1
|
Machonkin TE, Maker MS, Ganjoloo N, Conkin DF. Characterization of the substrate specificity and regioselectivity of ring-cleavage of Pseudomonas putida DLL-E4 hydroquinone 1,2-dioxygenase (PnpC1C2). J Biol Inorg Chem 2025; 30:35-51. [PMID: 39960525 DOI: 10.1007/s00775-025-02101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/27/2025] [Indexed: 03/18/2025]
Abstract
PnpC1C2 is an enzyme from the soil bacterium Pseudomonas putida DLL-E4 that is in the pathway for the oxidative catabolism of 4-nitrophenol. PnpC1C2 oxidatively cleaves hydroquinone into γ-hydroxymuconic semialdehyde. It belongs to the type II hydroquinone dioxygenase family, a relatively uncharacterized group of mononuclear non-heme Fe(II)-dependent enzymes that catalyze oxidative ring-cleavage reactions, which includes the well-studied catechol extradiol dioxygenases as well as the structurally unrelated 2,6-dichlorohydroquinone dioxygenase (PcpA). Steady-state kinetics studies using UV/Vis spectroscopy were performed to characterize the enzyme specificity towards various substituted hydroquinones. In addition to its native substrate, PnpC1C2 was active towards a variety of monosubstituted hydroquinones. Methyl- and methoxyhydroquinone showed a moderately higher K mA app , and chloro- and bromohydroquinone showed a moderately lower k cat app , but all had ak cat app k cat app K mA app K mA app within an order of magnitude of unsubstituted hydroquinone. Likewise, only small differences in the rates of mechanism-based inactivation were observed among these substrates. Among disubstituted hydroquinones, only 2,6- and 2,5-dimethylhydroquinone showed any activity, with the latter only barely detectable. A variety of para-substituted phenols were found to be good inhibitors of PnpC1C2. NMR studies were performed to determine the regioselectivity of ring-cleavage with monosubstituted hydroquinones. All monosubstituted hydroquinones tested (methyl-, chloro-, bromo-, and methoxyhydroquinone) yielded exclusively the 1,6-cleavage product. Thus, PnpC1C2 shows notable differences in both its substrate specificity and the ring-cleavage regioselectivity compared to that of PcpA. These results provide an important basis for future comparison of structure-function correlations among the hydroquinone ring-cleaving dioxygenases.
Collapse
Affiliation(s)
- Timothy E Machonkin
- Department of Chemistry, Whitman College, 345 Boyer Ave., Walla Walla, WA, 99362, USA.
| | - Madeleine S Maker
- Department of Chemistry, Whitman College, 345 Boyer Ave., Walla Walla, WA, 99362, USA
| | - Nandin Ganjoloo
- Department of Chemistry, Whitman College, 345 Boyer Ave., Walla Walla, WA, 99362, USA
| | - Drew F Conkin
- Department of Chemistry, Whitman College, 345 Boyer Ave., Walla Walla, WA, 99362, USA
| |
Collapse
|
2
|
Devkota L, Xiong J, Fischer AA, Murphy K, Kumar P, Balensiefen EL, Lindeman SV, Popescu CV, Fiedler AT. Observation of oxygenated intermediates in functional mimics of aminophenol dioxygenase. J Inorg Biochem 2024; 259:112632. [PMID: 38950482 DOI: 10.1016/j.jinorgbio.2024.112632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 07/03/2024]
Abstract
Aminophenol dioxygenases (APDO) are mononuclear nonheme iron enzymes that utilize dioxygen (O2) to catalyze the conversion of o-aminophenols to 2-picolinic acid derivatives in metabolic pathways. This study describes the synthesis and O2 reactivity of two synthetic models of substrate-bound APDO: [FeII(TpMe2)(tBu2APH)] (1) and [FeII(TpMe2)(tBuAPH)] (2), where TpMe2 = hydrotris(3,5-dimethylpyrazole-1-yl)borate, tBu2APH = 4,6-di-tert-butyl-2-aminophenolate, and tBuAPH2 = 4-tert-butyl-2-aminophenolate. Both Fe(II) complexes behave as functional APDO mimics, as exposure to O2 results in oxidative CC bond cleavage of the o-aminophenolate ligand. The ring-cleaved products undergo spontaneous cyclization to give substituted 2-picolinic acids, as verified by 1H NMR spectroscopy, mass spectrometry, and X-ray crystallography. Reaction of the APDO models with O2 at low temperature reveals multiple intermediates, which were probed with UV-vis absorption, electron paramagnetic resonance (EPR), Mössbauer (MB), and resonance Raman (rRaman) spectroscopies. The most stable intermediate at -70 °C in THF exhibits multiple isotopically-sensitive features in rRaman samples prepared with 16O2 and 18O2, confirming incorporation of O2-derived atom(s) into its molecular structure. Insights into the geometric structures, electronic properties, and spectroscopic features of the observed intermediates were obtained from density functional theory (DFT) calculations. Although functional APDO models have been previously reported, this is the first time that an oxygenated ligand-based radical has been detected and spectroscopically characterized in the ring-cleaving mechanism of a relevant synthetic system.
Collapse
Affiliation(s)
- Laxmi Devkota
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Anne A Fischer
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States
| | - Kate Murphy
- Department of Chemistry, The College of Arts and Sciences, University of St. Thomas, St. Paul, MN 55105, United States
| | - Praveen Kumar
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States
| | - Ellie L Balensiefen
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States
| | - Sergey V Lindeman
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States
| | - Codrina V Popescu
- Department of Chemistry, The College of Arts and Sciences, University of St. Thomas, St. Paul, MN 55105, United States.
| | - Adam T Fiedler
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States.
| |
Collapse
|
3
|
Campbell J, Wang Y. Observing extradiol dioxygenases in action through a crystalline lens. Methods Enzymol 2024; 704:3-25. [PMID: 39300653 DOI: 10.1016/bs.mie.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Extradiol dioxygenases are a class of non-heme iron-dependent enzymes found in eukaryotes and prokaryotes that play a vital role in the aerobic catabolism of aromatic compounds. They are generally divided into three evolutionarily independent superfamilies with different protein folds. Our recent studies have shed light on the catalytic mechanisms and structure-function relationships of two specific extradiol dioxygenases: 3-hydroxyanthranilate-3,4-dioxygenase, a Type III enzyme essential in mammals for producing a precursor for nicotinamide adenine dinucleotide, and L-3,4-dihydroxyphenylalanine dioxygenase, an uncommon form of Type I enzymes involved in natural product biosynthesis. This work details the expression and isolation methods for these extradiol dioxygenases and introduces approaches to achieve homogeneity and high occupancy of the enzyme metal centers. Techniques such as ultraviolet-visible and electron paramagnetic resonance spectroscopies, as well as oxygen electrode measurements, are discussed for probing the interaction of the non-heme iron center with ligands and characterizing enzymatic activities. Moreover, protein crystallization has been demonstrated as a powerful tool to study these enzymes. We highlight in crystallo reactions and single-crystal spectroscopic methods to further elucidate enzymatic functions and protein dynamics.
Collapse
Affiliation(s)
- Jackson Campbell
- Department of Chemistry, University of Georgia, Athens, GA, United States
| | - Yifan Wang
- Department of Chemistry, University of Georgia, Athens, GA, United States.
| |
Collapse
|
4
|
Doron L, Sutter M, Kerfeld CA. Characterization of a novel aromatic substrate-processing microcompartment in Actinobacteria. mBio 2023; 14:e0121623. [PMID: 37462359 PMCID: PMC10470539 DOI: 10.1128/mbio.01216-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 09/02/2023] Open
Abstract
We have discovered a new cluster of genes that is found exclusively in the Actinobacteria phylum. This locus includes genes for the 2-aminophenol meta-cleavage pathway and the shell proteins of a bacterial microcompartment (BMC) and has been named aromatics (ARO) for its putative role in the breakdown of aromatic compounds. In this study, we provide details about the distribution and composition of the ARO BMC locus and conduct phylogenetic, structural, and functional analyses of the first two enzymes in the catabolic pathway: a unique 2-aminophenol dioxygenase, which is exclusively found alongside BMC shell genes in Actinobacteria, and a semialdehyde dehydrogenase, which works downstream of the dioxygenase. Genomic analysis reveals variations in the complexity of the ARO loci across different orders. Some loci are simple, containing shell proteins and enzymes for the initial steps of the catabolic pathway, while others are extensive, encompassing all the necessary genes for the complete breakdown of 2-aminophenol into pyruvate and acetyl-CoA. Furthermore, our analysis uncovers two subtypes of ARO BMC that likely degrade either 2-aminophenol or catechol, depending on the presence of a pathway-specific gene within the ARO locus. The precise precursor of 2-aminophenol, which serves as the initial substrate and/or inducer for the ARO pathway, remains unknown, as our model organism Micromonospora rosaria cannot utilize 2-aminophenol as its sole energy source. However, using enzymatic assays, we demonstrate the dioxygenase's ability to cleave both 2-aminophenol and catechol in vitro, in collaboration with the aldehyde dehydrogenase, to facilitate the rapid conversion of these unstable and toxic intermediates. IMPORTANCE Bacterial microcompartments (BMCs) are proteinaceous organelles that are widespread among bacteria and provide a competitive advantage in specific environmental niches. Studies have shown that the genetic information necessary to form functional BMCs is encoded in loci that contain genes encoding shell proteins and the enzymatic core. This allows the bioinformatic discovery of BMCs with novel functions and expands our understanding of the metabolic diversity of BMCs. ARO loci, found only in Actinobacteria, contain genes encoding for phylogenetically remote shell proteins and homologs of the meta-cleavage degradation pathway enzymes that were shown to convert central aromatic intermediates into pyruvate and acetyl-CoA in gamma Proteobacteria. By analyzing the gene composition of ARO BMC loci and characterizing two core enzymes phylogenetically, structurally, and functionally, we provide an initial functional characterization of the ARO BMC, the most unusual BMC identified to date, distinctive among the repertoire of studied BMCs.
