1
|
Sauty SM, Fisher A, Dolson A, Yankulov K. Mutations in the DNA processivity factor POL30 predispose the FLO11 locus to epigenetic instability in S. cerevisiae. J Cell Sci 2024; 137:jcs262006. [PMID: 39552290 PMCID: PMC11827858 DOI: 10.1242/jcs.262006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
The FLO genes in Saccharomyces cerevisiae are repressed by heterochromatin formation, involving histone deacetylases, transcription factors and non-coding RNAs. Here, we report that mutations in the processivity factor POL30 (PCNA) that show transient derepression at the subtelomeres and the mating-type loci do not derepress FLO loci. However, deletions of the replisome stability factors RRM3 and TOF1 along with pol30 mutations induced flocculation phenotypes. The phenotypes correlated with increased expression of reporter proteins driven by the FLO11 promoter, the frequency of silent to active conversions of FLO11, and reduced expression of the regulatory long non-coding RNAs ICR1 and PWR1. Alterations in the local replication landscape of FLO11 indicate a link between defects in the fork protection complex and the stability of gene silencing. Analyses of these mutants at the subtelomeres and the HMLα locus showed a similar derepression phenotype and suggest transient instability of both active and silent states of FLO11. We conclude that RRM3 and TOF1 interact differentially with the pol30 mutations to promote transient derepression or complete epigenetic conversions of FLO11. We suggest that the interaction between POL30, RRM3 and TOF1 is essential to maintain epigenetic stability at the studied loci.
Collapse
Affiliation(s)
- Safia Mahabub Sauty
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Ashley Fisher
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Andrew Dolson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G2W1, Canada
| |
Collapse
|
2
|
Zhuang J, Zhang YD, Sun WX, Zong J, Li JJ, Dai XF, Klosterman SJ, Chen JY, Tian L, Subbarao KV, Zhang DD. The acyl-CoA-binding protein VdAcb1 is essential for carbon starvation response and contributes to virulence in Verticillium dahliae. ABIOTECH 2024; 5:431-448. [PMID: 39650135 PMCID: PMC11624172 DOI: 10.1007/s42994-024-00175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/22/2024] [Indexed: 12/11/2024]
Abstract
In the face of carbon, nitrogen, and phosphorus starvation, microorganisms have evolved adaptive mechanisms to maintain growth. In a previous study, we identified a protein predicted to contain acyl-CoA-binding domains in the plant pathogenic fungus Verticillium dahliae. The predicted protein, designated VdAcb1, possesses an atypical signal peptide. However, the functions of this acyl-CoA-binding protein in V. dahliae are not clear. In this research, in vivo or in vitro assays confirmed that VdAcb1 is secreted extracellularly from V. dahliae, although it does not have the typical signal peptide. Furthermore, the unconventional secretion of VdAcb1 was dependent on VdGRASP, a member of the compartment for unconventional protein secretion (CUPS). The deletion mutant strain of VdAcb1 (ΔVdAcb1) exhibited significant sensitivity to carbon starvation. RNA-seq revealed that the expression of genes related to filamentous growth (MSB2 pathway) and sugar transport were regulated by VdAcb1 under conditions of carbon starvation. Yeast one-hybrid experiments further showed that the expression of VdAcb1 was positively regulated by the transcription factor VdMsn4. The ΔVdAcb1 strain showed significantly reduced virulence on Gossypium hirsutum and Nicotiana benthamiana. We hypothesize that under conditions of carbon starvation, the expression of VdAcb1 is activated by VdMsn4 and VdAcb1 is secreted into the extracellular space. In turn, this activates the downstream MAPK pathway to enhance filamentous growth and virulence of V. dahliae. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00175-3.
Collapse
Affiliation(s)
- Jing Zhuang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- School of Life Science, Qufu Normal University, Qufu, 273165 China
| | - Ya-Duo Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Wei-Xia Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Juan Zong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jun-Jiao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100 China
| | - Steven J. Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905 USA
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100 China
| | - Li Tian
- School of Life Science, Qufu Normal University, Qufu, 273165 China
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California, Davis, c/o United States Agricultural Research Station, Salinas, CA 93905 USA
| | - Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100 China
| |
Collapse
|
3
|
Vandermeulen MD, Lorenz MC, Cullen PJ. Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation. Genetics 2024; 228:iyae122. [PMID: 39239926 PMCID: PMC11457945 DOI: 10.1093/genetics/iyae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Eukaryotic organisms are composed of different cell types with defined shapes and functions. Specific cell types are produced by the process of cell differentiation, which is regulated by signal transduction pathways. Signaling pathways regulate cell differentiation by sensing cues and controlling the expression of target genes whose products generate cell types with specific attributes. In studying how cells differentiate, fungi have proved valuable models because of their ease of genetic manipulation and striking cell morphologies. Many fungal species undergo filamentous growth-a specialized growth pattern where cells produce elongated tube-like projections. Filamentous growth promotes expansion into new environments, including invasion into plant and animal hosts by fungal pathogens. The same signaling pathways that regulate filamentous growth in fungi also control cell differentiation throughout eukaryotes and include highly conserved mitogen-activated protein kinase (MAPK) pathways, which is the focus of this review. In many fungal species, mucin-type sensors regulate MAPK pathways to control filamentous growth in response to diverse stimuli. Once activated, MAPK pathways reorganize cell polarity, induce changes in cell adhesion, and promote the secretion of degradative enzymes that mediate access to new environments. However, MAPK pathway regulation is complicated because related pathways can share components with each other yet induce unique responses (i.e. signal specificity). In addition, MAPK pathways function in highly integrated networks with other regulatory pathways (i.e. signal integration). Here, we discuss signal specificity and integration in several yeast models (mainly Saccharomyces cerevisiae and Candida albicans) by focusing on the filamentation MAPK pathway. Because of the strong evolutionary ties between species, a deeper understanding of the regulation of filamentous growth in established models and increasingly diverse fungal species can reveal fundamentally new mechanisms underlying eukaryotic cell differentiation.
Collapse
Affiliation(s)
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
4
|
Hall R, Bandara A, Charlebois DA. Fitness effects of a demography-dispersal trade-off in expanding Saccharomyces cerevisiaemats. Phys Biol 2024; 21:026001. [PMID: 38194907 DOI: 10.1088/1478-3975/ad1ccd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Fungi expand in space and time to form complex multicellular communities. The mechanisms by which they do so can vary dramatically and determine the life-history and dispersal traits of expanding populations. These traits influence deterministic and stochastic components of evolution, resulting in complex eco-evolutionary dynamics during colony expansion. We perform experiments on budding yeast strains genetically engineered to display rough-surface and smooth-surface phenotypes in colony-like structures called 'mats'. Previously, it was shown that the rough-surface strain has a competitive advantage over the smooth-surface strain when grown on semi-solid media. We experimentally observe the emergence and expansion of segments with a distinct smooth-surface phenotype during rough-surface mat development. We propose a trade-off between dispersal and local carrying capacity to explain the relative fitness of these two phenotypes. Using a modified stepping-stone model, we demonstrate that this trade-off gives the high-dispersing, rough-surface phenotype a competitive advantage from standing variation, but that it inhibits this phenotype's ability to invade a resident smooth-surface population via mutation. However, the trade-off improves the ability of the smooth-surface phenotype to invade in rough-surface mats, replicating the frequent emergence of smooth-surface segments in experiments. Together, these computational and experimental findings advance our understanding of the complex eco-evolutionary dynamics of fungal mat expansion.
Collapse
Affiliation(s)
- Rebekah Hall
- Department of Mathematical and Statistical Sciences, University of Alberta, 11455 Saskatchewan Drive NW, Edmonton, Alberta, Canada
| | - Akila Bandara
- Department of Physics, University of Alberta, 11455 Saskatchewan Drive NW, Edmonton, Alberta, Canada
| | - Daniel A Charlebois
- Department of Physics, University of Alberta, 11455 Saskatchewan Drive NW, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive NW, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Kerruish DWM, Cormican P, Kenny EM, Kearns J, Colgan E, Boulton CA, Stelma SNE. The origins of the Guinness stout yeast. Commun Biol 2024; 7:68. [PMID: 38216745 PMCID: PMC10786833 DOI: 10.1038/s42003-023-05587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/14/2023] [Indexed: 01/14/2024] Open
Abstract
Beer is made via the fermentation of an aqueous extract predominantly composed of malted barley flavoured with hops. The transforming microorganism is typically a single strain of Saccharomyces cerevisiae, and for the majority of major beer brands the yeast strain is a unique component. The present yeast used to make Guinness stout brewed in Dublin, Ireland, can be traced back to 1903, but its origins are unknown. To that end, we used Illumina and Nanopore sequencing to generate whole-genome sequencing data for a total of 22 S. cerevisiae yeast strains: 16 from the Guinness collection and 6 other historical Irish brewing. The origins of the Guinness yeast were determined with a SNP-based analysis, demonstrating that the Guinness strains occupy a distinct group separate from other historical Irish brewing yeasts. Assessment of chromosome number, copy number variation and phenotypic evaluation of key brewing attributes established Guinness yeast-specific SNPs but no specific chromosomal amplifications. Our analysis also demonstrated the effects of yeast storage on phylogeny. Altogether, our results suggest that the Guinness yeast used today is related to the first deposited Guinness yeast; the 1903 Watling Laboratory Guinness yeast.
Collapse
Affiliation(s)
| | | | | | - Jessica Kearns
- Diageo Ireland, St James's Gate, The Liberties, Dublin, Ireland
| | - Eibhlin Colgan
- Diageo Ireland, St James's Gate, The Liberties, Dublin, Ireland
| | | | | |
Collapse
|
6
|
Crandall JG, Fisher KJ, Sato TK, Hittinger CT. Ploidy evolution in a wild yeast is linked to an interaction between cell type and metabolism. PLoS Biol 2023; 21:e3001909. [PMID: 37943740 PMCID: PMC10635434 DOI: 10.1371/journal.pbio.3001909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
Ploidy is an evolutionarily labile trait, and its variation across the tree of life has profound impacts on evolutionary trajectories and life histories. The immediate consequences and molecular causes of ploidy variation on organismal fitness are frequently less clear, although extreme mating type skews in some fungi hint at links between cell type and adaptive traits. Here, we report an unusual recurrent ploidy reduction in replicate populations of the budding yeast Saccharomyces eubayanus experimentally evolved for improvement of a key metabolic trait, the ability to use maltose as a carbon source. We find that haploids have a substantial, but conditional, fitness advantage in the absence of other genetic variation. Using engineered genotypes that decouple the effects of ploidy and cell type, we show that increased fitness is primarily due to the distinct transcriptional program deployed by haploid-like cell types, with a significant but smaller contribution from absolute ploidy. The link between cell-type specification and the carbon metabolism adaptation can be traced to the noncanonical regulation of a maltose transporter by a haploid-specific gene. This study provides novel mechanistic insight into the molecular basis of an environment-cell type fitness interaction and illustrates how selection on traits unexpectedly linked to ploidy states or cell types can drive karyotypic evolution in fungi.
