodC1 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot (immunoblot) analyses. These results, in conjunction with the predicted amino acid sequences of 22 oxygenase components, suggest that the conserved motif Glu-X3-4,-Asp-X2-His-X4-5-His is critical for catalytic function and the glutamate, aspartate, and histidine residues may act as mononuclear iron ligands at the site of oxygen activation.
Collapse
Affiliation(s)
- H Jiang
- Department of Microbiology, The University of Iowa, Iowa City, 52242, USA
| | | | | | | |
Collapse
|
43
|
Butler CS, Mason JR. Structure-function analysis of the bacterial aromatic ring-hydroxylating dioxygenases. Adv Microb Physiol 1996; 38:47-84. [PMID: 8922118 DOI: 10.1016/s0065-2911(08)60155-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- C S Butler
- Division of Life Sciences, King's College London, UK
| | | |
Collapse
|
44
|
Riedel A, Fetzner S, Rampp M, Lingens F, Liebl U, Zimmermann JL, Nitschke W. EPR, electron spin echo envelope modulation, and electron nuclear double resonance studies of the 2Fe2S centers of the 2-halobenzoate 1,2-dioxygenase from Burkholderia (Pseudomonas) cepacia 2CBS. J Biol Chem 1995; 270:30869-73. [PMID: 8537340 DOI: 10.1074/jbc.270.52.30869] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The 2-halobenzoate 1,2-dioxygenase from Burkholderia (Pseudomonas) cepacia 2CBS (Fetzner, S., Müller, R., and Lingens, F. (1992) J. Bacteriol. 174, 279-290) contains both a ferredoxin-type and a Rieske-type 2Fe2S center. These two significantly different 2Fe2S clusters were characterized with respect to their EPR spectra, electrochemical properties (Rieske-type cluster with gz = 2.025, gy = 1.91, gx = 1.79, gav = 1.91, Em = -125 +/- 10 mV; ferredoxin-type center with gz = 2.05, gy = 1.96, gx = 1.89, gav = 1.97, Em = -200 +/- 10 mV) and pH dependence thereof. X band electron spin echo envelope modulation and electron nuclear double resonance spectroscopy was applied to study the interaction of the Rieske-type center of the 2-halobenzoate 1,2-dioxygenase with 14N and 1H nuclei in the vicinity of the 2Fe2S cluster. The results are compared to those obtained on the Rieske protein of the cytochrome b6f complex (Em = +320 mV) and the water-soluble ferredoxin (Em = -430 mV) of spinach chloroplasts, as typical representatives of the gav = 1.91 and gav = 1.96 class of 2Fe2S centers. Properties common to all Rieske-type clusters and those restricted to the respective centers in bacterial oxygenases are discussed.
Collapse
Affiliation(s)
- A Riedel
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Rosche B, Tshisuaka B, Fetzner S, Lingens F. 2-Oxo-1,2-dihydroquinoline 8-monooxygenase, a two-component enzyme system from Pseudomonas putida 86. J Biol Chem 1995; 270:17836-42. [PMID: 7629085 DOI: 10.1074/jbc.270.30.17836] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
2-Oxo-1,2-dihydroquinoline 8-monooxygenase, which catalyzes the NADH-dependent oxygenation of 2-oxo-1,2-dihydroquinoline to 8-hydroxy-2-oxo-1,2-dihydroquinoline, is the second enzyme in the quinoline degradation pathway of Pseudomonas putida 86. This enzyme system consists of two inducible protein components, which were purified, characterized, and identified as reductase and oxygenase. The yellow reductase is a monomeric iron-sulfur flavoprotein (M(r), 38,000), containing flavin adenine dinucleotide and plant-type ferredoxin [2Fe-2S]. It transferred electrons from NADH to the oxygenase or to some artificial electron acceptors. The red-brown oxygenase (M(r), 330,000) consists of six identical subunits (M(r), 55,000) and was identified as an iron-sulfur protein, possessing about six Rieske-type [2Fe-2S] clusters and additional iron. It was reduced by NADH plus catalytic amounts of reductase. For monooxygenase activity, reductase, oxygenase, NADH, molecular oxygen, and substrate were required. The activity was considerably enhanced by the addition of polyethylene glycol and Fe2+. 2-Oxo-1,2-dihydroquinoline 8-monooxygenase revealed a high substrate specificity toward 2-oxo-1,2-dihydroquinoline, since none of 25 other tested compounds was converted. Based on its physical, chemical, and catalytic properties, we presume 2-oxo-1,2-dihydroquinoline 8-monooxygenase to belong to the class IB multicomponent non-heme iron oxygenases.
Collapse
Affiliation(s)
- B Rosche
- Institut für Mikrobiologie, Universität Hohenheim, Stuttgart, Germany
| | | | | | | |
Collapse
|