Collapse
Affiliation(s)
- Lior Doron
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Liu J, Lorraine SC, Dolinar BS, Hoover JM. Aerobic Oxidation Reactivity of Well-Defined Cobalt(II) and Cobalt(III) Aminophenol Complexes. Inorg Chem 2022; 61:6008-6016. [PMID: 35414172 PMCID: PMC9328405 DOI: 10.1021/acs.inorgchem.1c03686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This paper describes the synthesis and reactivity studies of three cobalt complexes bearing aminophenol-derived ligands without nitrogen substitution: CoII(tBu2APH)2(tBu2AP)2 (1), CoIII2(tBu2APH)2(tBu2AP)2(μ-tBu2BAP)2 (2), and CoIII(tBu2AP)3 (3), where tBu2APH = 2-amino-4,6-di-tert-butylphenol, tBu2AP = 2-amino-4,6-di-tert-butylphenolate, and μ-tBu2BAP = bridging 2-amido-4,6-di-tert-butylphenolate. Stoichiometric reactivity studies of these well-defined complexes demonstrate the catalytic competency of both cobalt(II) and cobalt(III) complexes in the aerobic oxidative cyclization of tBu2APH with tert-butylisonitrile. Reactions with O2 reveal the aerobic oxidation of the cobalt(II) complex 1 to generate the cobalt(III) species 2 and 3. UV-visible time-course studies and electron paramagnetic resonance spectroscopy indicate that this oxidation proceeds through a ligand-based radical intermediate. These studies represent the first example of well-defined cobalt aminophenol complexes that participate in catalytic aerobic oxidation reactions and highlight a key role for a ligand radical in the oxidation sequence.
Collapse
|
6
|
Chatterjee S, Banerjee S, Jana RD, Bhattacharya S, Chakraborty B, Jannuzzi SAV. Tuning the stereoelectronic factors of iron(II)-2-aminophenolate complexes for the reaction with dioxygen: oxygenolytic C-C bond cleavage vs. oxidation of complex. Dalton Trans 2021; 50:1901-1912. [PMID: 33475662 DOI: 10.1039/d0dt03316b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative C-C bond cleavage of 2-aminophenols mediated by transition metals and dioxygen is a topic of great interest. While the oxygenolytic C-C bond cleavage reaction relies on the inherent redox non-innocent property of 2-aminophenols, the metal complexes of 2-aminophenolates often undergo 1e-/2e- oxidation events (metal or ligand oxidation), instead of the direct addition of O2 for subsequent C-C bond cleavage. In this work, we report the isolation, characterization and dioxygen reactivity of a series of ternary iron(ii)-2-aminophenolate complexes [(TpPh,Me)FeII(X)], where X = 2-amino-4-tert-butylphenolate (4-tBu-HAP) (1); X = 2-amino-4,6-di-tert-butylphenolate (4,6-di-tBu-HAP) (2); X = 2-amino-4-nitrophenolate (4-NO2-HAP)(3); and X = 2-anilino-4,6-di-tert-butylphenolate (NH-Ph-4,6-di-tBu-HAP) (4) supported by a facial tridentate nitrogen donor ligand (TpPh,Me = hydrotris(3-phenyl-5-methylpyrazol-1-yl)borate). Another facial N3 ligand (TpPh2 = hydrotris(3,5-diphenyl-pyrazol-1-yl)borate) has been used to isolate an iron(ii)-2-anilino-4,6-di-tert-butylphenolate complex (5) for comparison. Both [(TpPh,Me)FeII(4-tBu-HAP)] (1) and [(TpPh,Me)FeII(4,6-di-tBu-HAP)] (2) undergo regioselective oxidative aromatic ring fission reaction of the coordinated 2-aminophenols to the corresponding 2-picolinic acids in the reaction with dioxygen. In contrast, complex [(TpPh,Me)FeII(4-NO2-HAP)] (3) displays metal based oxidation to form an iron(iii)-2-amidophenolate complex. Complexes [(TpPh,Me)FeII(NH-Ph-4,6-di-tBu-HAP)] (4) and [(TpPh2)FeII(NH-Ph-4,6-di-tBu-HAP)] (5) react with dioxygen to undergo 2e- oxidation with the formation of the corresponding iron(iii)-2-iminobenzosemiquinonato radical species implicating the importance of the -NH2 group in directing the C-C bond cleavage reactivity of 2-aminophenols. The systematic study presented in this work unravels the effect of the electronic and structural properties of the redox non-innocent 2-aminophenolate ring and the supporting ligand on the C-C bond cleavage reactivity vs. the metal/ligand oxidation of the complexes. The study further reveals that proper modulation of the stereoelectronic factors enables us to design a well synchronised proton transfer (PT) and dioxygen binding events for complexes 1 and 2 that mimic the structure and function of the nonheme enzyme 2-aminophenol-1,6-dioxygenase (APD).
Collapse
Affiliation(s)
- Sayanti Chatterjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Rahul Dev Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Shrabanti Bhattacharya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Biswarup Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | | |
Collapse
|
7
|
Burroughs AM, Glasner ME, Barry KP, Taylor EA, Aravind L. Oxidative opening of the aromatic ring: Tracing the natural history of a large superfamily of dioxygenase domains and their relatives. J Biol Chem 2019; 294:10211-10235. [PMID: 31092555 PMCID: PMC6664185 DOI: 10.1074/jbc.ra119.007595] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/09/2019] [Indexed: 12/20/2022] Open
Abstract
A diverse collection of enzymes comprising the protocatechuate dioxygenases (PCADs) has been characterized in several extradiol aromatic compound degradation pathways. Structural studies have shown a relationship between PCADs and the more broadly-distributed, functionally enigmatic Memo domain linked to several human diseases. To better understand the evolution of this PCAD-Memo protein superfamily, we explored their structural and functional determinants to establish a unified evolutionary framework, identifying 15 clearly-delineable families, including a previously-underappreciated diversity in five Memo clade families. We place the superfamily's origin within the greater radiation of the nucleoside phosphorylase/hydrolase-peptide/amidohydrolase fold prior to the last universal common ancestor of all extant organisms. In addition to identifying active-site residues across the superfamily, we describe three distinct, structurally-variable regions emanating from the core scaffold often housing conserved residues specific to individual families. These were predicted to contribute to the active-site pocket, potentially in substrate specificity and allosteric regulation. We also identified several previously-undescribed conserved genome contexts, providing insight into potentially novel substrates in PCAD clade families. We extend known conserved contextual associations for the Memo clade beyond previously-described associations with the AMMECR1 domain and a radical S-adenosylmethionine family domain. These observations point to two distinct yet potentially overlapping contexts wherein the elusive molecular function of the Memo domain could be finally resolved, thereby linking it to nucleotide base and aliphatic isoprenoid modification. In total, this report throws light on the functions of large swaths of the experimentally-uncharacterized PCAD-Memo families.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- From the Computational Biology Branch, NCBI, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Margaret E Glasner
- the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, and
| | - Kevin P Barry
- the Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459
| | - Erika A Taylor
- the Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459
| | - L Aravind
- From the Computational Biology Branch, NCBI, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894,
| |
Collapse
|
8
|
|
9
|
Dong W, Liu K, Liu J, Shi Z, Xin F, Zhang W, Ma J, Wu H, Wang F, Jiang M. Expression and characterization of the key enzymes involved in 2-benzoxazolinone degradation by Pigmentiphaga sp. DL-8. BIORESOURCE TECHNOLOGY 2018; 248:153-159. [PMID: 28684178 DOI: 10.1016/j.biortech.2017.06.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
In this study, the key enzymes involved in 2-benzoxazolinone (BOA) degradation by Pigmentiphaga sp. DL-8 were further verified and characterized in Escherichia coli. By codon optimization and co-expression of molecular chaperones in a combined strategy, recombinant BOA amidohydrolase (rCbaA) and 2-aminophenol (2-AP) 1,2-dioxygenase (rCnbCαCβ) were expressed and purified with the highest activity of 1934.6U·mgprotein-1 and 32.80U·mgprotein-1, respectively. BOA could be hydrolyzed to 2AP by rCbaA, which was further transformed to picolinic acid by rCnbCαCβ based on identified catalytic product. The optimal pH and temperature for rCbaA are 9.0 and 55°C with excellent stability for catalytic environments, and the residual activity was >50% after incubation at temperatures <45°C or at pH between 6.0 and 10.0 for 24h. On the contrary, rCnbCαCβ composed of α-subunit (33kDa) and β-subunit (38kDa) showed poor stability against environmental factors, including temperature, pH, metal ions and chemicals.
Collapse
Affiliation(s)
- Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Kuan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jiawei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Zhoukun Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|
10
|
Paul GC, Banerjee S, Mukherjee C. Dioxygen Reactivity of an Iron Complex of 2-Aminophenol-Appended Ligand: Crystallographic Evidence of the Aromatic Ring Cleavage Product of the 2-Aminophenol Unit. Inorg Chem 2016; 56:729-736. [PMID: 28005345 DOI: 10.1021/acs.inorgchem.6b01474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2-Aminophenol appended pentadentate ligand H2GanAP was synthesized by mixing equimolar amounts of 2-[bis(2-pyridylmethyl)aminomethyl]aniline (A) and 3,5-di-tert-butyl catechol in hexane in the presence of Et3N under air. The ligand reacted with Fe(ClO4)2·6H2O or Fe(ClO4)3·6H2O in the presence of tetrabutylammonium perchlorate, and Et3N under air and provided a μ2 oxo-bridged dinuclear iron complex (1). X-ray single-crystal analysis of complex 1 revealed the presence of a furan derivative, resulting from the oxidative aromatic C-C bond cleavage product of 2-aminophenol derivative, in the coordination sphere of each iron center. Mechanistic investigation for the formation of complex 1 established that in the absence of molecular oxygen no oxidation of the appended 2-amidophenolate unit took place. An iron(III)-amidophenolate complex, formed initially, further reacted with molecular oxygen and caused oxidative aromatic C-C bond cleavage via a putative alkylperoxo species.
