1
|
Vu NT, Kim H, Hwang IS, Oh CS. Colanic acid and lipopolysaccharide in Pectobacterium carotovorum Pcc21 serve as receptors for the bacteriophage phiPccP-2. Microbiol Res 2025; 290:127939. [PMID: 39471582 DOI: 10.1016/j.micres.2024.127939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Bacteriophages (phages) are viruses that specifically bind to and infect target bacteria. The phage phiPccP-2, belonging to the Myoviridae family, efficiently controls Pectobacterium spp. In the present study, we aimed to elucidate the mechanism of recognition of P. carotovorum Pcc21 by phiPccP-2. The EZ-Tn5 transposon mutant library of Pcc21 was used to screen for phage-resistant mutants. Among 4072 mutants screened, 12 harbored disruptions in genes associated with the biosynthesis of either colanic acid (CA) or lipopolysaccharide (LPS) showed resistance to phiPccP-2. Complementation of 4 representative phage-resistant mutants with the corresponding genes fully restored the binding ability and lytic activity of PhiPccP-2. The amounts of CA or LPS structure in these mutants were significantly altered compared with those in the wild-type strain. Adsorption competition assays between CA and LPS extracted from Pcc21 and the natural receptors in Pcc21 showed that unbound phages were significantly increased, indicating that both CA and LPS are associated with the adsorption of the phiPccP-2 to Pcc21. In contrast, the adsorption of phiPccP-2 to extracted CA or LPS did not inactivate the lytic activity of phiPccP-2, indicating that the adsorption to the extracted CA or LPS is not sufficient for DNA injection. Treatment with polymyxin B, which disrupts LPS, interfered with phiPccP-2 adsorption to Pcc21. Furthermore, phage-resistant mutants showed reduced virulence in the host plant, suggesting a trade-off between phage resistance and bacterial virulence. Overall, our results indicate that both CA and LPS serve as receptors for the binding of phiPccP-2 to P. carotovorum Pcc21.
Collapse
Affiliation(s)
- Nguyen Trung Vu
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeongsoon Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - In Sun Hwang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang-Sik Oh
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, Seoul National University. Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Programs in Agricultural Genomics, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Haemophilus parainfluenzae has a limited core lipopolysaccharide repertoire with no phase variation. Glycoconj J 2012; 30:561-76. [PMID: 23093380 DOI: 10.1007/s10719-012-9455-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 10/14/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
Cell surface lipopolysaccharide (LPS) is a well characterized virulence determinant for the human pathogen Haemophilus influenzae, so an investigation of LPS in the less pathogenic Haemophilus parainfluenzae could yield important insights. Using a panel of 18 commensal H. parainfluenzae isolates we demonstrate that the set of genes for inner core LPS biosynthesis largely resembles that of H. influenzae, with an additional heptosyltransferase I gene similar to waaC from Pasteurella multocida. Inner core LPS structure is therefore likely to be largely conserved across the two Haemophilus species. Outer core LPS biosynthetic genes are much less prevalent in H. parainfluenzae, although homologues of the H. influenzae LPS genes lpsB, non-phase variable lic2A and lgtC, and losA1, losB1 and lic2C are found in certain isolates. Immunoblotting using antibodies directed against selected LPS epitopes was consistent with these data. We found no evidence for tetranucleotide repeat-mediated phase variation in H. parainfluenzae. Phosphocholine, a phase variable H. influenzae LPS epitope that has been implicated in disease, was absent in H. parainfluenzae LPS as were the respective (lic1) biosynthetic genes. The introduction of the lic1 genes into H. parainfluenzae led to the phase variable incorporation of phosphocholine into its LPS. Differences in LPS structure between Haemophilus species could affect interactions at the bacterial-host interface and therefore the pathogenic potential of these bacteria.
Collapse
|
3
|
Hood DW, Deadman ME, Engskog MKR, Vitiazeva V, Makepeace K, Schweda EKH, Moxon R. Genes required for the synthesis of heptose-containing oligosaccharide outer core extensions in Haemophilus influenzae lipopolysaccharide. MICROBIOLOGY-SGM 2010; 156:3421-3431. [PMID: 20688825 DOI: 10.1099/mic.0.041780-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heptose-containing oligosaccharides (OSs) are found in the outer core of the lipopolysaccharide (LPS) of a subset of non-typable Haemophilus influenzae (NTHi) strains. Candidate genes for the addition of either l-glycero-d-manno-heptose (ld-Hep) or d-glycero-d-manno-heptose (dd-Hep) and subsequent hexose sugars to these OSs have been identified from the recently completed genome sequences available for NTHi strains. losA1/losB1 and losA2/losB2 are two sets of related genes in which losA has homology to genes encoding glycosyltransferases and losB to genes encoding heptosyltransferases. Each set of genes is variably present across NTHi strains and is located in a region of the genome with an alternative gene organization between strains that contributes to LPS heterogeneity. Dependent upon the strain background, the LPS phenotype, structure and serum resistance of strains mutated in these genes were altered when compared with the relevant parent strain. Our studies confirm that losB1 and losB2 usually encode dd-heptosyl- and ld-heptosyl transferases, respectively, and that losA1 and losA2 encode glycosyltransferases that play a role in OS extensions of NTHi LPS.
