1
|
Liu Y, Okano K, Iwaki H. Identification and characterization of a pab gene cluster responsible for the 4-aminobenzoate degradation pathway, including its involvement in the formation of a γ-glutamylated intermediate in Paraburkholderia terrae strain KU-15. J Biosci Bioeng 2024; 137:38-46. [PMID: 37977976 DOI: 10.1016/j.jbiosc.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Paraburkholderia terrae strain KU-15 grows on 2- and 4-nitrobenzoate and 2- and 4-aminobenzoate (ABA) as the sole nitrogen and carbon sources. The genes responsible for the potential degradation of 2- and 4-nitrobenzoate and 2-ABA have been predicted from its genome sequence. In this study, we identified the pab operon in P. terrae strain KU-15. This operon is responsible for the 4-ABA degradation pathway, which involves the formation of a γ-glutamylated intermediate. Reverse transcription-polymerase chain reaction revealed that the pab operon was induced by 4-ABA. Herein, studying the deletion of pabA and pabB1 in strain KU-15 and the examining of Escherichia coli expressing the pab operon revealed the involvement of the operon in 4-ABA degradation. The first step of the degradation pathway is the formation of a γ-glutamylated intermediate, whereby 4-ABA is converted to γ-glutamyl-4-carboxyanilide (γ-GCA). Subsequently, γ-GCA is oxidized to protocatechuate. Overexpression of various genes in E. coli and purification of recombinant proteins permitted the functional characterization of relevant pathway proteins: PabA is a γ-GCA synthetase, PabB1-B3 functions in a multicomponent dioxygenase system responsible for γ-GCA dioxygenation, and PabC is a γ-GCA hydrolase that reverses the formation of γ-GCA by PabA.
Collapse
Affiliation(s)
- Yaxuan Liu
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Kenji Okano
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Hiroaki Iwaki
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
2
|
Zeng B, Zhang F, Liu YT, Wu SF, Bass C, Gao CF. Symbiotic bacteria confer insecticide resistance by metabolizing buprofezin in the brown planthopper, Nilaparvata lugens (Stål). PLoS Pathog 2023; 19:e1011828. [PMID: 38091367 PMCID: PMC10718449 DOI: 10.1371/journal.ppat.1011828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Buprofezin, a chitin synthesis inhibitor, is widely used to control several economically important insect crop pests. However, the overuse of buprofezin has led to the evolution of resistance and exposed off-target organisms present in agri-environments to this compound. As many as six different strains of bacteria isolated from these environments have been shown to degrade buprofezin. However, whether insects can acquire these buprofezin-degrading bacteria from soil and enhance their own resistance to buprofezin remains unknown. Here we show that field strains of the brown planthopper, Nilaparvata lugens, have acquired a symbiotic bacteria, occurring naturally in soil and water, that provides them with resistance to buprofezin. We isolated a symbiotic bacterium, Serratia marcescens (Bup_Serratia), from buprofezin-resistant N. lugens and showed it has the capacity to degrade buprofezin. Buprofezin-susceptible N. lugens inoculated with Bup_Serratia became resistant to buprofezin, while antibiotic-treated N. lugens became susceptible to this insecticide, confirming the important role of Bup_Serratia in resistance. Sequencing of the Bup_Serratia genome identified a suite of candidate genes involved in the degradation of buprofezin, that were upregulated upon exposure to buprofezin. Our findings demonstrate that S. marcescens, an opportunistic pathogen of humans, can metabolize the insecticide buprofezin and form a mutualistic relationship with N. lugens to enhance host resistance to buprofezin. These results provide new insight into the mechanisms underlying insecticide resistance and the interactions between bacteria, insects and insecticides in the environment. From an applied perspective they also have implications for the control of highly damaging crop pests.
Collapse
Affiliation(s)
- Bin Zeng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, People’s Republic of China
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| | - Fan Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, People’s Republic of China
| | - Ya-Ting Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, People’s Republic of China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, People’s Republic of China
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, People’s Republic of China
| |
Collapse
|
3
|
Aukema KG, Bygd MD, Tassoulas LJ, Richman JE, Wackett LP. Fluoro-recognition: New in vivo fluorescent assay for toluene dioxygenase probing induction by and metabolism of polyfluorinated compounds. Environ Microbiol 2022; 24:5202-5216. [PMID: 36054238 PMCID: PMC9828342 DOI: 10.1111/1462-2920.16187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 01/12/2023]
Abstract
The present study examined the regulatory and metabolic response of the aromatic degrader Pseudomonas putida F1 and its tod operon, controlling toluene degradation, to fluorinated aromatic and aliphatic compounds. The tod operon is upregulated by inducer binding to the TodS sensing domain of a two-component regulator. The induced enzymes include toluene dioxygenase that initiates catabolic assimilation of benzenoid hydrocarbons. Toluene dioxygenase was shown to oxidize 6-fluoroindole to a meta-stable fluorescent product, 6-fluoroindoxyl. The fluorescent output allowed monitoring relative levels of tod operon induction in whole cells using microtiter well plates. Mono- and polyfluorinated aromatic compounds were shown to induce toluene dioxygenase, in some cases to a greater extent than compounds serving as growth substrates. Compounds that are oxidized by toluene dioxygenase and undergoing defluorination were shown to induce their own metabolism. 1,2,4-Trifluorobenzene caused significant induction and computational modelling indicated productive binding to the TodS sensor domain of the TodST regulator. Toluene dioxygenase also showed preferential binding of 1,2,4-trifluorobenzene such that defluorination was favoured. Fluorinated aliphatic compounds were shown to induce toluene dioxygenase. An aliphatic ether with seven fluorine atoms, 1,1,1,2-tetrafluoro-2-trifluoromethoxy-4-iodobutane (TTIB), was an excellent inducer of toluene dioxygenase activity and shown to undergo transformation in cultures of P. putida F1.
Collapse
Affiliation(s)
- Kelly G. Aukema
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology InstituteUniversity of Minnesota, Twin CitiesMinnesotaUSA
| | - Madison D. Bygd
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology InstituteUniversity of Minnesota, Twin CitiesMinnesotaUSA
| | - Lambros J. Tassoulas
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology InstituteUniversity of Minnesota, Twin CitiesMinnesotaUSA
| | - Jack E. Richman
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology InstituteUniversity of Minnesota, Twin CitiesMinnesotaUSA
| | - Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology InstituteUniversity of Minnesota, Twin CitiesMinnesotaUSA
| |
Collapse
|
4
|
Heinemann PM, Armbruster D, Hauer B. Active-site loop variations adjust activity and selectivity of the cumene dioxygenase. Nat Commun 2021; 12:1095. [PMID: 33597523 PMCID: PMC7889853 DOI: 10.1038/s41467-021-21328-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/11/2021] [Indexed: 01/31/2023] Open
Abstract
Active-site loops play essential roles in various catalytically important enzyme properties like activity, selectivity, and substrate scope. However, their high flexibility and diversity makes them challenging to incorporate into rational enzyme engineering strategies. Here, we report the engineering of hot-spots in loops of the cumene dioxygenase from Pseudomonas fluorescens IP01 with high impact on activity, regio- and enantioselectivity. Libraries based on alanine scan, sequence alignments, and deletions along with a novel insertion approach result in up to 16-fold increases in activity and the formation of novel products and enantiomers. CAVER analysis suggests possible increases in the active pocket volume and formation of new active-site tunnels, suggesting additional degrees of freedom of the substrate in the pocket. The combination of identified hot-spots with the Linker In Loop Insertion approach proves to be a valuable addition to future loop engineering approaches for enhanced biocatalysts.
Collapse
Affiliation(s)
- Peter M Heinemann
- Institute of Biochemistry and Technical Biochemistry, Department of Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Daniel Armbruster
- Institute of Biochemistry and Technical Biochemistry, Department of Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Bernhard Hauer
- Institute of Biochemistry and Technical Biochemistry, Department of Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
5
|
Carrillo-Campos J. Estructura y función de las oxigenasas tipo Rieske/mononuclear. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2019. [DOI: 10.22201/fesz.23958723e.2019.0.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Las oxigenasas Rieske/mononuclear son un grupo de metaloenzimas que catalizan la oxidación de una variedad de compuestos, destaca su participación en la degradación de compuestos xenobióticos contaminantes; estas enzimas también participan en la biosíntesis de algunos compuestos de interés comercial. Poseen una amplia especificidad por el sustrato, convirtiéndolas en un grupo de enzimas con un alto potencial de aplicación en procesos biotecnológicos que hasta el momento no ha sido explotado. La presente revisión aborda aspectos generales acerca de la función y estructura de este importante grupo de enzimas.
Collapse
|
6
|
Engineered 3-Ketosteroid 9α-Hydroxylases in Mycobacterium neoaurum: an Efficient Platform for Production of Steroid Drugs. Appl Environ Microbiol 2018; 84:AEM.02777-17. [PMID: 29728384 DOI: 10.1128/aem.02777-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/27/2018] [Indexed: 02/04/2023] Open
Abstract
3-Ketosteroid 9α-hydroxylase (Ksh) consists of a terminal oxygenase (KshA) and a ferredoxin reductase and is indispensable in the cleavage of steroid nucleus in microorganisms. The activities of Kshs are crucial factors in determining the yield and distribution of products in the biotechnological transformation of sterols in industrial applications. In this study, two KshA homologues, KshA1N and KshA2N, were characterized and further engineered in a sterol-digesting strain, Mycobacterium neoaurum ATCC 25795, to construct androstenone-producing strains. kshA1 N is a member of the gene cluster encoding sterol catabolism enzymes, and its transcription exhibited a 4.7-fold increase under cholesterol induction. Furthermore, null mutation of kshA1 N led to the stable accumulation of androst-4-ene-3,17-dione (AD) and androst-1,4-diene-3,17-dione (ADD). We determined kshA2 N to be a redundant form of kshA1 N Through a combined modification of kshA1 N, kshA2 N, and other key genes involved in the metabolism of sterols, we constructed a high-yield ADD-producing strain that could produce 9.36 g liter-1 ADD from the transformation of 20 g liter-1 phytosterols in 168 h. Moreover, we improved a previously established 9α-hydroxy-AD-producing strain via the overexpression of a mutant KshA1N that had enhanced Ksh activity. Genetic engineering allowed the new strain to produce 11.7 g liter-1 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) from the transformation of 20.0 g liter-1 phytosterol in 120 h.IMPORTANCE Steroidal drugs are widely used for anti-inflammation, anti-tumor action, endocrine regulation, and fertility management, among other uses. The two main starting materials for the industrial synthesis of steroid drugs are phytosterol and diosgenin. The phytosterol processing is carried out by microbial transformation, which is thought to be superior to the diosgenin processing by chemical conversions, given its simple and environmentally friendly process. However, diosgenin has long been used as the primary starting material instead of phytosterol. This is in response to challenges in developing efficient microbial strains for industrial phytosterol transformation, which stem from complex metabolic processes that feature many currently unclear details. In this study, we identified two oxygenase homologues of 3-ketosteroid-9α-hydroxylase, KshA1N and KshA2N, in M. neoaurum and demonstrated their crucial role in determining the yield and variety of products from phytosterol transformation. This work has practical value in developing industrial strains for phytosterol biotransformation.