Collapse
Affiliation(s)
- Johnathan G. Crandall
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kaitlin J. Fisher
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Trey K. Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
7
|
Khari A, Biswas B, Gangwar G, Thakur A, Puria R. Candida auris biofilm: a review on model to mechanism conservation. Expert Rev Anti Infect Ther 2023; 21:295-308. [PMID: 36755419 DOI: 10.1080/14787210.2023.2179036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Candida auris is included in the fungal infection category 'critical' by WHO because of associated high drug tolerance and spread at an alarming rate which if remains untouched may result in serious outbreaks. Since its discovery in 2009, several assiduous efforts by mycologists across the world have deciphered its biology including growth physiology, drug tolerance, biofilm formation, etc. The differential response of various strains from different clades poses a hurdle in drawing a final conclusion. AREAS COVERED This review provides brief insights into the understanding of C. auris biofilm. It includes information on various models developed to understand the biofilms and conservation of different signaling pathways. Significant development has been made in the recent past with the generation of relevant in vivo and ex vivo models. The role of signaling pathways in the development of biofilm is largely unknown. EXPERT OPINION The selection of an appropriate model system is a must for the accuracy and reproducibility of results. The conservation of major signaling pathways in C. auris with respect to C. albicans and S. cerevisiae highlights that initial inputs acquired from orthologs will be valuable in getting insights into the mechanism of biofilm formation and associated pathogenesis.
Collapse
Affiliation(s)
- Arsha Khari
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | | | | | - Anil Thakur
- Regional Centre for Biotechnology, Faridabad, India
| | - Rekha Puria
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| |
Collapse
|
8
|
Mao YS, Chen JW, Wang ZH, Xu MY, Gao XD. Roles of the transcriptional regulators Fts1, YlNrg1, YlTup1, and YlSsn6 in the repression of the yeast-to-filament transition in the dimorphic yeast Yarrowia lipolytica. Mol Microbiol 2023; 119:126-142. [PMID: 36537557 DOI: 10.1111/mmi.15017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
In dimorphic fungi, the yeast-to-filament transition critical for cell survival under nutrient starvation is controlled by both activators and repressors. However, very few filamentation repressors are known. Here we report that, in the dimorphic yeast Yarrowia lipolytica, the conserved transcription factor YlNrg1 plays a minor role whereas Fts1, a newly identified Zn(II)2 Cys6 zinc cluster transcription factor, plays a key role in filamentation repression. FTS1 deletion caused hyperfilamentation whereas Fts1 overexpression drastically reduced filamentation. The expression of FTS1 is downregulated substantially during the yeast-to-filament transition. Transcriptome sequencing revealed that Fts1 represses 401 genes, including the filamentation-activating transcription factor genes MHY1, YlAZF1, and YlWOR4 and key cell wall protein genes. Tup1-Ssn6, a general transcriptional corepressor, is involved in the repression of many cellular functions in fungi. We show that both YlTup1 and YlSsn6 strongly repress filamentation in Y. lipolytica. YlTup1 and YlSsn6 together repress 1383 genes, including a large number of transcription factor and cell wall protein genes, which overlap substantially with Fts1-repressed genes. Fts1 interacts with both YlTup1 and YlSsn6, and LexA-Fts1 fusion represses a lexAop-promoter-lacZ reporter in a Tup1-Ssn6-dependent manner. Our findings suggest that Fts1 functions as a transcriptional repressor, directing the repression of target genes through the Tup1-Ssn6 corepressor.
Collapse
Affiliation(s)
- Yi-Sheng Mao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jia-Wen Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhen-Hua Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Meng-Yang Xu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiang-Dong Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
The Zinc Finger Transcription Factor Fts2 Represses the Yeast-to-Filament Transition in the Dimorphic Yeast Yarrowia lipolytica. mSphere 2022; 7:e0045022. [PMID: 36409080 PMCID: PMC9769893 DOI: 10.1128/msphere.00450-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The yeast-to-filament transition is an important cellular response to environmental stimulations in dimorphic fungi. In addition to activators, there are repressors in the cells to prevent filament formation, which is important to keep the cells in the yeast form when filamentation is not necessary. However, very few repressors of filamentation are known so far. Here, we identify a novel repressor of filamentation in the dimorphic yeast Yarrowia lipolytica, Fts2, which is a C2H2-type zinc finger transcription factor. We show that fts2Δ cells exhibited increased filamentation under mild filament-inducing conditions and formed filaments under non-filament-inducing conditions. We also show that Fts2 interacts with YlSsn6, component of the Tup1-Ssn6 transcriptional corepressor, and Fts2-LexA represses a lexAop-PYlACT1-lacZ reporter in a Tup1-Ssn6-dependent manner, suggesting that Fts2 has transcriptional repressor activity and represses gene expression via Tup1-Ssn6. In addition, we show that Fts2 represses a large number of cell wall protein genes and transcription factor genes, some of which are implicated in the filamentation response. Interestingly, about two-thirds of Fts2-repressed genes are also repressed by Tup1-Ssn6, suggesting that Fts2 may repress the bulk of its target genes via Tup1-Ssn6. Lastly, we show that Fts2 expression is downregulated in response to alkaline pH and the relief of negative control by Fts2 facilitates the induction of filamentation by alkaline pH. IMPORTANCE The repressors of filamentation are important negative regulators of the yeast-to-filament transition. However, except in Candida albicans, very few repressors of filamentation are known in dimorphic fungi. More importantly, how they repress filamentation is often not clear. In this paper, we report a novel repressor of filamentation in Y. lipolytica. Fts2 is not closely related in amino acid sequence to CaNrg1 and Rfg1, two major repressors of filamentation in C. albicans, yet it represses gene expression via the transcriptional corepressor Tup1-Ssn6, similar to CaNrg1 and Rfg1. Using transcriptome sequencing, we determined the whole set of genes regulated by Fts2 and identified the major targets of Fts2 repression, which provide clues to the mechanism by which Fts2 represses filamentation. Our results have important implications for understanding the negative control of the yeast-to-filament transition in dimorphic fungi.
Collapse
|
10
|
Mullis MN, Ghione C, Lough-Stevens M, Goldstein I, Matsui T, Levy SF, Dean MD, Ehrenreich IM. Complex genetics cause and constrain fungal persistence in different parts of the mammalian body. Genetics 2022; 222:6698696. [PMID: 36103708 PMCID: PMC9630980 DOI: 10.1093/genetics/iyac138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/26/2022] [Indexed: 12/05/2022] Open
Abstract
Determining how genetic polymorphisms enable certain fungi to persist in mammalian hosts can improve understanding of opportunistic fungal pathogenesis, a source of substantial human morbidity and mortality. We examined the genetic basis of fungal persistence in mice using a cross between a clinical isolate and the lab reference strain of the budding yeast Saccharomyces cerevisiae. Employing chromosomally encoded DNA barcodes, we tracked the relative abundances of 822 genotyped, haploid segregants in multiple organs over time and performed linkage mapping of their persistence in hosts. Detected loci showed a mix of general and antagonistically pleiotropic effects across organs. General loci showed similar effects across all organs, while antagonistically pleiotropic loci showed contrasting effects in the brain vs the kidneys, liver, and spleen. Persistence in an organ required both generally beneficial alleles and organ-appropriate pleiotropic alleles. This genetic architecture resulted in many segregants persisting in the brain or in nonbrain organs, but few segregants persisting in all organs. These results show complex combinations of genetic polymorphisms collectively cause and constrain fungal persistence in different parts of the mammalian body.
Collapse
Affiliation(s)
- Martin N Mullis
- University of Southern California Molecular and Computational Biology Section, Department of Biological Sciences, , Los Angeles, CA 90089, USA
| | - Caleb Ghione
- University of Southern California Molecular and Computational Biology Section, Department of Biological Sciences, , Los Angeles, CA 90089, USA
| | - Michael Lough-Stevens
- University of Southern California Molecular and Computational Biology Section, Department of Biological Sciences, , Los Angeles, CA 90089, USA
| | - Ilan Goldstein
- University of Southern California Molecular and Computational Biology Section, Department of Biological Sciences, , Los Angeles, CA 90089, USA
| | - Takeshi Matsui
- Stanford University Joint Initiative for Metrology in Biology, , CA 94305, USA
- SLAC National Accelerator Laboratory , Menlo Park, CA, 94025, USA
- Stanford University Department of Genetics, , Stanford, CA 94305, USA
| | - Sasha F Levy
- Stanford University Joint Initiative for Metrology in Biology, , CA 94305, USA
- SLAC National Accelerator Laboratory , Menlo Park, CA, 94025, USA
- Stanford University Department of Genetics, , Stanford, CA 94305, USA
| | - Matthew D Dean
- University of Southern California Molecular and Computational Biology Section, Department of Biological Sciences, , Los Angeles, CA 90089, USA
| | - Ian M Ehrenreich
- University of Southern California Molecular and Computational Biology Section, Department of Biological Sciences, , Los Angeles, CA 90089, USA
| |
Collapse
|
11
|
Kokoreva AS, Isakova EP, Tereshina VM, Klein OI, Gessler NN, Deryabina YI. The Effect of Different Substrates on the Morphological Features and Polyols Production of Endomyces magnusii Yeast during Long-Lasting Cultivation. Microorganisms 2022; 10:microorganisms10091709. [PMID: 36144311 PMCID: PMC9506286 DOI: 10.3390/microorganisms10091709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
The study on the influence of different glucose concentrations (2%, 0.5%, and 0.2%) and glycerol (1%) on the morphological and physiological features, as well as the composition of soluble carbohydrates, was performed using Endomyces magnusii yeast. Two-factor analysis of variance with repetitions to process the data of the cell size changes showed that the substrate type affected cell size the most. The cells with 2% glucose were 30–35% larger than those growing on glycerol. The decrease in the initial glucose concentration up to 0.5–0.2% slightly changed the cell length. However, even in the logarithmic growth phase pseudo-mycelium of two to four cells appeared in the cultures when using low glucose, unlike those using glycerol. Throughout the whole experiment, more than 90% of the populations remained viable on all of the substrates tested. The ability for colony formation decreased during aging. Nevertheless, at the three-week stage, upon substrate restriction (0.2% glucose), it was twice higher than those under the other conditions. The respiration rate also decreased and exceeded not more than 10% of that in the logarithmic phase. By the end of the experiment, the cyanide-sensitive respiration share decreased up to 40% for all types of substrates. The study of soluble cytosol carbohydrates showed that the cultures using 2% glucose and 1% glycerol contained mainly arabitol and mannitol, while at low glucose concentrations they were substituted for inositol. The formation of inositol is supposed to be related to pseudo-mycelium formation. The role of calorie restriction in the regulation of carbohydrate synthesis and the composition in the yeast and its biotechnological application is under consideration.