Collapse
Affiliation(s)
- Derek W Hood
- Molecular Infectious Diseases Group, University of Oxford Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Mary E Deadman
- Molecular Infectious Diseases Group, University of Oxford Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Mikael K R Engskog
- Clinical Research Centre, Karolinska Institutet and University College of South Stockholm, Huddinge, Sweden
| | - Varvara Vitiazeva
- Clinical Research Centre, Karolinska Institutet and University College of South Stockholm, Huddinge, Sweden
| | - Katherine Makepeace
- Molecular Infectious Diseases Group, University of Oxford Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Elke K H Schweda
- Clinical Research Centre, Karolinska Institutet and University College of South Stockholm, Huddinge, Sweden
| | - Richard Moxon
- Molecular Infectious Diseases Group, University of Oxford Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| |
Collapse
|
4
|
Vinogradov E, King JD, Pathak AK, Harvill ET, Preston A. Antigenic Variation among Bordetella: Bordetella bronchiseptica strain MO149 expresses a novel o chain that is poorly immunogenic. J Biol Chem 2010; 285:26869-26877. [PMID: 20592026 DOI: 10.1074/jbc.m110.115121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The O chain polysaccharide (O PS) of Bordetella bronchiseptica and Bordetella parapertussis lipopolysaccharide is a homopolymer of 2,3-diacetamido-2,3-dideoxygalacturonic acid (GalNAc3NAcA) in which some of the sugars are present as uronamides. The terminal residue contains several unusual modifications. To date, two types of modification have been characterized, and a survey of numerous strains demonstrated that each contained one of these two modification types. Host antibody responses against the O PS are directed against the terminal residue modifications, and there is little cross-reactivity between the two types. This suggests that Bordetella O PS modifications represent a means of antigenic variation. Here we report the characterization of the O PS of B. bronchiseptica strain MO149. It consists of a novel two-sugar repeating unit and a novel terminal residue modification, with the structure Me-4-alpha-L-GalNAc3NAcA-(4-beta-D-GlcNAc3NAcA-4-alpha-L-GalNAc3NAcA-)(5-6)-, which we propose be defined as the B. bronchiseptica O3 PS. We show that the O3 PS is very poorly immunogenic and that the MO149 strain contains a novel wbm (O PS biosynthesis) locus. Thus, there is greater diversity among Bordetella O PSs than previously recognized, which is likely to be a result of selection pressure from host immunity. We also determine experimentally, for the first time, the absolute configuration of the diacetimido-uronic acid sugars in Bordetella O PS.
Collapse
Affiliation(s)
- Evgeny Vinogradov
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Jerry D King
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ashutosh K Pathak
- Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, Pennsylvania 16802, United Kingdom
| | - Eric T Harvill
- Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, Pennsylvania 16802, United Kingdom
| | - Andrew Preston
- Department of Clinical Veterinary Science, University of Bristol, Langford, North Somerset BS40 5DU, United Kingdom.
| |
Collapse
|
5
|
Stickland HG, Davenport PW, Lilley KS, Griffin JL, Welch M. Mutation of nfxB causes global changes in the physiology and metabolism of Pseudomonas aeruginosa. J Proteome Res 2010; 9:2957-67. [PMID: 20373734 DOI: 10.1021/pr9011415] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Loss-of-function mutations in nfxB lead to up-regulation of mexCD-oprJ expression and, consequently, increased resistance to fluoroquinolone antibiotics. Such nfxB mutants have also been reported to exhibit altered virulence profiles, diminished type III secretion system-dependent cytotoxicity, and impaired fitness. However, it is not clear whether these phenotypes are directly linked to NfxB activity or whether inappropriate expression of the MexCD-OprJ pump has pleiotropic effects, thereby impacting indirectly on the phenotype of the cells. The aim of the current work is to investigate which of these possibilities is correct. We isolated a novel type of nfxB mutant generated by a spontaneous polygenic deletion and show that this mutant is rapidly out-competed when grown in a mixed culture with the wild-type progenitor. This competitive fitness defect only manifested itself during the stationary phase of growth. The endoproteome of the nfxB mutant, assessed using 2D-DiGE (difference gel electrophoresis), showed major alterations compared with the wild-type. Consistent with this, we found that the nfxB mutant was impaired in all forms of motility (swimming, swarming, and twitching) as well as in the production of siderophores, rhamnolipid, secreted protease, and pyocyanin. Further investigation showed that the exoproteome, endometabolome, and exometabolome of the nfxB mutant were all globally different compared with the wild-type. The exometabolome of the nfxB mutant was enriched in a selection of long chain fatty acids raising the possibility that these might be substrates for the MexCD-OprJ pump. The nfxB mutant metabotype could be complemented by expression of nfxB in trans and was abolished in an nfxB mexD double mutant, suggesting that inappropriate overexpression of a functional MexCD-OprJ efflux pump causes pleiotropic changes. Taken together, our data suggest that many of the nfxB mutant phenotypes are not caused by the direct effects of the NfxB regulator, but instead by inappropriate mexCD-oprJ expression. Furthermore, the pleiotropic nature of the phenotypes indicate that these may simply reflect the globally dysregulated physiology of the strain.
