1
|
Ivanova LB, Tomova A, González-Acuña D, Murúa R, Moreno CX, Hernández C, Cabello J, Cabello C, Daniels TJ, Godfrey HP, Cabello FC. Borrelia chilensis, a new member of the Borrelia burgdorferi sensu lato complex that extends the range of this genospecies in the Southern Hemisphere. Environ Microbiol 2013; 16:1069-80. [PMID: 24148079 DOI: 10.1111/1462-2920.12310] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 10/12/2013] [Indexed: 11/28/2022]
Abstract
Borrelia burgdorferi sensu lato (s.l.), transmitted by Ixodes spp. ticks, is the causative agent of Lyme disease. Although Ixodes spp. ticks are distributed in both Northern and Southern Hemispheres, evidence for the presence of B. burgdorferi s.l. in South America apart from Uruguay is lacking. We now report the presence of culturable spirochetes with flat-wave morphology and borrelial DNA in endemic Ixodes stilesi ticks collected in Chile from environmental vegetation and long-tailed rice rats (Oligoryzomys longicaudatus). Cultured spirochetes and borrelial DNA in ticks were characterized by multilocus sequence typing and by sequencing five other loci (16S and 23S ribosomal genes, 5S-23S intergenic spacer, flaB, ospC). Phylogenetic analysis placed this spirochete as a new genospecies within the Lyme borreliosis group. Its plasmid profile determined by polymerase chain reaction and pulsed-field gel electrophoresis differed from that of B. burgdorferi B31A3. We propose naming this new South American member of the Lyme borreliosis group B. chilensis VA1 in honor of its country of origin.
Collapse
Affiliation(s)
- Larisa B Ivanova
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Smajs D, Norris SJ, Weinstock GM. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2012; 12:191-202. [PMID: 22198325 PMCID: PMC3786143 DOI: 10.1016/j.meegid.2011.12.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/05/2011] [Accepted: 12/07/2011] [Indexed: 02/08/2023]
Abstract
Pathogenic uncultivable treponemes, similar to syphilis-causing Treponema pallidum subspecies pallidum, include T. pallidum ssp. pertenue, T. pallidum ssp. endemicum and Treponema carateum, which cause yaws, bejel and pinta, respectively. Genetic analyses of these pathogens revealed striking similarity among these bacteria and also a high degree of similarity to the rabbit pathogen, Treponema paraluiscuniculi, a treponeme not infectious to humans. Genome comparisons between pallidum and non-pallidum treponemes revealed genes with potential involvement in human infectivity, whereas comparisons between pallidum and pertenue treponemes identified genes possibly involved in the high invasivity of syphilis treponemes. Genetic variability within syphilis strains is considered as the basis of syphilis molecular epidemiology with potential to detect more virulent strains, whereas genetic variability within a single strain is related to its ability to elude the immune system of the host. Genome analyses also shed light on treponemal evolution and on chromosomal targets for molecular diagnostics of treponemal infections.
Collapse
Affiliation(s)
- David Smajs
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00 Brno, Czech Republic.
| | | | | |
Collapse
|
3
|
Čejková D, Zobaníková M, Chen L, Pospíšilová P, Strouhal M, Qin X, Mikalová L, Norris SJ, Muzny DM, Gibbs RA, Fulton LL, Sodergren E, Weinstock GM, Šmajs D. Whole genome sequences of three Treponema pallidum ssp. pertenue strains: yaws and syphilis treponemes differ in less than 0.2% of the genome sequence. PLoS Negl Trop Dis 2012; 6:e1471. [PMID: 22292095 PMCID: PMC3265458 DOI: 10.1371/journal.pntd.0001471] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/29/2011] [Indexed: 11/24/2022] Open
Abstract
Background The yaws treponemes, Treponema pallidum ssp. pertenue (TPE) strains, are closely related to syphilis causing strains of Treponema pallidum ssp. pallidum (TPA). Both yaws and syphilis are distinguished on the basis of epidemiological characteristics, clinical symptoms, and several genetic signatures of the corresponding causative agents. Methodology/Principal Findings To precisely define genetic differences between TPA and TPE, high-quality whole genome sequences of three TPE strains (Samoa D, CDC-2, Gauthier) were determined using next-generation sequencing techniques. TPE genome sequences were compared to four genomes of TPA strains (Nichols, DAL-1, SS14, Chicago). The genome structure was identical in all three TPE strains with similar length ranging between 1,139,330 bp and 1,139,744 bp. No major genome rearrangements were found when compared to the four TPA genomes. The whole genome nucleotide divergence (dA) between TPA and TPE subspecies was 4.7 and 4.8 times higher than the observed nucleotide diversity (π) among TPA and TPE strains, respectively, corresponding to 99.8% identity