Collapse
Affiliation(s)
- Anastasia S. Kokoreva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Elena P. Isakova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-954-4008
| | - Vera M. Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Prospekt 60-Letiya Oktyabrya, 7/2, 117312 Moscow, Russia
| | - Olga I. Klein
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Natalya N. Gessler
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Yulia I. Deryabina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| |
Collapse
|
12
|
|
13
|
Vandermeulen MD, Cullen PJ. Gene by Environment Interactions reveal new regulatory aspects of signaling network plasticity. PLoS Genet 2022; 18:e1009988. [PMID: 34982769 PMCID: PMC8759647 DOI: 10.1371/journal.pgen.1009988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/14/2022] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Phenotypes can change during exposure to different environments through the regulation of signaling pathways that operate in integrated networks. How signaling networks produce different phenotypes in different settings is not fully understood. Here, Gene by Environment Interactions (GEIs) were used to explore the regulatory network that controls filamentous/invasive growth in the yeast Saccharomyces cerevisiae. GEI analysis revealed that the regulation of invasive growth is decentralized and varies extensively across environments. Different regulatory pathways were critical or dispensable depending on the environment, microenvironment, or time point tested, and the pathway that made the strongest contribution changed depending on the environment. Some regulators even showed conditional role reversals. Ranking pathways' roles across environments revealed an under-appreciated pathway (OPI1) as the single strongest regulator among the major pathways tested (RAS, RIM101, and MAPK). One mechanism that may explain the high degree of regulatory plasticity observed was conditional pathway interactions, such as conditional redundancy and conditional cross-pathway regulation. Another mechanism was that different pathways conditionally and differentially regulated gene expression, such as target genes that control separate cell adhesion mechanisms (FLO11 and SFG1). An exception to decentralized regulation of invasive growth was that morphogenetic changes (cell elongation and budding pattern) were primarily regulated by one pathway (MAPK). GEI analysis also uncovered a round-cell invasion phenotype. Our work suggests that GEI analysis is a simple and powerful approach to define the regulatory basis of complex phenotypes and may be applicable to many systems.
Collapse
Affiliation(s)
- Matthew D. Vandermeulen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
14
|
FLO11, a Developmental Gene Conferring Impressive Adaptive Plasticity to the Yeast Saccharomyces cerevisiae. Pathogens 2021; 10:pathogens10111509. [PMID: 34832664 PMCID: PMC8617999 DOI: 10.3390/pathogens10111509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has a remarkable ability to adapt its lifestyle to fluctuating or hostile environmental conditions. This adaptation most often involves morphological changes such as pseudofilaments, biofilm formation, or cell aggregation in the form of flocs. A prerequisite for these phenotypic changes is the ability to self-adhere and to adhere to abiotic surfaces. This ability is conferred by specialized surface proteins called flocculins, which are encoded by the FLO genes family in this yeast species. This mini-review focuses on the flocculin encoded by FLO11, which differs significantly from other flocculins in domain sequence and mode of genetic and epigenetic regulation, giving it an impressive plasticity that enables yeast cells to swiftly adapt to hostile environments or into new ecological niches. Furthermore, the common features of Flo11p with those of adhesins from pathogenic yeasts make FLO11 a good model to study the molecular mechanism underlying cell adhesion and biofilm formation, which are part of the initial step leading to fungal infections.
Collapse
|
15
|
Willaert RG, Kayacan Y, Devreese B. The Flo Adhesin Family. Pathogens 2021; 10:pathogens10111397. [PMID: 34832553 PMCID: PMC8621652 DOI: 10.3390/pathogens10111397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
The first step in the infection of fungal pathogens in humans is the adhesion of the pathogen to host tissue cells or abiotic surfaces such as catheters and implants. One of the main players involved in this are the expressed cell wall adhesins. Here, we review the Flo adhesin family and their involvement in the adhesion of these yeasts during human infections. Firstly, we redefined the Flo adhesin family based on the domain architectures that are present in the Flo adhesins and their functions, and set up a new classification of Flo adhesins. Next, the structure, function, and adhesion mechanisms of the Flo adhesins whose structure has been solved are discussed in detail. Finally, we identified from Pfam database datamining yeasts that could express Flo adhesins and are encountered in human infections and their adhesin architectures. These yeasts are discussed in relation to their adhesion characteristics and involvement in infections.
Collapse
Affiliation(s)
- Ronnie G. Willaert
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Correspondence: ; Tel.: +32-2629-1846
| | - Yeseren Kayacan
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Bart Devreese
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Laboratory for Microbiology, Gent University (UGent), 9000 Gent, Belgium
| |
Collapse
|
16
|
Bouyx C, Schiavone M, Teste MA, Dague E, Sieczkowski N, Julien A, François JM. The dual role of amyloid-β-sheet sequences in the cell surface properties of FLO11-encoded flocculins in Saccharomyces cerevisiae. eLife 2021; 10:e68592. [PMID: 34467855 PMCID: PMC8457840 DOI: 10.7554/elife.68592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/29/2021] [Indexed: 11/21/2022] Open
Abstract
Fungal adhesins (Als) or flocculins are family of cell surface proteins that mediate adhesion to diverse biotic and abiotic surfaces. A striking characteristic of Als proteins originally identified in the pathogenic Candida albicans is to form functional amyloids that mediate cis-interaction leading to the formation of adhesin nanodomains and trans-interaction between amyloid sequences of opposing cells. In this report, we show that flocculins encoded by FLO11 in Saccharomyces cerevisiae behave like adhesins in C. albicans. To do so, we show that the formation of nanodomains under an external physical force requires a threshold number of amyloid-forming sequences in the Flo11 protein. Then, using a genome editing approach, we constructed strains expressing variants of the Flo11 protein under the endogenous FLO11 promoter, leading to the demonstration that the loss of amyloid-forming sequences strongly reduces cell-cell interaction but has no effect on either plastic adherence or invasive growth in agar, both phenotypes being dependent on the N- and C-terminal ends of Flo11p. Finally, we show that the location of Flo11 is not altered either by the absence of amyloid-forming sequences or by the removal of the N- or C-terminus of the protein.
Collapse
Affiliation(s)
- Clara Bouyx
- Toulouse Biotechnology Institute, INSAToulouseFrance
| | - Marion Schiavone
- Toulouse Biotechnology Institute, INSAToulouseFrance
- Lallemand, Lallemand SASBlagnacFrance
| | | | | | | | | | | |
Collapse
|
17
|
Kumar A. The Complex Genetic Basis and Multilayered Regulatory Control of Yeast Pseudohyphal Growth. Annu Rev Genet 2021; 55:1-21. [PMID: 34280314 DOI: 10.1146/annurev-genet-071719-020249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic cells are exquisitely responsive to external and internal cues, achieving precise control of seemingly diverse growth processes through a complex interplay of regulatory mechanisms. The budding yeast Saccharomyces cerevisiae provides a fascinating model of cell growth in its stress-responsive transition from planktonic single cells to a filamentous pseudohyphal growth form. During pseudohyphal growth, yeast cells undergo changes in morphology, polarity, and adhesion to form extended and invasive multicellular filaments. This pseudohyphal transition has been studied extensively as a model of conserved signaling pathways regulating cell growth and for its relevance in understanding the pathogenicity of the related opportunistic fungus Candida albicans, wherein filamentous growth is required for virulence. This review highlights the broad gene set enabling yeast pseudohyphal growth, signaling pathways that regulate this process, the role and regulation of proteins conferring cell adhesion, and interesting regulatory mechanisms enabling the pseudohyphal transition. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|
18
|
Essen LO, Vogt MS, Mösch HU. Diversity of GPI-anchored fungal adhesins. Biol Chem 2021; 401:1389-1405. [PMID: 33035180 DOI: 10.1515/hsz-2020-0199] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022]
Abstract
Selective adhesion of fungal cells to one another and to foreign surfaces is fundamental for the development of multicellular growth forms and the successful colonization of substrates and host organisms. Accordingly, fungi possess diverse cell wall-associated adhesins, mostly large glycoproteins, which present N-terminal adhesion domains at the cell surface for ligand recognition and binding. In order to function as robust adhesins, these glycoproteins must be covalently linkedto the cell wall via C-terminal glycosylphosphatidylinositol (GPI) anchors by transglycosylation. In this review, we summarize the current knowledge on the structural and functional diversity of so far characterized protein families of adhesion domains and set it into a broad context by an in-depth bioinformatics analysis using sequence similarity networks. In addition, we discuss possible mechanisms for the membrane-to-cell wall transfer of fungal adhesins by membrane-anchored Dfg5 transglycosidases.
Collapse
Affiliation(s)
- Lars-Oliver Essen
- Department of Biochemistry, Faculty of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35043Marburg, Germany.,Center for Synthetic Microbiology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 6, D-35043Marburg, Germany
| | - Marian Samuel Vogt
- Department of Biochemistry, Faculty of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35043Marburg, Germany
| | - Hans-Ulrich Mösch
- Department of Genetics, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, D-35043Marburg, Germany.,Center for Synthetic Microbiology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 6, D-35043Marburg, Germany
| |
Collapse
|
19
|
Adhesion Properties, Biofilm Forming Potential, and Susceptibility to Disinfectants of Contaminant Wine Yeasts. Microorganisms 2021; 9:microorganisms9030654. [PMID: 33809953 PMCID: PMC8004283 DOI: 10.3390/microorganisms9030654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
In this study, yeasts isolated from filter membranes used for the quality control of bottled wines were identified and tested for their resistance to some cleaning agents and potassium metabisulphite, adhesion to polystyrene and stainless-steel surfaces, and formation of a thin round biofilm, referred to as a MAT. A total of 40 strains were identified by rRNA internal transcribed spacer (ITS) restriction analysis and sequence analysis of D1/D2 domain of 26S rRNA gene. Strains belong to Pichia manshurica (12), Pichia kudriavzevii (9), Pichia membranifaciens (1), Candida sojae (6), Candida parapsilosis (3), Candida sonorensis (1), Lodderomyces elongisporus (2), Sporopachydermia lactativora (3), and Clavispora lusitaniae (3) species. Regarding the adhesion properties, differences were observed among species. Yeasts preferred planktonic state when tested on polystyrene plates. On stainless-steel supports, adhered cells reached values of about 6 log CFU/mL. MAT structures were formed only by yeasts belonging to the Pichia genus. Yeast species showed different resistance to sanitizers, with peracetic acid being the most effective and active at low concentrations, with minimum inhibitory concentration (MIC) values ranging from 0.08% (v/v) to 1% (v/v). C. parapsilosis was the most sensible species. Data could be exploited to develop sustainable strategies to reduce wine contamination and establish tailored sanitizing procedures.
