1
|
Ayoub HF, Khafagy AR, Esawy AM, El-Moaty NA, Alwutayd KM, Mansour AT, Ibrahim RA, Abdel-Moneam DA, El-Tarabili RM. Phenotypic, molecular detection, and Antibiotic Resistance Profile (MDR and XDR) of Aeromonas hydrophila isolated from Farmed Tilapia zillii and Mugil cephalus. BMC Vet Res 2024; 20:84. [PMID: 38459543 PMCID: PMC10921648 DOI: 10.1186/s12917-024-03942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
In the present study, Aeromonas hydrophila was isolated from Tilapia zillii and Mugil cephalus samples collected during different seasons from various Suez Canal areas in Egypt. The prevalence of A. hydrophila, virulence genes, and antibiotic resistance profile of the isolates to the commonly used antibiotics in aquaculture were investigated to identify multiple drug resistance (MDR) and extensive drug-resistant (XDR) strains. In addition, a pathogenicity test was conducted using A. hydrophila, which was isolated and selected based on the prevalence of virulence and resistance genes, and morbidity of natural infected fish. The results revealed that A. hydrophila was isolated from 38 of the 120 collected fish samples (31.6%) and confirmed phenotypically and biochemically. Several virulence genes were detected in retrieved A. hydrophila isolates, including aerolysin aerA (57.9%), ser (28.9%), alt (26.3%), ast (13.1%), act (7.9%), hlyA (7.9%), and nuc (18.4%). Detection of antibiotic-resistant genes revealed that all isolates were positive for blapse1 (100%), blaSHV (42.1%), tetA (60.5%), and sul1 (42.1%). 63.1% of recovered isolates were considered MDR, while 28.9% of recovered isolates were considered XDR. Some isolates harbor both virulence and MDR genes; the highest percentage carried 11, followed by isolates harboring 9 virulence and resistance genes. It could be concluded that the high prevalence of A. hydrophila in aquaculture species and their diverse antibiotic resistance and virulence genes suggest the high risk of Aeromonas infection and could have important implications for aquaculture and public health.
Collapse
Affiliation(s)
- Hala F Ayoub
- Department of Fish Health and Management, Central Laboratory for Aquaculture Research (CLAR), Agricultural Research Center, Abo-Hammad, Sharqia, Abbassa, 44662, Egypt.
| | - Ahmed R Khafagy
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Ain Shams University, Cairo, Egypt
| | - Aboelkair M Esawy
- Department of Microbiology, Animal Health Research Institute, Mansoura branch, Mansoura, Egypt
| | - Noura Abo El-Moaty
- Department of Microbiology, Animal Health Research Institute, Mansoura branch, Mansoura, Egypt
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Abdallah Tageldein Mansour
- Fish and Animal Production and Aquaculture Department, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa, 31982, Saudi Arabia.
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt.
| | - Reham A Ibrahim
- Microbiology Department, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Dalia A Abdel-Moneam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Reham M El-Tarabili
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
2
|
Jablonska J, Matelska D, Steczkiewicz K, Ginalski K. Systematic classification of the His-Me finger superfamily. Nucleic Acids Res 2017; 45:11479-11494. [PMID: 29040665 PMCID: PMC5714182 DOI: 10.1093/nar/gkx924] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023] Open
Abstract
The His-Me finger endonucleases, also known as HNH or ββα-metal endonucleases, form a large and diverse protein superfamily. The His-Me finger domain can be found in proteins that play an essential role in cells, including genome maintenance, intron homing, host defense and target offense. Its overall structural compactness and non-specificity make it a perfectly-tailored pathogenic module that participates on both sides of inter- and intra-organismal competition. An extremely low sequence similarity across the superfamily makes it difficult to identify and classify new His-Me fingers. Using state-of-the-art distant homology detection methods, we provide an updated and systematic classification of His-Me finger proteins. In this work, we identified over 100 000 proteins and clustered them into 38 groups, of which three groups are new and cannot be found in any existing public domain database of protein families. Based on an analysis of sequences, structures, domain architectures, and genomic contexts, we provide a careful functional annotation of the poorly characterized members of this superfamily. Our results may inspire further experimental investigations that should address the predicted activity and clarify the potential substrates, to provide more detailed insights into the fundamental biological roles of these proteins.