Collapse
|
7
|
Kijima K, Mita H, Kawakami M, Amada K. Role of CadC and CadD in the 2,4-dichlorophenoxyacetic acid oxygenase system of Sphingomonas agrestis 58-1. J Biosci Bioeng 2018; 125:649-653. [PMID: 29398549 DOI: 10.1016/j.jbiosc.2018.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/05/2017] [Accepted: 01/05/2018] [Indexed: 12/01/2022]
Abstract
In the present study, we confirm that 2,4-dichlorophenoxyacetic acid (2,4-D) oxygenase from Sphingomonas agrestis 58-1 belongs to the family of Rieske non-heme iron aromatic ring-hydroxylating oxygenases, which comprise a core enzyme (oxygenase), ferredoxin, and oxidoreductase. It has previously been shown that cadAB genes are necessary for the conversion of 2,4-D to 2,4-dichlorophenol; however, the respective roles of ferredoxin and oxidoreductase in the 2,4-D oxygenase system from S. agrestis 58-1 remain unknown. Using nucleotide sequence analysis of the plasmid pCADAB1 from Sphingomonas sp. ERG5, which degrades 4-chloro-2-methylphenoxyacetic acid and 2,4-D, Nielsen et al. identified orf95, upstream of cadA, and orf98, downstream of cadB, which were predicted and designated as cadD (oxidoreductase) and cadC (ferredoxin), respectively (Nielsen et al., PLoS One, 8, e83346, 2013). These designations were the result of sequence analysis; therefore, we constructed an expression system of CadABC and CadABCD in Escherichia coli and assayed their enzyme activities. Our findings indicate that CadC is essential for the activity of 2,4-D oxygenase and CadD promotes CadABC activity in recombinant E. coli cells.
Collapse
Affiliation(s)
- Kumiko Kijima
- Division of Material Science and Production Engineering, Graduate School of Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-Higashi, Higashi, Fukuoka 811-0295, Japan
| | - Hajime Mita
- Department of Life, Environment and Material Science, Faculty of Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-Higashi, Higashi, Fukuoka 811-0295, Japan
| | - Mitsuyasu Kawakami
- Department of Life, Environment and Material Science, Faculty of Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-Higashi, Higashi, Fukuoka 811-0295, Japan
| | - Kei Amada
- Department of Life, Environment and Material Science, Faculty of Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-Higashi, Higashi, Fukuoka 811-0295, Japan.
| |
Collapse
|
8
|
Chakraborty J, Suzuki-Minakuchi C, Okada K, Nojiri H. Thermophilic bacteria are potential sources of novel Rieske non-heme iron oxygenases. AMB Express 2017; 7:17. [PMID: 28050858 PMCID: PMC5209329 DOI: 10.1186/s13568-016-0318-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/23/2016] [Indexed: 11/10/2022] Open
Abstract
Rieske non-heme iron oxygenases, which have a Rieske-type [2Fe-2S] cluster and a non-heme catalytic iron center, are an important family of oxidoreductases involved mainly in regio- and stereoselective transformation of a wide array of aromatic hydrocarbons. Though present in all domains of life, the most widely studied Rieske non-heme iron oxygenases are found in mesophilic bacteria. The present study explores the potential for isolating novel Rieske non-heme iron oxygenases from thermophilic sources. Browsing the entire bacterial genome database led to the identification of 45 homologs from thermophilic bacteria distributed mainly among Chloroflexi, Deinococcus-Thermus and Firmicutes. Thermostability, measured according to the aliphatic index, showed higher values for certain homologs compared with their mesophilic relatives. Prediction of substrate preferences indicated that a wide array of aromatic hydrocarbons could be transformed by most of the identified oxygenase homologs. Further identification of putative genes encoding components of a functional oxygenase system opens up the possibility of reconstituting functional thermophilic Rieske non-heme iron oxygenase systems with novel properties.
Collapse
|
9
|
Vila MA, Umpiérrez D, Veiga N, Seoane G, Carrera I, Rodríguez Giordano S. Site-Directed Mutagenesis Studies on the Toluene Dioxygenase Enzymatic System: Role of Phenylalanine 366, Threonine 365 and Isoleucine 324 in the Chemo-, Regio-, and Stereoselectivity. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- María Agustina Vila
- Laboratorio de Biocatálisis y Biotransformaciones; Departamento de Química Orgánica-Departamento de Biociencias; Facultad de Química; Universidad de la República; Montevideo Uruguay
| | - Diego Umpiérrez
- Laboratorio de Biocatálisis y Biotransformaciones; Departamento de Química Orgánica-Departamento de Biociencias; Facultad de Química; Universidad de la República; Montevideo Uruguay
| | - Nicolás Veiga
- Química Inorgánica, Departamento Estrella Campos; Facultad de Química; Universidad de la República; Montevideo Uruguay
| | - Gustavo Seoane
- Laboratorio de Biocatálisis y Biotransformaciones; Departamento de Química Orgánica-Departamento de Biociencias; Facultad de Química; Universidad de la República; Montevideo Uruguay
| | - Ignacio Carrera
- Laboratorio de Biocatálisis y Biotransformaciones; Departamento de Química Orgánica-Departamento de Biociencias; Facultad de Química; Universidad de la República; Montevideo Uruguay
| | - Sonia Rodríguez Giordano
- Laboratorio de Biocatálisis y Biotransformaciones; Departamento de Química Orgánica-Departamento de Biociencias; Facultad de Química; Universidad de la República; Montevideo Uruguay
| |
Collapse
|
10
|
Electron Transport in a Dioxygenase-Ferredoxin Complex: Long Range Charge Coupling between the Rieske and Non-Heme Iron Center. PLoS One 2016; 11:e0162031. [PMID: 27656882 PMCID: PMC5033481 DOI: 10.1371/journal.pone.0162031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 08/16/2016] [Indexed: 11/19/2022] Open
Abstract
Dioxygenase (dOx) utilizes stereospecific oxidation on aromatic molecules; consequently, dOx has potential applications in bioremediation and stereospecific oxidation synthesis. The reactive components of dOx comprise a Rieske structure Cys2[2Fe-2S]His2 and a non-heme reactive oxygen center (ROC). Between the Rieske structure and the ROC, a universally conserved Asp residue appears to bridge the two structures forming a Rieske-Asp-ROC triad, where the Asp is known to be essential for electron transfer processes. The Rieske and ROC share hydrogen bonds with Asp through their His ligands; suggesting an ideal network for electron transfer via the carboxyl side chain of Asp. Associated with the dOx is an itinerant charge carrying protein Ferredoxin (Fdx). Depending on the specific cognate, Fdx may also possess either the Rieske structure or a related structure known as 4-Cys-[2Fe-2S] (4-Cys). In this study, we extensively explore, at different levels of theory, the behavior of the individual components (Rieske and ROC) and their interaction together via the Asp using a variety of density function methods, basis sets, and a method known as Generalized Ionic Fragment Approach (GIFA) that permits setting up spin configurations manually. We also report results on the 4-Cys structure for comparison. The individual optimized structures are compared with observed spectroscopic data from the Rieske, 4-Cys and ROC structures (where information is available). The separate pieces are then combined together into a large Rieske-Asp-ROC (donor/bridge/acceptor) complex to estimate the overall coupling between individual components, based on changes to the partial charges. The results suggest that the partial charges are significantly altered when Asp bridges the Rieske and the ROC; hence, long range coupling through hydrogen bonding effects via the intercalated Asp bridge can drastically affect the partial charge distributions compared to the individual isolated structures. The results are consistent with a proton coupled electron transfer mechanism.
Collapse
|
11
|
Hayashi S, Sano T, Suyama K, Itoh K. 2,4-Dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading gene cluster in the soybean root-nodulating bacterium Bradyrhizobium elkanii USDA94. Microbiol Res 2016; 188-189:62-71. [PMID: 27296963 DOI: 10.1016/j.micres.2016.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
Herbicides 2,4-dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading Bradyrhizobium strains possess tfdAα and/or cadABC as degrading genes. It has been reported that root-nodulating bacteria belonging to Bradyrhizobium elkanii also have tfdAα and cadA like genes but lack the ability to degrade these herbicides and that the cadA genes in 2,4-D-degrading and non-degrading Bradyrhizobium are phylogenetically different. In this study, we identified cadRABCK in the genome of a type strain of soybean root-nodulating B. elkanii USDA94 and demonstrated that the strain could degrade the herbicides when cadABCK was forcibly expressed. cadABCK-cloned Escherichia coli also showed the degrading ability. Because co-spiked phenoxyacetic acid (PAA) could induce the degradation of 2,4-D in B. elkanii USDA94, the lack of degrading ability in this strain was supposed to be due to the low inducing potential of the herbicides for the degrading gene cluster. On the other hand, tfdAα from B. elkanii USDA94 showed little potential to degrade the herbicides, but it did for 4-chlorophenoxyacetic acid and PAA. The 2,4-D-degrading ability of the cad cluster and the inducing ability of PAA were confirmed by preparing cadA deletion mutant. This is the first study to demonstrate that the cad cluster in the typical root-nodulating bacterium indeed have the potential to degrade the herbicides, suggesting that degrading genes for anthropogenic compounds could be found in ordinary non-degrading bacteria.
Collapse
Affiliation(s)
- Shohei Hayashi
- Faculty of Life and Environmental Science, Shimane University 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Tomoki Sano
- Faculty of Life and Environmental Science, Shimane University 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Kousuke Suyama
- Faculty of Life and Environmental Science, Shimane University 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Kazuhito Itoh
- Faculty of Life and Environmental Science, Shimane University 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
12
|
Theoretical Model of the Structure and the Reaction Mechanisms of Sulfur Oxygenase Reductase in Acidithiobacillus thiooxidans. ACTA ACUST UNITED AC 2015. [DOI: 10.4028/www.scientific.net/amr.1130.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfur oxygenase reductase (SOR), which is thought to be an important enzyme involved in sulfur oxidation in many microorganisms, may play a key role in sulfur oxidation in Acidithiobacillusthiooxidans. Draft genome sequence of A. thiooxidans A01 indicated the presence of sulfur oxygenase reductase gene (sor). The complementary DNA fragment was speculated to encode a putative 311-aa full-length protein SOR. Structural analysis of SOR revealed that three cysteines located in the two conserved domains, C32 at V-G-P-K-V-C32 as well as C102 and C105 at C102-X-X-C105, might form the substrate activation and binding site. It was proposed that conserved motif H87-X3-H91-X23-E115 acted as ligands might combine with iron atom to constitute a mononuclear non-heme iron center, catalyzing the oxidation reaction of substrate.