Collapse
Affiliation(s)
- Hannah G Stickland
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
6
|
Evans TJ, Ind A, Komitopoulou E, Salmond GPC. Phage-selected lipopolysaccharide mutants of Pectobacterium atrosepticum exhibit different impacts on virulence. J Appl Microbiol 2010; 109:505-514. [PMID: 20132374 DOI: 10.1111/j.1365-2672.2010.04669.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS To positively select Pectobacterium atrosepticum (Pa) mutants with cell surface defects and to assess the impact of these mutations on phytopathogenesis. METHODS AND RESULTS Several phages were isolated from treated sewage effluent and were found to require bacterial lipopolysaccharide (LPS) for infection. Two strains with distinct mutations in LPS were obtained by transposon mutagenesis. Along with a third LPS mutant, these strains were characterized with respect to various virulence-associated phenotypes, including growth rate, motility and exoenzyme production, demonstrating that LPS mutations are pleiotropic. Two of the strains were deficient in the synthesis of the O-antigen portion of LPS, and both were less virulent than the wild type. A waaJ mutant, which has severe defects in LPS biosynthesis, was dramatically impaired in potato tuber rot assays. The infectivity of these novel phages on 32 additional strains of Pa was tested, showing that most Pa isolates were sensitive to the LPS-dependent phages. CONCLUSIONS Native LPS is crucial for optimal growth, survival and virulence of Pa in vivo, but simultaneously renders such strains susceptible to phage infection. SIGNIFICANCE AND IMPACT OF THE STUDY This work demonstrates the power of phages to select and identify the virulence determinants on the bacterial surface, and as potential biocontrol agents for Pa infections.
Collapse
Affiliation(s)
- T J Evans
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - A Ind
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - G P C Salmond
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Lex2B, a phase-variable glycosyltransferase, adds either a glucose or a galactose to Haemophilus influenzae lipopolysaccharide. Infect Immun 2009; 77:2376-84. [PMID: 19289512 DOI: 10.1128/iai.01446-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae is a commensal that frequently causes otitis media and respiratory tract infections. The lex2 locus encodes a glycosyltransferase that is phase variably expressed and contributes to the significant intrastrain heterogeneity of lipopolysaccharide (LPS) composition in H. influenzae. In serotype b strains, Lex2B adds the second beta-glucose in the oligosaccharide extension from the proximal heptose of the triheptose inner core backbone; this extension includes a digalactoside that plays a role in resistance of the bacteria to the killing effect of serum. As part of our studies of the structure and genetics of LPS in nontypeable H. influenzae, we show here that there are allelic polymorphisms in the lex2B sequence that correlate with addition of either a glucose or a galactose to the same position in the LPS molecule across strains. Through exchange of lex2 alleles between strains we show that alteration of a single amino acid at position 157 in Lex2B appears to be sufficient to direct the alternative glucosyl- or galactosyltransferase activities. Allelic exchange strains express LPS with altered structure and biological properties compared to the wild-type LPS. Thus, Lex2B contributes to both inter- and intrastrain LPS heterogeneity through its polymorphic sequences and phase-variable expression.
Collapse
|
8
|
King JD, Vinogradov E, Preston A, Li J, Maskell DJ. Post-assembly modification of Bordetella bronchiseptica O polysaccharide by a novel periplasmic enzyme encoded by wbmE. J Biol Chem 2008; 284:1474-83. [PMID: 19015265 PMCID: PMC2615507 DOI: 10.1074/jbc.m807729200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Bordetella bronchiseptica is a pathogen of humans and animals that
colonizes the respiratory tract. It produces a lipopolysaccharide O antigen
that contains a homopolymer of
2,3-dideoxy-2,3-diacetamido-l-galacturonic acid
(l-GalNAc3NAcA). Some of these sugars are found in the uronamide
form (l-GalNAc3NAcAN), and there is no discernible pattern in the
distribution of amides along the chain. A B. bronchiseptica wbmE
mutant expresses an O polysaccharide unusually rich in uronamides. The WbmE
protein localizes to the periplasm and catalyzes the deamidation of
uronamide-rich O chains in lipopolysaccharide purified from the mutant, to
attain a wild-type uronamide/uronic acid ratio. WbmE is a member of the
papain-like transglutaminase superfamily, and this categorization is
consistent with a deamidase role. The periplasmic location of WbmE and its
acceptance of complete lipopolysaccharide as substrate indicate that it
operates at a late stage in lipopolysaccharide biosynthesis, after
polymerization and export of the O chain from the cytoplasm. This is the first
report of such a modification of O antigen after assembly. The expression of
wbmE is controlled by the Bordetella virulence gene
two-component regulatory system, BvgAS, suggesting that this deamidation is a
novel mechanism by which these bacteria modify their cell surface charge in
response to environmental stimuli.
Collapse
Affiliation(s)
- Jerry D King
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom.
| | | | | | | | | |
Collapse
|
9
|
King JD, Harmer NJ, Preston A, Palmer CM, Rejzek M, Field RA, Blundell TL, Maskell DJ. Predicting protein function from structure--the roles of short-chain dehydrogenase/reductase enzymes in Bordetella O-antigen biosynthesis. J Mol Biol 2007; 374:749-63. [PMID: 17950751 PMCID: PMC2279256 DOI: 10.1016/j.jmb.2007.09.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 09/19/2007] [Accepted: 09/20/2007] [Indexed: 11/16/2022]
Abstract
The pathogenic bacteria Bordetella parapertussis and Bordetella bronchiseptica express a lipopolysaccharide O antigen containing a polymer of 2,3-diacetamido-2,3-dideoxy-l-galacturonic acid. The O-antigen cluster contains three neighbouring genes that encode proteins belonging to the short-chain dehydrogenase/reductase (SDR) family, wbmF, wbmG and wbmH, and we aimed to elucidate their individual functions. Mutation and complementation implicate each gene in O-antigen expression but, as their putative sugar nucleotide substrates are not currently available, biochemical characterisation of WbmF, WbmG and WbmH is impractical at the present time. SDR family members catalyse a wide range of chemical reactions including oxidation, reduction and epimerisation. Because they typically share low sequence conservation, however, catalytic function cannot be predicted from sequence analysis alone. In this context, structural characterisation of the native proteins, co-crystals and small-molecule soaks enables differentiation of the functions of WbmF, WbmG and WbmH. These proteins exhibit typical SDR architecture and coordinate NAD. In the substrate-binding domain, all three enzymes bind uridyl nucleotides. WbmG contains a typical SDR catalytic TYK triad, which is required for oxidoreductase function, but the active site is devoid of additional acid-base functionality. Similarly, WbmH possesses a TYK triad, but an otherwise feature-poor active site. Consequently, 3,5-epimerase function can probably be ruled out for these enzymes. The WbmF active site contains conserved 3,5-epimerase features, namely, a positionally conserved cysteine (Cys133) and basic side chain (His90 or Asn213), but lacks the serine/threonine component of the SDR triad and therefore may not act as an oxidoreductase. The data suggest a pathway for synthesis of the O-antigen precursor UDP-2,3-diacetamido-2,3-dideoxy-l-galacturonic acid and illustrate the usefulness of structural data in predicting protein function.