Collapse
Affiliation(s)
- Jagoda Jablonska
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Dorota Matelska
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
3
|
Varela-Ramirez A, Abendroth J, Mejia AA, Phan IQ, Lorimer DD, Edwards TE, Aguilera RJ. Structure of acid deoxyribonuclease. Nucleic Acids Res 2017; 45:6217-6227. [PMID: 28369538 PMCID: PMC5449587 DOI: 10.1093/nar/gkx222] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/23/2017] [Indexed: 01/06/2023] Open
Abstract
Deoxyribonuclease II (DNase II) is also known as acid deoxyribonuclease because it has optimal activity at the low pH environment of lysosomes where it is typically found in higher eukaryotes. Interestingly, DNase II has also been identified in a few genera of bacteria and is believed to have arisen via horizontal transfer. Here, we demonstrate that recombinant Burkholderia thailandensis DNase II is highly active at low pH in the absence of divalent metal ions, similar to eukaryotic DNase II. The crystal structure of B. thailandensis DNase II shows a dimeric quaternary structure which appears capable of binding double-stranded DNA. Each monomer of B. thailandensis DNase II exhibits a similar overall fold as phospholipase D (PLD), phosphatidylserine synthase (PSS) and tyrosyl-DNA phosphodiesterase (TDP), and conserved catalytic residues imply a similar mechanism. The structural and biochemical data presented here provide insights into the atomic structure and catalytic mechanism of DNase II.
Collapse
Affiliation(s)
- Armando Varela-Ramirez
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98110, USA.,Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Adrian A Mejia
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Isabelle Q Phan
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98110, USA.,Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Ave N, Seattle, WA 98109, USA
| | - Donald D Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98110, USA.,Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98110, USA.,Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Renato J Aguilera
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
4
|
Singh V, Chaudhary DK, Mani I, Jain R, Mishra BN. Development of diagnostic and vaccine markers through cloning, expression, and regulation of putative virulence-protein-encoding genes of Aeromonas hydrophila. J Microbiol 2013; 51:275-82. [DOI: 10.1007/s12275-013-2437-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/14/2012] [Indexed: 10/26/2022]
|
5
|
Abstract
The type II secretion system (T2SS) is used by Escherichia coli and other gram-negative bacteria to translocate many proteins, including toxins and proteases, across the outer membrane of the cell and into the extracellular space. Depending on the bacterial species, between 12 and 15 genes have been identified that make up a T2SS operon. T2SSs are widespread among gram-negative bacteria, and most E. coli appear to possess one or two complete T2SS operons. Once expressed, the multiple protein components that form the T2S system are localized in both the inner and outer membranes, where they assemble into an apparatus that spans the cell envelope. This apparatus supports the secretion of numerous virulence factors; and therefore secretion via this pathway is regarded in many organisms as a major virulence mechanism. Here, we review several of the known E. coli T2S substrates that have proven to be critical for the survival and pathogenicity of these bacteria. Recent structural and biochemical information is also reviewed that has improved our current understanding of how the T2S apparatus functions; also reviewed is the role that individual proteins play in this complex system.
Collapse
|
6
|
Singh V, Somvanshi P, Rathore G, Kapoor D, Mishra BN. Gene cloning, expression and homology modeling of hemolysin gene from Aeromonas hydrophila. Protein Expr Purif 2008; 65:1-7. [PMID: 19136063 DOI: 10.1016/j.pep.2008.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 11/14/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022]
Abstract
Hemolysin is a significant toxin secreted by Aeromonas hydrophila, which contributes pathogenicity of fish to humans. The complete ORF of hemolysin gene (1886 bp) was amplified using PCR. It was cloned in TA and sub-cloned in pET28a vector then transformed into Escherichia coli BL21(DE3) codon plus RP cells expressed by the induction with 1.0 mM of IPTG. The expected size of expressed protein was 68.0 kDa estimated by migration in 12% SDS-PAGE. Anti-His monoclonal antibodies were used to substantiate the recombinant protein by Western blotting. The percent similarity between hemolysin of A. hydrophila with other hemolytic toxins revealed that the hemolysin/aerolysin/cytotoxin sequence varied from 99.35 to 50.40%. Homology modeling was used to construct 3-D structure of hemolysin of A. hydrophila with the known crystal 3-D structure (PDB: 1XEZ). This protein can be used for immunoassays and it is suitable for vaccine candidate against A. hydrophila infection.