Collapse
Affiliation(s)
- Ganesh Chandra Paul
- Department of Chemistry, Indian Institute of Technology Guwahati , Guwahati 781 039, Assam India
| | - Sridhar Banerjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Chandan Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati , Guwahati 781 039, Assam India
| |
Collapse
|
11
|
Lakshman TR, Chatterjee S, Chakraborty B, Paine TK. Substrate-dependent aromatic ring fission of catechol and 2-aminophenol with O2 catalyzed by a nonheme iron complex of a tripodal N4 ligand. Dalton Trans 2016; 45:8835-44. [PMID: 27148606 DOI: 10.1039/c5dt04541j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic reactivity of an iron(ii) complex [(TPA)Fe(II)(CH3CN)2](2+) (1) (TPA = tris(2-pyridylmethyl)amine) towards oxygenative aromatic C-C bond cleavage of catechol and 2-aminophenol is presented. Complex 1 exhibits catalytic and regioselective C-C bond cleavage of 3,5-di-tert-butylcatechol (H2DBC) to form intradiol products, whereas it catalyzes extradiol-type C-C bond cleavage of 2-amino-4,6-di-tert-butylphenol (H2AP). The catalytic reactions are found to be pH-dependent and the complex exhibits maximum turnovers at pH 5 in acetonitrile-phthalate buffer. An iron(iii)-catecholate complex [(TPA)Fe(III)(DBC)](+) (2) is formed in the ring cleavage of catechol. In the extradiol-type cleavage of H2AP, an iron(iii)-2-iminobenzosemiquinonate complex [(TPA)Fe(III)(ISQ)](2+) (3) (ISQ = 4,6-di-tert-butyl-2-iminobenzosemiquinonate radical anion) is observed in the reaction pathway. This work shows the importance of the nature of 'redox non-innocent' substrates in governing the mode of ring fission reactivity.
Collapse
Affiliation(s)
- Triloke Ranjan Lakshman
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | | | | | | |
Collapse
|
12
|
Chatterjee S, Paine TK. Oxygenative Aromatic Ring Cleavage of 2-Aminophenol with Dioxygen Catalyzed by a Nonheme Iron Complex: Catalytic Functional Model of 2-Aminophenol Dioxygenases. Inorg Chem 2015; 54:1720-7. [DOI: 10.1021/ic502658p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sayanti Chatterjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapan Kanti Paine
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
13
|
Barry KP, Ngu A, Cohn EF, Cote JM, Burroughs AM, Gerbino JP, Taylor EA. Exploring allosteric activation of LigAB from Sphingobium sp. strain SYK-6 through kinetics, mutagenesis and computational studies. Arch Biochem Biophys 2015; 567:35-45. [PMID: 25562402 DOI: 10.1016/j.abb.2014.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 12/12/2022]
Abstract
The protocatechuate 4,5-dioxygenase (LigAB) from Sphingobium sp. strain SYK-6 is the defining member of the Type II extradiol dioxygenase superfamily (a.k.a. PCA Dioxygenase Superfamily or PCADSF) and plays a key aromatic ring-opening role in the metabolism of several lignin derived aromatic compounds. In our search for alternate substrates and inhibitors of LigAB, we discovered allosteric rate enhancement in the presence of non-substrate protocatechuate-like aldehydes such as vanillin. LigAB has the broadest substrate utilization profile of all protocatechuate (PCA) 4,5-dioxygenase described in the literature, however, the rate enhancement is only observed with PCA, with vanillin increasing kcat for LigAB by 36%. Computational docking has identified a potential site of allosteric binding near the entrance to the active site. Examination of a multiple sequence alignment reveals that many of the residues contributing to this newly identified allosteric pocket are highly conserved within the LigB family of the PCADSF. Point mutants of Phe103α and Ala18β, two residues located in the putative allosteric pocket, display altered rate enhancement as compared to LigAB-WT, providing support for the computationally identified allosteric binding site. Further investigation of this binding site may provide insight into the mechanism of this never before observed allosteric activation in extradiol dioxygenases.
Collapse
Affiliation(s)
| | - Abraham Ngu
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Erin Frances Cohn
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Joy Marie Cote
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Erika Anne Taylor
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA.
| |
Collapse
|
14
|
Arora PK, Mohanta TK, Srivastava A, Bae H, Singh VP. Metabolic pathway for degradation of 2-chloro-4-aminophenol by Arthrobacter sp. SPG. Microb Cell Fact 2014; 13:164. [PMID: 25427856 PMCID: PMC4251673 DOI: 10.1186/s12934-014-0164-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/14/2014] [Indexed: 11/24/2022] Open
Abstract
A degradation pathway of 2-chloro-4-aminophenol (2C4AP) was studied in an Arthrobacter sp. SPG that utilized 2C4AP as its sole source of carbon and energy. The 2C4AP degradation was initiated by a 2C4AP-deaminase that catalyzed the conversion of 2C4AP into chlorohydroquinone (CHQ) with removal of ammonium ion. In the next step, a CHQ-dehalogenase dehalogenated CHQ to hydroquinone (HQ) that cleaved into γ-hydroxymuconic semialdehyde by a HQ-dioxygenase. The 2C4AP degradation was also investigated in sterile and non-sterile soil microcosms using strain SPG. The results show that the SPG cells degraded 2C4AP more rapidly in sterile soil than non-sterile soil. Our studies showed that strain SPG may be used for bioremediation of 2C4AP-contaminated sites. This is the first report of the 2C4AP degradation by any bacteria.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| | - Tapan Kumar Mohanta
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| | - Alok Srivastava
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, 243006, India.
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| | - Vijay Pal Singh
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, 243006, India.
| |
Collapse
|
15
|
Chakraborty B, Bhunya S, Paul A, Paine TK. Reactivity of Biomimetic Iron(II)-2-aminophenolate Complexes toward Dioxygen: Mechanistic Investigations on the Oxidative C–C Bond Cleavage of Substituted 2-Aminophenols. Inorg Chem 2014; 53:4899-912. [DOI: 10.1021/ic403043e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Biswarup Chakraborty
- Department of Inorganic Chemistry, ‡Raman Center for Atomic, Molecular and Optical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sourav Bhunya
- Department of Inorganic Chemistry, ‡Raman Center for Atomic, Molecular and Optical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ankan Paul
- Department of Inorganic Chemistry, ‡Raman Center for Atomic, Molecular and Optical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapan Kanti Paine
- Department of Inorganic Chemistry, ‡Raman Center for Atomic, Molecular and Optical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
16
|
Banerjee S, Halder P, Paine TK. Probing the Reactivity of Redox-Active 2-Aminophenolates on Iron Complexes of a Carbanionic N3C Donor Ligand. Z Anorg Allg Chem 2014. [DOI: 10.1002/zaac.201300630] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Arora PK, Srivastava A, Singh VP. Novel degradation pathway of 4-chloro-2-aminophenol via 4-chlorocatechol in Burkholderia sp. RKJ 800. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:2298-2304. [PMID: 24057966 DOI: 10.1007/s11356-013-2167-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/12/2013] [Indexed: 06/02/2023]
Abstract
Burkholderia sp. RKJ 800 utilized 4-chloro-2-aminophenol (4C2AP) as the sole carbon and energy source and degraded it with release of chloride and ammonium ions. The metabolic pathway of degradation of 4C2AP was studied and a novel intermediate, 4-chlorocatechol was identified as a major degradation product of 4C2AP using high-performance liquid chromatography and gas chromatography-mass spectrometry. Enzyme activities for 4C2AP-deaminase and 4-chlorocatechol-1,2-dioxygenase were detected in the crude extracts of the 4C2AP-induced cells of strain RKJ 800. The activity of the 4C2AP-deaminase confirmed the formation of 4-chlorocatechol from 4C2AP and the 4-chlorocatechol-1,2-dioxygenase activity suggested the cleavage of 4-chlorocatechol into 3-chloro-cis,cis-muconate. On the basis of the identified metabolites, we have proposed a novel degradation pathway of 4C2AP for Burkholderia sp. RKJ 800. Furthermore, the potential of Burkholderia sp. RKJ 800 to degrade 4C2AP in soil was also investigated using microcosm studies under laboratory conditions. The results of microcosm studies conclude that Burkholderia sp. RKJ 800 was able to degrade 4C2AP in soil and may be used to remediate 4C2AP-contaminated site. This is the first report of (1) the formation of 4-chlorocatechol and 3-chloro-cis,cis-muconate in the degradation pathway of 4C2AP and (2) bioremediation of 4C2AP by any bacterium.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, 243006, India.
| | - Alok Srivastava
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, 243006, India
| | - Vijay Pal Singh
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, 243006, India
| |
Collapse
|
18
|
Genomic and functional analyses of the 2-aminophenol catabolic pathway and partial conversion of its substrate into picolinic acid in Burkholderia xenovorans LB400. PLoS One 2013; 8:e75746. [PMID: 24124510 PMCID: PMC3790839 DOI: 10.1371/journal.pone.0075746] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022] Open
Abstract
2-aminophenol (2-AP) is a toxic nitrogen-containing aromatic pollutant. Burkholderia xenovorans LB400 possess an amn gene cluster that encodes the 2-AP catabolic pathway. In this report, the functionality of the 2-aminophenol pathway of B. xenovorans strain LB400 was analyzed. The amnRJBACDFEHG cluster located at chromosome 1 encodes the enzymes for the degradation of 2-aminophenol. The absence of habA and habB genes in LB400 genome correlates with its no growth on nitrobenzene. RT-PCR analyses in strain LB400 showed the co-expression of amnJB, amnBAC, amnACD, amnDFE and amnEHG genes, suggesting that the amn cluster is an operon. RT-qPCR showed that the amnB gene expression was highly induced by 2-AP, whereas a basal constitutive expression was observed in glucose, indicating that these amn genes are regulated. We propose that the predicted MarR-type transcriptional regulator encoded by the amnR gene acts as repressor of the amn gene cluster using a MarR-type regulatory binding sequence. This report showed that LB400 resting cells degrade completely 2-AP. The amn gene cluster from strain LB400 is highly identical to the amn gene cluster from P. knackmussi strain B13, which could not grow on 2-AP. However, we demonstrate that B. xenovorans LB400 is able to grow using 2-AP as sole nitrogen source and glucose as sole carbon source. An amnBA (-) mutant of strain LB400 was unable to grow with 2-AP as nitrogen source and glucose as carbon source and to degrade 2-AP. This study showed that during LB400 growth on 2-AP this substrate was partially converted into picolinic acid (PA), a well-known antibiotic. The addition of PA at lag or mid-exponential phase inhibited LB400 growth. The MIC of PA for strain LB400 is 2 mM. Overall, these results demonstrate that B. xenovorans strain LB400 posses a functional 2-AP catabolic central pathway, which could lead to the production of picolinic acid.