Collapse
Affiliation(s)
- Jerry D King
- Department of Veterinary Medicine, Madingley Road, University of Cambridge, Cambridge CB3 0ES, UK.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sebaihia M, Preston A, Maskell DJ, Kuzmiak H, Connell TD, King ND, Orndorff PE, Miyamoto DM, Thomson NR, Harris D, Goble A, Lord A, Murphy L, Quail MA, Rutter S, Squares R, Squares S, Woodward J, Parkhill J, Temple LM. Comparison of the genome sequence of the poultry pathogen Bordetella avium with those of B. bronchiseptica, B. pertussis, and B. parapertussis reveals extensive diversity in surface structures associated with host interaction. J Bacteriol 2006; 188:6002-15. [PMID: 16885469 PMCID: PMC1540077 DOI: 10.1128/jb.01927-05] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella avium is a pathogen of poultry and is phylogenetically distinct from Bordetella bronchiseptica, Bordetella pertussis, and Bordetella parapertussis, which are other species in the Bordetella genus that infect mammals. In order to understand the evolutionary relatedness of Bordetella species and further the understanding of pathogenesis, we obtained the complete genome sequence of B. avium strain 197N, a pathogenic strain that has been extensively studied. With 3,732,255 base pairs of DNA and 3,417 predicted coding sequences, it has the smallest genome and gene complement of the sequenced bordetellae. In this study, the presence or absence of previously reported virulence factors from B. avium was confirmed, and the genetic bases for growth characteristics were elucidated. Over 1,100 genes present in B. avium but not in B. bronchiseptica were identified, and most were predicted to encode surface or secreted proteins that are likely to define an organism adapted to the avian rather than the mammalian respiratory tracts. These include genes coding for the synthesis of a polysaccharide capsule, hemagglutinins, a type I secretion system adjacent to two very large genes for secreted proteins, and unique genes for both lipopolysaccharide and fimbrial biogenesis. Three apparently complete prophages are also present. The BvgAS virulence regulatory system appears to have polymorphisms at a poly(C) tract that is involved in phase variation in other bordetellae. A number of putative iron-regulated outer membrane proteins were predicted from the sequence, and this regulation was confirmed experimentally for five of these.
Collapse
Affiliation(s)
- Mohammed Sebaihia
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tillier ERM, Biro L, Li G, Tillo D. Codep: maximizing co-evolutionary interdependencies to discover interacting proteins. Proteins 2006; 63:822-31. [PMID: 16634043 DOI: 10.1002/prot.20948] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Approaches for the determination of interacting partners from different protein families (such as ligands and their receptors) have made use of the property that interacting proteins follow similar patterns and relative rates of evolution. Interacting protein partners can then be predicted from the similarity of their phylogenetic trees or evolutionary distances matrices. We present a novel method called Codep, for the determination of interacting protein partners by maximizing co-evolutionary signals. The order of sequences in the multiple sequence alignments from two protein families is determined in such a manner as to maximize the similarity of substitution patterns at amino acid sites in the two alignments and, thus, phylogenetic congruency. This is achieved by maximizing the total number of interdependencies of amino acids sites between the alignments. Once ordered, the corresponding sequences in the two alignments indicate the predicted interacting partners. We demonstrate the efficacy of this approach with computer simulations and in analyses of several protein families. A program implementing our method, Codep, is freely available to academic users from our website: http://www.uhnresearch.ca/labs/tillier/.
Collapse
Affiliation(s)
- Elisabeth R M Tillier
- Cancer Genomics & Proteomics, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
12
|
Watanabe M, Connelly B, Weiss AA. Characterization of serological responses to pertussis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:341-8. [PMID: 16522775 PMCID: PMC1391967 DOI: 10.1128/cvi.13.3.341-348.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have compared the use of five nonvaccine antigens to the use of conventional vaccine antigens, pertussis toxin (PT), and filamentous hemagglutinin (FHA) for the serological diagnosis of pertussis by enzyme-linked immunosorbent assay (ELISA). The nonvaccine antigens included the catalytic region of adenylate cyclase toxin (CatACT), the C-terminal region of FHA (C-FHA), lipooligosaccharide (LOS), the peptidoglycan-associated lipoprotein (PAL), and the BrkA protein. The serological responses of individuals with culture-confirmed pertussis were compared to those of adults with no recent history of a coughing disease. An immunoglobulin G (IgG) ELISA for PT was the most sensitive (92.2%) test for the serodiagnosis of pertussis. Of the nonvaccine antigens, ELISA for IgG responses to CatACT (sensitivity, 62.8%), C-FHA (sensitivity, 39.2%), and LOS IgA (sensitivity, 29.4%) were less sensitive but could also distinguish culture-positive individuals from control individuals. The use of a combination of multiple ELISA targets improved the sensitivity of the assay for serological diagnosis. Elevated IgG and IgA antibody titers persisted for more than a year in the individuals with culture-confirmed pertussis.