Collapse
Affiliation(s)
- Vijai Singh
- National Bureau of Fish Genetic Resources, Canal ring road, P.O. Dilkusha, Lucknow 226002, India.
| | | | | | | | | |
Collapse
|
7
|
Rittmann D, Sorger-Herrmann U, Wendisch VF. Phosphate starvation-inducible gene ushA encodes a 5' nucleotidase required for growth of Corynebacterium glutamicum on media with nucleotides as the phosphorus source. Appl Environ Microbiol 2005; 71:4339-44. [PMID: 16085822 PMCID: PMC1183354 DOI: 10.1128/aem.71.8.4339-4344.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphorus is an essential component of macromolecules, like DNA, and central metabolic intermediates, such as sugar phosphates, and bacteria possess enzymes and control mechanisms that provide an optimal supply of phosphorus from the environment. UDP-sugar hydrolases and 5' nucleotidases may play roles in signal transduction, as they do in mammals, in nucleotide salvage, as demonstrated for UshA of Escherichia coli, or in phosphorus metabolism. The Corynebacterium glutamicum gene ushA was found to encode a secreted enzyme which is active as a 5' nucleotidase and a UDP-sugar hydrolase. This enzyme was synthesized and secreted into the medium when C. glutamicum was starved for inorganic phosphate. UshA was required for growth of C. glutamicum on AMP and UDP-glucose as sole sources of phosphorus. Thus, in contrast to UshA from E. coli, C. glutamicum UshA is an important component of the phosphate starvation response of this species and is necessary to access nucleotides and related compounds as sources of phosphorus.
Collapse
Affiliation(s)
- Doris Rittmann
- Institute of Biotechnology 1, Research Center Juelich, D-52425 Juelich, Germany
| | | | | |
Collapse
|
8
|
Wahli T, Burr SE, Pugovkin D, Mueller O, Frey J. Aeromonas sobria, a causative agent of disease in farmed perch, Perca fluviatilis L. JOURNAL OF FISH DISEASES 2005; 28:141-150. [PMID: 15752274 DOI: 10.1111/j.1365-2761.2005.00608.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Significant numbers of perch, Perca fluviatilis, raised on a pilot fish farm in Switzerland presented focal skin lesions on the lateral sides and fin rot. Mortality rates reached levels of up to 1% of the total fish on the farm per day. Virtually pure cultures of Aeromonas sobria were isolated from the liver, kidney, spleen and skin lesions of affected fish. Aeromonas sobria isolated from the farmed perch had a haemolytic effect on sheep and trout erythrocytes, autoaggregated, was cytotoxic for cultured fish cells and possessed genes involved in type III protein secretion. Experimental infection of naive perch with a single colony isolate of A. sobria from an affected farm fish resulted in the development of clinical signs identical to those seen on the farm. The results indicate that A. sobria can act as a primary pathogen of perch.
Collapse
Affiliation(s)
- T Wahli
- Centre for Fish and Wildlife Health, Institute of Animal Pathology, University of Berne, Berne, Switzerland.
| | | | | | | | | |
Collapse
|
9
|
Li CL, Hor LI, Chang ZF, Tsai LC, Yang WZ, Yuan HS. DNA binding and cleavage by the periplasmic nuclease Vvn: a novel structure with a known active site. EMBO J 2003; 22:4014-25. [PMID: 12881435 PMCID: PMC169050 DOI: 10.1093/emboj/cdg377] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Vibrio vulnificus nuclease, Vvn, is a non-specific periplasmic nuclease capable of digesting DNA and RNA. The crystal structure of Vvn and that of Vvn mutant H80A in complex with DNA were resolved at 2.3 A resolution. Vvn has a novel mixed alpha/beta topology containing four disulfide bridges, suggesting that Vvn is not active under reducing conditions in the cytoplasm. The overall structure of Vvn shows no similarity to other endonucleases; however, a known 'betabetaalpha-metal' motif is identified in the central cleft region. The crystal structure of the mutant Vvn-DNA complex demonstrates that Vvn binds mainly at the minor groove of DNA, resulting in duplex bending towards the major groove by approximately 20 degrees. Only the DNA phosphate backbones make hydrogen bonds with Vvn, suggesting a structural basis for its sequence-independent recognition of DNA and RNA. Based on the enzyme-substrate and enzyme-product structures observed in the mutant Vvn-DNA crystals, a catalytic mechanism is proposed. This structural study suggests that Vvn hydrolyzes DNA by a general single-metal ion mechanism, and indicates how non-specific DNA-binding proteins may recognize DNA.
