1
|
The Escherichia coli Amino Acid Uptake Protein CycA: Regulation of Its Synthesis and Practical Application in l-Isoleucine Production. Microorganisms 2022; 10:microorganisms10030647. [PMID: 35336222 PMCID: PMC8948829 DOI: 10.3390/microorganisms10030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Amino acid transport systems perform important physiological functions; their role should certainly be considered in microbial production of amino acids. Typically, in the context of metabolic engineering, efforts are focused on the search for and application of specific amino acid efflux pumps. However, in addition, importers can also be used to improve the industrial process as a whole. In this study, the protein CycA, which is known for uptake of nonpolar amino acids, was characterized from the viewpoint of regulating its expression and range of substrates. We prepared a cycA-overexpressing strain and found that it exhibited high sensitivity to branched-chain amino acids and their structural analogues, with relatively increased consumption of these amino acids, suggesting that they are imported by CycA. The expression of cycA was found to be dependent on the extracellular concentrations of substrate amino acids. The role of some transcription factors in cycA expression, including of Lrp and Crp, was studied using a reporter gene construct. Evidence for the direct binding of Crp to the cycA regulatory region was obtained using a gel-retardation assay. The enhanced import of named amino acids due to cycA overexpression in the l-isoleucine-producing strain resulted in a significant reduction in the generation of undesirable impurities. This work demonstrates the importance of uptake systems with respect to their application in metabolic engineering.
Collapse
|
2
|
Yu J, Jia M, Feng Y. The cytidine repressor regulates the survival of Pantoea agglomerans YS19 under oxidative stress and sulfur starvation conditions. J GEN APPL MICROBIOL 2021; 67:59-66. [PMID: 33518552 DOI: 10.2323/jgam.2020.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pantoea agglomerans YS19 is a dominant endophytic bacterium isolated from rice, which is capable of promoting host plant growth by nitrogen-fixing and phytohormone secreting. We previously found that the cytidine repressor (CytR) protein conducts the regulation of indole signal in YS19. Here, we compared the whole-cell protein of the wild type YS19 and the ΔcytR mutant and subsequently identified one differential protein as alkyl hydroperoxide reductase subunit C related to oxidative stress and sulfur starvation tolerance. It was tested that cytR had a positive effect on the survival of YS19 under the oxidative stress and sulfur starvation conditions and this effect was inhibited by indole. To further understand the functional mode of indole in this regulation, we cloned the cytR promoter region (PcytR) of YS19 and tested the effect of indole on PcytR using gfp as a reporter gene. It was found that PcytR can sense indole and significantly inhibit the expression of the downstream gene. This study provided a deeper understanding of the multiple function of cytR and expanded a new research direction of how indole participates in gene regulation.
Collapse
Affiliation(s)
- Jiajia Yu
- School of Life Science, Beijing Institute of Technology
| | - Mengqi Jia
- School of Life Science, Beijing Institute of Technology
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology
| |
Collapse
|
3
|
The cytidine repressor participates in the regulatory pathway of indole in Pantoea agglomerans. Res Microbiol 2017; 168:636-643. [PMID: 28483441 DOI: 10.1016/j.resmic.2017.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 11/23/2022]
Abstract
Indole, an important signal molecule in both intraspecies and interspecies, regulates a variety of bacterial behaviors, but its regulatory mechanism is still unknown. Pantoea agglomerans YS19, a preponderant endophytic bacterium isolated from rice, does not produce indole, yet it senses exogenous indole. In this study, a mutant of YS19-Rpr whose target gene expression was downregulated by indole was selected through mTn5 transposon mutagenesis. Using the TAIL-PCR technique, the mutation gene was identified as a cytR homologue, which encodes a cytidine repressor (CytR) protein, a bacterial transcription factor involved in a complex regulation scheme. The negative regulation of indole in cytR, which is equivalent to the mutation in cytR, promotes the expression of a downstream gene deoC, which encodes the key enzyme deoxyribose-phosphate aldolase in participating in pentose metabolism. We found that DeoC is one of the regulatory proteins of P. agglomerans that is involved in counteracting starvation. Furthermore, the expression of deoC was induced by starvation conditions, accompanied by a decrease in cytR expression. This finding suggests that the indole signal and the mutation of cytR relieve inhibition of CytR in the transcription of deoC, facilitating better adaptation of the bacterium to the adverse conditions of the environment.