between TPA and TPE genomes. A set of 97 (9.9%) TPE genes encoded proteins containing two or more amino acid replacements or other major sequence changes. The TPE divergent genes were mostly from the group encoding potential virulence factors and genes encoding proteins with unknown function. Conclusions/Significance Hypothetical genes, with genetic differences, consistently found between TPE and TPA strains are candidates for syphilitic treponemes virulence factors. Seventeen TPE genes were predicted under positive selection, and eleven of them coded either for predicted exported proteins or membrane proteins suggesting their possible association with the cell surface. Sequence changes between TPE and TPA strains and changes specific to individual strains represent suitable targets for subspecies- and strain-specific molecular diagnostics. Spirochete Treponema pallidum ssp. pertenue (TPE) is the causative agent of yaws while strains of Treponema pallidum ssp. pallidum (TPA) cause syphilis. Both yaws and syphilis are distinguished on the basis of epidemiological characteristics and clinical symptoms. Neither treponeme can reproduce outside the host organism, which precludes the use of standard molecular biology techniques used to study cultivable pathogens. In this study, we determined high quality whole genome sequences of TPE strains and compared them to known genetic information for T. pallidum ssp. pallidum strains. The genome structure was identical in all three TPE strains and also between TPA and TPE strains. The TPE genome length ranged between 1,139,330 bp and 1,139,744 bp. The overall sequence identity between TPA and TPE genomes was 99.8%, indicating that the two pathogens are extremely closely related. A set of 34 TPE genes (3.5%) encoded proteins containing six or more amino acid replacements or other major sequence changes. These genes more often belonged to the group of genes with predicted virulence and unknown functions suggesting their involvement in infection differences between yaws and syphilis.
Collapse
Affiliation(s)
- Darina Čejková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- The Genome Institute, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Marie Zobaníková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lei Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- The Genome Institute, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Petra Pospíšilová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michal Strouhal
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- The Genome Institute, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xiang Qin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lenka Mikalová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lucinda L. Fulton
- The Genome Institute, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Erica Sodergren
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- The Genome Institute, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - George M. Weinstock
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- The Genome Institute, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
4
|
Mikalová L, Strouhal M, Čejková D, Zobaníková M, Pospíšilová P, Norris SJ, Sodergren E, Weinstock GM, Šmajs D. Genome analysis of Treponema pallidum subsp. pallidum and subsp. pertenue strains: most of the genetic differences are localized in six regions. PLoS One 2010; 5:e15713. [PMID: 21209953 PMCID: PMC3012094 DOI: 10.1371/journal.pone.0015713] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/28/2010] [Indexed: 12/04/2022] Open
Abstract
The genomes of eight treponemes including T. p. pallidum strains (Nichols, SS14, DAL-1 and Mexico A), T. p. pertenue strains (Samoa D, CDC-2 and Gauthier), and the Fribourg-Blanc isolate, were amplified in 133 overlapping amplicons, and the restriction patterns of these fragments were compared. The approximate sizes of the genomes investigated based on this whole genome fingerprinting (WGF) analysis ranged from 1139.3-1140.4 kb, with the estimated genome sequence identity of 99.57-99.98% in the homologous genome regions. Restriction target site analysis, detecting the presence of 1773 individual restriction sites found in the reference Nichols genome, revealed a high genome structure similarity of all strains. The unclassified simian Fribourg-Blanc isolate was more closely related to T. p. pertenue than to T. p. pallidum strains. Most of the genetic differences between T. p. pallidum and T. p. pertenue strains were accumulated in six genomic regions. These genome differences likely contribute to the observed differences in pathogenicity between T. p. pallidum and T. p. pertenue strains. These regions of sequence divergence could be used for the molecular detection and discrimination of syphilis and yaws strains.