Collapse
|
20
|
Sagarika P, Dobriyal N, Sahi C. Dosage sensitivity of JDPs, a valuable tool for understanding their function: a case study on Caj1 overexpression-mediated filamentous growth in budding yeast. Curr Genet 2021; 67:407-415. [PMID: 33492464 DOI: 10.1007/s00294-021-01153-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/27/2022]
Abstract
J-domain proteins (JDPs) partner with Hsp70s to oversee proper synthesis, folding, transport and turnover of proteins in the cell. In any subcellular compartment, often multiple JDPs collaborate with a single Hsp70 to perform a variety of functions. Being co-localized, JDPs may exhibit complex genetic and physical interactions with each other, their clients as well as the Hsp70 partners. Even though most JDPs are highly specialized, redundancy between them is possible, making their functional analysis challenging. In the absence of assayable deletion phenotypes, protein overexpression appears to be a powerful alternative strategy to study JDP function. Here, we show that high levels of Caj1, one of the cytosolic JDPs, cause filamentous growth and G2/M arrest in yeast cells. Mutation in the critical HPD motif in the J-domain of Caj1 completely abolished these phenotypes, suggesting that Hsp70 co-chaperone function is important for the dominant-negative phenotypes exhibited by Caj1 overexpression. In this paper, we discuss the possible underlying mechanisms responsible for the pleiotropic phenotypes displayed by Caj1 overexpression in the light of current models proposed for dosage-sensitive genes (DSGs). Finally, we present generalized mechanisms of JDP overexpression-mediated dominant-negative phenotypes in budding yeast.
Collapse
Affiliation(s)
- Preeti Sagarika
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Room Number 117, Academic Block 3, Bhopal, MP, 462066, India
| | - Neha Dobriyal
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Room Number 117, Academic Block 3, Bhopal, MP, 462066, India
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Room Number 117, Academic Block 3, Bhopal, MP, 462066, India.
| |
Collapse
|
21
|
Oamen HP, Lau Y, Caudron F. Prion-like proteins as epigenetic devices of stress adaptation. Exp Cell Res 2020; 396:112262. [DOI: 10.1016/j.yexcr.2020.112262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 01/03/2023]
|
22
|
Vandermeulen MD, Cullen PJ. New Aspects of Invasive Growth Regulation Identified by Functional Profiling of MAPK Pathway Targets in Saccharomyces cerevisiae. Genetics 2020; 216:95-116. [PMID: 32665277 PMCID: PMC7463291 DOI: 10.1534/genetics.120.303369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
MAPK pathways are drivers of morphogenesis and stress responses in eukaryotes. A major function of MAPK pathways is the transcriptional induction of target genes, which produce proteins that collectively generate a cellular response. One approach to comprehensively understand how MAPK pathways regulate cellular responses is to characterize the individual functions of their transcriptional targets. Here, by examining uncharacterized targets of the MAPK pathway that positively regulates filamentous growth in Saccharomyces cerevisiae (fMAPK pathway), we identified a new role for the pathway in negatively regulating invasive growth. Specifically, four targets were identified that had an inhibitory role in invasive growth: RPI1, RGD2, TIP1, and NFG1/YLR042cNFG1 was a highly induced unknown open reading frame that negatively regulated the filamentous growth MAPK pathway. We also identified SFG1, which encodes a transcription factor, as a target of the fMAPK pathway. Sfg1p promoted cell adhesion independently from the fMAPK pathway target and major cell adhesion flocculin Flo11p, by repressing genes encoding presumptive cell-wall-degrading enzymes. Sfg1p also contributed to FLO11 expression. Sfg1p and Flo11p regulated different aspects of cell adhesion, and their roles varied based on the environment. Sfg1p also induced an elongated cell morphology, presumably through a cell-cycle delay. Thus, the fMAPK pathway coordinates positive and negative regulatory proteins to fine-tune filamentous growth resulting in a nuanced response. Functional analysis of other pathways' targets may lead to a more comprehensive understanding of how signaling cascades generate biological responses.
Collapse
Affiliation(s)
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, New York 14260-1300
| |
Collapse
|
23
|
Burns LT, Sislak CD, Gibbon NL, Saylor NR, Seymour MR, Shaner LM, Gibney PA. Improved Functional Assays and Risk Assessment for STA1+ Strains of Saccharomyces cerevisiae. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1796175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | | | | | - Marete R. Seymour
- Omega Yeast Labs, Chicago, IL, U.S.A
- Department of Food Science, Cornell University, Ithaca, NY, U.S.A
| | | | | |
Collapse
|
24
|
De S, Rebnegger C, Moser J, Tatto N, Graf AB, Mattanovich D, Gasser B. Pseudohyphal differentiation in Komagataella phaffii: investigating the FLO gene family. FEMS Yeast Res 2020; 20:5884885. [PMID: 32766781 PMCID: PMC7419694 DOI: 10.1093/femsyr/foaa044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Many yeasts differentiate into multicellular phenotypes in adverse environmental conditions. Here, we investigate pseudohyphal growth in Komagataella phaffii and the involvement of the flocculin (FLO) gene family in its regulation. The K. phaffii FLO family consists of 13 members, and the conditions inducing pseudohyphal growth are different from Saccharomyces cerevisiae. So far, this phenotype was only observed when K. phaffii was cultivated at slow growth rates in glucose-limited chemostats, but not upon nitrogen starvation or the presence of fusel alcohols. Transcriptional analysis identified that FLO11, FLO400 and FLO5-1 are involved in the phenotype, all being controlled by the transcriptional regulator Flo8. The three genes exhibit a complex mechanism of expression and repression during transition from yeast to pseudohyphal form. Unlike in S. cerevisiae, deletion of FLO11 does not completely prevent the phenotype. In contrast, deletion of FLO400 or FLO5-1 prevents pseudohyphae formation, and hampers FLO11 expression. FAIRE-Seq data shows that the expression and repression of FLO400 and FLO5-1 are correlated to open or closed chromatin regions upstream of these genes, respectively. Our findings indicate that K. phaffii Flo400 and/or Flo5-1 act as upstream signals that lead to the induction of FLO11 upon glucose limitation in chemostats at slow growth and chromatin modulation is involved in the regulation of their expression.
Collapse
Affiliation(s)
- Sonakshi De
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Corinna Rebnegger
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.,CD-Laboratory for Growth-decoupled Protein Production in Yeast, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Josef Moser
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.,School of Bioengineering, University of Applied Sciences-FH Campus Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Nadine Tatto
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Alexandra B Graf
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.,School of Bioengineering, University of Applied Sciences-FH Campus Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.,CD-Laboratory for Growth-decoupled Protein Production in Yeast, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
25
|
Yeast Flocculin: Methods for Quantitative Analysis of Flocculation in Yeast Cells. Methods Mol Biol 2020. [PMID: 32306350 DOI: 10.1007/978-1-0716-0430-4_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Flocculation, the clump forming property of yeast, has long been appreciated in breweries and utilized as an off-cost method to enable the reuse of yeast cells. Members of the flocculin protein family were identified as the adherent proteins on the cell surface responsible for flocculation, and their properties have been investigated. Crystal structures of the adhesion domain of flocculins revealed their unique mode of ligand binding where a calcium ion is located in the middle of the interface between flocculin and the interacting sugar. Here we describe the most commonly used flocculation assay. The method is simple and easy, yet it is the most direct and reliable assay to evaluate the flocculation cellular phenotype.
Collapse
|
26
|
Krogerus K, Gibson B. A re-evaluation of diastatic Saccharomyces cerevisiae strains and their role in brewing. Appl Microbiol Biotechnol 2020; 104:3745-3756. [PMID: 32170387 PMCID: PMC7162825 DOI: 10.1007/s00253-020-10531-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
Abstract Diastatic strains of Saccharomyces cerevisiae possess the unique ability to hydrolyze and ferment long-chain oligosaccharides like dextrin and starch. They have long been regarded as important spoilage microbes in beer, but recent studies have inspired a re-evaluation of the significance of the group. Rather than being merely wild-yeast contaminants, they are highly specialized, domesticated yeasts belonging to a major brewing yeast lineage. In fact, many diastatic strains have unknowingly been used as production strains for decades. These yeasts are used in the production of traditional beer styles, like saison, but also show potential for creation of new beers with novel chemical and physical properties. Herein, we review results of the most recent studies and provide a detailed account of the structure, regulation, and functional role of the glucoamylase-encoding STA1 gene in relation to brewing and other fermentation industries. The state of the art in detecting diastatic yeast in the brewery is also summarized. In summary, these latest results highlight that having diastatic S. cerevisiae in your brewery is not necessarily a bad thing. Key Points •Diastatic S. cerevisiae strains are important spoilage microbes in brewery fermentations. •These strains belong to the ‘Beer 2’ or ‘Mosaic beer’ brewing yeast lineage. •Diastatic strains have unknowingly been used as production strains in breweries. •The STA1-encoded glucoamylase enables efficient maltotriose use. Electronic supplementary material The online version of this article (10.1007/s00253-020-10531-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristoffer Krogerus
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
| | - Brian Gibson
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| |
Collapse
|
27
|
Mutlu N, Sheidy DT, Hsu A, Jeong HS, Wozniak KJ, Kumar A. A Stress-Responsive Signaling Network Regulating Pseudohyphal Growth and Ribonucleoprotein Granule Abundance in Saccharomyces cerevisiae. Genetics 2019; 213:705-720. [PMID: 31455721 PMCID: PMC6781900 DOI: 10.1534/genetics.119.302538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/21/2019] [Indexed: 11/18/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae undergoes a stress-responsive transition to a pseudohyphal growth form in which cells elongate and remain connected in multicellular filaments. Pseudohyphal growth is regulated through conserved signaling networks that control cell growth and the response to glucose or nitrogen limitation in metazoans. These networks are incompletely understood, and our studies identify the TORC1- and PKA-regulated kinase Ksp1p as a key stress-responsive signaling effector in the yeast pseudohyphal growth response. The kinase-defective ksp1-K47D allele results in decreased pseudohyphal morphology at the cellular and colony level, indicating that Ksp1p kinase signaling is required for pseudohyphal filamentation. To determine the functional consequences of Ksp1p signaling, we implemented transcriptional profiling and quantitative phosphoproteomic analysis of ksp1-K47D on a global scale. Ksp1p kinase signaling maintains wild-type transcript levels of many pathways for amino acid synthesis and metabolism, relevant for the regulation of translation under conditions of nutrient stress. Proteins in stress-responsive ribonucleoprotein granules are regulated post-translationally by Ksp1p, and the Ksp1p-dependent phosphorylation sites S176 in eIF4G/Tif4631p and S436 in Pbp1p are required for wild-type levels of pseudohyphal growth and Protein Kinase A pathway activity. Pbp1p and Tif4631p localize in stress granules, and the ksp1 null mutant shows elevated abundance of Pbp1p puncta relative to wild-type. Collectively, the Ksp1p kinase signaling network integrates polarized pseudohyphal morphogenesis and translational regulation through the stress-responsive transcriptional control of pathways for amino acid metabolism and post-translational modification of translation factors affecting stress granule abundance.