Collapse
|
13
|
Khara P, Roy M, Chakraborty J, Ghosal D, Dutta TK. Functional characterization of diverse ring-hydroxylating oxygenases and induction of complex aromatic catabolic gene clusters in Sphingobium sp. PNB. FEBS Open Bio 2014; 4:290-300. [PMID: 24918041 PMCID: PMC4048848 DOI: 10.1016/j.fob.2014.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/03/2014] [Accepted: 03/03/2014] [Indexed: 11/27/2022] Open
Abstract
Sphingobium sp. PNB, like other sphingomonads, has multiple ring-hydroxylating oxygenase (RHO) genes. Three different fosmid clones have been sequenced to identify the putative genes responsible for the degradation of various aromatics in this bacterial strain. Comparison of the map of the catabolic genes with that of different sphingomonads revealed a similar arrangement of gene clusters that harbors seven sets of RHO terminal components and a sole set of electron transport (ET) proteins. The presence of distinctly conserved amino acid residues in ferredoxin and in silico molecular docking analyses of ferredoxin with the well characterized terminal oxygenase components indicated the structural uniqueness of the ET component in sphingomonads. The predicted substrate specificities, derived from the phylogenetic relationship of each of the RHOs, were examined based on transformation of putative substrates and their structural homologs by the recombinant strains expressing each of the oxygenases and the sole set of available ET proteins. The RHO AhdA1bA2b was functionally characterized for the first time and was found to be capable of transforming ethylbenzene, propylbenzene, cumene, p-cymene and biphenyl, in addition to a number of polycyclic aromatic hydrocarbons. Overexpression of aromatic catabolic genes in strain PNB, revealed by real-time PCR analyses, is a way forward to understand the complex regulation of degradative genes in sphingomonads.
Collapse
Affiliation(s)
| | | | | | | | - Tapan K. Dutta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VII M, Kolkata 700054, India
| |
Collapse
|
14
|
Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc Natl Acad Sci U S A 2014; 111:4268-73. [PMID: 24591617 DOI: 10.1073/pnas.1316569111] [Citation(s) in RCA: 270] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dietary intake of L-carnitine can promote cardiovascular diseases in humans through microbial production of trimethylamine (TMA) and its subsequent oxidation to trimethylamine N-oxide by hepatic flavin-containing monooxygenases. Although our microbiota are responsible for TMA formation from carnitine, the underpinning molecular and biochemical mechanisms remain unclear. In this study, using bioinformatics approaches, we first identified a two-component Rieske-type oxygenase/reductase (CntAB) and associated gene cluster proposed to be involved in carnitine metabolism in representative genomes of the human microbiota. CntA belongs to a group of previously uncharacterized Rieske-type proteins and has an unusual "bridging" glutamate but not the aspartate residue, which is believed to facilitate intersubunit electron transfer between the Rieske center and the catalytic mononuclear iron center. Using Acinetobacter baumannii as the model, we then demonstrate that cntAB is essential in carnitine degradation to TMA. Heterologous overexpression of cntAB enables Escherichia coli to produce TMA, confirming that these genes are sufficient in TMA formation. Site-directed mutagenesis experiments have confirmed that this unusual "bridging glutamate" residue in CntA is essential in catalysis and neither mutant (E205D, E205A) is able to produce TMA. Taken together, the data in our study reveal the molecular and biochemical mechanisms underpinning carnitine metabolism to TMA in human microbiota and assign the role of this novel group of Rieske-type proteins in microbial carnitine metabolism.
Collapse
|
15
|
|
16
|
Site-specific mutagenesis and functional analysis of active sites of sulfur oxygenase reductase from Gram-positive moderate thermophile Sulfobacillus acidophilus TPY. Microbiol Res 2013; 168:654-60. [PMID: 23726793 DOI: 10.1016/j.micres.2013.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/03/2013] [Accepted: 04/13/2013] [Indexed: 11/23/2022]
Abstract
Sequence alignments revealed that the conserved motifs of SORSa which formed an independent branch between archaea and Gram-negative bacteria SORs according to the phylogenetic relationship were similar with the archaea and Gram-negative bacteria SORs. In order to investigate the active sites of SORSa, cysteines 31, 101 and 104 (C31, C101, C104), histidines 86 and 90 (H86 and H90) and glutamate 114 (E114) of SORSa were chosen as the target amino acid residues for site-specific mutagenesis. The wild type and six mutant SORs were expressed in E. coli BL21, purified and confirmed by SDS-PAGE and Western blotting analysis. Enzyme activity determination revealed that the active sites of SORSa were identical with the archaea and Gram-negative bacteria SORs reported. Replacement of any cysteine residues reduced SOR activity by 53-100%, while the mutants of H86A, H90A and E114A lost their enzyme activities largely, only remaining 20%, 19% and 32% activity of the wild type SOR respectively. This study will enrich our awareness for active sites of SOR in a Gram-positive bacterium.
Collapse
|
17
|
Chakraborty J, Ghosal D, Dutta A, Dutta TK. An insight into the origin and functional evolution of bacterial aromatic ring-hydroxylating oxygenases. J Biomol Struct Dyn 2012; 30:419-36. [PMID: 22694139 DOI: 10.1080/07391102.2012.682208] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Bacterial aromatic ring-hydroxylating oxygenases (RHOs) are multicomponent enzyme systems which have potential utility in bioremediation of aromatic compounds in the environment. To cope with the enormous diversity of aromatic compounds in the environment, this enzyme family has evolved remarkably exhibiting broad substrate specificity. RHOs are multicomponent enzymes comprising of a homo- or hetero-multimeric terminal oxygenase and one or more electron transport (ET) protein(s). The present study attempts in depicting the evolutionary scenarios that might have occurred during the evolution of RHOs, by analyzing a set of available sequences including those obtained from complete genomes. A modified classification scheme identifying four new RHO types has been suggested on the basis of their evolutionary and functional behaviours, in relation to structural configuration of substrates and preferred oxygenation site(s). The present scheme emphasizes on the fact that the phylogenetic affiliation of RHOs is distributed among four distinct 'Similarity classes', independent of the constituent ET components. Similar combination of RHO components that was previously considered to be equivalent and classified together [Kweon et al., BMC Biochemistry 9, 11 (2008)] were found here in distinct similarity classes indicating the role of substrate-binding terminal oxygenase in guiding the evolution of RHOs irrespective of the nature of constituent ET components. Finally, a model for evolution of the multicomponent RHO enzyme system has been proposed, beginning from genesis of the terminal oxygenase components followed by recruitment of constituent ET components, finally evolving into various 'extant' RHO types.
Collapse
|
18
|
Yoshiyama-Yanagawa T, Enya S, Shimada-Niwa Y, Yaguchi S, Haramoto Y, Matsuya T, Shiomi K, Sasakura Y, Takahashi S, Asashima M, Kataoka H, Niwa R. The conserved Rieske oxygenase DAF-36/Neverland is a novel cholesterol-metabolizing enzyme. J Biol Chem 2011; 286:25756-62. [PMID: 21632547 DOI: 10.1074/jbc.m111.244384] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroid hormones play essential roles in a wide variety of biological processes in multicellular organisms. The principal steroid hormones in nematodes and arthropods are dafachronic acids and ecdysteroids, respectively, both of which are synthesized from cholesterol as an indispensable precursor. The first critical catalytic step in the biosynthesis of these ecdysozoan steroids is the conversion of cholesterol to 7-dehydrocholesterol. However, the enzymes responsible for cholesterol 7,8-dehydrogenation remain unclear at the molecular level. Here we report that the Rieske oxygenase DAF-36/Neverland (Nvd) is a cholesterol 7,8-dehydrogenase. The daf-36/nvd genes are evolutionarily conserved, not only in nematodes and insects but also in deuterostome species that do not produce dafachronic acids or ecdysteroids, including the sea urchin Hemicentrotus pulcherrimus, the sea squirt Ciona intestinalis, the fish Danio rerio, and the frog Xenopus laevis. An in vitro enzymatic assay system reveals that all DAF-36/Nvd proteins cloned so far have the ability to convert cholesterol to 7-dehydrocholesterol. Moreover, the lethality of loss of nvd function in the fruit fly Drosophila melanogaster is rescued by the expression of daf-36/nvd genes from the nematode Caenorhabditis elegans, the insect Bombyx mori, or the vertebrates D. rerio and X. laevis. These data suggest that daf-36/nvd genes are functionally orthologous across the bilaterian phylogeny. We propose that the daf-36/nvd family of proteins is a novel conserved player in cholesterol metabolism across the animal phyla.
Collapse
Affiliation(s)
- Takuji Yoshiyama-Yanagawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
George KW, Kagle J, Junker L, Risen A, Hay AG. Growth of Pseudomonas putida F1 on styrene requires increased catechol-2,3-dioxygenase activity, not a new hydrolase. Microbiology (Reading) 2011; 157:89-98. [DOI: 10.1099/mic.0.042531-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas putida F1 cannot grow on styrene despite being able to degrade it through the toluene degradation (tod) pathway. Previous work had suggested that this was because TodF, the meta-fission product (MFP) hydrolase, was unable to metabolize the styrene MFP 2-hydroxy-6-vinylhexa-2,4-dienoate. Here we demonstrate via kinetic and growth analyses that the substrate specificity of TodF is not the limiting factor preventing F1 from growing on styrene. Rather, we found that the metabolite 3-vinylcatechol accumulated during styrene metabolism and that micromolar concentrations of this intermediate inactivated TodE, the catechol-2,3-dioxygenase (C23O) responsible for its cleavage. Analysis of cells growing on styrene suggested that inactivation of TodE and the subsequent accumulation of 3-vinylcatechol resulted in toxicity and cell death. We found that simply overexpressing TodE on a plasmid (pTodE) was all that was necessary to allow F1 to grow on styrene. Similar results were also obtained by expressing a related C23O, DmpB from Pseudomonas sp. CF600, in tandem with its plant-like ferredoxin, DmpQ (pDmpQB). Further analysis revealed that the ability of F1 (pDmpQB) and F1 (pTodE) to grow on styrene correlated with increased C23O activity as well as resistance of the enzyme to 3-vinylcatechol-mediated inactivation. Although TodE inactivation by 3-halocatechols has been studied before, to our knowledge, this is the first published report demonstrating inactivation by a 3-vinylcatechol. Given the ubiquity of catechol intermediates in aromatic hydrocarbon metabolism, our results further demonstrate the importance of C23O inactivation as a determinant of growth substrate specificity.