Collapse
Affiliation(s)
- Mineo Watanabe
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | | | | |
Collapse
|
13
|
Griffin R, Cox AD, Makepeace K, Richards JC, Moxon ER, Hood DW. Elucidation of the monoclonal antibody 5G8-reactive, virulence-associated lipopolysaccharide epitope of Haemophilus influenzae and its role in bacterial resistance to complement-mediated killing. Infect Immun 2005; 73:2213-21. [PMID: 15784565 PMCID: PMC1087420 DOI: 10.1128/iai.73.4.2213-2221.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phase-variable locus lex2 is required for expression of a Haemophilus influenzae lipopolysaccharide (LPS) epitope of previously unknown structure. This epitope, which is reactive with monoclonal antibody (MAb) 5G8, has been associated with virulence of type b strains. When strain RM118 (from the same source as strain Rd), in which the lex2 locus and MAb 5G8 reactivity are absent, was transformed with lex2 DNA, transformants that were reactive with MAb 5G8 were obtained. Surprisingly, the 5G8 reactivity of these transformants was phase variable, although the lex2 locus lacked tetrameric repeats and was constitutively expressed. This phase variation was shown to be the result of phase-variable expression of phosphorylcholine (PCho) such that MAb 5G8 reacted only in the absence of PCho. Structural analysis showed that, compared to RM118, the lex2 transformant had acquired a tetrasaccharide, Gal-alpha1,4-Gal-beta1,4-Glc-beta1,4-Glc-beta1,4, linked to the proximal heptose (HepI). A terminal GalNAc was detected in a minority of glycoforms. LPS derived from a mutant of RM7004, a virulent type b strain which naturally expresses lex2 and has LPS containing the same tetrasaccharide linked to HepI as the sole oligosaccharide extension from the inner core, confirmed that GalNAc is not a part of the MAb 5G8-reactive epitope. Thus, MAb 5G8 specifically binds to the structure Gal-alpha1,4-Gal-beta1,4-Glc-beta1,4-Glc-beta attached via a 1,4 linkage to HepI of H. influenzae LPS, and we show that the ability to synthesize this novel tetrasaccharide was associated with enhanced bacterial resistance to complement-mediated killing.
Collapse
Affiliation(s)
- Ruth Griffin
- Centre for Molecular Microbiology and Infection, Level 3, Flowers Building, Imperial College, London SW7 2AZ, United Kingdom.
| | | | | | | | | | | |
Collapse
|
14
|
VanWagoner TM, Whitby PW, Morton DJ, Seale TW, Stull TL. Characterization of three new competence-regulated operons in Haemophilus influenzae. J Bacteriol 2004; 186:6409-21. [PMID: 15375121 PMCID: PMC516621 DOI: 10.1128/jb.186.19.6409-6421.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae is one of a growing number of bacteria in which the natural ability to uptake exogenous DNA for potential genomic transformation has been recognized. To date, several operons involved in transformation in this organism have been described. These operons are characterized by a conserved 22-bp regulatory element upstream of the first gene and are induced coincident with transfer from rich to nutrient-depleted media. The previously identified operons comprised genes encoding proteins that include members of the type II secretion system and type IV pili, shown to be essential for transformation in other bacteria, and other proteins previously identified as required for transformation in H. influenzae. In the present study, three novel competence operons were identified by comparative genomics and transcriptional analysis. These operons have been further characterized by construction of null mutants and examination of the resulting transformation phenotypes. The putative protein encoded by the HI0366 gene was shown to be essential for DNA uptake, but not binding, and is homologous to a protein shown to be required for pilus biogenesis and twitching motility in Pseudomonas aeruginosa. An insertion in HI0939 abolished both DNA binding and uptake. The predicted product of this gene shares characteristics with PulJ, a pseudopilin involved in pullulanase export in Klebsiella oxytoca.
Collapse
Affiliation(s)
- Timothy M VanWagoner
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
15
|
Griffin R, Cox AD, Makepeace K, Richards JC, Moxon ER, Hood DW. The role of lex2 in lipopolysaccharide biosynthesis in Haemophilus influenzae strains RM7004 and RM153. MICROBIOLOGY-SGM 2004; 149:3165-3175. [PMID: 14600228 DOI: 10.1099/mic.0.26387-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The locus lex2, comprising lex2A and lex2B, contributes to the phase-variable expression of lipopolysaccharide (LPS) of Haemophilus influenzae and was found to be present in 74 % of strains investigated. lex2A contains 5'-GCAA repeats which vary in number from 4 to 46 copies between strains. The locus was cloned from the serotype b strains RM7004 and RM153 and showed >99 % nucleotide sequence identity between these strains and the published lex2 sequence. Disruption of the lex2B gene in strain RM7004 resulted in truncation of some LPS glycoforms, shown by gel fractionation, with only one glycoform reacting with a digalactoside-specific monoclonal antibody, 4C4, compared with four LPS glycoforms in the more elongated LPS of the parent strain. Mass spectrometry and NMR analyses of LPS from the lex2B mutant revealed loss of the terminal digalactoside as well as the second beta-glucose extending from the first heptose of the inner core. The authors conclude that Lex2B is the beta-(1-4)-glucosyltransferase that adds the second beta-glucose to the first beta-glucose as part of the oligosaccharide extension from the first heptose of the LPS of strain RM7004. Investigation of the expression of the lex2 locus indicated that the genes are co-transcribed and that both reading frames are required for addition of this second beta-glucose in a phase-variable manner.