Collapse
Affiliation(s)
- Nebibe Mutlu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Daniel T Sheidy
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | | | - Han Seol Jeong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Katherine J Wozniak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
- Program in Molecular and Cellular Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
28
|
Abstract
Understanding how and why cells cooperate to form multicellular organisms is a central aim of evolutionary biology. Multicellular groups can form through clonal development (where daughter cells stick to mother cells after division) or by aggregation (where cells aggregate to form groups). These different ways of forming groups directly affect relatedness between individual cells, which in turn can influence the degree of cooperation and conflict within the multicellular group. It is hard to study the evolution of multicellularity by focusing only on obligately multicellular organisms, like complex animals and plants, because the factors that favour multicellular cooperation cannot be disentangled, as cells cannot survive and reproduce independently. We support the use of Saccharomyces cerevisiae as an ideal model for studying the very first stages of the evolution of multicellularity. This is because it can form multicellular groups both clonally and through aggregation and uses a family of proteins called ‘flocculins’ that determine the way in which groups form, making it particularly amenable to laboratory experiments. We briefly review current knowledge about multicellularity in S. cerevisiae and then propose a framework for making predictions about the evolution of multicellular phenotypes in yeast based on social evolution theory. We finish by explaining how S. cerevisiae is a particularly useful experimental model for the analysis of open questions concerning multicellularity.
Collapse
Affiliation(s)
- R M Fisher
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - B Regenberg
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Krogerus K, Magalhães F, Kuivanen J, Gibson B. A deletion in the STA1 promoter determines maltotriose and starch utilization in STA1+ Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 2019; 103:7597-7615. [PMID: 31346683 PMCID: PMC6719335 DOI: 10.1007/s00253-019-10021-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022]
Abstract
Diastatic strains of Saccharomyces cerevisiae are common contaminants in beer fermentations and are capable of producing an extracellular STA1-encoded glucoamylase. Recent studies have revealed variable diastatic ability in strains tested positive for STA1, and here, we elucidate genetic determinants behind this variation. We show that poorly diastatic strains have a 1162-bp deletion in the promoter of STA1. With CRISPR/Cas9-aided reverse engineering, we show that this deletion greatly decreases the ability to grow in beer and consume dextrin, and the expression of STA1. New PCR primers were designed for differentiation of highly and poorly diastatic strains based on the presence of the deletion in the STA1 promoter. In addition, using publically available whole genome sequence data, we show that the STA1 gene is prevalent among the 'Beer 2'/'Mosaic Beer' brewing strains. These strains utilize maltotriose efficiently, but the mechanisms for this have been unknown. By deleting STA1 from a number of highly diastatic strains, we show here that extracellular hydrolysis of maltotriose through STA1 appears to be the dominant mechanism enabling maltotriose use during wort fermentation in STA1+ strains. The formation and retention of STA1 seems to be an alternative evolutionary strategy for efficient utilization of sugars present in brewer's wort. The results of this study allow for the improved reliability of molecular detection methods for diastatic contaminants in beer and can be exploited for strain development where maltotriose use is desired.
Collapse
Affiliation(s)
- Kristoffer Krogerus
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
- Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, FI-00076, Espoo, Finland.
| | - Frederico Magalhães
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Joosu Kuivanen
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
- Tampere University, Tampere, Finland
| | - Brian Gibson
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| |
Collapse
|
30
|
Characterization of the promoter, downstream target genes and recognition DNA sequence of Mhy1, a key filamentation-promoting transcription factor in the dimorphic yeast Yarrowia lipolytica. Curr Genet 2019; 66:245-261. [DOI: 10.1007/s00294-019-01018-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/03/2019] [Accepted: 07/13/2019] [Indexed: 12/15/2022]
|
31
|
Váchová L, Palková Z. How structured yeast multicellular communities live, age and die? FEMS Yeast Res 2019; 18:4950397. [PMID: 29718174 DOI: 10.1093/femsyr/foy033] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/20/2018] [Indexed: 12/28/2022] Open
Abstract
Yeasts, like other microorganisms, create numerous types of multicellular communities, which differ in their complexity, cell differentiation and in the occupation of different niches. Some of the communities, such as colonies and some types of biofilms, develop by division and subsequent differentiation of cells growing on semisolid or solid surfaces to which they are attached or which they can penetrate. Aggregation of individual cells is important for formation of other community types, such as multicellular flocs, which sediment to the bottom or float to the surface of liquid cultures forming flor biofilms, organized at the border between liquid and air under specific circumstances. These examples together with the existence of more obscure communities, such as stalks, demonstrate that multicellularity is widespread in yeast. Despite this fact, identification of mechanisms and regulations involved in complex multicellular behavior still remains one of the challenges of microbiology. Here, we briefly discuss metabolic differences between particular yeast communities as well as the presence and functions of various differentiated cells and provide examples of the ability of these cells to develop different ways to cope with stress during community development and aging.
Collapse
Affiliation(s)
- Libuše Váchová
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Czech Republic
| | - Zdena Palková
- Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic
| |
Collapse
|
32
|
Abstract
Filamentous growth is a fungal morphogenetic response that is critical for virulence in some fungal species. Many aspects of filamentous growth remain poorly understood. We have identified an aspect of filamentous growth in the budding yeast Saccharomyces cerevisiae and the human pathogen Candida albicans where cells behave collectively to invade surfaces in aggregates. These responses may reflect an extension of normal filamentous growth, as they share the same signaling pathways and effector processes. Aggregate responses may involve cooperation among individual cells, because aggregation was stimulated by cell adhesion molecules, secreted enzymes, and diffusible molecules that promote quorum sensing. Our study may provide insights into the genetic basis of collective cellular responses in fungi. The study may have ramifications in fungal pathogenesis, in situations where collective responses occur to promote virulence. Many fungal species, including pathogens, undergo a morphogenetic response called filamentous growth, where cells differentiate into a specialized cell type to promote nutrient foraging and surface colonization. Despite the fact that filamentous growth is required for virulence in some plant and animal pathogens, certain aspects of this behavior remain poorly understood. By examining filamentous growth in the budding yeast Saccharomyces cerevisiae and the opportunistic pathogen Candida albicans, we identify responses where cells undergo filamentous growth in groups of cells or aggregates. In S. cerevisiae, aggregate invasive growth was regulated by signaling pathways that control normal filamentous growth. These pathways promoted aggregation in part by fostering aspects of microbial cooperation. For example, aggregate invasive growth required cellular contacts mediated by the flocculin Flo11p, which was produced at higher levels in aggregates than cells undergoing regular invasive growth. Aggregate invasive growth was also stimulated by secreted enzymes, like invertase, which produce metabolites that are shared among cells. Aggregate invasive growth was also induced by alcohols that promote density-dependent filamentous growth in yeast. Aggregate invasive growth also required highly polarized cell morphologies, which may affect the packing or organization of cells. A directed selection experiment for aggregating phenotypes uncovered roles for the fMAPK and RAS pathways, which indicates that these pathways play a general role in regulating aggregate-based responses in yeast. Our study extends the range of responses controlled by filamentation regulatory pathways and has implications in understanding aspects of fungal biology that may be relevant to fungal pathogenesis. IMPORTANCE Filamentous growth is a fungal morphogenetic response that is critical for virulence in some fungal species. Many aspects of filamentous growth remain poorly understood. We have identified an aspect of filamentous growth in the budding yeast Saccharomyces cerevisiae and the human pathogen Candida albicans where cells behave collectively to invade surfaces in aggregates. These responses may reflect an extension of normal filamentous growth, as they share the same signaling pathways and effector processes. Aggregate responses may involve cooperation among individual cells, because aggregation was stimulated by cell adhesion molecules, secreted enzymes, and diffusible molecules that promote quorum sensing. Our study may provide insights into the genetic basis of collective cellular responses in fungi. The study may have ramifications in fungal pathogenesis, in situations where collective responses occur to promote virulence.
Collapse
|
33
|
Layers of Cryptic Genetic Variation Underlie a Yeast Complex Trait. Genetics 2019; 211:1469-1482. [PMID: 30787041 PMCID: PMC6456305 DOI: 10.1534/genetics.119.301907] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/14/2019] [Indexed: 01/13/2023] Open
Abstract
To better understand cryptic genetic variation, Lee et al. comprehensively map the genetic basis of a trait that is typically suppressed in a yeast cross. By determining how three different genetic perturbations give rise... Cryptic genetic variation may be an important contributor to heritable traits, but its extent and regulation are not fully understood. Here, we investigate the cryptic genetic variation underlying a Saccharomyces cerevisiae colony phenotype that is typically suppressed in a cross of the laboratory strain BY4716 (BY) and a derivative of the clinical isolate 322134S (3S). To do this, we comprehensively dissect the trait’s genetic basis in the BYx3S cross in the presence of three different genetic perturbations that enable its expression. This allows us to detect and compare the specific loci that interact with each perturbation to produce the trait. In total, we identify 21 loci, all but one of which interact with just a subset of the perturbations. Beyond impacting which loci contribute to the trait, the genetic perturbations also alter the extent of additivity, epistasis, and genotype–environment interaction among the detected loci. Additionally, we show that the single locus interacting with all three perturbations corresponds to the coding region of the cell surface gene FLO11. While nearly all of the other remaining loci influence FLO11 transcription in cis or trans, the perturbations tend to interact with loci in different pathways and subpathways. Our work shows how layers of cryptic genetic variation can influence complex traits. Here, these layers mainly represent different regulatory inputs into the transcription of a single key gene.