Collapse
Affiliation(s)
- Chia-Lung Li
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
10
|
Vázquez-Juárez RC, Barrera-Saldaña HA, Hernández-Saavedra NY, Gómez-Chiarri M, Ascencio F. Molecular cloning, sequencing and characterization of omp48, the gene encoding for an antigenic outer membrane protein from Aeromonas veronii. J Appl Microbiol 2003; 94:908-18. [PMID: 12694457 DOI: 10.1046/j.1365-2672.2003.01928.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To clone, sequence and characterize the gene encoding the Omp48, a major outer membrane protein from Aeromonas veronii. METHODS AND RESULTS A genomic library of Aer. veronii was constructed and screened to detect omp48 gene sequences, but no positive clones were identified, even under low stringency conditions. The cloned gene probably was toxic to the host Escherichia coli strain, so the cloning of omp48 was achieved by inverse PCR. The nucleotide sequence of omp48 consisted of an open reading frame of 1278 base pairs. The predicted primary protein is composed of 426 amino acids, with a 25-amino-acid signal peptide and common Ala-X-Ala cleavage site. The mature protein is composed of 401 amino acids with a molecular mass of 44,256 Da. CONCLUSIONS The omp48 gene from Aer. veronii was cloned, sequenced and characterized in detail. BLAST analysis of Omp48 protein showed sequence similarity (over 50%) to the LamB porin family from other pathogenic Gram-negative bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY Bacterial diseases are a major economic problem for the fish farming industry. Outer membrane proteins are potentially important vaccine components. The characterization of omp48 gene will allow further investigation of the potential of Omp48 as recombinant or DNA vaccine component to prevent Aer. veronii and related species infections in reared fish.
Collapse
Affiliation(s)
- R C Vázquez-Juárez
- Departamento de Patología Marina, Centro de Investigaciones Biológicas del Noroeste, La Paz, México
| | | | | | | | | |
Collapse
|
11
|
Kidd SP, Pemberton JM. The cloning and characterization of a second alpha-amylase of A. hydrophila JMP636. J Appl Microbiol 2002; 92:289-96. [PMID: 11849357 DOI: 10.1046/j.1365-2672.2002.01529.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The aim of this study was to identify, clone and characterize the second amylase of Aeromonas hydrophila JMP636, AmyB, and to compare it to AmyA. METHODS AND RESULTS The amylase activity of A. hydrophila JMP636 is encoded by multiple genes. A second genetically distinct amylase gene, amyB, has been cloned and expressed from its own promoter in Escherichia coli. AmyB is a large alpha-amylase of 668 amino acids. Outside the conserved domains of alpha-amylases there is limited sequence relationship between the two alpha-amylases of A. hydrophila JMP636 AmyA and AmyB. Significant (80%) similarity exists between amyB and an alpha-amylase of A. hydrophila strain MCC-1. Differences in either the functional properties or activity under different environmental conditions as possible explanations for multiple copies of amylases in JMP636 is less likely after an examination of several physical properties, with each of the properties being very similar for both enzymes (optimal pH and temperature, heat instability). However the reaction end products and substrate specificity did vary enough to give a possible reason for the two enzymes being present. Both enzymes were confirmed to be alpha-type amylases. CONCLUSIONS AmyB has been isolated, characterized and then compared to AmyA. SIGNIFICANCE AND IMPACT OF THE STUDY The amylase phenotype is rarely encoded by more than one enzyme within one strain, this study therefore allows the better understanding of the unusual amylase production by A. hydrophila.