Collapse
Affiliation(s)
- Kevin W. George
- Department of Microbiology, Cornell University Ithaca, NY 14850, USA
- Field of Environmental Toxicology, Cornell University Ithaca, NY 14850, USA
| | - Jeanne Kagle
- Department of Microbiology, Cornell University Ithaca, NY 14850, USA
| | - Lauren Junker
- Department of Microbiology, Cornell University Ithaca, NY 14850, USA
| | - Amy Risen
- Department of Microbiology, Cornell University Ithaca, NY 14850, USA
- Field of Environmental Toxicology, Cornell University Ithaca, NY 14850, USA
| | - Anthony G. Hay
- Department of Microbiology, Cornell University Ithaca, NY 14850, USA
- Field of Environmental Toxicology, Cornell University Ithaca, NY 14850, USA
| |
Collapse
|
20
|
Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH. A profile of ring-hydroxylating oxygenases that degrade aromatic pollutants. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 206:65-94. [PMID: 20652669 DOI: 10.1007/978-1-4419-6260-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Numerous aromatic compounds are pollutants to which exposure exists or is possible, and are of concern because they are mutagenic, carcinogenic, or display other toxic characteristics. Depending on the types of dioxygenation reactions of which microorganisms are capable, they utilize ring-hydroxylating oxygenases (RHOs) to initiate the degradation and detoxification of such aromatic compound pollutants. Gene families encoding for RHOs appear to be most common in bacteria. Oxygenases are important in degrading both natural and synthetic aromatic compounds and are particularly important for their role in degrading toxic pollutants; for this reason, it is useful for environmental scientists and others to understand more of their characteristics and capabilities. It is the purpose of this review to address RHOs and to describe much of their known character, starting with a review as to how RHOs are classified. A comprehensive phylogenetic analysis has revealed that all RHOs are, in some measure, related, presumably by divergent evolution from a common ancestor, and this is reflected in how they are classified. After we describe RHO classification schemes, we address the relationship between RHO structure and function. Structural differences affect substrate specificity and product formation. In the alpha subunit of the known terminal oxygenase of RHOs, there is a catalytic domain with a mononuclear iron center that serves as a substrate-binding site and a Rieske domain that retains a [2Fe-2S] cluster that acts as an entity of electron transfer for the mononuclear iron center. Oxygen activation and substrate dihydroxylation occurring at the catalytic domain are dependent on the binding of substrate at the active site and the redox state of the Rieske center. The electron transfer from NADH to the catalytic pocket of RHO and catalyzing mechanism of RHOs is depicted in our review and is based on the results of recent studies. Electron transfer involving the RHO system typically involves four steps: NADH-ferredoxin reductase receives two electrons from NADH; ferredoxin binds with NADH-ferredoxin reductase and accepts electron from it; the reduced ferredoxin dissociates from NADH-ferredoxin reductase and shuttles the electron to the Rieske domain of the terminal oxygenase; the Rieske cluster donates electrons to O2 through the mononuclear iron. On the basis of crystal structure studies, it has been proposed that the broad specificity of the RHOs results from the large size and specific topology of its hydrophobic substrate-binding pocket. Several amino acids that determine the substrate specificity and enantioselectivity of RHOs have been identified through sequence comparison and site-directed mutagenesis at the active site. Exploiting the crystal structure data and the available active site information, engineered RHO enzymes have been and can be designed to improve their capacity to degrade environmental pollutants. Such attempts to enhance degradation capabilities of RHOs have been made. Dioxygenases have been modified to improve the degradation capacities toward PCBs, PAHs, dioxins, and some other aromatic hydrocarbons. We hope that the results of this review and future research on enhancing RHOs will promote their expanded usage and effectiveness for successfully degrading environmental aromatic pollutants.
Collapse
Affiliation(s)
- Ri-He Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Distal end of 105-125 loop--a putative reductase binding domain of phthalate dioxygenase. Arch Biochem Biophys 2009; 487:10-8. [PMID: 19464996 DOI: 10.1016/j.abb.2009.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/14/2009] [Accepted: 05/17/2009] [Indexed: 11/21/2022]
Abstract
The phthalate dioxygenase system consists of the dioxygenase, PDO, which contains a Rieske [2Fe-2S] center and a Fe(II)-mononuclear center, and the reductase, PDR. Involvement of the distal end of the 105-125 loop of PDO in its interaction with PDR was tested by substituting charged residues in the loop with alanines and by replacing the conserved tryptophan-94. Compared to wild-type PDO, all variants had lower catalytic activity and the Rieske centers were reduced more slowly by reduced PDR. The rates of oxidation of the Rieske centers by oxygen, which represent electron transfer between the Rieske and mononuclear centers, were essentially unaffected. These results suggest that positively charged residues of the distal end of the 105-125 loop are collectively involved in PDR binding with the PDO. Contrary to expectations, Trp94 variants were not directly involved in electron transfer between PDR and PDO. The tryptophan appears to have mainly a structural role, apparently preserving the hydrophilic environment of the Rieske center.
Collapse
|
22
|
Pathway and evolutionary implications of diphenylamine biodegradation by Burkholderia sp. strain JS667. Appl Environ Microbiol 2009; 75:2694-704. [PMID: 19251893 DOI: 10.1128/aem.02198-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diphenylamine (DPA) is a common contaminant at munitions-contaminated sites as well as at aniline manufacturing sites. Little is known about the biodegradation of the compound, and bacteria able to use DPA as the growth substrate have not been reported. Burkholderia sp. strain JS667 and Ralstonia sp. strain JS668 were isolated by selective enrichment from DPA-contaminated sediment. The isolates grew aerobically with DPA as the sole carbon, nitrogen, and energy source. During induction of DPA degradation, stoichiometric amounts of aniline accumulated and then disappeared, which suggested that aniline is on the DPA degradation pathway. Genes encoding the enzymes that catalyze the initial steps in DPA degradation were cloned from the genomic DNA of strain JS667. The Escherichia coli clone catalyzed stoichiometric transformation of DPA to aniline and catechol. Transposon mutagenesis, the sequence similarity of putative open reading frames to those of well-characterized dioxygenases, and (18)O(2) experiments support the conclusion that the initial reaction in DPA degradation is catalyzed by a multicomponent ring-hydroxylating dioxygenase. DPA is converted to aniline and catechol via dioxygenation at the 1,2 position of the aromatic ring and spontaneous rearomatization. Aniline and catechol are further biodegraded by the well-established aniline degradation pathway. Genes that encode the complete aniline degradation pathway were found 12 kb downstream of the genes that encode the initial dioxygenase. Expression of the relevant dioxygenases was confirmed by reverse transcription-PCR analysis. Both the sequence similarity and the gene organization suggest that the DPA degradation pathway evolved recently by the recruitment of two gene clusters that encode the DPA dioxygenase and aniline degradation pathway.
Collapse
|
23
|
Chen Z, Jiang C, Liu S. Site-directed mutagenesis reveals new and essential elements for iron-coordination of the sulfur oxygenase reductase from the acidothermophilic Acidianus tengchongensis. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11434-009-0060-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Friemann R, Lee K, Brown EN, Gibson DT, Eklund H, Ramaswamy S. Structures of the multicomponent Rieske non-heme iron toluene 2,3-dioxygenase enzyme system. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:24-33. [PMID: 19153463 PMCID: PMC2628974 DOI: 10.1107/s0907444908036524] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 11/06/2008] [Indexed: 11/14/2022]
Abstract
Bacterial Rieske non-heme iron oxygenases catalyze the initial hydroxylation of aromatic hydrocarbon substrates. The structures of all three components of one such system, the toluene 2,3-dioxygenase system, have now been determined. This system consists of a reductase, a ferredoxin and a terminal dioxygenase. The dioxygenase, which was cocrystallized with toluene, is a heterohexamer containing a catalytic and a structural subunit. The catalytic subunit contains a Rieske [2Fe-2S] cluster and mononuclear iron at the active site. This iron is not strongly bound and is easily removed during enzyme purification. The structures of the enzyme with and without mononuclear iron demonstrate that part of the structure is flexible in the absence of iron. The orientation of the toluene substrate in the active site is consistent with the regiospecificity of oxygen incorporation seen in the product formed. The ferredoxin is Rieske type and contains a [2Fe-2S] cluster close to the protein surface. The reductase belongs to the glutathione reductase family of flavoenzymes and consists of three domains: an FAD-binding domain, an NADH-binding domain and a C-terminal domain. A model for electron transfer from NADH via FAD in the reductase and the ferredoxin to the terminal active-site mononuclear iron of the dioxygenase is proposed.
Collapse
Affiliation(s)
- Rosmarie Friemann
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala, Sweden
| | - Kyoung Lee
- Department of Microbiology, Changwon National University, Changwon, Kyoungnam 641-773, Republic of Korea
- Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Eric N. Brown
- Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242, USA
| | - David T. Gibson
- Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Hans Eklund
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala, Sweden
| | - S. Ramaswamy
- Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
25
|
Characterization of a second Rhodococcus erythropolis SQ1 3-ketosteroid 9alpha-hydroxylase activity comprising a terminal oxygenase homologue, KshA2, active with oxygenase-reductase component KshB. Appl Environ Microbiol 2008; 74:7197-203. [PMID: 18836008 DOI: 10.1128/aem.00888-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously we have characterized 3-ketosteroid 9alpha-hydroxylase (KSH), a key enzyme in microbial steroid degradation in Rhodococcus erythropolis strain SQ1, as a two-component iron-sulfur monooxygenase, comprised of the terminal oxygenase component KshA1 and the oxygenase-reductase component KshB. Deletion of the kshA1 gene resulted in the loss of the ability of mutant strain RG2 to grow on the steroid substrate 4-androstene-3,17-dione (AD). Here we report characteristics of a close KshA1 homologue, KshA2 of strain SQ1, sharing 60% identity at the amino acid level. Expression of the kshA2 gene in mutant strain RG2 restored growth on AD and ADD, indicating that kshA2 also encodes KSH activity. The functional complementation was shown to be dependent on the presence of kshB. Transcriptional analysis showed that expression of kshA2 is induced in parent strain R. erythropolis SQ1 in the presence of AD. However, promoter activity studies, using beta-lactamase of Escherichia coli as a convenient transcription reporter protein for Rhodococcus, revealed that the kshA2 promoter in fact is highly induced in the presence of 9alpha-hydroxy-4-androstene-3,17-dione (9OHAD) or a metabolite thereof. Inactivation of kshA2 in parent strain SQ1 by unmarked gene deletion did not affect growth on 9OHAD, cholesterol, or cholic acid. We speculate that KshA2 plays a role in preventing accumulation of toxic intracellular concentrations of ADD during steroid catabolism. A third kshA homologue was additionally identified in a kshA1 kshA2 double gene deletion mutant strain of R. erythropolis SQ1. The developed degenerate PCR primers for kshA may be useful for isolation of kshA homologues from other (actino) bacteria.