Collapse
|
19
|
Barry KP, Taylor EA. Characterizing the promiscuity of LigAB, a lignin catabolite degrading extradiol dioxygenase from Sphingomonas paucimobilis SYK-6. Biochemistry 2013; 52:6724-36. [PMID: 23977959 DOI: 10.1021/bi400665t] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LigAB from Sphingomonas paucimobilis SYK-6 is the only structurally characterized dioxygenase of the largely uncharacterized superfamily of Type II extradiol dioxygenases (EDO). This enzyme catalyzes the oxidative ring-opening of protocatechuate (3,4-dihydroxybenzoic acid or PCA) in a pathway allowing the degradation of lignin derived aromatic compounds (LDACs). LigAB has also been shown to utilize two other LDACs from the same metabolic pathway as substrates, gallate, and 3-O-methyl gallate; however, kcat/KM had not been reported for any of these compounds. In order to assess the catalytic efficiency and get insights into the observed promiscuity of this enzyme, steady-state kinetic analyses were performed for LigAB with these and a library of related compounds. The dioxygenation of PCA by LigAB was highly efficient, with a kcat of 51 s(-1) and a kcat/KM of 4.26 × 10(6) M(-1)s(-1). LigAB demonstrated the ability to use a variety of catecholic molecules as substrates beyond the previously identified gallate and 3-O-methyl gallate, including 3,4-dihydroxybenzamide, homoprotocatechuate, catechol, and 3,4-dihydroxybenzonitrile. Interestingly, 3,4-dihydroxybenzamide (DHBAm) behaves in a manner similar to that of the preferred benzoic acid substrates, with a kcat/Km value only ∼4-fold lower than that for gallate and ∼10-fold higher than that for 3-O-methyl gallate. All of these most active substrates demonstrate mechanistic inactivation of LigAB. Additionally, DHBAm exhibits potent product inhibition that leads to an inactive enzyme, being more highly deactivating at lower substrate concentration, a phenomena that, to our knowledge, has not been reported for another dioxygenase substrate/product pair. These results provide valuable catalytic insight into the reactions catalyzed by LigAB and make it the first Type II EDO that is fully characterized both structurally and kinetically.
Collapse
Affiliation(s)
- Kevin P Barry
- Department of Chemistry, Wesleyan University , 52 Lawn Avenue, Middletown, Connecticut 06459, United States
| | | |
Collapse
|
20
|
Bittner MM, Kraus D, Lindeman SV, Popescu CV, Fiedler AT. Synthetic, spectroscopic, and DFT studies of iron complexes with iminobenzo(semi)quinone ligands: implications for o-aminophenol dioxygenases. Chemistry 2013; 19:9686-98. [PMID: 23744733 PMCID: PMC3965334 DOI: 10.1002/chem.201300520] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/17/2013] [Indexed: 11/10/2022]
Abstract
The oxidative C-C bond cleavage of o-aminophenols by nonheme Fe dioxygenases is a critical step in both human metabolism (the kynurenine pathway) and the microbial degradation of nitroaromatic pollutants. The catalytic cycle of o-aminophenol dioxygenases (APDOs) has been proposed to involve formation of an Fe(II)/O2/iminobenzosemiquinone complex, although the presence of a substrate radical has been called into question by studies of related ring-cleaving dioxygenases. Recently, we reported the first synthesis of an iron(II) complex coordinated to an iminobenzosemiquinone (ISQ) ligand, namely, [Fe((Ph2)Tp)((tBu)ISQ)] (2a; where (Ph2)Tp=hydrotris(3,5-diphenylpyrazol-1-yl)borate and (tBu)ISQ is the radical anion derived from 2-amino-4,6-di-tert-butylphenol). In the current manuscript, density functional theory (DFT) calculations and a wide variety of spectroscopic methods (electronic absorption, Mössbauer, magnetic circular dichroism, and resonance Raman) were employed to obtain detailed electronic-structure descriptions of 2a and its one-electron oxidized derivative [3a](+). In addition, we describe the synthesis and characterization of a parallel series of complexes featuring the neutral supporting ligand tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine ((Ph2)TIP). The isomer shifts of about 0.97 mm s(-1) obtained through Mössbauer experiments confirm that 2a (and its (Ph2)TIP-based analogue [2b](+)) contain Fe(II) centers, and the presence of an ISQ radical was verified by analysis of the absorption spectra in light of time-dependent DFT calculations. The collective spectroscopic data indicate that one-electron oxidation of the Fe(II)-ISQ complexes yields complexes ([3a](+) and [3b](2+)) with electronic configurations between the Fe(III)-ISQ and Fe(II)-IBQ limits (IBQ=iminobenzoquinone), highlighting the ability of o-amidophenolates to access multiple oxidation states. The implications of these results for the mechanism of APDOs and other ring-cleaving dioxygenases are discussed.
Collapse
Affiliation(s)
- Michael M. Bittner
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - David Kraus
- Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Sergey V. Lindeman
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Codrina V. Popescu
- Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Adam T. Fiedler
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
21
|
Buongiorno D, Straganz GD. Structure and function of atypically coordinated enzymatic mononuclear non-heme-Fe(II) centers. Coord Chem Rev 2013; 257:541-563. [PMID: 24850951 PMCID: PMC4019311 DOI: 10.1016/j.ccr.2012.04.028] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 11/17/2022]
Abstract
Mononuclear, non-heme-Fe(II) centers are key structures in O2 metabolism and catalyze an impressive variety of enzymatic reactions. While most are bound via two histidines and a carboxylate, some show a different organization. A short overview of atypically coordinated O2 dependent mononuclear-non-heme-Fe(II) centers is presented here Enzymes with 2-His, 3-His, 3-His-carboxylate and 4-His bound Fe(II) centers are discussed with a focus on their reactivity, metal ion promiscuity and recent progress in the elucidation of their enzymatic mechanisms. Observations concerning these and classically coordinated Fe(II) centers are used to understand the impact of the metal binding motif on catalysis.
Collapse
Key Words
- 1,3-bis(2-pyridylimino)isoindoline, ind
- 2OH-1,3-Ph2PD, 2-hydroxy-1,3-diphenylpropanedione
- 6-Ph2TPA, N,N-bis[(6-phenyl-2-pyridyl)methyl]-N-[(2-pyridyl)-methyl]amine
- ADO, cysteamine dioxygenase
- AO, apocarotenoid 15,15′-oxygenase
- ARD, aci-reductone dioxygenase
- BsQDO, quercetin 2,3-dioxygenase from Bacillus subtilis
- CD, circular dichroism
- CDO, cysteine dioxygenase
- CGDO, 5-chloro-gentisate 1,2-dioxygenase
- CS2, clavaminate synthase
- CarOs, carotenoid oxygenases
- DFT, density functional theory
- Dioxygen activation
- Dioxygenase
- Dke1, diketone dioxygenase
- EPR, electron paramagnetic resonance
- EXAFS, extended X-ray absorption fine structure spectroscopy
- Enzyme catalysis
- Facial triad
- GDO, gentisate 1,2-dioxygenase
- HADO, 3-hydroxyanthranilate 3,4-dioxygenase
- HGDO, homogentisate 1,2-dioxygenase
- HNDO, hydroxy-2-naphthoate dioxygenase
- MCD, magnetic circular dichroism
- MNHEs, mononuclear non-heme-Fe(II) dependent enzymes
- Metal binding motif
- NRP, nonribosomal peptide
- OTf-, trifluormethanesulfonate
- PDB, protein data bank
- QDO, quercetin 2,3-dioxygenase
- SDO, salicylate 1,2-dioxygenase
- Structure–function relationships
- TauD, taurine hydroxylase
- XAS, X-ray absorption spectroscopy
- acac, acetylacetone (2,4-pentanedione)
- fla, flavonolate
- α-KG, α-ketoglutarate
Collapse
Affiliation(s)
- Daniela Buongiorno
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12 A-8010 Graz, Austria
| | - Grit D Straganz
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12 A-8010 Graz, Austria
| |
Collapse
|
22
|
Li DF, Zhang JY, Hou YJ, Liu L, Hu Y, Liu SJ, Wang DC, Liu W. Structures of aminophenol dioxygenase in complex with intermediate, product and inhibitor. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 69:32-43. [PMID: 23275161 DOI: 10.1107/s0907444912042072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/08/2012] [Indexed: 11/10/2022]
Abstract
Dioxygen activation by nonhaem Fe(II) enzymes containing the 2-His-1-carboxylate facial triad has been extensively studied in recent years. Here, crystal structures of 2-aminophenol 1,6-dioxygenase, an enzyme that represents a minor group of extradiol dioxygenases and that catalyses the ring opening of 2-aminophenol, in complex with the lactone intermediate (4Z,6Z)-3-iminooxepin-2(3H)-one and the product 2-aminomuconic 6-semialdehyde and in complex with the suicide inhibitor 4-nitrocatechol are reported. The Fe-ligand binding schemes observed in these structures revealed some common geometrical characteristics that are shared by the published structures of extradiol dioxygenases, suggesting that enzymes that catalyse the oxidation of noncatecholic compounds are very likely to utilize a similar strategy for dioxygen activation and the fission of aromatic rings as the canonical mechanism. The Fe-ligation arrangement, however, is strikingly enantiomeric to that of all other 2-His-1-carboxylate enzymes apart from protocatechuate 4,5-dioxygenase. This structural variance leads to the generation of an uncommon O(-)-Fe(2+)-O(-) species prior to O(2) binding, which probably forms the structural basis on which APD distinguishes its specific substrate and inhibitor, which share an analogous molecular structure.