Collapse
Affiliation(s)
- Lenka Mikalová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Strouhal
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Darina Čejková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marie Zobaníková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petra Pospíšilová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas, United States of America
| | - Erica Sodergren
- Department of Genetics, School of Medicine, The Genome Center, Washington University, St. Louis, Missouri, United States of America
| | - George M. Weinstock
- Department of Genetics, School of Medicine, The Genome Center, Washington University, St. Louis, Missouri, United States of America
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
5
|
Terekhova D, Iyer R, Wormser GP, Schwartz I. Comparative genome hybridization reveals substantial variation among clinical isolates of Borrelia burgdorferi sensu stricto with different pathogenic properties. J Bacteriol 2006; 188:6124-34. [PMID: 16923879 PMCID: PMC1595389 DOI: 10.1128/jb.00459-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinical and murine studies suggest that there is a differential pathogenicity of different genotypes of Borrelia burgdorferi, the spirochetal agent of Lyme disease. Comparative genome hybridization was used to explore the relationship between different genotypes. The chromosomes of all studied isolates were highly conserved (>93%) with respect to both sequence and gene order. Plasmid sequences were substantially more diverse. Plasmids lp54, cp26, and cp32 were present in all tested isolates, and their sequences and gene order were conserved. The majority of linear plasmids showed variation both in terms of presence among different isolates and in terms of sequence and gene order. The data strongly imply that all B. burgdorferi clinical isolates contain linear plasmids related to each other, but the structure of these replicons may vary substantially from isolate to isolate. These alterations include deletions and presumed rearrangements that are likely to result in unique plasmid elements in many isolates. There is a strong correlation between complete genome hybridization profiles and other typing methods, which, in turn, also correlate to differences in pathogenicity. Because there is substantially less variation in the chromosomal and circular plasmid portions of the genome, the major differences in open reading frame content and genomic diversity among isolates are linear plasmid driven.
Collapse
Affiliation(s)
- Darya Terekhova
- Department of Microbiology and Immunology, New York Medical College, BSB Room 308, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
6
|
Abstract
Syphilis is a chronic sexually transmitted disease caused by Treponema pallidum subsp. pallidum. Clinical manifestations separate the disease into stages; late stages of disease are now uncommon compared to the preantibiotic era. T. pallidum has an unusually small genome and lacks genes that encode many metabolic functions and classical virulence factors. The organism is extremely sensitive to environmental conditions and has not been continuously cultivated in vitro. Nonetheless, T. pallidum is highly infectious and survives for decades in the untreated host. Early syphilis lesions result from the host's immune response to the treponemes. Bacterial clearance and resolution of early lesions results from a delayed hypersensitivity response, although some organisms escape to cause persistent infection. One factor contributing to T. pallidum's chronicity is the paucity of integral outer membrane proteins, rendering intact organisms virtually invisible to the immune system. Antigenic variation of TprK, a putative surface-exposed protein, is likely to contribute to immune evasion. T. pallidum remains exquisitely sensitive to penicillin, but macrolide resistance has recently been identified in a number of geographic regions. The development of a syphilis vaccine, thus far elusive, would have a significant positive impact on global health.
Collapse
Affiliation(s)
- Rebecca E Lafond
- Department of Medicine, Box 359779, Harborview Medical Center, 325 Ninth Ave., Seattle, WA 98104, USA
| | | |
Collapse
|
7
|
Treponema pallidum. Transfus Med Hemother 2005. [DOI: 10.1159/000087618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
8
|
Smajs D, McKevitt M, Wang L, Howell JK, Norris SJ, Palzkill T, Weinstock GM. BAC library of T. pallidum DNA in E. coli. Genome Res 2002; 12:515-22. [PMID: 11875041 PMCID: PMC155280 DOI: 10.1101/gr.207302] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Treponema pallidum subspecies pallidum (Nichols) chromosomal DNA was used to construct a large insert bacterial artificial chromosome (BAC) library in Escherichia coli DH10B using the pBeloBAC11 cloning vector; 678 individual insert termini of 339 BAC clones (13.9 x coverage) were sequenced and the cloned chromosomal region in each clone was determined by comparison to the genomic sequence. A single 15.6-kb region of the T. pallidum chromosome was missing in the BAC library, between bp 248727 and 264323. In addition to the 12 open reading frames (ORFs) coded by this region, one additional ORF (TP0596) was not cloned as an intact gene. Altogether, 13 predicted T. pallidum ORFs (1.25% of the total) were incomplete or missing in the library. Three of 338 clones mapped by restriction enzyme digestion had detectable deletions and one clone had a detectable insertion within the insert. Of mapped clones, 19 were selected to represent the minimal set of E. coli BAC clones covering 1026 of the total 1040 (98.7%) predicted T. pallidum ORFs. Using this minimal set of clones, at least 12 T. pallidum proteins were shown to react with pooled sera from rabbits immunized with T. pallidum, indicating that at least some T. pallidum genes are transcribed and expressed in E. coli.