Collapse
Affiliation(s)
- Ruth Griffin
- Molecular Infectious Diseases Group, University of Oxford Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Andrew D Cox
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
| | - Katherine Makepeace
- Molecular Infectious Diseases Group, University of Oxford Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - James C Richards
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
| | - E Richard Moxon
- Molecular Infectious Diseases Group, University of Oxford Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Derek W Hood
- Molecular Infectious Diseases Group, University of Oxford Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| |
Collapse
|
16
|
Preston A, Maxim E, Toland E, Pishko EJ, Harvill ET, Caroff M, Maskell DJ. Bordetella bronchiseptica PagP is a Bvg-regulated lipid A palmitoyl transferase that is required for persistent colonization of the mouse respiratory tract. Mol Microbiol 2003; 48:725-36. [PMID: 12694617 DOI: 10.1046/j.1365-2958.2003.03484.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bordetella bronchiseptica lipopolysaccharide (LPS) expression varies depending on growth conditions, regulated by the Bvg system. A B. bronchiseptica pagP homologue was identified that is required for Bvg-mediated modification of the lipid A core region of LPS that occurs on switching from the Bvg- to the Bvg+ phase. Structural analysis demonstrated that the lipid A of a B. bronchiseptica pagP mutant differed from wild-type lipid A by the absence of a palmitate group in secondary acylation at the C3' position. The putative pagP promoter drove the expression of a green fluorescent protein (GFP) reporter gene in a Bvg-regulated fashion. These data suggest that B. bronchiseptica pagP encodes a Bvg-regulated lipid A palmitoyl transferase that mediates modification of the lipid A as part of the overall Bvg-mediated adaptation of this organism to changing environmental conditions. We also show that pagP is not required for the initial colonization of the mouse respiratory tract by B. bronchiseptica, but is required for persistence of the organism within this organ.
Collapse
Affiliation(s)
- Andrew Preston
- Centre for Veterinary Science, Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | | | | | | | | | | | | |
Collapse
|
17
|
Preston A, Thomas R, Maskell DJ. Mutational analysis of the Bordetella pertussis wlb LPS biosynthesis locus. Microb Pathog 2002; 33:91-5. [PMID: 12220985 DOI: 10.1006/mpat.2002.0511] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bordetella pertussis wlb is required for band A lipopolysaccharide (LPS) expression. We report the mutational analysis of this locus that supports previous gene function assignments that were made on the basis of sequence similarities.
Collapse
Affiliation(s)
- Andrew Preston
- Centre for Veterinary Science, Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge, CB3 0ES, U.K.
| | | | | |
Collapse
|
18
|
Hood DW, Cox AD, Wakarchuk WW, Schur M, Schweda EK, Walsh SL, Deadman ME, Martin A, Moxon ER, Richards JC. Genetic basis for expression of the major globotetraose-containing lipopolysaccharide from H. influenzae strain Rd (RM118). Glycobiology 2001; 11:957-67. [PMID: 11744630 DOI: 10.1093/glycob/11.11.957] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A genetic basis for the biosynthetic assembly of the globotetraose containing lipopolysaccharide (LPS) of Haemophilus influenzae strain RM118 (Rd) was determined by structural analysis of LPS derived from mutant strains. We have previously shown that the parent strain RM118 elaborates a population of LPS molecules made up of a series of related glycoforms differing in the degree of oligosaccharide chain extension from the distal heptose residue of a conserved phosphorylated inner-core element, L-alpha-D-Hepp-(1-->2)-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)-]-L-alpha-D-Hepp-(1-->5)-alpha-Kdo. The fully extended LPS glycoform expresses the globotetraose structure, beta-D-GalpNAc-(1-->3)-alpha-D-Galp-(1-->4)-beta-D-Galp-(1-->4)-beta-D-Glcp. A fingerprinting strategy was employed to establish the structure of LPS from strains mutated in putative glycosyltransferase genes compared to the parent strain. This involved glycose and linkage analysis on intact LPS samples and analysis of O-deacylated LPS samples by electrospray ionization mass spectrometry and 1D (1)H-nuclear magnetic resonance spectroscopy. Four genes, lpsA, lic2A, lgtC, and lgtD, were required for sequential addition of the glycoses to the terminal inner-core heptose to give the globotetraose structure. lgtC and lgtD were shown to encode glycosyltransferases by enzymatic assays with synthetic acceptor molecules. This is the first genetic blueprint determined for H. influenzae LPS oligosaccharide biosynthesis, identifying genes involved in the addition of each glycose residue.