Collapse
Affiliation(s)
- De Feng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Arora PK. Decolourization of 4-chloro-2-nitrophenol by a soil bacterium, Bacillus subtilis RKJ 700. PLoS One 2012; 7:e52012. [PMID: 23251673 PMCID: PMC3520910 DOI: 10.1371/journal.pone.0052012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 11/07/2012] [Indexed: 12/07/2022] Open
Abstract
A 4-Chloro-2-nitrophenol (4C2NP) decolourizing strain RKJ 700 was isolated from soil collected from a pesticide contaminated site of India and identified as Bacillus subtilis on the basis of the 16S rRNA gene sequence analysis. Bacillus subtilis RKJ 700 decolourized 4C2NP up to concentration of 1.5 mM in the presence of additional carbon source. The degradation pathway of 4C2NP was studied and 4-chloro-2-aminophenol, 4-chloro-2-acetaminophenol and 5-chloro-2-methylbenzoxazole (5C2MBZ) were identified as metabolites by high performance liquid chromatography and gas chromatography-mass spectrometry. Resting cell studies showed that Bacillus subtilis RKJ 700 depleted 4C2NP completely with stoichiometric formation of 5C2MBZ. This is the first report of (i) the degradation of 4C2NP at high concentration (1.5 mM) and, (ii) the formation of 5C2MBZ by a soil bacterium.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- Environmental Biotechnology, CSIR-Institute of Microbial Technology, Chandigarh, India.
| |
Collapse
|
24
|
Chakraborty B, Paine TK. Aromatic ring cleavage of 2-amino-4-tert-butylphenol by a nonheme iron(II) complex: functional model of 2-aminophenol dioxygenases. Angew Chem Int Ed Engl 2012. [PMID: 23197337 DOI: 10.1002/anie.201206922] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Biswarup Chakraborty
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | | |
Collapse
|
25
|
Chakraborty B, Paine TK. Aromatic Ring Cleavage of 2-Amino-4-tert-butylphenol by a Nonheme Iron(II) Complex: Functional Model of 2-Aminophenol Dioxygenases. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Baum AE, Park H, Wang D, Lindeman SV, Fiedler AT. Structural, spectroscopic, and electrochemical properties of nonheme Fe(II)-hydroquinonate complexes: synthetic models of hydroquinone dioxygenases. Dalton Trans 2012; 41:12244-53. [PMID: 22930005 PMCID: PMC3891569 DOI: 10.1039/c2dt31504a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the tris(3,5-diphenylpyrazol-1-yl)borate ((Ph2)Tp) supporting ligand, a series of mono- and dinuclear ferrous complexes containing hydroquinonate (HQate) ligands have been prepared and structurally characterized with X-ray crystallography. The monoiron(II) complexes serve as faithful mimics of the substrate-bound form of hydroquinone dioxygenases (HQDOs) - a family of nonheme Fe enzymes that catalyze the oxidative cleavage of 1,4-dihydroxybenzene units. Reflecting the variety of HQDO substrates, the synthetic complexes feature both mono- and bidentate HQate ligands. The bidentate HQates cleanly provide five-coordinate, high-spin Fe(II) complexes with the general formula [Fe((Ph2)Tp)(HL(X))] (1X), where HL(X) is a HQate(1-) ligand substituted at the 2-position with a benzimidazolyl (1A), acetyl (1B and 1C), or methoxy (1D) group. In contrast, the monodentate ligand 2,6-dimethylhydroquinone (H(2)L(F)) exhibited a greater tendency to bridge between two Fe(II) centers, resulting in formation of [Fe(2)((Ph2)Tp)(2)(μ-L(F))(MeCN)]·[2F(MeCN)]. However, addition of one equivalent of "free" pyrazole ((Ph2)pz) ligand provided the mononuclear complex, [Fe((Ph2)Tp)(HL(F))((Ph2)pz)]·[1F((Ph2)pz)], which is stabilized by an intramolecular hydrogen bond between the HL(F) and (Ph2)pz donors. Complex 1F((Ph2)pz) represents the first crystallographically-characterized example of a monoiron complex bound to an untethered HQate ligand. The geometric and electronic structures of the Fe/HQate complexes were further probed with spectroscopic (UV-vis absorption, (1)H NMR) and electrochemical methods. Cyclic voltammograms of complexes in the 1X series revealed an Fe-based oxidation between 0 and -300 mV (vs. Fc(+/0)), in addition to irreversible oxidation(s) of the HQate ligand at higher potentials. The one-electron oxidized species (1X(OX)) were examined with UV-vis absorption and electron paramagnetic resonance (EPR) spectroscopies.
Collapse
Affiliation(s)
- Amanda E. Baum
- Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881
| | - Heaweon Park
- Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881
| | - Denan Wang
- Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881
| | | | - Adam T. Fiedler
- Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881
| |
Collapse
|
27
|
Halder P, Paria S, Paine TK. Dioxygen Reactivity of Biomimetic Iron-Catecholate and Iron-o-Aminophenolate Complexes of a Tris(2-pyridylthio)methanido Ligand: Aromatic CC Bond Cleavage of Catecholate versuso-Iminobenzosemiquinonate Radical Formation. Chemistry 2012; 18:11778-87. [DOI: 10.1002/chem.201200886] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Indexed: 11/07/2022]
|
28
|
Machonkin TE, Doerner AE. Substrate Specificity of Sphingobium chlorophenolicum 2,6-Dichlorohydroquinone 1,2-Dioxygenase. Biochemistry 2011; 50:8899-913. [DOI: 10.1021/bi200855m] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Timothy E. Machonkin
- Department of Chemistry, Whitman College, 345 Boyer Avenue, Walla Walla, Washington
99362, United States
| | - Amy E. Doerner
- Department of Chemistry, Whitman College, 345 Boyer Avenue, Walla Walla, Washington
99362, United States
| |
Collapse
|
29
|
Biotransformation of 4-chloro-2-nitrophenol into 5-chloro-2-methylbenzoxazole by a marine Bacillus sp. strain MW-1. Biodegradation 2011; 23:325-31. [PMID: 21892663 DOI: 10.1007/s10532-011-9512-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
Abstract
Decolourization, detoxification and biotransformation of 4-chloro-2-nitrophenol (4C2NP) by Bacillus sp. strain MW-1 were studied. This strain decolorized 4C2NP only in the presence of an additional carbon source. On the basis of thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS), 4-chloro-2-aminophenol, 4-chloro-2-acetaminophenol and 5-chloro-2-methylbenzoxazole were identified as metabolites. Resting cells depleted 4C2NP with stoichiometric formation of 5-chloro-2-methyl benzoxazole. This is the first report of the formation of 5-chloro-2-methylbenzoxazole from 4C2NP by any bacterial strain.
Collapse
|
30
|
Kolvenbach BA, Lenz M, Benndorf D, Rapp E, Fousek J, Vlcek C, Schäffer A, Gabriel FLP, Kohler HPE, Corvini PFX. Purification and characterization of hydroquinone dioxygenase from Sphingomonas sp. strain TTNP3. AMB Express 2011; 1:8. [PMID: 21906340 PMCID: PMC3222310 DOI: 10.1186/2191-0855-1-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/27/2011] [Indexed: 11/11/2022] Open
Abstract
Hydroquinone-1,2-dioxygenase, an enzyme involved in the degradation of alkylphenols in Sphingomonas sp. strain TTNP3 was purified to apparent homogeneity. The extradiol dioxygenase catalyzed the ring fission of hydroquinone to 4-hydroxymuconic semialdehyde and the degradation of chlorinated and several alkylated hydroquinones. The activity of 1 mg of the purified enzyme with unsubstituted hydroquinone was 6.1 μmol per minute, the apparent Km 2.2 μM. ICP-MS analysis revealed an iron content of 1.4 moles per mole enzyme. The enzyme lost activity upon exposure to oxygen, but could be reactivated by Fe(II) in presence of ascorbate. SDS-PAGE analysis of the purified enzyme yielded two bands of an apparent size of 38 kDa and 19 kDa, respectively. Data from MALDI-TOF analyses of peptides of the respective bands matched with the deduced amino acid sequences of two neighboring open reading frames found in genomic DNA of Sphingomonas sp strain TTNP3. The deduced amino acid sequences showed 62% and 47% identity to the large and small subunit of hydroquinone dioxygenase from Pseudomonas fluorescens strain ACB, respectively. This heterotetrameric enzyme is the first of its kind found in a strain of the genus Sphingomonas sensu latu.
Collapse
|
31
|
Barsing P, Tiwari A, Joshi T, Garg S. Application of a novel bacterial consortium for mineralization of sulphonated aromatic amines. BIORESOURCE TECHNOLOGY 2011; 102:765-771. [PMID: 20863689 DOI: 10.1016/j.biortech.2010.08.098] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/26/2010] [Accepted: 08/26/2010] [Indexed: 05/29/2023]
Abstract
A novel bacterial consortium (TJ-2) for mineralization of aromatic amines resulting from decolorization of azo dyes was developed. Three bacterial strains were identified as Pseudomonas pseudoalcaligenes (TJ-21,EU072476), Pseudomonas citronellolis (TJ-22,EU072477) and Pseudomonas testosterone (TJ-23,EU072477) by 16S rRNA gene sequence analysis. Aromatic amine mineralization under aerobic conditions was observed to be significantly higher with the consortium as compared to pure strains indicating complementary interactions among these strains. It was observed that more than 90% mineralization of aromatic amines was achieved within 18h for different initial aromatic amines concentrations. It was also observed that aromatic amine mineralization depends upon the structure of aromatic amine. Para- and meta-hydroxy substituted aromatic amine were easily mineralized as compared to ortho-substituted which undergoes autoxidation when exposed to oxygen. The consortium was capable of mineralizing other aromatic amines, thus, conferring the possibility of application of TJ-2 for the treatment of industrial wastewaters containing aromatic amines.