Collapse
|
4
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
5
|
Watve SS, Thomas J, Hammer BK. CytR Is a Global Positive Regulator of Competence, Type VI Secretion, and Chitinases in Vibrio cholerae. PLoS One 2015; 10:e0138834. [PMID: 26401962 PMCID: PMC4581735 DOI: 10.1371/journal.pone.0138834] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/03/2015] [Indexed: 11/18/2022] Open
Abstract
The facultative pathogen Vibrio cholerae transitions between its human host and aquatic reservoirs where it colonizes chitinous surfaces. Growth on chitin induces expression of chitin utilization genes, genes involved in DNA uptake by natural transformation, and a type VI secretion system that allows contact-dependent killing of neighboring bacteria. We have previously shown that the transcription factor CytR, thought to primarily regulate the pyrimidine nucleoside scavenging response, is required for natural competence in V. cholerae. Through high-throughput RNA sequencing (RNA-seq), we show that CytR positively regulates the majority of competence genes, the three type VI secretion operons, and the four known or predicted chitinases. We used transcriptional reporters and phenotypic analysis to determine the individual contributions of quorum sensing, which is controlled by the transcription factors HapR and QstR; chitin utilization that is mediated by TfoX; and pyrimidine starvation that is orchestrated by CytR, toward each of these processes. We find that in V. cholerae, CytR is a global regulator of multiple behaviors affecting fitness and adaptability in the environment.
Collapse
Affiliation(s)
- Samit S. Watve
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Jacob Thomas
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Brian K. Hammer
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
6
|
Antonova ES, Bernardy EE, Hammer BK. Natural competence in Vibrio cholerae is controlled by a nucleoside scavenging response that requires CytR-dependent anti-activation. Mol Microbiol 2012; 86:1215-31. [PMID: 23016895 DOI: 10.1111/mmi.12054] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2012] [Indexed: 01/10/2023]
Abstract
Competence for genetic transformation in Vibrio cholerae is triggered by chitin-induced transcription factor TfoX and quorum sensing (QS) regulator HapR. Transformation requires expression of ComEA, described as a DNA receptor in other competent bacteria. A screen for mutants that poorly expressed a comEA-luciferase fusion identified cytR, encoding the nucleoside scavenging cytidine repressor, previously shown in V. cholerae to be a biofilm repressor and positively regulated by TfoX, but not linked to transformation. A ΔcytR mutant was non-transformable and defective in expression of comEA and additional TfoX-induced genes, including pilA (transformation pseudopilus) and chiA-1 (chitinase). In Escherichia coli, 'anti-activation' of nucleoside metabolism genes, via protein-protein interactions between critical residues in CytR and CRP (cAMP receptor protein), is disrupted by exogenous cytidine. Amino acid substitutions of the corresponding V. cholerae CytR residues impaired expression of comEA, pilA and chiA-1, and halted DNA uptake; while exogenous cytidine hampered comEA expression levels and prevented transformation. Our results support a speculative model that when V. cholerae reaches high density on chitin, CytR-CRP interactions 'anti-activate' multiple genes, including a possible factor that negatively controls DNA uptake. Thus, a nucleoside scavenging mechanism couples nutrient stress and cell-cell signalling to natural transformation in V. cholerae as described in other bacterial pathogens.