Collapse
|
26
|
Parales RE, Parales JV, Pelletier DA, Ditty JL. Diversity of microbial toluene degradation pathways. ADVANCES IN APPLIED MICROBIOLOGY 2008; 64:1-73, 2 p following 264. [PMID: 18485280 DOI: 10.1016/s0065-2164(08)00401-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- R E Parales
- Department of Microbiology, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
27
|
Tarasev M, Kaddis CS, Yin S, Loo JA, Burgner J, Ballou DP. Similar enzymes, different structures: phthalate dioxygenase is an alpha3alpha3 stacked hexamer, not an alpha3beta3 trimer like "normal" Rieske oxygenases. Arch Biochem Biophys 2007; 466:31-9. [PMID: 17764654 PMCID: PMC2084370 DOI: 10.1016/j.abb.2007.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 07/05/2007] [Accepted: 07/06/2007] [Indexed: 11/24/2022]
Abstract
Phthalate dioxygenase (PDO) is a member of a class of bacterial oxygenases that contain both Rieske [2Fe-2S] and Fe(II) mononuclear centers. Recent crystal structures of several Rieske dioxygenases showed that they exist as alpha(3)beta(3) multimers with subunits arranged head-to-tail in alpha and beta stacked planar rings. The structure of PDO, which consists of only alpha-subunits, remains to be solved. Although similar to other Rieske dioxygenases in many aspects, PDO was shown to differ in the mechanism of catalysis. Gel filtration and analytical centrifugation experiments, supplemented with mass spectrometric analysis (both ESI-MS and ESI-GEMMA), in this work showed a hexameric arrangement of subunits in the PDO multimer. Our proposed model for the subunit arrangement in PDO postulates two alpha(3) planar rings one on top the other, similar to the alpha(3)beta(3) arrangement in other Rieske dioxygenases. Unlike other Rieske dioxygenases, this arrangement brings two Rieske and two mononuclear centers, all on separate subunits, into proximity, allowing their cooperation for catalysis. Potential reasons necessitating this unusual structural arrangement are discussed.
Collapse
Affiliation(s)
- Michael Tarasev
- Department of Biological Chemistry, University of Michigan, 1301 Catherine Street, Ann Arbor, MI 48109-0606, USA
| | | | | | | | | | | |
Collapse
|
28
|
Yoshiyama T, Namiki T, Mita K, Kataoka H, Niwa R. Neverland is an evolutionally conserved Rieske-domain protein that is essential for ecdysone synthesis and insect growth. Development 2007; 133:2565-74. [PMID: 16763204 DOI: 10.1242/dev.02428] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Steroid hormones mediate a wide variety of developmental and physiological events in multicellular organisms. During larval and pupal stages of insects, the principal steroid hormone is ecdysone, which is synthesized in the prothoracic gland (PG) and plays a central role in the control of development. Although many studies have revealed the biochemical features of ecdysone synthesis in the PG, many aspects of this pathway have remained unclear at the molecular level. We describe the neverland (nvd) gene, which encodes an oxygenase-like protein with a Rieske electron carrier domain, from the silkworm Bombyx mori and the fruitfly Drosophila melanogaster. nvd is expressed specifically in tissues that synthesize ecdysone, such as the PG. We also show that loss of nvd function in the PG causes arrest of both molting and growth during Drosophila development. Furthermore, the phenotype is rescued by application of 20-hydroxyecdysone or the precursor 7-dehydrocholesterol. Given that the nvd family is evolutionally conserved, these results suggest that Nvd is an essential regulator of cholesterol metabolism or trafficking in steroid synthesis across animal phyla.
Collapse
Affiliation(s)
- Takuji Yoshiyama
- Department of Integrated Biosciences, Rm201, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | |
Collapse
|
29
|
Andor A, Jekkel A, Hopwood DA, Jeanplong F, Ilkoy E, Kónya A, Kurucz I, Ambrus G. Generation of useful insertionally blocked sterol degradation pathway mutants of fast-growing mycobacteria and cloning, characterization, and expression of the terminal oxygenase of the 3-ketosteroid 9alpha-hydroxylase in Mycobacterium smegmatis mc(2)155. Appl Environ Microbiol 2006; 72:6554-9. [PMID: 17021205 PMCID: PMC1610287 DOI: 10.1128/aem.00941-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integration of the pCG79 temperature-sensitive plasmid carrying Tn611 was used to generate libraries of mutants with blocked sterol-transforming ability of the sterol-utilizing strains Mycobacterium smegmatis mc(2)155 and Mycobacterium phlei M51-Ept. Of the 10,000 insertional mutants screened from each library, 4 strains with altered activity of the sterol-degrading enzymes were identified. A blocked 4-androstene-3,17-dione-producing M. phlei mutant transformed sitosterol to 23,24-dinorcholane derivatives that are useful starting materials for corticosteroid syntheses. A recombinant plasmid, pFJ92, was constructed from the genomic DNA of one of the insertional mutants of M. smegmatis, 10A12, which was blocked in 3-ketosteroid 9alpha-hydroxylation and carrying the transposon insertion and flanking DNA sequences, and used to isolate a chromosomal fragment encoding the 9alpha-hydroxylase. The open reading frame encodes the 383-amino-acid terminal oxygenase of 3-ketosteroid 9alpha-hydroxylase in M. smegmatis mc(2)155 and has domains typically conserved in class IA terminal oxygenases. Escherichia coli containing the gene could hydroxylate the steroid ring at the 9alpha position.
Collapse
Affiliation(s)
- Attila Andor
- Institute for Drug Research Ltd., PO Box 82, H-1325 Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Tarasev M, Pinto A, Kim D, Elliott SJ, Ballou DP. The "bridging" aspartate 178 in phthalate dioxygenase facilitates interactions between the Rieske center and the iron(II)--mononuclear center. Biochemistry 2006; 45:10208-16. [PMID: 16922496 PMCID: PMC2546612 DOI: 10.1021/bi060219b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phthalate dioxygenase (PDO) and its reductase are parts of a two-component Rieske dioxygenase system that initiates the aerobic breakdown of phthalate by forming cis-4,5-dihydro-4,5-dihydroxyphthalate (DHD). Aspartate D178 in PDO, located near its ferrous mononuclear center, is highly conserved among Rieske dioxygenases. The analogous aspartate has been implicated in electron transfer between the mononuclear iron and Rieske center in naphthalene dioxygenase [Parales et al. (1999) J. Bacteriol. 181, 1831-1837] and in substrate binding and oxygen reactivity in anthranilate dioxygenase [Beharry et al. (2003) Biochemistry 42, 13625-13636]. The effects of substituting D178 in PDO with alanine or asparagine on the reactivity of the Rieske centers, phthalate hydroxylation, and coupling of Rieske center oxidation to DHD formation were studied previously [Pinto et al. (2006) Biochemistry 45, 9032-9041]. This work describes effects that D178N and D178A substitutions have on the interactions between the Rieske and mononuclear centers in PDO. The mutations affected protonation of the Rieske center histidine and conformation of subunits within the PDO multimer to create a more open structure with more solvent-accessible Rieske centers. When the Rieske centers in PDO were oxidized, D178N and D178A substitutions disrupted communication between the Rieske and Fe-mononuclear centers. This was shown by the lack of perturbations of the UV-vis spectra on phthalate binding to the D178N and D178A variants, as opposed to that observed in WT PDO. However, when the Rieske center was in the reduced state, communication between the centers was not disrupted. Phthalate binding similarly affected the rates of oxidation of the reduced Rieske center in both WT and mutant PDO. Nitric oxide binding at the Fe(II)-mononuclear center, as detected by EPR spectrometry of the Fe(II) nitrosyl complex, was regulated by the redox state of the Rieske center. When the Rieske center was oxidized in either WT or D178N PDO, NO bound to the mononuclear iron in the presence or absence of phthalate. However, when the Rieske center was reduced, NO bound only when phthalate was present. These findings are discussed in terms of the "communication functions" performed by the bridging Asp-178.
Collapse
Affiliation(s)
- Michael Tarasev
- Dept. of Biological Chemistry, University of Michigan, 1301 Catherine St., Ann Arbor, MI 48109-0606
| | - Alex Pinto
- Dept. of Biological Chemistry, University of Michigan, 1301 Catherine St., Ann Arbor, MI 48109-0606
| | - Duke Kim
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215
| | - Sean J. Elliott
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215
| | - David P. Ballou
- Dept. of Biological Chemistry, University of Michigan, 1301 Catherine St., Ann Arbor, MI 48109-0606
- To whom correspondence should be addressed. Phone: 734-764-9582; Fax: 734-764-3509
| |
Collapse
|
31
|
Suenaga H, Goto M, Furukawa K. Active-site engineering of biphenyl dioxygenase: effect of substituted amino acids on substrate specificity and regiospecificity. Appl Microbiol Biotechnol 2006; 71:168-76. [PMID: 16217654 DOI: 10.1007/s00253-005-0135-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 07/19/2005] [Accepted: 08/08/2005] [Indexed: 10/25/2022]
Abstract
Biphenyl dioxygenase (Bph Dox) catalyzes the initial dioxygenation step in the metabolism of biphenyl. The large subunit (BphA1) of Bph Dox plays a crucial role in the determination of the substrate specificity of biphenyl-related compounds including polychlorinated biphenyls (PCBs). Previously, the substitution of Asn at Thr-376 near the active-site iron in the BphA1 of Pseudomonas pseudoalcaligenes KF707 expanded the oxidation range and altered the regiospecificity of Bph Dox for PCBs. In this study, we replaced Thr-376 with Gly, Ser, Gln, Tyr, Val, Phe, Asp, and Lys and expressed these enzymes in Escherichia coli. Bph Dox mutants of Thr376Asn, Thr376Val, Thr376Phe, and Thr376Lys showed novel degradation activity for dibenzofuran, which is a poor substrate for KF707 Bph Dox. All active Bph Dox mutants showed altered regiospecificity with 2,2'-dichlorobiphenyl and 2,5,4'-trichlorobiphenyl. The Thr376Gly, Thr376Val, Thr376Phe, and Thr376Asp Bph Dox mutants introduced molecular oxygen at the 2,3 position of 2,2'-dichlorobiphenyl, forming 2-chloro-2',3'-dihydroxybiphenyl with concomitant dechlorination. The Bph Dox mutants of Thr376Gly, Thr376Ser, Thr376Asp, and Thr376Lys attacked 2,5,4'-trichlorobiphenyl via both 2',3'- and 3,4-dioxygenation activities. In particular, the Thr376Phe Bph Dox mutant exhibited enhanced and expanded degradation activities toward all of the compounds tested. Further site-directed mutation was induced to change the oxidizing character of KF707 Bph Dox to that of the Bph Dox of Burkholderia xenovorans LB400 by the substitution of two amino acids, Ile335Phe and Thr376Asn, near the active-site.