Collapse
Affiliation(s)
- Prashant Barsing
- Department of Chemical Engineering, IIT Kanpur, Kanpur, UP 208 016, India
| | | | | | | |
Collapse
|
32
|
Determination of the active site of Sphingobium chlorophenolicum 2,6-dichlorohydroquinone dioxygenase (PcpA). J Biol Inorg Chem 2009; 15:291-301. [DOI: 10.1007/s00775-009-0602-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
|
33
|
Zheng C, Zhou J, Wang J, Qu B, Wang J, Lu H, Zhao H. Aerobic degradation of 2-picolinic acid by a nitrobenzene-assimilating strain: Streptomyces sp. Z2. BIORESOURCE TECHNOLOGY 2009; 100:2082-2084. [PMID: 19042125 DOI: 10.1016/j.biortech.2008.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 10/10/2008] [Accepted: 10/12/2008] [Indexed: 05/27/2023]
Abstract
Streptomyces sp. Z2 was isolated from nitrobenzene contaminated activated sludge, which utilized nitrobenzene as a sole source of carbon, nitrogen, and energy under aerobic condition. It was found that besides nitrobenzene strain Z2 can degrade 2-picolinic acid. Strain Z2 completely degraded 2-picolinic acid with initial concentration of 500mg/L, 1000mg/L, 1500mg/L, 2000mg/L, 2500mg/L, and 3000mg/L within 36h, 50h, 72h, 100h, 136h, and 180h, respectively. Kinetics of 2-picolinic acid degradation was described using the Andrews equation. The kinetic parameters were as follows: q(max)=3.81h(-1), K(s)=83.10mg/L, and K(i)=252.11mg/L. During the biodegradation process, Z2 transformed 2-picolinic acid into a product which was identified as 6-hydroxy picolinic acid by UV-vis spectrometry, (1)H nuclear magnetic resonance spectroscopy, and mass spectrometry. 6-Hydroxy picolinic acid was then cleaved and mineralized with release of ammonia.
Collapse
Affiliation(s)
- Chunli Zheng
- School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning Province, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Cheriaa J, Mosrati R, Ladhari N, Bakhrouf A. Acclimated biomass that degrades Sulfonated Naphthalene Formaldehyde Condensate. Pak J Biol Sci 2008; 11:1588-93. [PMID: 18819646 DOI: 10.3923/pjbs.2008.1588.1593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A number of aerobic species were isolated from textile industry activated sludge wastewater. The bacterial consortium was acclimated during seven days before testing its capacity of Sulfonated Naphthalene-Formaldehyde Condensate (SNFC) recalcitrant compound degradation. SNFC's degradation was evaluated by using different techniques including: vapour pressure osmometry, spectroscopy UV-Visible and Chemical Oxygen Demand (COD). The degradation of SNFC by acclimated bacterial consortium was determined by monitoring the decrease of absorbance and of COD at wavelength 288 nm. We were able to deduce that biodegradation of SNFC involves two steps: cleavage of CH2 bridges and the degradation of the aromatic nuclei. The bacteria species community that was able to degrade SNFC consisted of aerobic Gram-negative rods belonging to the Pseudomonadaceae family. The strains were identified as Bukholderia cepacia, Brevundimonas vesicularis, Pseudomonas stutzeri, Ralostonia picketti, Shewanella putrefaciens, Sphingomonas paucimobilis and Agrobacterium radiobacter.
Collapse
Affiliation(s)
- Jihane Cheriaa
- Laboratory of Analysis, Treatment, Valorization and Environmental Pollution and Products, Department of Microbiology, Faculty of Pharmacy, Monastir, Tunisia
| | | | | | | |
Collapse
|
35
|
Abstract
Ring-cleaving dioxygenases catalyze the oxygenolytic fission of catecholic compounds, a critical step in the aerobic degradation of aromatic compounds by bacteria. Two classes of these enzymes have been identified, based on the mode of ring cleavage: intradiol dioxygenases utilize non-heme Fe(III) to cleave the aromatic nucleus ortho to the hydroxyl substituents; and extradiol dioxygenases utilize non-heme Fe(II) or other divalent metal ions to cleave the aromatic nucleus meta to the hydroxyl substituents. Recent genomic, structural, spectroscopic, and kinetic studies have increased our understanding of the distribution, evolution, and mechanisms of these enzymes. Overall, extradiol dioxygenases appear to be more versatile than their intradiol counterparts. Thus, the former cleave a wider variety of substrates, have evolved on a larger number of structural scaffolds, and occur in a wider variety of pathways, including biosynthetic pathways and pathways that degrade non-aromatic compounds. The catalytic mechanisms of the two enzymes proceed via similar iron-alkylperoxo intermediates. The ability of extradiol enzymes to act on a variety of non-catecholic compounds is consistent with proposed differences in the breakdown of this iron-alkylperoxo intermediate in the two enzymes, involving alkenyl migration in extradiol enzymes and acyl migration in intradiol enzymes. Nevertheless, despite recent advances in our understanding of these fascinating enzymes, the major determinant of the mode of ring cleavage remains unknown.
Collapse
Affiliation(s)
- Frédéric H Vaillancourt
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
36
|
Salicylate 1,2-Dioxygenase from Pseudaminobacter salicylatoxidans: Crystal Structure of a Peculiar Ring-cleaving Dioxygenase. J Mol Biol 2008; 380:856-68. [DOI: 10.1016/j.jmb.2008.05.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/13/2008] [Accepted: 05/18/2008] [Indexed: 11/24/2022]
|
37
|
Poly(2,5-benzoxazole)/carbon nanotube composites via in situ polymerization of 3-amino-4-hydroxybenzoic acid hydrochloride in a mild poly(phosphoric acid). Eur Polym J 2008. [DOI: 10.1016/j.eurpolymj.2008.03.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Responses of a novel salt-tolerant Streptomyces albidoflavus DUT_AHX capable of degrading nitrobenzene to salinity stress. Biodegradation 2008; 20:67-77. [PMID: 18516688 DOI: 10.1007/s10532-008-9200-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 05/19/2008] [Indexed: 10/22/2022]
Abstract
A novel salt-tolerant strain DUT_AHX, which was capable of utilizing nitrobenzene (NB) as the sole carbon source, was isolated from NB-contaminated soil. Furthermore, it was identified as Streptomyces albidoflavus on the basis of physiological and biochemical tests and 16S ribosomal DNA (rDNA) sequence analysis. It can grow in the presence of NaCl up to 12% (w/v) or NB up to 900 mg/l in mineral salts basal (MSB) medium. The exogenously added osmoprotectants such as glycin, glutamic acid, proline, betaine and ectoine can improve growth of strain DUT_AHX in the presence of 10% (w/v) NaCl. NB-grown cells of strain DUT_AHX in modified MSB medium can degrade NB with the concomitant release of ammonia. Moreover, crude extracts of NB-grown strain DUT_AHX mainly contained 2-aminophenol 1,6-dioxygenase activity. These indicate that NB degradation by strain DUT_AHX might involve a partial reductive pathway. The proteins induced by salinity stress or NB were analyzed by native-gradient polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS)-PAGE. In NB-induced proteins de novo, 141 kDa protein on the native-gradient PAGE gel was excised and electroeluted. Furthermore, enzyme tests exhibit the 2-aminophenol 1,6-dioxygenase activity of purified 141 kDa protein is 11-fold that of the cell-free extracts. The exploitation of strain DUT_AHX in salinity stress will be a remarkable improvement in NB bioremediation and wastewater treatment in high salinity.
Collapse
|
39
|
Hydroquinone dioxygenase from pseudomonas fluorescens ACB: a novel member of the family of nonheme-iron(II)-dependent dioxygenases. J Bacteriol 2008; 190:5199-209. [PMID: 18502867 DOI: 10.1128/jb.01945-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydroquinone 1,2-dioxygenase (HQDO), an enzyme involved in the catabolism of 4-hydroxyacetophenone in Pseudomonas fluorescens ACB, was purified to apparent homogeneity. Ligandation with 4-hydroxybenzoate prevented the enzyme from irreversible inactivation. HQDO was activated by iron(II) ions and catalyzed the ring fission of a wide range of hydroquinones to the corresponding 4-hydroxymuconic semialdehydes. HQDO was inactivated by 2,2'-dipyridyl, o-phenanthroline, and hydrogen peroxide and inhibited by phenolic compounds. The inhibition with 4-hydroxybenzoate (K(i) = 14 microM) was competitive with hydroquinone. Online size-exclusion chromatography-mass spectrometry revealed that HQDO is an alpha2beta2 heterotetramer of 112.4 kDa, which is composed of an alpha-subunit of 17.8 kDa and a beta-subunit of 38.3 kDa. Each beta-subunit binds one molecule of 4-hydroxybenzoate and one iron(II) ion. N-terminal sequencing and peptide mapping and sequencing based on matrix-assisted laser desorption ionization--two-stage time of flight analysis established that the HQDO subunits are encoded by neighboring open reading frames (hapC and hapD) of a gene cluster, implicated to be involved in 4-hydroxyacetophenone degradation. HQDO is a novel member of the family of nonheme-iron(II)-dependent dioxygenases. The enzyme shows insignificant sequence identity with known dioxygenases.
Collapse
|
40
|
Xiao Y, Wu JF, Liu H, Wang SJ, Liu SJ, Zhou NY. Characterization of genes involved in the initial reactions of 4-chloronitrobenzene degradation in Pseudomonasputida ZWL73. Appl Microbiol Biotechnol 2006; 73:166-71. [PMID: 16642329 DOI: 10.1007/s00253-006-0441-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 02/21/2006] [Accepted: 03/27/2006] [Indexed: 10/24/2022]
Abstract
The genes encoding enzymes involved in the initial reactions during degradation of 4-chloronitrobenzene (4CNB) were characterized from the 4CNB utilizer Pseudomonas putida ZWL73, in which a partial reductive pathway was adopted. A DNA fragment containing genes coding for chloronitrobenzene nitroreductase (CnbA) and hydroxylaminobenzene mutase (CnbB) were PCR-amplified and subsequently sequenced. These two genes were actively expressed in Escherichia coli, and recombinant E. coli cells catalyzed the conversion of 4CNB to 2-amino-5-chlorophenol, which is the ring-cleavage substrate in the degradation of 4CNB. Phylogenetic analyses on sequences of chloronitrobenzene nitroreductase and hydroxylaminobenzene mutase revealed that these two enzymes are closely related to the functionally identified nitrobenzene nitroreductase and hydroxylaminobenzene mutase from Pseudomonas strains JS45 and HS12. The nitroreductase from strain ZWL73 showed a higher specific activity toward 4CNB than nitrobenzene (approximately at a ratio of 1.6:1 for the recombinant or 2:1 for the wild type), which is in contrast to the case where the nitroreductase from nitrobenzene utilizers Pseudomonas pseudoalcaligenes JS45 with an apparently lower specific activity against 4CNB than nitrobenzene (0.16:1) [Kadiyala et al. Appl Environ Microbiol 69:6520-6526, 2003]. This suggests that the nitroreductase from 4-chloronitrobenzene utilizer P. putida ZWL73 may have evolved to prefer chloronitrobenzene to nitrobenzene as its substrate.