Collapse
Affiliation(s)
- Elena S Antonova
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | | | | |
Collapse
|
7
|
Sernova NV, Gelfand MS. Comparative genomics of CytR, an unusual member of the LacI family of transcription factors. PLoS One 2012; 7:e44194. [PMID: 23028500 PMCID: PMC3454398 DOI: 10.1371/journal.pone.0044194] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022] Open
Abstract
CytR is a transcription regulator from the LacI family, present in some gamma-proteobacteria including Escherichia coli and known not only for its cellular role, control of transport and utilization of nucleosides, but for a number of unusual structural properties. The present study addressed three related problems: structure of CytR-binding sites and motifs, their evolutionary conservation, and identification of new members of the CytR regulon. While the majority of CytR-binding sites are imperfect inverted repeats situated between binding sites for another transcription factor, CRP, other architectures were observed, in particular, direct repeats. While the similarity between sites for different genes in one genome is rather low, and hence the consensus motif is weak, there is high conservation of orthologous sites in different genomes (mainly in the Enterobacteriales) arguing for the presence of specific CytR-DNA contacts. On larger evolutionary distances candidate CytR sites may migrate but the approximate distance between flanking CRP sites tends to be conserved, which demonstrates that the overall structure of the CRP-CytR-DNA complex is gene-specific. The analysis yielded candidate CytR-binding sites for orthologs of known regulon members in less studied genomes of the Enterobacteriales and Vibrionales and identified a new candidate member of the CytR regulon, encoding a transporter named NupT (YcdZ).
Collapse
Affiliation(s)
- Natalia V. Sernova
- A.A.Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences (IITP RAS), Moscow, Russia
| | - Mikhail S. Gelfand
- A.A.Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences (IITP RAS), Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, M.V.Lomonosov Moscow State University, Moscow, Russia
- * E-mail:
| |
Collapse
|
8
|
Geisel N, Gerland U. Physical limits on cooperative protein-DNA binding and the kinetics of combinatorial transcription regulation. Biophys J 2012; 101:1569-79. [PMID: 21961582 DOI: 10.1016/j.bpj.2011.08.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 11/16/2022] Open
Abstract
Much of the complexity observed in gene regulation originates from cooperative protein-DNA binding. Although studies of the target search of proteins for their specific binding sites on the DNA have revealed design principles for the quantitative characteristics of protein-DNA interactions, no such principles are known for the cooperative interactions between DNA-binding proteins. We consider a simple theoretical model for two interacting transcription factor (TF) species, searching for and binding to two adjacent target sites hidden in the genomic background. We study the kinetic competition of a dimer search pathway and a monomer search pathway, as well as the steady-state regulation function mediated by the two TFs over a broad range of TF-TF interaction strengths. Using a transcriptional AND-logic as exemplary functional context, we identify the functionally desirable regime for the interaction. We find that both weak and very strong TF-TF interactions are favorable, albeit with different characteristics. However, there is also an unfavorable regime of intermediate interactions where the genetic response is prohibitively slow.
Collapse
Affiliation(s)
- Nico Geisel
- Departament de Fisica Fonamental, Facultat de Fisica, Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
9
|
The iscS gene deficiency affects the expression of pyrimidine metabolism genes. Biochem Biophys Res Commun 2008; 372:407-11. [PMID: 18482579 DOI: 10.1016/j.bbrc.2008.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 05/01/2008] [Indexed: 11/23/2022]
Abstract
Inactivation of iscS encoding cysteine desulfurase results in a slow growth phenotype associated with the deficiency of iron-sulfur clusters, thiamine, NAD, and tRNA thionucleosides in Escherichia coli. However, the other roles of iscSin vivo are unknown. By using differential screening strategies, we identified 2 pyrimidine salvage enzymes, namely, uridine phosphorylase and cytidine deaminase, which were down-regulated in the iscS mutant. Both enzymes are positively regulated by the cAMP receptor protein (CRP). We also identified a novel protein complex, namely, YeiT-YeiA, whose expression level was decreased in the iscS mutant. The recombinant YeiT-YeiA complex exhibited NADH-dependent dihydropyrimidine dehydrogenase activity, indicating its role in pyrimidine metabolism. The presence of a CRP-binding consensus sequence on the 5'-upstream of the yeiT-YeiA gene suggests its regulation by CRP. These results provide a clue to the possible role of iscS in pyrimidine metabolism by gene regulation.