Collapse
Affiliation(s)
- David Smajs
- Department of Microbiology and Molecular Genetics, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Wicher K, Wicher V, Abbruscato F, Baughn RE. Treponema pallidum subsp. pertenue displays pathogenic properties different from those of T. pallidum subsp. pallidum. Infect Immun 2000; 68:3219-25. [PMID: 10816466 PMCID: PMC97566 DOI: 10.1128/iai.68.6.3219-3225.2000] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/1999] [Accepted: 02/28/2000] [Indexed: 11/20/2022] Open
Abstract
The present study described the susceptibility of C4D guinea pigs to cutaneous infection with Treponema pallidum subsp. pertenue Haiti B strain. The general manifestations of the disease in adults and neonates differ, to a certain degree, from those induced by T. pallidum subsp. pallidum Nichols strain. Noticeable differences between the infections were reflected in the character of the skin lesions, their onset and persistence, and the kinetics of the humoral response. The incidence and dissemination of cutaneous yaws lesions in very young guinea pigs were remarkably different from the low frequency observed in a similar age group of syphilis infection, 100 versus 17%, respectively. Moreover, as opposed to T. pallidum subsp. pallidum, T. pallidum subsp. pertenue does not cross the placenta. Offspring born to yaws-infected mothers did not produce immunoglobulin M antibodies and their organs, examined by PCR and rabbit infectivity test (RIT), were all negative. Examination of a large number of tissues and organs in adult, neonate, and maternal yaws by PCR and RIT clearly demonstrated that, unlike syphilis, there was a low incidence and short persistence of the yaws pathogen in internal organs. These findings stress the dermotropic rather than the organotropic character of yaws and provide further evidence of distinctive biological and pathological differences between yaws and venereal syphilis.
Collapse
Affiliation(s)
- K Wicher
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany, New York, USA.
| | | | | | | |
Collapse
|
10
|
Iyer R, Hardham JM, Wormser GP, Schwartz I, Norris SJ. Conservation and heterogeneity of vlsE among human and tick isolates of Borrelia burgdorferi. Infect Immun 2000; 68:1714-8. [PMID: 10678995 PMCID: PMC97336 DOI: 10.1128/iai.68.3.1714-1718.2000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vls (variable major protein [VMP]-like sequence) locus of Borrelia burgdorferi encodes an antigenic variation system that closely resembles the VMP system of relapsing fever borreliae. To determine whether vls sequences are present consistently in low-passage, infectious isolates of B. burgdorferi, 22 blood and erythema migrans biopsy isolates from Lyme disease patients in Westchester County, New York, were examined by Southern blot and PCR analysis. Each of the strains contained a single plasmid varying in size from 21 to 38 kb that hybridized strongly with a vlsE probe based on the B. burgdorferi B31 sequence. In contrast, PCR products were obtained with only 10 of the 22 strains when primers corresponding to the 5' and 3' regions of the B31 vlsE sequence outside the variable cassette region were used. Only 2 of 16 B. burgdorferi-infected tick specimens yielded detectable PCR product. Eight of 10 strains that yielded a PCR product under these conditions were type 1 (a genotype with a high rate of dissemination), according to PCR-restriction fragment length polymorphism analysis of intergenic rDNA sequences, whereas the isolates that did not yield vlsE PCR products were either type 2 or type 3. Comparison of the sequences of cloned PCR products from the patient isolates indicated a high degree of identity to the B31 sequence, with most of the differences restricted to the hypervariable regions known to undergo sequence variation. Taken together, these results both reinforce previous evidence that vls sequences are present consistently in low-passage Lyme disease spirochetes and indicate that both highly conserved and heterogeneous subgroups exist with regard to vlsE sequences.
Collapse
Affiliation(s)
- R Iyer
- Department of Biochemistry, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | |
Collapse
|
11
|
MESH Headings
- Aging/genetics
- Ataxia Telangiectasia Mutated Proteins
- Cell Cycle Proteins
- Chromosomes, Bacterial/genetics
- Chromosomes, Bacterial/ultrastructure
- Chromosomes, Fungal/genetics
- Chromosomes, Fungal/ultrastructure
- Chromosomes, Human/genetics
- Chromosomes, Human/ultrastructure
- DNA, Circular/genetics
- DNA, Circular/ultrastructure
- DNA-Binding Proteins
- Dimerization
- Eukaryotic Cells/ultrastructure
- Evolution, Molecular
- Female
- Genome
- Humans
- Male
- Meiosis/genetics
- Multigene Family
- Neoplasms/genetics
- Prokaryotic Cells/ultrastructure
- Protein Serine-Threonine Kinases
- Proteins/physiology
- Reproduction/genetics
- Reproduction, Asexual/genetics
- Sister Chromatid Exchange
- Telomerase/physiology
- Telomere/physiology
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- F Ishikawa
- Laboratory of Molecular and Cellular Assembly, Graduate School of Biological Information, Tokyo Institute of Technology, Japan.