Collapse
Affiliation(s)
- Yi Xiao
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | |
Collapse
|
41
|
Li X, Guo M, Fan J, Tang W, Wang D, Ge H, Rong H, Teng M, Niu L, Liu Q, Hao Q. Crystal structure of 3-hydroxyanthranilic acid 3,4-dioxygenase from Saccharomyces cerevisiae: a special subgroup of the type III extradiol dioxygenases. Protein Sci 2006; 15:761-73. [PMID: 16522801 PMCID: PMC2242480 DOI: 10.1110/ps.051967906] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
3-Hydroxyanthranilic acid 3,4-dioxygenase (3HAO) is a non-heme ferrous extradiol dioxygenase in the kynurenine pathway from tryptophan. It catalyzes the conversion of 3-hydroxyanthranilate (HAA) to quinolinic acid (QUIN), an endogenous neurotoxin, via the activation of N-methyl-D-aspartate (NMDA) receptors and the precursor of NAD(+) biosynthesis. The crystal structure of 3HAO from S. cerevisiae at 2.4 A resolution shows it to be a member of the functionally diverse cupin superfamily. The structure represents the first eukaryotic 3HAO to be resolved. The enzyme forms homodimers, with two nickel binding sites per molecule. One of the bound nickel atoms occupies the proposed ferrous-coordinated active site, which is located in a conserved double-strand beta-helix domain. Examination of the structure reveals the participation of a series of residues in catalysis different from other extradiol dioxygenases. Together with two iron-binding residues (His49 and Glu55), Asp120, Asn51, Glu111, and Arg114 form a hydrogen-bonding network; this hydrogen-bond network is key to the catalysis of 3HAO. Residues Arg101, Gln59, and the substrate-binding hydrophobic pocket are crucial for substrate specificity. Structure comparison with 3HAO from Ralstonia metallidurans reveals similarities at the active site and suggests the same catalytic mechanism in prokaryotic and eukaryotic 3HAO. Based on sequence comparison, we suggest that bicupin of human 3HAO is the first example of evolution from a monocupin dimer to bicupin monomer in the diverse cupin superfamilies. Based on the model of the substrate HAA at the active site of Y3HAO, we propose a mechanism of catalysis for 3HAO.
Collapse
Affiliation(s)
- Xiaowu Li
- Hefei National Laboratory for Physical Sciences at Microsale and School of Life Sciences, University of Science & Technology of China, Hefei, Anhui 230027, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wu JF, Sun CW, Jiang CY, Liu ZP, Liu SJ. A novel 2-aminophenol 1,6-dioxygenase involved in the degradation of p-chloronitrobenzene by Comamonas strain CNB-1: purification, properties, genetic cloning and expression in Escherichia coli. Arch Microbiol 2004; 183:1-8. [PMID: 15580337 DOI: 10.1007/s00203-004-0738-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 08/24/2004] [Accepted: 09/28/2004] [Indexed: 10/26/2022]
Abstract
Comamonas strain CNB-1 was isolated from a biological reactor treating wastewater from a p-chloronitrobenzene production factory. Strain CNB-1 used p-chloronitrobenzene as sole source of carbon, nitrogen, and energy. A 2-aminophenol 1,6-dioxygenase was purified from cells of strain CNB-1. The purified 2-aminophenol 1,6-dioxygenase had a native molecular mass of 130 kDa and was composed of alpha- and beta-subunits of 33 and 38 kDa, respectively. This enzyme is different from currently known 2-aminophenol 1,6-dioxygenases in that it: (a) has a higher affinity for 2-amino-5-chlorophenol (K(m)=0.77 microM) than for 2-aminophenol (K(m)=0.89 microM) and (b) utilized protocatechuate as a substrate. These results suggested that 2-amino-5-chlorophenol, an intermediate during p-chloronitrobenzene degradation, is the natural substrate for this enzyme. N-terminal amino acids of the alpha- and beta-subunits were determined to be T-V-V-S-A-F-L-V and M-Q-G-E-I-I-A-E, respectively. A cosmid library was constructed from the total DNA of strain CNB-1 and three clones (BG-1, BG-2, and CG-13) with 2-aminophenol 1,6-dioxygenase activities were obtained. DNA sequencing of clone BG-2 revealed a 15-kb fragment that contained two ORFs, ORF9 and ORF10, with N-terminal amino acid sequences identical to those of the beta- and alpha-subunits, respectively, from the purified 2-aminophenol 1,6-dioxygenase. The enzyme was actively synthesized when the genes coding for the ORF9 and ORF10 were cloned into Escherichia coli.
Collapse
Affiliation(s)
- Jian-Feng Wu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | |
Collapse
|
43
|
Hintner JP, Reemtsma T, Stolz A. Biochemical and Molecular Characterization of a Ring Fission Dioxygenase with the Ability to Oxidize (Substituted) Salicylate(s) from Pseudaminobacter salicylatoxidans. J Biol Chem 2004; 279:37250-60. [PMID: 15220336 DOI: 10.1074/jbc.m313500200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene coding for a dioxygenase with the ability to cleave salicylate by a direct ring fission mechanism to 2-oxohepta-3,5-dienedioic acid was cloned from Pseudaminobacter salicylatoxidans strain BN12. The deduced amino acid sequence encoded a protein with a molecular mass of 41,176 Da, which showed 28 and 31% sequence identity, respectively, to a gentisate 1,2-dioxygenase from Pseudomonas alcaligenes NCIMB 9867 and a 1-hydroxy-2-naphthoate 1,2-dioxygenase from Nocardioides sp. KP7. The highest degree of sequence identity (58%) was found to a presumed gentisate 1,2-dioxygenase from Corynebacterium glutamicum. The enzyme from P. salicylatoxidans BN12 was heterologously expressed in Escherichia coli and purified as a His-tagged enzyme variant. The purified enzyme oxidized in addition to salicylate, gentisate, 5-aminosalicylate, and 1-hydroxy-2-naphthoate also 3-amino- and 3- and 4-hydroxysalicylate, 5-fluorosalicylate, 3-, 4-, and 5-chlorosalicylate, 3-, 4-, and 5-bromosalicylate, 3-, 4-, and 5-methylsalicylate, and 3,5-dichlorosalicylate. The reactions were analyzed by high pressure liquid chromatography/mass spectrometry, and the reaction products were tentatively identified. For comparison, the putative gentisate 1,2-dioxygenase from C. glutamicum was functionally expressed in E. coli and shown to convert gentisate but not salicylate or 1-hydroxy-2-naphthoate.
Collapse
Affiliation(s)
- Jan-Peter Hintner
- Institute for Microbiology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | |
Collapse
|
44
|
Murakami S, Sawami Y, Takenaka S, Aoki K. Cloning of a gene encoding 4-amino-3-hydroxybenzoate 2,3-dioxygenase from Bordetella sp. 10d. Biochem Biophys Res Commun 2004; 314:489-94. [PMID: 14733932 DOI: 10.1016/j.bbrc.2003.12.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bordetella sp. 10d produces a novel dioxygenase catalyzing the meta-cleavage of 4-amino-3-hydroxybenzoic acid, 4-amino-3-hydroxybenzoate 2,3-dioxygenase (4A3HBA23D). A gene encoding 4A3HBA23D was cloned and named ahdA. The deduced amino acid sequence of ahdA showed 29.2-24.2% identities to those of prokaryotic and eukaryotic 3-hydoxybenzoate 3,4-dioxygenases in reported meta-cleavage dioxygenases. However, no identities were observed in the amino-terminal sequences of the first 29 amino acid residues. An ORF was found downstream of ahdA. The deduced amino acid sequence of the ORF showed identities to those of LysR family regulators involved in protocatechuate metabolism and contained motifs conserved in the regulators. On the basis of these results, the ORF was named ahdR encoding a putative LysR family regulator. The transcription start point of ahdA was localized 414-bp upstream of the start codon of ahdA. Two DNA-binding motifs of LysR family regulators were found upstream of the transcription start point. These observations suggest that a LysR family regulator encoded by ahdR regulates the expression of ahdA.
Collapse
Affiliation(s)
- Shuichiro Murakami
- Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Nada, 657-8501 Kobe, Japan
| | | | | | | |
Collapse
|
45
|
Gibbs PR, Riddle RR, Marchal L, Benedik MJ, Willson RC. Purification and characterization of 2′aminobiphenyl-2,3-diol 1,2-dioxygenase from Pseudomonas sp. LD2. Protein Expr Purif 2003; 32:35-43. [PMID: 14680937 DOI: 10.1016/s1046-5928(03)00096-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Carbazole is a nitrogen-containing heteroaromatic compound that occurs as a widespread and mutagenic environmental pollutant. The 2'aminobiphenyl-2,3-diol 1,2-dioxygenase involved in carbazole degradation was purified to near electrophoretic homogeneity from Pseudomonas sp. LD2 by a combination of ion-exchange chromatography, ammonium sulfate precipitation, and hydrophobic interaction chromatography. This purification was challenging due to the great instability of the enzyme under many standard conditions. The enzyme was also purified to electrophoretic homogeneity from recombinant Escherichia coli expressing the 2'aminobiphenyl-2,3-diol 1,2-dioxygenase-encoding gene cloned from Pseudomonas sp. LD2. The molecular mass of the native enzyme was determined by gel filtration to be 70 kDa. The subunit molecular masses were determined to be 25 and 8 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that the dioxygenase is an [alpha2beta2] heterotetramer. The optimal temperature and pH for the enzymatic production of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) from 2,3-dihydroxybiphenyl were determined to be 40 degrees C and 8.0, respectively. The maximum observed specific activity on 2,3-dihydroxybiphenyl was 48.1 mmol HOPDA min(-1) mg(-1). This indicated a maximum observed turnover rate of 360,000 molecules HOPDA enz(-1) s(-1). The K'm inhibition constant Ks and Vmax on 2,3 dihydroxybiphenyl were determined to be 5 microM, 37 microM, and 44 mmol min(-1) mg(-1), respectively. These results show that 2'aminobiphenyl-2,3-diol 1,2-dioxygenase is a meta-cleavage enzyme related to the 4,5-protocatechuate dioxygenase family, with comparable purification challenges posed by intrinsic enzyme instability.