Collapse
|
10
|
Hermsen R, Tans S, ten Wolde PR. Transcriptional regulation by competing transcription factor modules. PLoS Comput Biol 2006; 2:e164. [PMID: 17140283 PMCID: PMC1676028 DOI: 10.1371/journal.pcbi.0020164] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 10/23/2006] [Indexed: 11/19/2022] Open
Abstract
Gene regulatory networks lie at the heart of cellular computation. In these networks, intracellular and extracellular signals are integrated by transcription factors, which control the expression of transcription units by binding to cis-regulatory regions on the DNA. The designs of both eukaryotic and prokaryotic cis-regulatory regions are usually highly complex. They frequently consist of both repetitive and overlapping transcription factor binding sites. To unravel the design principles of these promoter architectures, we have designed in silico prokaryotic transcriptional logic gates with predefined input-output relations using an evolutionary algorithm. The resulting cis-regulatory designs are often composed of modules that consist of tandem arrays of binding sites to which the transcription factors bind cooperatively. Moreover, these modules often overlap with each other, leading to competition between them. Our analysis thus identifies a new signal integration motif that is based upon the interplay between intramodular cooperativity and intermodular competition. We show that this signal integration mechanism drastically enhances the capacity of cis-regulatory domains to integrate signals. Our results provide a possible explanation for the complexity of promoter architectures and could be used for the rational design of synthetic gene circuits.
Collapse
Affiliation(s)
- Rutger Hermsen
- FOM Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands
| | | | | |
Collapse
|
11
|
Tamayo R, Prouty AM, Gunn JS. Identification and functional analysis of Salmonella enterica serovar Typhimurium PmrA-regulated genes. ACTA ACUST UNITED AC 2005; 43:249-58. [PMID: 15681155 DOI: 10.1016/j.femsim.2004.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 08/10/2004] [Accepted: 08/23/2004] [Indexed: 11/17/2022]
Abstract
The PmrA-PmrB two-component regulatory system of Salmonella enterica serovar Typhimurium is activated in vivo and plays an important role in resistance to cationic antimicrobial peptides. Resistance is partly mediated by modifications to the lipopolysaccharide. To identify new PmrA-regulated genes, microarray analysis was undertaken comparing cDNA derived from PmrA-constitutive and PmrA-null strains. A combination of RT-PCR and transcriptional analysis confirmed the inclusion of six new loci in the PmrA-PmrB regulon: STM1253, STM1269, STM4118, STM0459, STM3968 and STM4568. These loci did not affect the ability to grow in high iron conditions, the ability to modify lipid A with aminoarabinose, or virulence. STM4118, a putative phosphoethanolamine phosphotransferase, had a minor effect on polymyxin resistance, whereas the remaining genes had no role in polymyxin resistance. Although several of the identified loci lacked the consensus PmrA binding site, PmrA was demonstrated to bind the promoter of a PmrA-activated gene lacking the consensus site. A more complete definition of the PmrA-PmrB regulon will provide a better understanding of its role in host and non-host environments.
Collapse
Affiliation(s)
- Rita Tamayo
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7758, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
12
|
Zhang K, Showalter M, Revollo J, Hsu FF, Turk J, Beverley SM. Sphingolipids are essential for differentiation but not growth in Leishmania. EMBO J 2004; 22:6016-26. [PMID: 14609948 PMCID: PMC275442 DOI: 10.1093/emboj/cdg584] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids (SLs) play critical roles in eukaryotic cells in the formation of lipid rafts, membrane trafficking, and signal transduction. Here we created a SL null mutant in the protozoan parasite Leishmania major through targeted deletion of the key de novo biosynthetic enzyme serine palmitoyltransferase subunit 2 (SPT2). Although SLs are typically essential, spt2- Leishmania were viable, yet were completely deficient in de novo sphingolipid synthesis, and lacked inositol phosphorylceramides and other SLs. Remarkably, spt2- parasites maintained 'lipid rafts' as defined by Triton X-100 detergent resistant membrane formation. Upon entry to stationary phase spt2- failed to differentiate to infective metacyclic parasites and died instead. Death occurred not by apoptosis or changes in metacyclic gene expression, but from catastrophic problems leading to accumulation of small vesicles characteristic of the multivesicular body/multivesicular tubule network. Stage specificity may reflect changes in membrane structure as well as elevated demands in vesicular trafficking required for parasite remodeling during differentiation. We suggest that SL-deficient Leishmania provide a useful biological setting for tests of essential SL enzymes in other organisms where SL perturbation is lethal.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Molecular Microbiology, Box 8230, Washington University School of Medicine, 660 S. Euclid Ave, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