| | | |
Collapse
|
12
|
Abstract
Bacterial genome sizes, which range from 500 to 10,000 kbp, are within the current scope of operation of large-scale nucleotide sequence determination facilities. To date, 8 complete bacterial genomes have been sequenced, and at least 40 more will be completed in the near future. Such projects give wonderfully detailed information concerning the structure of the organism's genes and the overall organization of the sequenced genomes. It will be very important to put this incredible wealth of detail into a larger biological picture: How does this information apply to the genomes of related genera, related species, or even other individuals from the same species? Recent advances in pulsed-field gel electrophoretic technology have facilitated the construction of complete and accurate physical maps of bacterial chromosomes, and the many maps constructed in the past decade have revealed unexpected and substantial differences in genome size and organization even among closely related bacteria. This review focuses on this recently appreciated plasticity in structure of bacterial genomes, and diversity in genome size, replicon geometry, and chromosome number are discussed at inter- and intraspecies levels.
Collapse
Affiliation(s)
- S Casjens
- Department of Oncological Sciences, University of Utah, Salt Lake City 84132, USA.
| |
Collapse
|
13
|
Zhang JR, Norris SJ. Genetic variation of the Borrelia burgdorferi gene vlsE involves cassette-specific, segmental gene conversion. Infect Immun 1998; 66:3698-704. [PMID: 9673251 PMCID: PMC108404 DOI: 10.1128/iai.66.8.3698-3704.1998] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/1997] [Accepted: 05/18/1998] [Indexed: 02/08/2023] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi possesses 15 silent vls cassettes and a vls expression site (vlsE) encoding a surface-exposed lipoprotein. Segments of the silent vls cassettes have been shown to recombine with the vlsE cassette region in the mammalian host, resulting in combinatorial antigenic variation. Despite promiscuous recombination within the vlsE cassette region, the 5' and 3' coding sequences of vlsE that flank the cassette region are not subject to sequence variation during these recombination events. The segments of the silent vls cassettes recombine in the vlsE cassette region through a unidirectional process such that the sequence and organization of the silent vls loci are not affected. As a result of recombination, the previously expressed segments are replaced by incoming segments and apparently degraded. These results provide evidence for a gene conversion mechanism in VlsE antigenic variation.
Collapse
Affiliation(s)
- J R Zhang
- Department of Pathology and Laboratory Medicine and Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | |
Collapse
|
14
|
Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, Gwinn M, Hickey EK, Clayton R, Ketchum KA, Sodergren E, Hardham JM, McLeod MP, Salzberg S, Peterson J, Khalak H, Richardson D, Howell JK, Chidambaram M, Utterback T, McDonald L, Artiach P, Bowman C, Cotton MD, Fujii C, Garland S, Hatch B, Horst K, Roberts K, Sandusky M, Weidman J, Smith HO, Venter JC. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 1998; 281:375-88. [PMID: 9665876 DOI: 10.1126/science.281.5375.375] [Citation(s) in RCA: 709] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The complete genome sequence of Treponema pallidum was determined and shown to be 1,138,006 base pairs containing 1041 predicted coding sequences (open reading frames). Systems for DNA replication, transcription, translation, and repair are intact, but catabolic and biosynthetic activities are minimized. The number of identifiable transporters is small, and no phosphoenolpyruvate:phosphotransferase carbohydrate transporters were found. Potential virulence factors include a family of 12 potential membrane proteins and several putative hemolysins. Comparison of the T. pallidum genome sequence with that of another pathogenic spirochete, Borrelia burgdorferi, the agent of Lyme disease, identified unique and common genes and substantiates the considerable diversity observed among pathogenic spirochetes.
Collapse
Affiliation(s)
- C M Fraser
- Institute for Genomic Research, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Stamm LV, Barnes NY. Nucleotide sequences of the proA and proB genes of Treponema pallidum, the syphilis agent. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1998; 8:63-70. [PMID: 9522123 DOI: 10.3109/10425179709020887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The nucleotide sequences of the putative proA and proB genes of Treponema pallidum were determined. The proA gene is 1287 nucleotides long and encodes a 428 amino acid protein with a predicted M(r) of 46.6 kDa. The proB gene is 891 nucleotides long and encodes a 296 amino acid protein with a predicted M(r) of 31.3 kDa. The deduced amino acid sequences of the treponemal ProA and ProB proteins have a high degree of homology to the amino acid sequences of several bacterial ProA and ProB proteins. The order of the T. pallidum pro genes (proA/proB) is unique in comparison to the order of these genes in other bacteria. The identification of the putative proA and proB genes in T. pallidum, coupled with the previous identification of the proC gene, strongly suggests that this fastidious spirochete is capable of proline biosynthesis.