Collapse
Affiliation(s)
- Phillip R Gibbs
- Department of Chemical Engineering, University of Houston, Houston, TX 77204-4004, USA
| | | | | | | | | |
Collapse
|
46
|
Nadeau LJ, He Z, Spain JC. Bacterial conversion of hydroxylamino aromatic compounds by both lyase and mutase enzymes involves intramolecular transfer of hydroxyl groups. Appl Environ Microbiol 2003; 69:2786-93. [PMID: 12732549 PMCID: PMC154516 DOI: 10.1128/aem.69.5.2786-2793.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydroxylamino aromatic compounds are converted to either the corresponding aminophenols or protocatechuate during the bacterial degradation of nitroaromatic compounds. The origin of the hydroxyl group of the products could be the substrate itself (intramolecular transfer mechanism) or the solvent water (intermolecular transfer mechanism). The conversion of hydroxylaminobenzene to 2-aminophenol catalyzed by a mutase from Pseudomonas pseudoalcaligenes JS45 proceeds by an intramolecular hydroxyl transfer. The conversions of hydroxylaminobenzene to 2- and 4-aminophenol by a mutase from Ralstonia eutropha JMP134 and to 4-hydroxylaminobenzoate to protocatechuate by a lyase from Comamonas acidovorans NBA-10 and Pseudomonas sp. strain 4NT were proposed, but not experimentally proved, to proceed by the intermolecular transfer mechanism. GC-MS analysis of the reaction products formed in H(2)(18)O did not indicate any (18)O-label incorporation during the conversion of hydroxylaminobenzene to 2- and 4-aminophenols catalyzed by the mutase from R. eutropha JMP134. During the conversion of 4-hydroxylaminobenzoate catalyzed by the hydroxylaminolyase from Pseudomonas sp. strain 4NT, only one of the two hydroxyl groups in the product, protocatechuate, was (18)O labeled. The other hydroxyl group in the product must have come from the substrate. The mutase in strain JS45 converted 4-hydroxylaminobenzoate to 4-amino-3-hydroxybenzoate, and the lyase in Pseudomonas strain 4NT converted hydroxylaminobenzene to aniline and 2-aminophenol but not to catechol. The results indicate that all three types of enzyme-catalyzed rearrangements of hydroxylamino aromatic compounds proceed via intramolecular transfer of hydroxyl groups.
Collapse
Affiliation(s)
- Lloyd J Nadeau
- Air Force Research Laboratory, 139 Barnes Drive, Suite 2, Tyndall Air Force Base, FL 32403, USA
| | | | | |
Collapse
|
47
|
Takenaka S, Asami T, Orii C, Murakami S, Aoki K. A novel meta-cleavage dioxygenase that cleaves a carboxyl-group-substituted 2-aminophenol. Purification and characterization of 4-amino-3-hydroxybenzoate 2,3-dioxygenase from Bordetella sp. strain 10d. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5871-7. [PMID: 12444975 DOI: 10.1046/j.1432-1033.2002.03306.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A bacterial strain that grew on 4-amino-3-hydroxybenzoic acid was isolated from farm soil. The isolate, strain 10d, was identified as a species of Bordetella. Cell extracts of Bordetella sp. strain 10d grown on 4-amino-3-hydroxybenzoic acid contained an enzyme that cleaved this substrate. The enzyme was purified to homogeneity with a 110-fold increase in specific activity. The purified enzyme was characterized as a meta-cleavage dioxygenase that catalyzed the ring fission between C2 and C3 of 4-amino-3-hydroxybenzoic acid, with the consumption of 1 mol of O2 per mol of substrate. The enzyme was therefore designated as 4-amino-3-hydroxybenzoate 2,3-dioxygenase. The molecular mass of the native enzyme was 40 kDa based on gel filtration; the enzyme is composed of two identical 21-kDa subunits according to SDS/PAGE. The enzyme showed a high dioxygenase activity only for 4-amino-3-hydroxybenzoic acid. The Km and Vmax values for this substrate were 35 micro m and 12 micro mol.min-1.(mg protein)-1, respectively. Of the 2-aminophenols tested, only 4-aminoresorcinol and 6-amino-m-cresol inhibited the enzyme. The enzyme reported here differs from previously reported extradiol dioxygenases, including 2-aminophenol 1,6-dioxygenase, in molecular mass, subunit structure and catalytic properties.
Collapse
Affiliation(s)
- Shinji Takenaka
- Department of Biofunctional Chemistry, Faculty of Agriculture and Division of Science of Biological Resources, Graduate School of Science and Technology, Kobe University, Japan
| | | | | | | | | |
Collapse
|
48
|
Hintner JP, Lechner C, Riegert U, Kuhm AE, Storm T, Reemtsma T, Stolz A. Direct ring fission of salicylate by a salicylate 1,2-dioxygenase activity from Pseudaminobacter salicylatoxidans. J Bacteriol 2001; 183:6936-42. [PMID: 11698383 PMCID: PMC95535 DOI: 10.1128/jb.183.23.6936-6942.2001] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In cell extracts of Pseudaminobacter salicylatoxidans strain BN12, an enzymatic activity was detected which converted salicylate in an oxygen-dependent but NAD(P)H-independent reaction to a product with an absorbance maximum at 283 nm. This metabolite was isolated, purified, and identified by mass spectrometry and (1)H and (13)C nuclear magnetic resonance spectroscopy as 2-oxohepta-3,5-dienedioic acid. This metabolite could be formed only by direct ring fission of salicylate by a 1,2-dioxygenase reaction. Cell extracts from P. salicylatoxidans also oxidized 5-aminosalicylate, 3-, 4-, and 5-chlorosalicylate, 3-, 4-, and 5-methylsalicylate, 3- and 5-hydroxysalicylate (gentisate), and 1-hydroxy-2-naphthoate. The dioxygenase was purified and shown to consist of four identical subunits with a molecular weight of about 45,000. The purified enzyme showed higher catalytic constants with gentisate or 1-hydroxy-2-naphthoate than with salicylate. It was therefore concluded that P. salicylatoxidans synthesized a gentisate 1,2-dioxygenase with an extraordinary substrate range, which also allowed the oxidation of salicylate.
Collapse
Affiliation(s)
- J P Hintner
- Institut für Mikrobiologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Park HS, Kim HS. Genetic and structural organization of the aminophenol catabolic operon and its implication for evolutionary process. J Bacteriol 2001; 183:5074-81. [PMID: 11489860 PMCID: PMC95383 DOI: 10.1128/jb.183.17.5074-5081.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aminophenol (AP) catabolic operon in Pseudomonas putida HS12 mineralizing nitrobenzene was found to contain all the enzymes responsible for the conversion of AP to pyruvate and acetyl coenzyme A via extradiol meta cleavage of 2-aminophenol. The sequence and functional analyses of the corresponding genes of the operon revealed that the AP catabolic operon consists of one regulatory gene, nbzR, and the following nine structural genes, nbzJCaCbDGFEIH, which encode catabolic enzymes. The NbzR protein, which is divergently transcribed with respect to the structural genes, possesses a leucine zipper motif and a MarR homologous domain. It was also found that NbzR functions as a repressor for the AP catabolic operon through binding to the promoter region of the gene cluster in its dimeric form. A comparative study of the AP catabolic operon with other meta cleavage operons led us to suggest that the regulatory unit (nbzR) was derived from the MarR family and that the structural unit (nbzJCaCbDGFEIH) has evolved from the ancestral meta cleavage gene cluster. It is also proposed that these two functional units assembled through a modular type gene transfer and then have evolved divergently to acquire specialized substrate specificities (NbzCaCb and NbzD) and catalytic function (NbzE), resulting in the creation of the AP catabolic operon. The evolutionary process of the AP operon suggests how bacteria have efficiently acquired genetic diversity and expanded their metabolic capabilities by modular type gene transfer.
Collapse
Affiliation(s)
- H S Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1, Kusong-dong, Yusong-gu, Taejon, 305-701, Korea
| | | |
Collapse
|
50
|
Peres CM, Agathos SN. Biodegradation of nitroaromatic pollutants: from pathways to remediation. BIOTECHNOLOGY ANNUAL REVIEW 2001; 6:197-220. [PMID: 11193295 DOI: 10.1016/s1387-2656(00)06023-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitroaromatic compounds are important contaminants of the environment, mainly of anthropogenic origin. They are produced as intermediates and products in the industrial manufacturing of dyes, explosives, pesticides, etc. Their toxicity has been extensively demonstrated in a whole range of living organisms, and nitroaromatic contamination dating from World War II is the proof of the recalcitrance of such compounds to microbial recycling. In spite of this, bacteria have evolved diverse pathways that allow them to mineralize specific nitroaromatic compounds. Degradation sequences initiated by an oxidation, an attack by a hydride ion, or a partial reduction have been documented. Some of these reactions have been exploited in bioreactors. Although pathways and enzymes involved are rather well understood, the molecular basis of these pathways is still currently under investigation. However, productive metabolism is an exception. As a rule, most bacteria are only able to reduce the nitro group into an amino function. This reduction is cometabolic: the metabolism of exogenous carbon sources is required to provide reducing equivalents. Composting and processes in bioreactors have exploited the easy reduction of the nitroaromatic compounds. In the case an amino-aromatic compound is produced, it is important to incorporate it in the remediation scheme. Some processes dealing with both nitro- and amino-aromatic compounds have been described, the amino derivative being either mineralized by the same or, more often, another microorganism, or immobilized on soil particles. Depending on the nitroaromatic compound and the environment it is contaminating, a whole range of reactions and reactor studies are now available to help devise a successful remediation strategy.
Collapse
Affiliation(s)
- C M Peres
- Unité de Génie Biologique, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|