13
|
Zolotukhina M, Ovcharova I, Eremina S, Errais Lopes L, Mironov AS. Comparison of the structure and regulation of the udp gene of Vibrio cholerae, Yersinia pseudotuberculosis, Salmonella typhimurium, and Escherichia coli. Res Microbiol 2003; 154:510-20. [PMID: 14499937 DOI: 10.1016/s0923-2508(03)00125-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The nucleotide sequences of the udp gene encoding uridine phosphorylase of Yersinia pseudotuberculosis and Vibrio cholerae are presented and compared with the udp sequences of Salmonella typhimurium and Escherichia coli. Both genes contain 759 bases and encode a 253 amino acid polypeptide, which is the same as for E. coli and S. typhimurium. The amino acid sequence derived from S. typhimurium gene was more similar to the derived E. coli sequence, with only a 7 amino acid difference. The Y. pseudotuberculosis and V. cholerae uridine phosphorylases presented a higher degree of divergence in their amino acid sequence as compared to the corresponding E. coli amino acid sequence, with 20 and 64 changes, respectively. The promoter regions of the udp gene for S. typhimurium (udpPSt), Y. pseudotuberculosis (udpPYp) and V. cholerae (udpPVc) were identified by primer extension analysis. Comparative analysis of the udpP promoter region from Y. pseudotuberculosis, V. cholerae, S. typhimurium and E. coli revealed that location, spacing and orientation of putative binding sites for CRP protein are highly conserved, whereas CytR protein recognition sequences of udpPYp and udpPVc deviate markedly from the E. coli and S. typhimurium CytR binding site. In vitro studies demonstrated that the CytR protein from E. coli shows different affinity for each promoter region analyzed. According to this, the degree of CytR derepression after introduction of heterologous promoters into E. coli cells is different.
Collapse
Affiliation(s)
- Maria Zolotukhina
- State Research Institute of Genetics and Selection of Industrial Microorganisms, 113545 Moscow, Russia
| | | | | | | | | |
Collapse
|
14
|
Abstract
Vibrio cholerae is both a human pathogen and a natural inhabitant of aquatic environments. In the aquatic environment, microorganisms are found attached to surfaces in structures known as biofilms. We have identified a transcriptional repressor in V. cholerae that inhibits exopolysaccharide synthesis and biofilm development. Our studies show that this repressor is the V. cholerae homologue of Escherichia coli CytR, a protein that represses nucleoside uptake and catabolism when nucleosides are scarce. We propose that the role of CytR in V. cholerae biofilm development is to co-ordinate bacterial biofilm accumulation with the presence of nucleosides. Thus, nucleosides may be a signal to planktonic cells to join the biofilm.
Collapse
Affiliation(s)
- Adam J. Haugo
- Division of Geographic Medicine and Infectious Diseases, New England Medical Center, 750 Washington St., Box 041, Boston, MA 02111, USA
| | - Paula I. Watnick
- Division of Geographic Medicine and Infectious Diseases, New England Medical Center, 750 Washington St., Box 041, Boston, MA 02111, USA
- Tufts University School of Medicine, Boston, MA 02111, USA
- For correspondence at the first address. E-mail ; Tel. (+1) 617 636 2545; Fax (+1) 617 636 3216
| |
Collapse
|
15
|
González-Gil G, Kahmann R, Muskhelishvili G. Regulation of crp transcription by oscillation between distinct nucleoprotein complexes. EMBO J 1998; 17:2877-85. [PMID: 9582281 PMCID: PMC1170628 DOI: 10.1093/emboj/17.10.2877] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
FIS belongs to the group of small abundant DNA-binding proteins of Escherichia coli. We recently demonstrated that, in vivo, FIS regulates the expression of several genes needed for catabolism of sugars and nucleic acids, a majority of which are also transcriptionally regulated by cAMP-cAMP-receptor protein (CRP) complex. Here we provide evidence that FIS represses transcription of the crp gene both in vivo and in vitro. Employing crp promoter-lacZ fusions, we demonstrate that both FIS and cAMP-CRP are required to keep the crp promoter in a repressed state. We have identified in the crp promoter other transcription initiation sites which are located 73, 79 and 80 bp downstream from the previously mapped start site. Two CRP- and several FIS-binding sites with different affinities are located in the crp promoter region, one of them overlapping the downstream transcription initiation sites. We show that initiation of transcription at the crp promoter is affected by the composition of nucleoprotein complexes resulting from the outcome of competition between proteins for overlapping binding sites. Our results suggest that the control of crp transcription is achieved by oscillation in the composition of these regulatory nucleoprotein complexes in response to the physiological state of the cell.