Collapse
Affiliation(s)
- S P Kidd
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK, Department of Microbiology and Parasitology, University of Queensland, St Lucia, QLD 4072.
| | | |
Collapse
|
12
|
Cazenave C, Toulmé JJ. Gel renaturation assay for ribonucleases. Methods Enzymol 2002; 341:113-25. [PMID: 11582773 DOI: 10.1016/s0076-6879(01)41148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C Cazenave
- INSERM U 386, Université Victor Segalen, 33076 Bordeaux, France
| | | |
Collapse
|
13
|
Subramanian G, Koonin EV, Aravind L. Comparative genome analysis of the pathogenic spirochetes Borrelia burgdorferi and Treponema pallidum. Infect Immun 2000; 68:1633-48. [PMID: 10678983 PMCID: PMC97324 DOI: 10.1128/iai.68.3.1633-1648.2000] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A comparative analysis of the predicted protein sequences encoded in the complete genomes of Borrelia burgdorferi and Treponema pallidum provides a number of insights into evolutionary trends and adaptive strategies of the two spirochetes. A measure of orthologous relationships between gene sets, termed the orthology coefficient (OC), was developed. The overall OC value for the gene sets of the two spirochetes is about 0.43, which means that less than one-half of the genes show readily detectable orthologous relationships. This emphasizes significant divergence between the two spirochetes, apparently driven by different biological niches. Different functional categories of proteins as well as different protein families show a broad distribution of OC values, from near 1 (a perfect, one-to-one correspondence) to near 0. The proteins involved in core biological functions, such as genome replication and expression, typically show high OC values. In contrast, marked variability is seen among proteins that are involved in specific processes, such as nutrient transport, metabolism, gene-specific transcription regulation, signal transduction, and host response. Differences in the gene complements encoded in the two spirochete genomes suggest active adaptive evolution for their distinct niches. Comparative analysis of the spirochete genomes produced evidence of gene exchanges with other bacteria, archaea, and eukaryotic hosts that seem to have occurred at different points in the evolution of the spirochetes. Examples are presented of the use of sequence profile analysis to predict proteins that are likely to play a role in pathogenesis, including secreted proteins that contain specific protein-protein interaction domains, such as von Willebrand A, YWTD, TPR, and PR1, some of which hitherto have been reported only in eukaryotes. We tentatively reconstruct the likely evolutionary process that has led to the divergence of the two spirochete lineages; this reconstruction seems to point to an ancestral state resembling the symbiotic spirochetes found in insect guts.
Collapse
Affiliation(s)
- G Subramanian
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20894, USA
| | | | | |
Collapse
|
14
|
Dodd HN, Pemberton JM. The gene encoding a periplasmic deoxyribonuclease from Aeromonas hydrophila. FEMS Microbiol Lett 1999; 173:41-6. [PMID: 10220879 DOI: 10.1111/j.1574-6968.1999.tb13482.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A gene encoding a deoxyribonuclease, dnsH, was cloned from Aeromonas hydrophila JMP636. The predicted mature protein was very similar to the previously described extracellular Dns from this organism and an N-terminal region corresponding to a large putative signal sequence was predicted for the JMP636 protein. Inactivation of dnsII demonstrated that the DnsH protein was not present extracellularly in this strain. As DnsH degraded plasmid DNA and was believed to have a periplasmic location, a dnsH mutant was constructed to determine whether electroporation of A. hydrophila with plasmid DNA could be achieved. No transformants were detected. From SDS-PAGE studies, at least two additional DNases remain to be characterised from A. hydrophila JMP636.