Collapse
|
34
|
Willaert RG. Adhesins of Yeasts: Protein Structure and Interactions. J Fungi (Basel) 2018; 4:jof4040119. [PMID: 30373267 PMCID: PMC6308950 DOI: 10.3390/jof4040119] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
The ability of yeast cells to adhere to other cells or substrates is crucial for many yeasts. The budding yeast Saccharomyces cerevisiae can switch from a unicellular lifestyle to a multicellular one. A crucial step in multicellular lifestyle adaptation is self-recognition, self-interaction, and adhesion to abiotic surfaces. Infectious yeast diseases such as candidiasis are initiated by the adhesion of the yeast cells to host cells. Adhesion is accomplished by adhesin proteins that are attached to the cell wall and stick out to interact with other cells or substrates. Protein structures give detailed insights into the molecular mechanism of adhesin-ligand interaction. Currently, only the structures of a very limited number of N-terminal adhesion domains of adhesins have been solved. Therefore, this review focuses on these adhesin protein families. The protein architectures, protein structures, and ligand interactions of the flocculation protein family of S. cerevisiae; the epithelial adhesion family of C. glabrata; and the agglutinin-like sequence protein family of C. albicans are reviewed and discussed.
Collapse
Affiliation(s)
- Ronnie G Willaert
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), IJRG VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Research Group Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
- Department Bioscience Engineering, University Antwerp, 2020 Antwerp, Belgium.
| |
Collapse
|
35
|
Park YD, Kwon SJ, Bae KS, Park HM. LAMMER Kinase Lkh1 Is an Upstream Regulator of Prk1-Mediated Non-Sexual Flocculation in Fission Yeast. MYCOBIOLOGY 2018; 46:236-241. [PMID: 30294483 PMCID: PMC6171427 DOI: 10.1080/12298093.2018.1513115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/17/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
The cation-dependent galactose-specific flocculation activity of the Schizosaccharomyces pombe null mutant of lkh1 +, the gene encoding LAMMER kinase homolog, has previously been reported by our group. Here, we show that disruption of prk1 +, another flocculation associated regulatory kinase encoding gene, also resulted in cation-dependent galactose-specific flocculation. Deletion of prk1 increased the flocculation phenotype of the lkh1 + null mutant and its overexpression reversed the flocculation of cells caused by lkh1 deletion. Transcript levels of prk1 + were also decreased by lkh1 + deletion. Cumulatively, these results indicate that Lkh1 is one of the negative regulators acting upstream of Prk1, regulating non-sexual flocculation in fission yeast.
Collapse
Affiliation(s)
- Yoon-Dong Park
- Department of Microbiology & Molecular Biology, Chungnam National University, Daejeon, Korea
| | - Soo Jeong Kwon
- Department of Microbiology & Molecular Biology, Chungnam National University, Daejeon, Korea
| | | | - Hee-Moon Park
- Department of Microbiology & Molecular Biology, Chungnam National University, Daejeon, Korea
| |
Collapse
|
36
|
Mutlu N, Kumar A. Messengers for morphogenesis: inositol polyphosphate signaling and yeast pseudohyphal growth. Curr Genet 2018; 65:119-125. [PMID: 30101372 DOI: 10.1007/s00294-018-0874-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
Abstract
In response to various environmental stimuli and stressors, the budding yeast Saccharomyces cerevisiae can initiate a striking morphological transition from its classic growth mode as isolated single cells to a filamentous form in which elongated cells remain connected post-cytokinesis in multi-cellular pseudohyphae. The formation of pseudohyphal filaments is regulated through an expansive signaling network, encompassing well studied and highly conserved pathways enabling changes in cell polarity, budding, cytoskeletal organization, and cell adhesion; however, changes in metabolite levels underlying the pseudohyphal growth transition are less well understood. We have recently identified a function for second messenger inositol polyphosphates (InsPs) in regulating pseudohyphal growth. InsPs are formed through the cleavage of membrane-bound phosphatidylinositol 4,5-bisphosphate (PIP2), and these soluble compounds are now being appreciated as important regulators of diverse processes, from phosphate homeostasis to cell migration. We find that kinases in the InsP pathway are required for wild-type pseudohyphal growth, and that InsP species exhibit characteristic profiles under conditions promoting filamentation. Ratios of the doubly phosphorylated InsP7 isoforms 5PP-InsP5 to 1PP-InsP5 are elevated in mutants exhibiting exaggerated pseudohyphal growth. Interestingly, S. cerevisiae mutants deleted of the mitogen-activated protein kinases (MAPKs) Kss1p or Fus3p or the AMP-activated kinase (AMPK) family member Snf1p display mutant InsP profiles, suggesting that these signaling pathways may contribute to the regulatory mechanism controlling InsP levels. Consequently, analyses of yeast pseudohyphal growth may be informative in identifying mechanisms regulating InsPs, while indicating a new function for these conserved second messengers in modulating cell stress responses and morphogenesis.
Collapse
Affiliation(s)
- Nebibe Mutlu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
37
|
Impact of Fungal MAPK Pathway Targets on the Cell Wall. J Fungi (Basel) 2018; 4:jof4030093. [PMID: 30096860 PMCID: PMC6162559 DOI: 10.3390/jof4030093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022] Open
Abstract
The fungal cell wall is an extracellular organelle that provides structure and protection to cells. The cell wall also influences the interactions of cells with each other and surfaces. The cell wall can be reorganized in response to changing environmental conditions and different types of stress. Signaling pathways control the remodeling of the cell wall through target proteins that are in many cases not well defined. The Mitogen Activated Protein Kinase pathway that controls filamentous growth in yeast (fMAPK) was required for normal growth in media containing the cell wall perturbing agent Calcofluor White (CFW). A mass spectrometry (MASS-SPEC) approach and analysis of expression profiling data identified cell wall proteins and modifying enzymes whose levels were influenced by the fMAPK pathway. These include Flo11p, Flo10p, Tip1p, Pry2p and the mannosyltransferase, Och1p. Cells lacking Flo11p or Och1p were sensitive to CFW. The identification of cell wall proteins controlled by a MAPK pathway may provide insights into how signaling pathways regulate the cell wall.
Collapse
|
38
|
Norman KL, Shively CA, De La Rocha AJ, Mutlu N, Basu S, Cullen PJ, Kumar A. Inositol polyphosphates regulate and predict yeast pseudohyphal growth phenotypes. PLoS Genet 2018; 14:e1007493. [PMID: 29939992 PMCID: PMC6034902 DOI: 10.1371/journal.pgen.1007493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/06/2018] [Accepted: 06/14/2018] [Indexed: 11/18/2022] Open
Abstract
Pseudohyphal growth is a nutrient-regulated program in which budding yeast form multicellular filaments of elongated and connected cells. Filamentous growth is required for virulence in pathogenic fungi and provides an informative model of stress-responsive signaling. The genetics and regulatory networks modulating pseudohyphal growth have been studied extensively, but little is known regarding the changes in metabolites that enable pseudohyphal filament formation. Inositol signaling molecules are an important class of metabolite messengers encompassing highly phosphorylated and diffusible inositol polyphosphates (InsPs). We report here that the InsP biosynthesis pathway is required for wild-type pseudohyphal growth. Under nitrogen-limiting conditions that can induce filamentation, InsPs exhibit characteristic profiles, distinguishing the InsP7 pyrophosphate isoforms 1PP-InsP5 and 5PP-InsP5. Deletion and overexpression analyses of InsP kinases identify elevated levels of 5PP-InsP5 relative to 1PP-InsP5 in mutants exhibiting hyper-filamentous growth. Overexpression of KCS1, which promotes formation of inositol pyrophosphates, is sufficient to drive pseudohyphal filamentation on medium with normal nitrogen levels. We find that the kinases Snf1p (AMPK), Kss1p, and Fus3p (MAPKs), required for wild-type pseudohyphal growth, are also required for wild-type InsP levels. Deletion analyses of the corresponding kinase genes indicate elevated InsP3 levels and an absence of exaggerated 5PP-InsP5 peaks in trace profiles from snf1Δ/Δ and kss1Δ/Δ mutants exhibiting decreased pseudohyphal filamentation. Elevated 5PP-InsP5:1PP-InsP5 ratios are present in the hyperfilamentous fus3 deletion mutant. Collectively, the data identify the presence of elevated 5PP-InsP5 levels relative to other inositol pyrophosphates as an in vivo marker of hyper-filamentous growth, while providing initial evidence for the regulation of InsP signaling by pseudohyphal growth kinases. Changes in metabolite levels underlie important biological processes, including cellular responses to nutrient stress. One such response encompasses the nitrogen stress-induced transition of budding yeast cells into multicellular filaments, relevant as a model of directional growth and fungal pathogenesis. We report here that a conserved family of charged lipid-derived metabolites, inositol polyphosphates, exhibits characteristic changes as yeast cell form filaments in response to conditions of nitrogen limitation. The ratios of doubly charged inositol pyrophosphates consistently match with the degree of filament formation. Enzymes of the inositol polyphosphate synthesis pathway are required for filament formation, and inositol polyphosphate levels are dependent on kinases that enable wild-type filamentation. Our data indicate that inositol polyphosphates mark filamentous growth states, highlighting a new regulatory role for these ubiquitous eukaryotic second messengers.
Collapse
Affiliation(s)
- Kaitlyn L. Norman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christian A. Shively
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Amberlene J. De La Rocha
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nebibe Mutlu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sukanya Basu
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
39
|
Ma LS, Wang L, Trippel C, Mendoza-Mendoza A, Ullmann S, Moretti M, Carsten A, Kahnt J, Reissmann S, Zechmann B, Bange G, Kahmann R. The Ustilago maydis repetitive effector Rsp3 blocks the antifungal activity of mannose-binding maize proteins. Nat Commun 2018; 9:1711. [PMID: 29703884 PMCID: PMC5923269 DOI: 10.1038/s41467-018-04149-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 04/06/2018] [Indexed: 12/22/2022] Open
Abstract
To cause disease in maize, the biotrophic fungus Ustilago maydis secretes a large arsenal of effector proteins. Here, we functionally characterize the repetitive effector Rsp3 (repetitive secreted protein 3), which shows length polymorphisms in field isolates and is highly expressed during biotrophic stages. Rsp3 is required for virulence and anthocyanin accumulation. During biotrophic growth, Rsp3 decorates the hyphal surface and interacts with at least two secreted maize DUF26-domain family proteins (designated AFP1 and AFP2). AFP1 binds mannose and displays antifungal activity against the rsp3 mutant but not against a strain constitutively expressing rsp3. Maize plants silenced for AFP1 and AFP2 partially rescue the virulence defect of rsp3 mutants, suggesting that blocking the antifungal activity of AFP1 and AFP2 by the Rsp3 effector is an important virulence function. Rsp3 orthologs are present in all sequenced smut fungi, and the ortholog from Sporisorium reilianum can complement the rsp3 mutant of U. maydis, suggesting a novel widespread fungal protection mechanism. The fungus Ustilago maydis secretes many effector proteins to cause disease in maize. Here, Ma et al. show that the repetitive effector Rsp3 is required for virulence by inhibiting the antifungal activity of two mannose-binding proteins that are secreted by the plant cells.