Collapse
Affiliation(s)
- L V Stamm
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill 27599-7400, USA.
| | | |
Collapse
|
16
|
Norris SJ, Fraser CM, Weinstock GM. Illuminating the agent of syphilis: the Treponema pallidum genome project. Electrophoresis 1998; 19:551-3. [PMID: 9588801 DOI: 10.1002/elps.1150190415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As the causative agent of the common sexually transmitted disease syphilis and a fastidious, microaerophilic obligate parasite of humans, Treponema pallidum subsp. pallidum is one of the few prominent infectious agents that has not been cultured continuously in vitro. T pallidum therefore represents an attractive candidate for genomic sequencing. Preliminary sequence results from the 1.13 million base pair genome are consistent with the expected limited metabolic capabilities of this spirochete, but indicate that the bacterium may express toxins and surface proteins that have not been identified previously.
Collapse
Affiliation(s)
- S J Norris
- Department of Pathology and Laboratory Medicine, University of Texas at Houston Medical School, 77225-0708, USA
| | | | | |
Collapse
|
17
|
Shevchenko DV, Akins DR, Robinson EJ, Li M, Shevchenko OV, Radolf JD. Identification of homologs for thioredoxin, peptidyl prolyl cis-trans isomerase, and glycerophosphodiester phosphodiesterase in outer membrane fractions from Treponema pallidum, the syphilis spirochete. Infect Immun 1997; 65:4179-89. [PMID: 9317025 PMCID: PMC175601 DOI: 10.1128/iai.65.10.4179-4189.1997] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this study, we characterized candidate rare outer membrane (OM) proteins with apparent molecular masses of 19, 27, 38, and 38.5 kDa, which had been identified previously in OM fractions from Treponema pallidum (J. D. Radolf et al., Infect. Immun. 63:4244-4252, 1995). Using N-terminal and internal amino acid sequences, a probe for the 19-kDa candidate was PCR amplified and used to screen a T. pallidum genomic library in Lambda Zap II. The corresponding gene (tlp) encoded a homolog for periplasmic thioredoxin-like proteins (Tlp), which reduce c-type cytochromes. A degenerate oligonucleotide derived from the N terminus of the 27-kDa protein was used to PCR amplify a duplex probe from a T. pallidum genomic library in pBluescript II SK+. With this probe, the corresponding gene (ppiB) was identified and found to code for a presumptive periplasmic cyclophilin B-type peptidyl prolyl cis-trans isomerase (PpiB). We postulate that PpiB assists the folding of proteins within the T. pallidum periplasmic space. The N terminus of the 38-kDa candidate was blocked to Edman degradation. However, internal sequence data revealed that it was basic membrane protein (Bmp), a previously characterized, signal peptidase I-processed protein. Triton X-114 phase partitioning revealed that despite its name, Bmp is hydrophilic and therefore likely to be periplasmic. The final candidate was also blocked to Edman degradation; as before, a duplex probe was PCR amplified with degenerate primers derived from internal sequences. The corresponding gene (glpQ) coded for a presumptively lipid-modified homolog of glycerophosphodiester phosphodiesterase (GlpQ). Based upon findings with other treponemal lipoproteins, the hydrophilic GlpQ polypeptide is thought to be anchored by N-terminal lipids to the periplasmic leaflet(s) of the cytoplasmic membrane and/or OM. The discovery of T. pallidum periplasmic proteins with potentially defined functions provides fresh insights into a poorly understood aspect of treponemal physiology. At the same time, however, these findings also raise important issues regarding the use of OM preparations for identifying rare OM proteins of T. pallidum.