Collapse
Affiliation(s)
- Hikaru Suenaga
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| | | | | |
Collapse
|
32
|
Rottiers V, Motola DL, Gerisch B, Cummins CL, Nishiwaki K, Mangelsdorf DJ, Antebi A. Hormonal Control of C. elegans Dauer Formation and Life Span by a Rieske-like Oxygenase. Dev Cell 2006; 10:473-82. [PMID: 16563875 DOI: 10.1016/j.devcel.2006.02.008] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 01/30/2006] [Accepted: 02/02/2006] [Indexed: 10/24/2022]
Abstract
C. elegans diapause, gonadal outgrowth, and life span are regulated by a lipophilic hormone, which serves as a ligand to the nuclear hormone receptor DAF-12. A key step in hormone production is catalyzed by the CYP450 DAF-9, but the extent of the biosynthetic pathway is unknown. Here, we identify a conserved Rieske-like oxygenase, DAF-36, as a component in hormone metabolism. Mutants display larval developmental and adult aging phenotypes, as well as patterns of epistasis similar to that of daf-9. Larval phenotypes are potently reversed by crude lipid extracts, 7-dehydrocholesterol, and a recently identified DAF-12 sterol ligand, suggesting that DAF-36 works early in the hormone biosynthetic pathway. DAF-36 is expressed primarily within the intestine, a major organ of metabolic and endocrine control, distinct from DAF-9. These results imply that C. elegans hormone production has multiple steps and is distributed, and that it may provide one way that tissues register their current physiological state during organismal commitments.
Collapse
Affiliation(s)
- Veerle Rottiers
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Room M320, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Luo S, Liu DQ, Liu H, Zhou NY. Site-directed mutagenesis of gentisate 1,2-dioxygenases from Klebsiella pneumoniae M5a1 and Ralstonia sp. strain U2. Microbiol Res 2006; 161:138-44. [PMID: 16427517 DOI: 10.1016/j.micres.2005.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2005] [Indexed: 11/26/2022]
Abstract
Gentisate 1,2-dioxygenase (GDO, EC 1.13.11.4) is the first enzyme in gentisate pathway that catalyses the ring fission of gentisate to form maleylpyruvate. Phylogenetic tree of amino acid sequences from 11 GDOs demonstrates that the GDOs from different genus share identities between 12.1% and 64.8%. According to the alignment result, four highly conserved histidine residues in GDO from Klebsiella pneumoniae M5a1 and Ralstonia sp. strain U2 were chosen to be substituted with aspartate residues. Enzyme analysis indicated that substitution of any of these four histidine residues had resulted in the complete loss of its catalytic activity.
Collapse
Affiliation(s)
- S Luo
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | |
Collapse
|
34
|
Hirano SI, Haruki M, Takano K, Imanaka T, Morikawa M, Kanaya S. Gene cloning and in vivo characterization of a dibenzothiophene dioxygenase from Xanthobacter polyaromaticivorans. Appl Microbiol Biotechnol 2006; 69:672-81. [PMID: 15983802 DOI: 10.1007/s00253-005-0007-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 04/14/2005] [Accepted: 04/15/2005] [Indexed: 11/28/2022]
Abstract
Xanthobacter polyaromaticivorans sp. nov. 127W is a bacterial strain that is capable of degrading a wide range of cyclic aromatic compounds such as dibenzothiophene, biphenyl, naphthalene, anthracene, and phenanthrene even under extremely low oxygen [dissolved oxygen (DO)< or = 0.2 ppm] conditions (Hirano et al., Biosci Biotechnol Biochem 68:557-564, 2004). A major protein fraction carrying dibenzothiophene degradation activity was purified. Based on its partial amino acid sequences, dbdCa gene encoding alpha subunit terminal oxygenase (DbdCa) and its flanking region were cloned and sequenced. A phylogenetic analysis based on the amino acid sequence demonstrates that DbdCa is a member of a terminal oxygenase component of group IV ring-hydroxylating dioxygenases for biphenyls and monocyclic aromatic hydrocarbons, rather than group III dioxygenases for polycyclic aromatic hydrocarbons. Gene disruption in dbdCa abolished almost of the degradation activity against biphenyl, dibenzothiophene, and anthracene. The gene disruption also impaired degradation activity of the strain under extremely low oxygen conditions (DO< or = 0.2 ppm). These results indicate that Dbd from 127W represents a group IV dioxygenase that is functional even under extremely low oxygen conditions.
Collapse
Affiliation(s)
- Shin-Ichi Hirano
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Yan F, Li T, Lipscomb JD, Liu A, Liu HW. Site-directed mutagenesis and spectroscopic studies of the iron-binding site of (S)-2-hydroxypropylphosphonic acid epoxidase. Arch Biochem Biophys 2005; 442:82-91. [PMID: 16150418 DOI: 10.1016/j.abb.2005.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 07/28/2005] [Accepted: 07/29/2005] [Indexed: 11/17/2022]
Abstract
(S)-2-Hydroxylpropanylphosphonic acid epoxidase (HppE) is a novel type of mononuclear non-heme iron-dependent enzyme that catalyzes the O2 coupled, oxidative epoxide ring closure of HPP to form fosfomycin, which is a clinically useful antibiotic. Sequence alignment of the only two known HppE sequences led to the speculation that the conserved residues His138, Glu142, and His180 are the metal binding ligands of the Streptomyces wedmorensis enzyme. Substitution of these residues with alanine resulted in significant reduction of metal binding affinity, as indicated by EPR analysis of the enzyme-Fe(II)-substrate-nitrosyl complex and the spectral properties of the Cu(II)-reconstituted mutant proteins. The catalytic activities for both epoxidation and self-hydroxylation were also either eliminated or diminished in proportion to the iron content in these mutants. The complete loss of enzymatic activity for the E142A and H180A mutants in vivo and in vitro is consistent with the postulated roles of the altered residues in metal binding. The H138A mutant is also inactive in vivo, but in vitro it retains 27% of the active site iron and nearly 20% of the wild-type activity. Thus, it cannot be unequivocally stated whether H138 is an iron ligand or simply facilitates iron binding due to proximity. The results reported herein provide initial evidence implicating an unusual histidine/carboxylate iron ligation in HppE. By analogy with other well-characterized enzymes from the 2-His-1-carboxylate family, this type of iron core is consistent with a mechanism in which both oxygen and HPP bind to the iron as a first step in the in the conversion of HPP to fosfomycin.
Collapse
Affiliation(s)
- Feng Yan
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
36
|
Martins BM, Svetlitchnaia T, Dobbek H. 2-Oxoquinoline 8-monooxygenase oxygenase component: active site modulation by Rieske-[2Fe-2S] center oxidation/reduction. Structure 2005; 13:817-24. [PMID: 15893671 DOI: 10.1016/j.str.2005.03.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Revised: 03/01/2005] [Accepted: 03/06/2005] [Indexed: 11/20/2022]
Abstract
2-Oxoquinoline 8-monooxygenase is a Rieske non-heme iron oxygenase that catalyzes the NADH-dependent oxidation of the N-heterocyclic aromatic compound 2-oxoquinoline to 8-hydroxy-2-oxoquinoline in the soil bacterium Pseudomonas putida 86. The crystal structure of the oxygenase component of 2-oxoquinoline 8-monooxygenase shows a ring-shaped, C3-symmetric arrangement in which the mononuclear Fe(II) ion active site of one monomer is at a distance of 13 A from the Rieske-[2Fe-2S] center of a second monomer. Structural analyses of oxidized, reduced, and substrate bound states reveal the molecular bases for a new function of Fe-S clusters. Reduction of the Rieske center modulates the mononuclear Fe through a chain of conformational changes across the subunit interface, resulting in the displacement of Fe and its histidine ligand away from the substrate binding site. This creates an additional coordination site at the mononuclear Fe(II) ion and can open a pathway for dioxygen to bind in the substrate-containing active site.
Collapse
|
37
|
Ferraro DJ, Gakhar L, Ramaswamy S. Rieske business: structure-function of Rieske non-heme oxygenases. Biochem Biophys Res Commun 2005; 338:175-90. [PMID: 16168954 DOI: 10.1016/j.bbrc.2005.08.222] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2005] [Accepted: 08/30/2005] [Indexed: 11/20/2022]
Abstract
Rieske non-heme iron oxygenases (RO) catalyze stereo- and regiospecific reactions. Recently, an explosion of structural information on this class of enzymes has occurred in the literature. ROs are two/three component systems: a reductase component that obtains electrons from NAD(P)H, often a Rieske ferredoxin component that shuttles the electrons and an oxygenase component that performs catalysis. The oxygenase component structures have all shown to be of the alpha3 or alpha3beta3 types. The transfer of electrons happens from the Rieske center to the mononuclear iron of the neighboring subunit via a conserved aspartate, which is shown to be involved in gating electron transport. Molecular oxygen has been shown to bind side-on in naphthalene dioxygenase and a concerted mechanism of oxygen activation and hydroxylation of the ring has been proposed. The orientation of binding of the substrate to the enzyme is hypothesized to control the substrate selectivity and regio-specificity of product formation.