Collapse
Affiliation(s)
- H N Dodd
- Department of Microbiology, University of Queensland, Australia
| | | |
Collapse
|
15
|
Dodd HN, Pemberton JM. Construction of a physical and preliminary genetic map of Aeromonas hydrophila JMP636. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 11):3087-3096. [PMID: 9846744 DOI: 10.1099/00221287-144-11-3087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A physical and preliminary genetic map of the Aeromonas hydrophila JMP636 chromosome has been constructed. The topology of the genome was predicted to be circular as chromosomal DNA did not migrate from the origin during PFGE unless linearized by S1 nuclease. Cleavage of the chromosome with PacI and PmeI produced 23 and 14 fragments, respectively, and enabled calculation of the genome size at 4.5 Mb. Digestion of the chromosome with I-CeuI produced 10 fragments, indicating that 10 rrl (23S) genes were likely to be present. Hybridizations between DNA fragments generated with PacI, PmeI and I-CeuI were used to initially determine the relationship between these segments. To accurately map genes previously characterized from JMP636, the suicide vector pJP5603 was modified to introduce restriction sites for PacI and PmeI, producing pJP9540. Following cloning of genes into this vector and recombinational insertion into the JMP636 chromosome, PacI and PmeI cleavage determined the location of genes within macrorestriction fragments with the additional bands produced forming hybridization probes. From the data generated, it was possible to form a physical map comprising all the fragments produced by PacI and PmeI, and assign the contig of I-CeuI fragments on this map. The preliminary genetic map defines the location of six loci for degradative enzymes previously characterized from JMP636, while the locations of the 10 sets of ribosomal genes were assigned with less accuracy from hybridization data.
Collapse
Affiliation(s)
- Helen N Dodd
- Department of Microbiology QueenslandAustralia 4072 University
| | | |
Collapse
|
16
|
Abstract
A hallmark characteristic of species of Aeromonas is their ability to secrete a wide variety of enzymes associated with pathogenicity and environmental adaptability. Among the most intensively studied are beta-lactamases, lipases, hemolytic enterotoxins, proteases, chitinases, nucleases and amylases. Multiple copies of genes encoding each type of enzyme provide additional biological diversity. Except for the chitinases, these multiple copies show little evolutionary relatedness at the DNA level and only limited similarity at the protein level. Indeed a number of the genes, such as nuclease H of A. hydrophila, have no similarity to known prokaryotic or eukaryotic sequences. The challenge is to determine how these genes evolved, where they originated and why Aeromonas possesses them in such abundance and variety.
Collapse
Affiliation(s)
- J M Pemberton
- Department of Microbiology, University of Queensland, St. Lucia, Australia.
| | | | | |
Collapse
|
17
|
Chuang YC, Chiou SF, Su JH, Wu ML, Chang MC. Molecular analysis and expression of the extracellular lipase of Aeromonas hydrophila MCC-2. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 3):803-812. [PMID: 9084164 DOI: 10.1099/00221287-143-3-803] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The structural gene encoding the extracellular lipase of Aeromonas hydrophila MCC-2 was cloned and found to be expressed in Escherichia coli using its own promoter. When the cloned gene (lip) was expressed in E. coli minicells, an 80 kDa protein was identified. Subcellular fractionation of E. coli carrying the lip gene indicated that the Lip protein was mainly associated with the membrane fraction. Nucleotide sequence analysis revealed that the gene is 2253 bp long, coding for a 79-9 kDa protein with an estimated pl of 10.36. The deduced protein contains two putative signal peptide cleavage sites: one is a typical signal peptidase cleavage site and the other bears a strong resemblance to known lipoprotein leader sequences. Radioactivity from [3H]palmitate was incorporated into the Lip protein when expressed in E. coli. The deduced protein contains a sequence of VHFLGHSLGA which is very well conserved among lipases. It shows 67% and 65% overall identity to the amino acid sequences of lipase from A. hydrophila strains H3 and JMP636, respectively, but shows little homology to those of other lipases. The Lip protein was purified to homogeneity from both A. hydrophila and recombinant E. coli. In hydrolysis of p-nitrophenyl esters and triacylglycerols, using purified enzyme, the optimum chain lengths for the acyl moiety on the substrate were C10 to C12 for ester hydrolysis and C8 to C10 for triacylglycerol hydrolysis.
Collapse
Affiliation(s)
- Yin Ching Chuang
- Division of Infectious Diseases, Department of Internal Medicine, National Cheng Kung University Medical College and University Hospital, Tainan, Taiwan, Republic of China
| | - Shu Fen Chiou
- Department of Biochemistry, Medical College, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Jer Horng Su
- Department of Biochemistry, Medical College, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Mei Li Wu
- Department of Biochemistry, Medical College, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Ming Chung Chang
- Department of Biochemistry, Medical College, National Cheng Kung University, Tainan, Taiwan, Republic of China
| |
Collapse
|