Collapse
Affiliation(s)
- D V Shevchenko
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | | | | | |
Collapse
|
18
|
Hardham JM, Stamm LV, Porcella SF, Frye JG, Barnes NY, Howell JK, Mueller SL, Radolf JD, Weinstock GM, Norris SJ. Identification and transcriptional analysis of a Treponema pallidum operon encoding a putative ABC transport system, an iron-activated repressor protein homolog, and a glycolytic pathway enzyme homolog. Gene 1997; 197:47-64. [PMID: 9332349 DOI: 10.1016/s0378-1119(97)00234-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have characterized a 5.2-kilobase (kb) putative transport related operon (tro) locus of Treponema pallidum subsp. pallidum (Nichols strain) (Tp) encoding six proteins: TroA, TroB, TroC, TroD, TroR and Phosphoglycerate mutase (Pgm). Four of these gene products (TroA-TroD) are homologous to members of the ATP-Binding Cassette (ABC) superfamily of bacterial transport proteins. TroA (previously identified as Tromp1) has significant sequence similarity to a family of Gram-negative periplasmic substrate-binding proteins and to a family of streptococcal proteins that may have dual roles as substrate binding proteins and adhesins. TroB is homologous to the ATP-binding protein component, whereas TroC and TroD are related to the hydrophobic membrane protein components of ABC transport systems. TroR is similar to Gram-positive iron-activated repressor proteins (DesR, DtxR, IdeR, and SirR). The last open reading frame (ORF) of the tro operon encodes a protein that is highly homologous to the glycolytic pathway enzyme, Pgm. Primer extension results demonstrated that the tro operon is transcribed from a sigma 70-type promoter element. Northern analysis and reverse transcriptase-polymerase chain reactions provided evidence for the presence of a primary 1-kb troA transcript and a secondary, less abundant, troA-pgm transcript. The tro operon is flanked by a Holliday structure DNA helicase homolog (upstream) and two ORFs representing a purine nucleoside phosphorylase homolog and tpp15, a previously characterized gene encoding a membrane lipoprotein (downstream). The presence of a complex operon containing a putative ABC transport system and a DtxR homolog indicates a possible linkage between transport and gene regulation in Tp.
Collapse
Affiliation(s)
- J M Hardham
- Department of Pathology and Laboratory Medicine, University of Texas, Houston Medical School 77225-0708, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shevchenko DV, Akins DR, Robinson E, Li M, Popova TG, Cox DL, Radolf JD. Molecular characterization and cellular localization of TpLRR, a processed leucine-rich repeat protein of Treponema pallidum, the syphilis spirochete. J Bacteriol 1997; 179:3188-95. [PMID: 9150213 PMCID: PMC179096 DOI: 10.1128/jb.179.10.3188-3195.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Automated Edman degradation was used to obtain N-terminal and internal amino acid sequences from a 26-kDa protein in isolated Treponema pallidum outer membranes (OMs). The resulting sequences enabled us to PCR amplify from T. pallidum DNA a 275-bp fragment of the corresponding gene. The complete nucleotide sequence of the gene was determined from fragments amplified by long-distance PCR. Primer extension verified the assigned translational start of the open reading frame (ORF) and putative upstream promoter elements. The ORF encoded a highly basic (pI 9.6) 26-kDa protein which contained an N-terminal 25-amino-acid leader peptide terminated by a signal peptidase I cleavage site. The mature protein contained seven tandemly spaced copies (as well as an eighth incomplete copy) of a leucine-rich repeat (LRR), a motif previously identified in a number of prokaryotic and eukaryotic proteins. Accordingly, the polypeptide was designated T. pallidum leucine-rich repeat protein (TpLRR). Although Triton X-114 phase partitioning showed that TpLRR was hydrophilic, cell localization studies showed that most of the antigen was associated with the peptidoglycan-cytoplasmic membrane complex rather than being freely soluble in the periplasmic space. Immunoblot studies showed that syphilis patients develop a weak antibody response to the antigen. Lastly, the lrr(T. pallidum) gene was mapped to a 60-kb SfiI-SpeI fragment of the T. pallidum chromosome which also contains the rrnA and flaA genes. The function(s) of TpLRR is currently unknown; however, protein-protein and/or protein-lipid interactions mediated by its LRR motifs may facilitate interactions between components of the T. pallidum cell envelope.