Collapse
Affiliation(s)
- Daniel J Ferraro
- Department of Biochemistry, University of Iowa Roy J. and Lucille A. Carver College of Medicine, 51 Newton Road, 4-403 BSB, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
38
|
Monferrán MV, Echenique JR, Wunderlin DA. Degradation of chlorobenzenes by a strain of Acidovorax avenae isolated from a polluted aquifer. CHEMOSPHERE 2005; 61:98-106. [PMID: 16157172 DOI: 10.1016/j.chemosphere.2005.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 01/18/2005] [Accepted: 03/07/2005] [Indexed: 05/04/2023]
Abstract
A subsurface microbial community was isolated from a polluted site of Suquía River (Córdoba-Argentina), acclimated during 15 days in aerobic conditions using 1,2-dichlorobenzene (1,2-DCB) as the sole carbon source. From this acclimated community, we isolated and identified by 16S rDNA analysis a strain of Acidovorax avenae, which was able to perform the complete biodegradation of 1,2-DCB in two days affording stoichiometric amounts of chloride. This pure strain was also tested for biodegradation of chlorobenzene (CB); 1,3-DCB and 1,4-DCB, giving similar results to the experiments using 1,2-DCB. The aromatic-ring-hydroxylating dioxygenase (ARHDO) alpha-subunit gene core, encoding the catalytic site of the large subunit of chlorobenzene dioxygenase, was detected by PCR amplification and confirmed by DNA sequencing. These results suggest that the isolated strain of A. avenae could use a catabolic pathway, via ARHDO system, leading to the formation of chlorocatecols during the first steps of biodegradation, with further chloride release and subsequent paths that showed complete substrate consumption.
Collapse
Affiliation(s)
- Magdalena V Monferrán
- Universidad Nacional de Córdoba-CONICET, Facultad de Ciencias Químicas, Dep. Bioquímica Clínica-CIBICI, Haya de La Torre esq, Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | |
Collapse
|
39
|
Lee K, Friemann R, Parales JV, Gibson DT, Ramaswamy S. Purification, crystallization and preliminary X-ray diffraction studies of the three components of the toluene 2,3-dioxygenase enzyme system. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:669-72. [PMID: 16511124 PMCID: PMC1952458 DOI: 10.1107/s1744309105017549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 06/03/2005] [Indexed: 05/06/2023]
Abstract
Pseudomonas putida F1 can grow with toluene as its sole source of carbon and energy. The initial reaction of the degradation of toluene is catalyzed by a three-component toluene dioxygenase enzyme system consisting of a reductase (ReductaseTOL), a ferredoxin (FerredoxinTOL) and a Rieske non-heme iron dioxygenase (OxygenaseTOL). The three components and the apoenzyme of the dioxygenase (apo-OxygenaseTOL) were overexpressed, purified and crystallized. ReductaseTOL diffracts to 1.8 A and belongs to space group P4(1)2(1)2, with unit-cell parameters a = b = 77.1, c = 156.3 A. Ferredoxin(TOL) diffracts to 1.2 A and belongs to space group P2(1), with unit-cell parameters a = 30.5, b = 52.0, c = 30.95 A, beta = 113.7 degrees. Apo-OxygenaseTOL and OxygenaseTOL diffract to 3.2 A and belong to space group P4(3)32, with unit-cell parameters a = 235.9 A and a = 234.5 A, respectively.
Collapse
Affiliation(s)
- Kyoung Lee
- Department of Microbiology and Center for Biocatalysis and Bioprocessing, The University of Iowa, Iowa City, Iowa 52242, USA
- Department of Microbiology, Changwon National University, Changwon, Kyongnam 641-773, South Korea
| | - Rosmarie Friemann
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala Biomedical Center, Box 590, S-751 24 Uppsala, Sweden
| | - Juan V. Parales
- Department of Microbiology and Center for Biocatalysis and Bioprocessing, The University of Iowa, Iowa City, Iowa 52242, USA
| | - David T. Gibson
- Department of Microbiology and Center for Biocatalysis and Bioprocessing, The University of Iowa, Iowa City, Iowa 52242, USA
| | - S. Ramaswamy
- Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
40
|
Chakraborty S, Behrens M, Herman PL, Arendsen AF, Hagen WR, Carlson DL, Wang XZ, Weeks DP. A three-component dicamba O-demethylase from Pseudomonas maltophilia, strain DI-6: purification and characterization. Arch Biochem Biophys 2005; 437:20-8. [PMID: 15820213 DOI: 10.1016/j.abb.2005.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 02/16/2005] [Indexed: 10/25/2022]
Abstract
Dicamba O-demethylase is a multicomponent enzyme that catalyzes the conversion of the herbicide 2-methoxy-3,6-dichlorobenzoic acid (dicamba) to 3,6-dichlorosalicylic acid (DCSA). The three components of the enzyme were purified and characterized. Oxygenase(DIC) is a homotrimer (alpha)3 with a subunit molecular mass of approximately 40 kDa. FerredoxinDIC and reductaseDIC are monomers with molecular weights of approximately 14 and 45 kDa, respectively. EPR spectroscopic analysis suggested the presence of a single [2Fe-2S](2+/1+) cluster in ferredoxinDIC and a single Rieske [2Fe-2S](2+; 1+) cluster within oxygenaseDIC. Consistent with the presence of a Rieske iron-sulfur cluster, oxygenaseDIC displayed a high reduction potential of E(m,7.0) = -21 mV whereas ferredoxinDIC exhibited a reduction potential of approximately E(m,7.0) = -171 mV. Optimal oxygenaseDIC activity in vitro depended on the addition of Fe2+. The identification of formaldehyde and DCSA as reaction products demonstrated that dicamba O-demethylase acts as a monooxygenase. Taken together, these data suggest that oxygenaseDIC is an important new member of the Rieske non-heme iron family of oxygenases.
Collapse
Affiliation(s)
- Sarbani Chakraborty
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0664, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Bagnéris C, Cammack R, Mason JR. Subtle difference between benzene and toluene dioxygenases of Pseudomonas putida. Appl Environ Microbiol 2005; 71:1570-80. [PMID: 15746362 PMCID: PMC1065172 DOI: 10.1128/aem.71.3.1570-1580.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Benzene dioxygenase and toluene dioxygenase from Pseudomonas putida have similar catalytic properties, structures, and gene organizations, but they differ in substrate specificity, with toluene dioxygenase having higher activity toward alkylbenzenes. The catalytic iron-sulfur proteins of these enzymes consist of two dissimilar subunits, alpha and beta; the alpha subunit contains a [2Fe-2S] cluster involved in electron transfer, the catalytic nonheme iron center, and is also responsible for substrate specificity. The amino acid sequences of the alpha subunits of benzene and toluene dioxygenases differ at only 33 of 450 amino acids. Chimeric proteins and mutants of the benzene dioxygenase alpha subunit were constructed to determine which of these residues were primarily responsible for the change in specificity. The protein containing toluene dioxygenase C-terminal region residues 281 to 363 showed greater substrate preference for alkyl benzenes. In addition, we identified four amino acid substitutions in this region, I301V, T305S, I307L, and L309V, that particularly enhanced the preference for ethylbenzene. The positions of these amino acids in the alpha subunit structure were modeled by comparison with the crystal structure of naphthalene dioxygenase. They were not in the substrate-binding pocket but were adjacent to residues that lined the channel through which substrates were predicted to enter the active site. However, the quadruple mutant also showed a high uncoupled rate of electron transfer without product formation. Finally, the modified proteins showed altered patterns of products formed from toluene and ethylbenzene, including monohydroxylated side chains. We propose that these properties can be explained by a more facile diffusion of the substrate in and out of the substrate cavity.
Collapse
Affiliation(s)
- Claire Bagnéris
- Molecular Genetics and Microbiology Group, Division of Life Sciences, King's College London, London, United Kingdom.
| | | | | |
Collapse
|
42
|
Herman PL, Behrens M, Chakraborty S, Chrastil BM, Barycki J, Weeks DP. A three-component dicamba O-demethylase from Pseudomonas maltophilia, strain DI-6: gene isolation, characterization, and heterologous expression. J Biol Chem 2005; 280:24759-67. [PMID: 15855162 DOI: 10.1074/jbc.m500597200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dicamba O-demethylase is a multicomponent enzyme from Pseudomonas maltophilia, strain DI-6, that catalyzes the conversion of the widely used herbicide dicamba (2-methoxy-3,6-dichlorobenzoic acid) to DCSA (3,6-dichlorosalicylic acid). We recently described the biochemical characteristics of the three components of this enzyme (i.e. reductase(DIC), ferredoxin(DIC), and oxygenase(DIC)) and classified the oxygenase component of dicamba O-demethylase as a member of the Rieske non-heme iron family of oxygenases. In the current study, we used N-terminal and internal amino acid sequence information from the purified proteins to clone the genes that encode dicamba O-demethylase. Two reductase genes (ddmA1 and ddmA2) with predicted amino acid sequences of 408 and 409 residues were identified. The open reading frames encode 43.7- and 43.9-kDa proteins that are 99.3% identical to each other and homologous to members of the FAD-dependent pyridine nucleotide reductase family. The ferredoxin coding sequence (ddmB) specifies an 11.4-kDa protein composed of 105 residues with similarity to the adrenodoxin family of [2Fe-2S] bacterial ferredoxins. The oxygenase gene (ddmC) encodes a 37.3-kDa protein composed of 339 amino acids that is homologous to members of the Phthalate family of Rieske non-heme iron oxygenases that function as monooxygenases. Southern analysis localized the oxygenase gene to a megaplasmid in cells of P. maltophilia. Mixtures of the three highly purified recombinant dicamba O-demethylase components overexpressed in Escherichia coli converted dicamba to DCSA with an efficiency similar to that of the native enzyme, suggesting that all of the components required for optimal enzymatic activity have been identified. Computer modeling suggests that oxygenase(DIC) has strong similarities with the core alphasubunits of naphthalene 1,2-dioxygenase. Nonetheless, the present studies point to dicamba O-demethylase as an enzyme system with its own unique combination of characteristics.
Collapse
Affiliation(s)
- Patricia L Herman
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 65888-0664, USA
| | | | | | | | | | | |
Collapse
|
43
|
Koehntop KD, Emerson JP, Que L. The 2-His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(II) enzymes. J Biol Inorg Chem 2005; 10:87-93. [PMID: 15739104 DOI: 10.1007/s00775-005-0624-x] [Citation(s) in RCA: 358] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Accepted: 01/04/2005] [Indexed: 10/25/2022]
Abstract
General knowledge of dioxygen-activating mononuclear non-heme iron(II) enzymes containing a 2-His-1-carboxylate facial triad has significantly expanded in the last few years, due in large part to the extensive library of crystal structures that is now available. The common structural motif utilized by this enzyme superfamily acts as a platform upon which a wide assortment of substrate transformations are catalyzed. The facial triad binds a divalent metal ion at the active site, which leaves the opposite face of the octahedron available to coordinate a variety of exogenous ligands. The binding of substrate activates the metal center for attack by dioxygen, which is subsequently converted to a high-valent iron intermediate, a formidable oxidizing species. Herein, we summarize crystallographic and mechanistic features of this metalloenzyme superfamily, which has enabled the proposal of a common but flexible pathway for dioxygen activation.