Collapse
Affiliation(s)
- D W Hood
- Molecular Infectious Diseases Group, University of Oxford Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Brabetz W, Müller-Loennies S, Brade H. 3-Deoxy-D-manno-oct-2-ulosonic acid (Kdo) transferase (WaaA) and kdo kinase (KdkA) of Haemophilus influenzae are both required to complement a waaA knockout mutation of Escherichia coli. J Biol Chem 2000; 275:34954-62. [PMID: 10952982 DOI: 10.1074/jbc.m005204200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lipopolysaccharide (LPS) of the deep rough mutant Haemophilus influenzae I69 consists of lipid A and a single 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) residue substituted with one phosphate at position 4 or 5 (Helander, I. M., Lindner, B., Brade, H., Altmann, K., Lindberg, A. A., Rietschel, E. T., and Zähringer, U. (1988) Eur. J. Biochem. 177, 483-492). The waaA gene encoding the essential LPS-specific Kdo transferase was cloned from this strain, and its nucleotide sequence was identical to H. influenzae DSM11121. The gene was expressed in the Gram-positive host Corynebacterium glutamicum and characterized in vitro to encode a monofunctional Kdo transferase. waaA of H. influenzae could not complement a knockout mutation in the corresponding gene of an Re-type Escherichia coli strain. However, complementation was possible by coexpressing the recombinant waaA together with the LPS-specific Kdo kinase gene (kdkA) of H. influenzae DSM11121 or I69, respectively. The sequences of both kdkA genes were determined and differed in 25 nucleotides, giving rise to six amino acid exchanges between the deduced proteins. Both E. coli strains which expressed waaA and kdkA from H. influenzae synthesized an LPS containing a single Kdo residue that was exclusively phosphorylated at position 4. The structure was determined by nuclear magnetic resonance spectroscopy of deacylated LPS. Therefore, the reaction products of both cloned Kdo kinases represent only one of the two chemical structures synthesized by H. influenzae I69.
Collapse
Affiliation(s)
- W Brabetz
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Parkallee 22, D-23845 Borstel, Germany
| | | | | |
Collapse
|
20
|
Preston A, Allen AG, Cadisch J, Thomas R, Stevens K, Churcher CM, Badcock KL, Parkhill J, Barrell B, Maskell DJ. Genetic basis for lipopolysaccharide O-antigen biosynthesis in bordetellae. Infect Immun 1999; 67:3763-7. [PMID: 10417135 PMCID: PMC96651 DOI: 10.1128/iai.67.8.3763-3767.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella bronchiseptica and Bordetella parapertussis express a surface polysaccharide, attached to a lipopolysaccharide, which has been called O antigen. This structure is absent from Bordetella pertussis. We report the identification of a large genetic locus in B. bronchiseptica and B. parapertussis that is required for O-antigen biosynthesis. The locus is replaced by an insertion sequence in B. pertussis, explaining the lack of O-antigen biosynthesis in this species. The DNA sequence of the B. bronchiseptica locus has been determined and the presence of 21 open reading frames has been revealed. We have ascribed putative functions to many of these open reading frames based on database searches. Mutations in the locus in B. bronchiseptica and B. parapertussis prevent O-antigen biosynthesis and provide tools for the study of the role of O antigen in infections caused by these bacteria.
Collapse
Affiliation(s)
- A Preston
- Centre for Veterinary Science, Department of Clinical Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, Cambridge CB10 1SA, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bauer BA, Stevens MK, Hansen EJ. Involvement of the Haemophilus ducreyi gmhA gene product in lipooligosaccharide expression and virulence. Infect Immun 1998; 66:4290-8. [PMID: 9712780 PMCID: PMC108518 DOI: 10.1128/iai.66.9.4290-4298.1998] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/1998] [Accepted: 06/04/1998] [Indexed: 11/20/2022] Open
Abstract
The lipooligosaccharide (LOS) present in the outer membrane of Haemophilus ducreyi is likely a virulence factor for this sexually transmitted pathogen. An open reading frame in H. ducreyi 35000 was found to encode a predicted protein that had 87% identity with the protein product of the gmhA (isn) gene of Haemophilus influenzae. In H. influenzae type b, inactivation of the gmhA gene caused the synthesis of a significantly truncated LOS which possessed only lipid A and a single 2-keto-3-deoxyoctulosonic acid molecule (A. Preston, D. J. Maskell, A. Johnson, and E. R. Moxon, J. Bacteriol. 178:396-402, 1996). The H. ducreyi gmhA gene was able to complement a gmhA-deficient Escherichia coli strain, a result which confirmed the identity of this gene. When the gmhA gene of H. ducreyi was inactivated by insertion of a cat cartridge, the resultant H. ducreyi gmhA mutant, 35000.252, expressed a LOS that migrated much faster than wild-type LOS in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When the wild-type H. ducreyi strain and its isogenic gmhA mutant were used in the temperature-dependent rabbit model for dermal lesion production by H. ducreyi, the gmhA mutant was found to be substantially less virulent than the wild-type parent strain. The H. ducreyi gmhA gene was amplified by PCR from the H. ducreyi chromosome and cloned into the pLS88 vector. When the H. ducreyi gmhA gene was present in trans in gmhA mutant 35000.252, expression of the gmhA gene product restored the virulence of this mutant to wild-type levels. These results indicate that the gmhA gene product of H. ducreyi is essential for the expression of wild-type LOS by this pathogen.