Collapse
Affiliation(s)
- D V Shevchenko
- Department of Internal Medicine, U.T. Southwestern Medical Center at Dallas, Texas 75235, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Zhang JR, Hardham JM, Barbour AG, Norris SJ. Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 1997; 89:275-85. [PMID: 9108482 DOI: 10.1016/s0092-8674(00)80206-8] [Citation(s) in RCA: 469] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have identified and characterized an elaborate genetic system in the Lyme disease spirochete Borrelia burgdorferi that promotes extensive antigenic variation of a surface-exposed lipoprotein, VlsE. A 28 kb linear plasmid of B. burgdorferi B31 (lp28-1) was found to contain a vmp-like sequence (vls) locus that closely resembles the variable major protein (vmp) system for antigenic variation of relapsing fever organisms. Portions of several of the 15 nonexpressed (silent) vls cassette sequences located upstream of vlsE recombined into the central vlsE cassette region during infection of C3H/HeN mice, resulting in antigenic variation of the expressed lipoprotein. This combinatorial variation could potentially produce millions of antigenic variants in the mammalian host.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigenic Variation/genetics
- Antigens, Bacterial/analysis
- Antigens, Surface/analysis
- Antigens, Surface/genetics
- Bacterial Proteins
- Base Sequence
- Borrelia burgdorferi Group/genetics
- Borrelia burgdorferi Group/immunology
- Borrelia burgdorferi Group/pathogenicity
- Cloning, Molecular
- Female
- Genes, Bacterial/genetics
- Genetic Variation/genetics
- Lipoproteins/analysis
- Lipoproteins/genetics
- Mice
- Mice, Inbred C3H
- Models, Genetic
- Molecular Sequence Data
- Plasmids/genetics
- Protein Sorting Signals/genetics
- Recombination, Genetic
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- J R Zhang
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston 77030, USA
| | | | | | | |
Collapse
|
21
|
Centurion-Lara A, Castro C, van Voorhis WC, Lukehart SA. Two 16S-23S ribosomal DNA intergenic regions in different Treponema pallidum subspecies contain tRNA genes. FEMS Microbiol Lett 1996; 143:235-40. [PMID: 8837477 DOI: 10.1111/j.1574-6968.1996.tb08486.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The 16S-23S intergenic spacers of Treponema pallidum subspecies pallidum, Nichols strain, and Treponema pallidum subspecies pertenue, Gauthier strain, have been cloned, characterized and sequenced. Isoleucine and alanine tRNA genes have been identified within the 16S-23S intergenic regions on separate alleles of 293 and 303 bases, respectively. The two alleles are present in both T.p.pallidum and T.p. pertenue, and show no sequence differences between the bacterial subspecies. The ile-tRNA and ala-tRNA genes show 65% and 84% sequence identity, respectively, with the homologous genes of the related spirochete, Borrelia burgdorferi.
Collapse
MESH Headings
- Alleles
- Base Sequence
- DNA Primers/genetics
- DNA, Bacterial/genetics
- DNA, Ribosomal/genetics
- Genes, Bacterial
- Humans
- Molecular Sequence Data
- Phylogeny
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/genetics
- RNA, Transfer, Ala/genetics
- RNA, Transfer, Ile/genetics
- Sequence Homology, Nucleic Acid
- Species Specificity
- Syphilis/microbiology
- Treponema pallidum/classification
- Treponema pallidum/genetics
- Treponema pallidum/pathogenicity
- Yaws/microbiology
Collapse
Affiliation(s)
- A Centurion-Lara
- Department of Medicine, University of Washington, Harborview Medical Center, Seattle 98104, USA
| | | | | | | |
Collapse
|
22
|
You Y, Elmore S, Colton LL, Mackenzie C, Stoops JK, Weinstock GM, Norris SJ. Characterization of the cytoplasmic filament protein gene (cfpA) of Treponema pallidum subsp. pallidum. J Bacteriol 1996; 178:3177-87. [PMID: 8655496 PMCID: PMC178068 DOI: 10.1128/jb.178.11.3177-3187.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Treponema pallidum and other members of the genera Treponema, Spirochaeta, and Leptonema contain multiple cytoplasmic filaments that run the length of the organism just underneath the cytoplasmic membrane. These cytoplasmic filaments have a ribbon-like profile and consist of a major cytoplasmic filament protein subunit (CfpA, formerly called TpN83) with a relative molecular weight of approximately 80,000. Degenerate DNA primers based on N-terminal and CNBr cleavage fragment amino acid sequences of T. pallidum subsp. pallidum (Nichols) CfpA were utilized to amplify a fragment of the encoding gene (cfpA). A 6.8-kb EcoRI fragment containing all but the 5' end of cfpA was identified by hybridization with the resulting PCR product and cloned into Lambda ZAP II. The 5' region was obtained by inverse PCR, and the complete gene sequence was determined. The cfpA sequence contained a 2,034-nucleotide coding region, a putative promoter with consensus sequences (5'-TTTACA-3' for -35 and 5'-TACAAT-3' for -10) similar to the sigma70 recognition sequence of Escherichia coli and other organisms, and a putative ribosome-binding site (5'-AGGAG-3'). The deduced amino acid sequence of CfpA indicated a protein of 678 residues with a calculated molecular mass of 78.5 kDa and an estimated pI of 6.15. No significant homology to known proteins or structural motifs was found among known prokaryotic or eukaryotic sequences. Expression of a LacZ-CfpA fusion protein in E. coli was detrimental to survival and growth of the host strain and resulted in the formation of short, irregular filaments suggestive of partial self-assembly of CfpA. The cytoplasmic filaments of T. pallidum and other spirochetes appear to represent a unique form of prokaryotic intracytoplasmic inclusions.
Collapse
Affiliation(s)
- Y You
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston 77225, USA
| | | | | | | | | | | | | |
Collapse
|