Collapse
Affiliation(s)
- Kevin D Koehntop
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, 55455, USA
| | | | | |
Collapse
|
44
|
Wang LW, Showalter AM. Cloning and salt-induced, ABA-independent expression of choline mono-oxygenase in Atriplex prostrata. PHYSIOLOGIA PLANTARUM 2004; 120:405-412. [PMID: 15032837 DOI: 10.1111/j.0031-9317.2004.00247.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Certain plants accumulate glycinebetaine, a type of osmoprotectant, in response to salinity. Glycinebetaine is synthesized in these plants via the two-step oxidation of choline, and the first step is catalysed by choline mono-oxygenase (CMO; EC 1.14.15.7). Cloned by RT-PCR and 3'-RACE, the cDNA of Atriplex prostrata CMO (ApCMO) is 1669 bp in length and encodes a full-length protein of 438 amino acids. The deduced amino acid sequence of ApCMO revealed a Rieske-type [2Fe-2S] cluster motif and a mononuclear non-heme Fe binding motif, and shares 82.9% identity and 87.2% similarity with the deduced amino acid sequence of spinach CMO. Accumulation of CMO transcript and glycinebetaine both increased in response to NaCl treatment. Without salt treatment, CMO mRNA was detected in stems and 5-day-old seedlings, but not in leaves, roots and older seedlings. With salt treatment, CMO mRNA accumulated dramatically in stems, leaves and roots, with the most abundant accumulation occurring in young stems. Although abscisic acid may initiate global physiological reactions in response to osmotic stress, it did not induce the expression of CMO in A. prostrata. In summary, salt-induction of CMO mRNA in A. prostrata is more substantial than that reported in spinach and sugar beet, and the plant may serve as a useful model to study regulation of glycinebetaine synthesis by environmental stress.
Collapse
Affiliation(s)
- Li-Wen Wang
- Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701-2979, USA
| | | |
Collapse
|
45
|
Reinbothe S, Quigley F, Gray J, Schemenewitz A, Reinbothe C. Identification of plastid envelope proteins required for import of protochlorophyllide oxidoreductase A into the chloroplast of barley. Proc Natl Acad Sci U S A 2004; 101:2197-202. [PMID: 14769934 PMCID: PMC380236 DOI: 10.1073/pnas.0307284101] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2003] [Indexed: 11/18/2022] Open
Abstract
Chloroplasts synthesize an abundance of different tetrapyrrole compounds. Among them are chlorophyll and its precursor protochlorophyllide (Pchlide), which accumulate in light- and dark-grown plants, respectively. Pchlide is converted to chlorophyllide by virtue of the NADPH:Pchlide oxidoreductase (POR), which, in angiosperms, is the only known light-dependent enzyme of the chlorophyll biosynthetic pathway. In etiolated barley plants, two closely related POR proteins exist termed PORA and PORB, which are nuclear gene products. Here we identified plastid envelope proteins that interact with the cytosolic PORA precursor (pPORA) during its posttranslational chloroplast import. We demonstrate that pPORA interacts with several previously unreported components. Among them is a Pchlide a oxygenase, which provides Pchlide b as import substrate for pPORA, and a tyrosine aminotransferase thought to be involved in the synthesis of photoprotective vitamin E. Two other constituents were found to be orthologs of the GTP-binding proteins Toc33/34 and of the outer plastid envelope protein Oep16.
Collapse
Affiliation(s)
- Steffen Reinbothe
- Université Joseph Fourier et Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5575, BP53, F-38041 Grenoble Cedex 9, France.
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Gray J, Wardzala E, Yang M, Reinbothe S, Haller S, Pauli F. A small family of LLS1-related non-heme oxygenases in plants with an origin amongst oxygenic photosynthesizers. PLANT MOLECULAR BIOLOGY 2004; 54:39-54. [PMID: 15159633 DOI: 10.1023/b:plan.0000028766.61559.4c] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Conservation of Lethal-leaf spot 1 (Lls1) lesion mimic gene in land plants including moss is consistent with its recently reported function as pheophorbide a oxygenase (Pao) which catalyzes a key step in chlorophyll degradation (Pruzinska et al., 2003). A bioinformatics survey of complete plant genomes reveals that LLS1(PAO) belongs to a small 5-member family of non-heme oxygenases defined by the presence of Rieske and mononuclear iron-binding domains. This gene family includes chlorophyll a oxygenase (Cao), choline monooxygenase (Cmo), the gene for a 55 kDa protein associated with protein transport through the inner chloroplast membrane (Tic 55) and a novel 52 kDa protein isolated from chloroplasts (Ptc 52). Analysis of gene structure reveals that these genes diverged prior to monocot/dicot divergence. Homologues of LLS1(PAO), CAO, TIC55 and PTC52 but not CMO are found in the genomes of several cyanobacteria. LLS1(PAO), PTC52, TIC55 and a set of related cyanobacterial homologues share an extended carboxyl terminus containing a novel F/Y/W-x(2)-H-x(3)-C-x(2)-C motif not present in CAO. These proteins appear to have evolved during the transition to oxygenic photosynthesis to play various roles in chlorophyll metabolism. In contrast, CMO homologues are found only in plants and are most closely related to aromatic ring-hydroxylating enzymes from soil-dwelling bacteria, suggesting a more recent evolution of this enzyme, possibly by horizontal gene transfer. Our phylogenetic analysis of 95 extant non-heme dioxygenases provides a useful framework for the classification of LLS1(PAO)-related non-heme oxygenases.
Collapse
Affiliation(s)
- John Gray
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Parales RE. The role of active-site residues in naphthalene dioxygenase. J Ind Microbiol Biotechnol 2003; 30:271-8. [PMID: 12695887 DOI: 10.1007/s10295-003-0043-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2002] [Accepted: 02/01/2003] [Indexed: 11/30/2022]
Abstract
The three-component naphthalene dioxygenase enzyme system catalyzes the first step in the degradation of naphthalene by Pseudomonas sp. strain NCIB 9816-4. A member of a large family of bacterial Rieske non-heme iron oxygenases, naphthalene dioxygenase is known to oxidize over 60 different aromatic compounds, and many of the products are enantiomerically pure. The crystal structure of the oxygenase component revealed the enzyme to be an alpha(3)beta(3) hexamer and identified the amino acids located near the active site. Site-directed mutagenesis studies have identified the residues involved in electron transfer and those responsible for controlling the regioselectivity and enantioselectivity of the enzyme. The results of these studies suggest that naphthalene dioxygenase can be engineered to catalyze a new and extended range of useful reactions.
Collapse
Affiliation(s)
- Rebecca E Parales
- Section of Microbiology, 226 Briggs Hall, University of California, Davis, CA 95616, USA.
| |
Collapse
|
49
|
van der Geize R, Hessels GI, van Gerwen R, van der Meijden P, Dijkhuizen L. Molecular and functional characterization of kshA and kshB, encoding two components of 3-ketosteroid 9alpha-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1. Mol Microbiol 2002; 45:1007-18. [PMID: 12180920 DOI: 10.1046/j.1365-2958.2002.03069.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
9 alpha-Hydroxylation of 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD) is catalysed by 3-ketosteroid 9 alpha-hydroxylase (KSH), a key enzyme in microbial steroid catabolism. Very limited knowledge is presently available on the KSH enzyme. Here, we report for the first time the identification and molecular characterization of genes encoding KSH activity. The kshA and kshB genes, encoding KSH in Rhodococcus erythropolis strain SQ1, were cloned by functional complementation of mutant strains blocked in AD(D) 9 alpha-hydroxylation. Analysis of the deduced amino acid sequences of kshA and kshB showed that they contain domains typically conserved in class IA terminal oxygenases and class IA oxygenase reductases respectively. By definition, class IA oxygenases are made up of two components, thus classifying the KSH enzyme system in R. erythropolis strain SQ1 as a two-component class IA monooxygenase composed of KshA and KshB. Unmarked in frame gene deletion mutants of parent strain R. erythropolis SQ1, designated strains RG2 (kshA mutant) and RG4 (kshB mutant), were unable to grow on steroid substrates AD(D), whereas growth on 9 alpha-hydroxy-4-androstene-3,17-dione (9OHAD) was not affected. Incubation of these mutant strains with AD resulted in the accumulation of ADD (30-50% conversion), confirming the involvement of KshA and KshB in AD(D) 9 alpha-hydroxylation. Strain RG4 was also impaired in sterol degradation, suggesting a dual role for KshB in both sterol and steroid degradation.
Collapse
Affiliation(s)
- R van der Geize
- Department of Microbiology, Groningen Bimolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Zielinski M, Backhaus S, Hofer B. The principal determinants for the structure of the substrate-binding pocket are located within a central core of a biphenyl dioxygenase alpha subunit. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2439-2448. [PMID: 12177337 DOI: 10.1099/00221287-148-8-2439] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein engineering by segment exchange was used to distinguish between regions of major and minor influence on the structure of the substrate-binding pocket of a biphenyl dioxygenase (BDO). Eight chimaeric enzyme systems were generated that each consisted of a hybrid hydroxylase alpha subunit (BphA1) containing segments from Burkholderia sp. strain LB400 and Rhodococcus globerulus P6, and of a hydroxylase beta subunit (BphA2), a ferredoxin (BphA3) and a ferredoxin reductase (BphA4) from strain LB400. All hybrid bphA1 genes were expressed at high levels. Seven of the resulting fusion subunits functionally interacted with the other polypeptides of the dioxygenase system to yield catalytically active enzymes. Changes in the regiospecificity of substrate attack, monitored by the formation of seventeen different dioxygenation products obtained from seven chlorobiphenyls, were used to monitor effects of segment exchanges on the structure of the BDO substrate-binding site. Exchanges of neither the beta subunit nor the N- and C-terminal regions of the alpha subunit exerted significant influences. All BDO regions that showed major effects on the substrate-binding pocket were located between approximately positions 165 and 395 of the alpha subunit. Within this part of the enzyme, in addition to segments identified previously, a subregion which is involved in ligation of the mononuclear iron significantly influenced the regiospecificity of substrate dioxygenation. Moreover, the results indicate that the construction of appropriate hybrid genes may be used as a general strategy to overcome problems in obtaining heterologous BDO activities in Escherichia coli or other host organisms.
Collapse
Affiliation(s)
- Marco Zielinski
- German Research Centre for Biotechnology (GBF), Division of Microbiology, Mascheroder Weg 1, D-38124 Braunschweig, Germany1
| | - Silke Backhaus
- German Research Centre for Biotechnology (GBF), Division of Microbiology, Mascheroder Weg 1, D-38124 Braunschweig, Germany1
| | - Bernd Hofer
- German Research Centre for Biotechnology (GBF), Division of Microbiology, Mascheroder Weg 1, D-38124 Braunschweig, Germany1
| |
Collapse
|