Collapse
Affiliation(s)
- B A Bauer
- Department of Microbiology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9048, USA
| | | | | |
Collapse
|
22
|
Baldermann C, Lupas A, Lubieniecki J, Engelhardt H. The regulated outer membrane protein Omp21 from Comamonas acidovorans is identified as a member of a new family of eight-stranded beta-sheet proteins by its sequence and properties. J Bacteriol 1998; 180:3741-9. [PMID: 9683466 PMCID: PMC107353 DOI: 10.1128/jb.180.15.3741-3749.1998] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Omp21, a minor outer membrane protein of the soil bacterium Comamonas acidovorans, was purified from a spontaneous mutant lacking a surface layer and long-chain lipopolysaccharide. Omp21 synthesis is enhanced by oxygen depletion, and the protein has a variable electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis due to its heat-modifiable behavior. The structural gene omp21 encodes a precursor of 204 amino acids with a putative signal peptide of 21 amino acids. Mature Omp21 is a typical outer membrane protein with a high content of beta structure as determined by infrared spectroscopy. Sequence comparisons show that it belongs to a new outer membrane protein family, characterized by eight amphipathic beta strands, which includes virulence proteins, such as the neisserial opacity proteins, Salmonella typhimurium Rck, and Yersinia enterocolitica Ail, as well as the major outer membrane proteins OmpA from Escherichia coli and OprF from Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- C Baldermann
- Max-Planck-Institut für Biochemie, Molekulare Strukturbiologie, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
23
|
Moxon ER, Hood D, Richards J. Bacterial lipopolysaccharides: candidate vaccines to prevent Neisseria meningitidis and Haemophilus influenzae infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 435:237-43. [PMID: 9498081 DOI: 10.1007/978-1-4615-5383-0_22] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- E R Moxon
- University Department of Paediatrics, John Radcliffe Hospital, Oxford, U.K
| | | | | |
Collapse
|
24
|
Cheng C, Shuman S. Characterization of an ATP-dependent DNA ligase encoded by Haemophilus influenzae. Nucleic Acids Res 1997; 25:1369-74. [PMID: 9060431 PMCID: PMC146593 DOI: 10.1093/nar/25.7.1369] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We report that Haemophilus influenzae encodes a 268 amino acid ATP-dependent DNA ligase. The specificity of Haemophilus DNA ligase was investigated using recombinant protein produced in Escherichia coli. The enzyme catalyzed efficient strand joining on a singly nicked DNA in the presence of magnesium and ATP (Km = 0.2 microM). Other nucleoside triphosphates or deoxynucleoside triphosphates could not substitute for ATP. Haemophilus ligase reacted with ATP in the absence of DNA substrate to form a covalent ligase-adenylate intermediate. This nucleotidyl transferase reaction required a divalent cation and was specific for ATP. The Haemophilus enzyme is the first example of an ATP-dependent DNA ligase encoded by a eubacterial genome. It is also the smallest member of the covalent nucleotidyl transferase superfamily, which includes the bacteriophage and eukaryotic ATP-dependent polynucleotide ligases and the GTP-dependent RNA capping enzymes.
Collapse
Affiliation(s)
- C Cheng
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021 USA
| | | |
Collapse
|
25
|
Brooke JS, Valvano MA. Molecular cloning of the Haemophilus influenzae gmhA (lpcA) gene encoding a phosphoheptose isomerase required for lipooligosaccharide biosynthesis. J Bacteriol 1996; 178:3339-41. [PMID: 8655517 PMCID: PMC178089 DOI: 10.1128/jb.178.11.3339-3341.1996] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have determined that gene HI#1181 of Haemophilus influenzae is a homolog of Escherichia coli gmhA (previously designated lpcA) (J. S. Brooke and M. A. Valvano, J. Biol. Chem. 271:3608-3614, 1996), which encodes a phosphoheptose isomerase catalyzing the first step of the biosynthesis of ADP-L-glycero-D-manno heptose. Mutations in this gene are associated with a heptoseless core lipopolysaccharide which determines an increased outer membrane permeability to hydrophobic compounds. The cloned H. influenzae gmhA restored the synthesis of a complete core in the gmhA-deleted E. coli strain chi711. Amino acid sequence comparisons of the GmhA proteins of E. coli and H. influenzae with other proteins in the databases revealed the existence of a novel family of phosphosugar a1do-keto isomerases.
Collapse
Affiliation(s)
- J S Brooke
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | | |
Collapse
|
26
|
Preston A, Mandrell RE, Gibson BW, Apicella MA. The lipooligosaccharides of pathogenic gram-negative bacteria. Crit Rev Microbiol 1996; 22:139-80. [PMID: 8894399 DOI: 10.3109/10408419609106458] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lipooligosaccharides (LOSs) are the major glycolipids expressed on mucosal Gram-negative bacteria, including members of the genera Neisseria, Haemophilus, Bordetella, and Branhamella. They can also be expressed on some enteric bacteria such as Campylobacter jejuni and Campylobacter coli strains. LOS is analogous to the lipopolysaccharide (LPS) found in other Gram-negative families. LOSs share similar lipid A structures with an identical array of functional activities as LPSs. LOSs lack O-antigen units with the LOS oligosaccharide structures limited to 10 saccharide units. The LOS species of pathogenic Neisseria can play a major role in pathogenesis through enhancing the resistance of the organism to killing by normal human serum. Other distinguishing characteristics of LOS are the structural and antigenic similarity of some LOS species to human glycolipids and the potential for certain LOSs to be modified in vivo by host substances or secretions. These modifications of LOS in different environments of the host result in synthesis of new LOS structures that probably benefit the survival of the pathogen. The LOS of N. gonorrhoeae can act as a ligand of human receptors, promoting invasion of host cells. It is becoming clearer that LOSs are crucial factors in the pathogenesis of bacteria that express them.
Collapse
Affiliation(s)
- A Preston
- Department of Microbiology, University of Iowa College of Medicine, Iowa City, USA
| | | | | | | |
Collapse
|