Collapse
Affiliation(s)
- Lay-Sun Ma
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Lei Wang
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany.,Department of Pharmacology, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Christine Trippel
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany.,Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University-Göttingen, 37077, Göttingen, Germany
| | - Artemio Mendoza-Mendoza
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany.,Bio-Protection Research Centre, Lincoln University, PO Box 64, Lincoln, 7647, New Zealand
| | - Steffen Ullmann
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany.,, Düsseldorfer Straße 177, 45481, Mülheim an der Ruhr, Germany
| | - Marino Moretti
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Alexander Carsten
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Jörg Kahnt
- Mass Spectroscopy Facility, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Stefanie Reissmann
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Bernd Zechmann
- Center for Microscopy and Imaging (CMI), Baylor University, Waco, Texas, 76798-7046, USA
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology and Faculty of Chemistry, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Regine Kahmann
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany.
| |
Collapse
|
40
|
Kopecká J, Němec M, Matoulková D, Čejka P, Jelínková M, Felsberg J, Sigler K. Effect of Growth Conditions on Flocculation and Cell Surface Hydrophobicity of Brewing Yeast. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2015-0324-01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jana Kopecká
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Miroslav Němec
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Dagmar Matoulková
- Research Institute of Brewing and Malting, Lípová 15, 120 44 Prague, Czech Republic
| | - Pavel Čejka
- Research Institute of Brewing and Malting, Lípová 15, 120 44 Prague, Czech Republic
| | - Markéta Jelínková
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jürgen Felsberg
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Karel Sigler
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
41
|
Damas-Buenrostro LC, Gracia-González G, Hernández-Luna CE, Galán-Wong LJ, Pereyra-Alférez B, Sierra-Benavides JA. Detection of FLO Genes in Lager and Wild Yeast Strains. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2008-0624-01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Luis C. Damas-Buenrostro
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Gerardo Gracia-González
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Carlos E. Hernández-Luna
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Luis J. Galán-Wong
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Benito Pereyra-Alférez
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, México
| | | |
Collapse
|
42
|
Zhang K, Di YN, Qi L, Sui Y, Wang TY, Fan L, Lv ZM, Wu XC, Wang PM, Zheng DQ. Genetic characterization and modification of a bioethanol-producing yeast strain. Appl Microbiol Biotechnol 2018; 102:2213-2223. [PMID: 29333587 DOI: 10.1007/s00253-017-8727-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Abstract
Yeast Saccharomyces cerevisiae strains isolated from different sources generally show extensive genetic and phenotypic diversity. Understanding how genomic variations influence phenotypes is important for developing strategies with improved economic traits. The diploid S. cerevisiae strain NY1308 is used for cellulosic bioethanol production. Whole genome sequencing identified an extensive amount of single nucleotide variations and small insertions/deletions in the genome of NY1308 compared with the S288c genome. Gene annotation of the assembled NY1308 genome showed that 43 unique genes are absent in the S288c genome. Phylogenetic analysis suggested most of the unique genes were obtained through horizontal gene transfer from other species. RNA-Seq revealed that some unique genes were not functional in NY1308 due to unidentified intron sequences. During bioethanol fermentation, NY1308 tends to flocculate when certain inhibitors (derived from the pretreatment of cellulosic feedstock) are present in the fermentation medium. qRT-PCR and genetic manipulation confirmed that the novel gene, NYn43, contributed to the flocculation ability of NY1308. Deletion of NYn43 resulted in a faster fermentation rate for NY1308. This work disclosed the genetic characterization of a bioethanol-producing S. cerevisiae strain and provided a useful paradigm showing how the genetic diversity of the yeast population would facilitate the personalized development of desirable traits.
Collapse
Affiliation(s)
- Ke Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Ya-Nan Di
- Ocean College, Zhejiang University, Zhoushan, Zhejiang Province, 316021, China
| | - Lei Qi
- Ocean College, Zhejiang University, Zhoushan, Zhejiang Province, 316021, China
| | - Yang Sui
- Ocean College, Zhejiang University, Zhoushan, Zhejiang Province, 316021, China
| | - Ting-Yu Wang
- Ocean College, Zhejiang University, Zhoushan, Zhejiang Province, 316021, China
| | - Li Fan
- Ocean College, Zhejiang University, Zhoushan, Zhejiang Province, 316021, China
| | - Zhen-Mei Lv
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Xue-Chang Wu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Pin-Mei Wang
- Ocean College, Zhejiang University, Zhoushan, Zhejiang Province, 316021, China
| | - Dao-Qiong Zheng
- Ocean College, Zhejiang University, Zhoushan, Zhejiang Province, 316021, China.
| |
Collapse
|
43
|
Amyloid-Like β-Aggregates as Force-Sensitive Switches in Fungal Biofilms and Infections. Microbiol Mol Biol Rev 2017; 82:82/1/e00035-17. [PMID: 29187516 DOI: 10.1128/mmbr.00035-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cellular aggregation is an essential step in the formation of biofilms, which promote fungal survival and persistence in hosts. In many of the known yeast cell adhesion proteins, there are amino acid sequences predicted to form amyloid-like β-aggregates. These sequences mediate amyloid formation in vitro. In vivo, these sequences mediate a phase transition from a disordered state to a partially ordered state to create patches of adhesins on the cell surface. These β-aggregated protein patches are called adhesin nanodomains, and their presence greatly increases and strengthens cell-cell interactions in fungal cell aggregation. Nanodomain formation is slow (with molecular response in minutes and the consequences being evident for hours), and strong interactions lead to enhanced biofilm formation. Unique among functional amyloids, fungal adhesin β-aggregation can be triggered by the application of physical shear force, leading to cellular responses to flow-induced stress and the formation of robust biofilms that persist under flow. Bioinformatics analysis suggests that this phenomenon may be widespread. Analysis of fungal abscesses shows the presence of surface amyloids in situ, a finding which supports the idea that phase changes to an amyloid-like state occur in vivo. The amyloid-coated fungi bind the damage-associated molecular pattern receptor serum amyloid P component, and there may be a consequential modulation of innate immune responses to the fungi. Structural data now suggest mechanisms for the force-mediated induction of the phase change. We summarize and discuss evidence that the sequences function as triggers for protein aggregation and subsequent cellular aggregation, both in vitro and in vivo.
Collapse
|
44
|
Brunet T, King N. The Origin of Animal Multicellularity and Cell Differentiation. Dev Cell 2017; 43:124-140. [PMID: 29065305 PMCID: PMC6089241 DOI: 10.1016/j.devcel.2017.09.016] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/31/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022]
Abstract
Over 600 million years ago, animals evolved from a unicellular or colonial organism whose cell(s) captured bacteria with a collar complex, a flagellum surrounded by a microvillar collar. Using principles from evolutionary cell biology, we reason that the transition to multicellularity required modification of pre-existing mechanisms for extracellular matrix synthesis and cytokinesis. We discuss two hypotheses for the origin of animal cell types: division of labor from ancient plurifunctional cells and conversion of temporally alternating phenotypes into spatially juxtaposed cell types. Mechanistic studies in diverse animals and their relatives promise to deepen our understanding of animal origins and cell biology.
Collapse
Affiliation(s)
- Thibaut Brunet
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Nicole King
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
45
|
Gotoh A, Shigenobu S, Yamaguchi K, Kobayashi S, Ito F, Tsuji K. Transcriptome profiling of the spermatheca identifies genes potentially involved in the long-term sperm storage of ant queens. Sci Rep 2017; 7:5972. [PMID: 28729606 PMCID: PMC5519678 DOI: 10.1038/s41598-017-05818-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/02/2017] [Indexed: 12/15/2022] Open
Abstract
Females of social Hymenoptera only mate at the beginning of their adult lives and produce offspring until their death. In most ant species, queens live for over a decade, indicating that ant queens can store large numbers of spermatozoa throughout their long lives. To reveal the prolonged sperm storage mechanisms, we identified enriched genes in the sperm-storage organ (spermatheca) relative to those in body samples in Crematogaster osakensis queens using the RNA-sequencing method. The genes encoding antioxidant enzymes, proteases, and extracellular matrix-related genes, and novel genes that have no similar sequences in the public databases were identified. We also performed differential expression analyses between the virgin and mated spermathecae or between the spermathecae at 1-week and 1-year after mating, to identify genes altered by the mating status or by the sperm storage period, respectively. Gene Ontology enrichment analyses suggested that antioxidant function is enhanced in the spermatheca at 1-week after mating compared with the virgin spermatheca and the spermatheca at 1-year after mating. In situ hybridization analyses of 128 selected contigs revealed that 12 contigs were particular to the spermatheca. These genes have never been reported in the reproductive organs of insect females, suggesting specialized roles in ant spermatheca.
Collapse
Affiliation(s)
- Ayako Gotoh
- Department of Biology, Faculty of Science and Engineering and Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, 658-8501, Japan.
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan
| | - Katsushi Yamaguchi
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Satoru Kobayashi
- Life Science Center of Tsukuba Advanced Research Alliance (TARA Center), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Fuminori Ito
- Faculty of Agriculture, Kagawa University, Ikenobe, Miki, 761-0795, Japan
| | - Kazuki Tsuji
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| |
Collapse
|
46
|
Steenwyk J, Rokas A. Extensive Copy Number Variation in Fermentation-Related Genes Among Saccharomyces cerevisiae Wine Strains. G3 (BETHESDA, MD.) 2017; 7:1475-1485. [PMID: 28292787 PMCID: PMC5427499 DOI: 10.1534/g3.117.040105] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/08/2017] [Indexed: 01/30/2023]
Abstract
Due to the importance of Saccharomyces cerevisiae in wine-making, the genomic variation of wine yeast strains has been extensively studied. One of the major insights stemming from these studies is that wine yeast strains harbor low levels of genetic diversity in the form of single nucleotide polymorphisms (SNPs). Genomic structural variants, such as copy number (CN) variants, are another major type of variation segregating in natural populations. To test whether genetic diversity in CN variation is also low across wine yeast strains, we examined genome-wide levels of CN variation in 132 whole-genome sequences of S. cerevisiae wine strains. We found an average of 97.8 CN variable regions (CNVRs) affecting ∼4% of the genome per strain. Using two different measures of CN diversity, we found that gene families involved in fermentation-related processes such as copper resistance (CUP), flocculation (FLO), and glucose metabolism (HXT), as well as the SNO gene family whose members are expressed before or during the diauxic shift, showed substantial CN diversity across the 132 strains examined. Importantly, these same gene families have been shown, through comparative transcriptomic and functional assays, to be associated with adaptation to the wine fermentation environment. Our results suggest that CN variation is a substantial contributor to the genomic diversity of wine yeast strains, and identify several candidate loci whose levels of CN variation may affect the adaptation and performance of wine yeast strains during fermentation.
Collapse
Affiliation(s)
- Jacob Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
47
|
Nayyar A, Walker G, Wardrop F, Adya AK. Flocculation in industrial strains ofSaccharomyces cerevisiae: role of cell wall polysaccharides and lectin-like receptors. JOURNAL OF THE INSTITUTE OF BREWING 2017. [DOI: 10.1002/jib.421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ashima Nayyar
- School of Science, Engineering and Technology; Abertay University; Bell Street Dundee DD1 1HG UK
| | - Graeme Walker
- School of Science, Engineering and Technology; Abertay University; Bell Street Dundee DD1 1HG UK
| | | | - Ashok K. Adya
- School of Science, Engineering and Technology; Abertay University; Bell Street Dundee DD1 1HG UK
| |
Collapse
|
48
|
González B, Mas A, Beltran G, Cullen PJ, Torija MJ. Role of Mitochondrial Retrograde Pathway in Regulating Ethanol-Inducible Filamentous Growth in Yeast. Front Physiol 2017; 8:148. [PMID: 28424625 PMCID: PMC5372830 DOI: 10.3389/fphys.2017.00148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/24/2017] [Indexed: 12/17/2022] Open
Abstract
In yeast, ethanol is produced as a by-product of fermentation through glycolysis. Ethanol also stimulates a developmental foraging response called filamentous growth and is thought to act as a quorum-sensing molecule. Ethanol-inducible filamentous growth was examined in a small collection of wine/European strains, which validated ethanol as an inducer of filamentous growth. Wine strains also showed variability in their filamentation responses, which illustrates the striking phenotypic differences that can occur among individuals. Ethanol-inducible filamentous growth in Σ1278b strains was independent of several of the major filamentation regulatory pathways [including fMAPK, RAS-cAMP, Snf1, Rpd3(L), and Rim101] but required the mitochondrial retrograde (RTG) pathway, an inter-organellar signaling pathway that controls the nuclear response to defects in mitochondrial function. The RTG pathway regulated ethanol-dependent filamentous growth by maintaining flux through the TCA cycle. The ethanol-dependent invasive growth response required the polarisome and transcriptional induction of the cell adhesion molecule Flo11p. Our results validate established stimuli that trigger filamentous growth and show how stimuli can trigger highly specific responses among individuals. Our results also connect an inter-organellar pathway to a quorum sensing response in fungi.
Collapse
Affiliation(s)
- Beatriz González
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i VirgiliTarragona, Spain
| | - Albert Mas
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i VirgiliTarragona, Spain
| | - Gemma Beltran
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i VirgiliTarragona, Spain
| | - Paul J Cullen
- Department of Biological Sciences, University at BuffaloBuffalo, NY, USA
| | - María Jesús Torija
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i VirgiliTarragona, Spain
| |
Collapse
|
49
|
Molecular Basis for Strain Variation in the Saccharomyces cerevisiae Adhesin Flo11p. mSphere 2016; 1:mSphere00129-16. [PMID: 27547826 PMCID: PMC4989245 DOI: 10.1128/msphere.00129-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/27/2016] [Indexed: 11/20/2022] Open
Abstract
As a nonmotile organism, Saccharomyces cerevisiae employs the cell surface flocculin Flo11/Muc1 as an important means of adapting to environmental change. However, there is a great deal of strain variation in the expression of Flo11-dependent phenotypes, including flocculation. In this study, we investigated the molecular basis of this strain-specific phenotypic variability. Our data indicate that strain-specific differences in the level of flocculation result from significant sequence differences in the FLO11 alleles and do not depend on quantitative differences in FLO11 expression or on surface hydrophobicity. We further have shown that beads coated with amino-terminal domain peptide bind preferentially to homologous cells. These data show that variability in the structure of the Flo11 adhesion domain may thus be an important determinant of membership in microbial communities and hence may drive selection and evolution. FLO11 encodes a yeast cell wall flocculin that mediates a variety of adhesive phenotypes in Saccharomyces cerevisiae. Flo11p is implicated in many developmental processes, including flocculation, formation of pseudohyphae, agar invasion, and formation of microbial mats and biofilms. However, Flo11p mediates different processes in different yeast strains. To investigate the mechanisms by which FLO11 determines these differences in colony morphology, flocculation, and invasion, we studied gene structure, function, and expression levels. Nonflocculent Saccharomyces cerevisiae Σ1278b cells exhibited significantly higher FLO11 mRNA expression, especially in the stationary phase, than highly flocculent S. cerevisiae var. diastaticus. The two strains varied in cell surface hydrophobicity, and Flo11p contributed significantly to surface hydrophobicity in S. cerevisiae var. diastaticus but not in strain Σ1278b. Sequencing of the FLO11 gene in S. cerevisiae var. diastaticus revealed strain-specific differences, including a 15-amino-acid insertion in the adhesion domain. Flo11p adhesion domains from strain Σ1278b and S. cerevisiae var. diastaticus were expressed and used to coat magnetic beads. The adhesion domain from each strain bound preferentially to homologous cells, and the preferences were independent of the cells in which the adhesion domains were produced. These results are consistent with the idea that strain-specific variations in the amino acid sequences in the adhesion domains cause different Flo11p flocculation activities. The results also imply that strain-specific differences in expression levels, posttranslational modifications, and allelic differences outside the adhesion domains have little effect on flocculation. IMPORTANCE As a nonmotile organism, Saccharomyces cerevisiae employs the cell surface flocculin Flo11/Muc1 as an important means of adapting to environmental change. However, there is a great deal of strain variation in the expression of Flo11-dependent phenotypes, including flocculation. In this study, we investigated the molecular basis of this strain-specific phenotypic variability. Our data indicate that strain-specific differences in the level of flocculation result from significant sequence differences in the FLO11 alleles and do not depend on quantitative differences in FLO11 expression or on surface hydrophobicity. We further have shown that beads coated with amino-terminal domain peptide bind preferentially to homologous cells. These data show that variability in the structure of the Flo11 adhesion domain may thus be an important determinant of membership in microbial communities and hence may drive selection and evolution.
Collapse
|
50
|
Force Sensitivity in Saccharomyces cerevisiae Flocculins. mSphere 2016; 1:mSphere00128-16. [PMID: 27547825 PMCID: PMC4989244 DOI: 10.1128/msphere.00128-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/27/2016] [Indexed: 12/28/2022] Open
Abstract
The Saccharomyces cerevisiae flocculins mediate the formation of cellular aggregates and biofilm-like mats, useful in clearing yeast from fermentations. An important property of fungal adhesion proteins, including flocculins, is the ability to form catch bonds, i.e., bonds that strengthen under tension. This strengthening is based, at least in part, on increased avidity of binding due to clustering of adhesins in cell surface nanodomains. This clustering depends on amyloid-like β-aggregation of short amino acid sequences in the adhesins. In Candida albicans adhesin Als5, shear stress from vortex mixing can unfold part of the protein to expose aggregation-prone sequences, and then adhesins aggregate into nanodomains. We therefore tested whether shear stress from mixing can increase flocculation activity by potentiating similar protein remodeling and aggregation in the flocculins. The results demonstrate the applicability of the Als adhesin model and provide a rational framework for the enhancement or inhibition of flocculation in industrial applications. Many fungal adhesins have short, β-aggregation-prone sequences that play important functional roles, and in the Candida albicans adhesin Als5p, these sequences cluster the adhesins after exposure to shear force. Here, we report that Saccharomyces cerevisiae flocculins Flo11p and Flo1p have similar β-aggregation-prone sequences and are similarly stimulated by shear force, despite being nonhomologous. Shear from vortex mixing induced the formation of small flocs in cells expressing either adhesin. After the addition of Ca2+, yeast cells from vortex-sheared populations showed greatly enhanced flocculation and displayed more pronounced thioflavin-bright surface nanodomains. At high concentrations, amyloidophilic dyes inhibited Flo1p- and Flo11p-mediated agar invasion and the shear-induced increase in flocculation. Consistent with these results, atomic force microscopy of Flo11p showed successive force-distance peaks characteristic of sequentially unfolding tandem repeat domains, like Flo1p and Als5p. Flo11p-expressing cells bound together through homophilic interactions with adhesion forces of up to 700 pN and rupture lengths of up to 600 nm. These results are consistent with the potentiation of yeast flocculation by shear-induced formation of high-avidity domains of clustered adhesins at the cell surface, similar to the activation of Candida albicans adhesin Als5p. Thus, yeast adhesins from three independent gene families use similar force-dependent interactions to drive cell adhesion. IMPORTANCE The Saccharomyces cerevisiae flocculins mediate the formation of cellular aggregates and biofilm-like mats, useful in clearing yeast from fermentations. An important property of fungal adhesion proteins, including flocculins, is the ability to form catch bonds, i.e., bonds that strengthen under tension. This strengthening is based, at least in part, on increased avidity of binding due to clustering of adhesins in cell surface nanodomains. This clustering depends on amyloid-like β-aggregation of short amino acid sequences in the adhesins. In Candida albicans adhesin Als5, shear stress from vortex mixing can unfold part of the protein to expose aggregation-prone sequences, and then adhesins aggregate into nanodomains. We therefore tested whether shear stress from mixing can increase flocculation activity by potentiating similar protein remodeling and aggregation in the flocculins. The results demonstrate the applicability of the Als adhesin model and provide a rational framework for the enhancement or inhibition of flocculation in industrial applications.
Collapse
|