Collapse
Affiliation(s)
- G González-Gil
- Institut für Genbiologische Forschung Berlin GmbH, Berlin, Germany.
| | | | | |
Collapse
|
16
|
Campo L, Larocque P, La Malfa T, Blackburn WD, Watson HL. Genotypic and phenotypic analysis of Mycoplasma fermentans strains isolated from different host tissues. J Clin Microbiol 1998; 36:1371-7. [PMID: 9574708 PMCID: PMC104831 DOI: 10.1128/jcm.36.5.1371-1377.1998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A correlation was found between the expression of a specific Mycoplasma fermentans surface antigen (Pra, proteinase-resistant antigen) and the site of isolation of the organism from the infected host. Strains which expressed Pra were most frequently associated with cells of bone marrow origin, and strains which lacked expression of Pra were most commonly isolated from the respiratory tract, genital tract, and arthritic joints, i.e., epithelial cell surfaces. Pra was previously shown to be resistant to degradation by proteinases and was hypothesized to play a protective role at the organism surface and perhaps to influence which host tissue site was colonized by the organism. The methods used for this phenotyping scheme required isolation and growth of the mycoplasma in quantities sufficient for immunoblot analysis using monoclonal antibodies. We wanted to determine a more rapid and less cumbersome technique to supplement this method for determining the Pra phenotype directly in clinical specimens. Here we describe PCR studies to investigate the movement of a previously identified M. fermentans insertion sequence (IS)-like element. These data showed a correlation between a specific IS genotype and the Pra+ phenotype. Production of a 160-bp product using a single set of IS-based primers was associated with expression of Pra. The genomic IS location resulting in the 160-bp product was determined by using Southern blot analysis and was found to be a stable insertion site characteristic of genotype I strains. Additional analyses of sequences within and flanking the IS insertion sites revealed another pair of PCR primer sites which resulted in the consistent production of a 450-bp amplicon. The stability of this site was dependent on the absence of the IS-like element between the primer sites. The production of this 450-bp amplicon correlated with the Pra mutant phenotype and was characteristic of genotype II strains. The data showed that the sequence within the IS may be unstable and that reliable genotyping sequences are more easily found in the stable genomic sites which flank the IS element.
Collapse
Affiliation(s)
- L Campo
- Department of Microbiology, University of Alabama at Birmingham, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
For a long time, repression of transcription in Escherichia coli was thought to be generally caused by one repressor binding to one operator. Recent work has indicated the frequent presence of auxiliary operators and helper proteins. The recent solution of the X-ray structures of Lac and Pur repressors were breakthroughs; yet, it has become painfully clear that important aspects of repression are still not understood.
Collapse
Affiliation(s)
- B Müller-Hill
- Institut für Genetik der Universität zu Köln, Weyertal 121, D-50931 Köln, Germany.
| |
Collapse
|
18
|
Perini LT, Doherty EA, Werner E, Senear DF. Multiple specific CytR binding sites at the Escherichia coli deoP2 promoter mediate both cooperative and competitive interactions between CytR and cAMP receptor protein. J Biol Chem 1996; 271:33242-55. [PMID: 8969182 DOI: 10.1074/jbc.271.52.33242] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Binding of cAMP receptor protein (CRP) and CytR mediates both positive and negative control of transcription from Escherichia coli deoP2. Transcription is activated by CRP and repressed by a multi-protein CRP.CytR.CRP complex. The latter is stabilized by cooperative interactions between CRP and CytR. Similar interactions at the other transcriptional units of the CytR regulon coordinate expression of the transport proteins and enzymes required for nucleoside catabolism. A fundamental question in both prokaryotic and eukaryotic gene regulation is how combinatorial mechanisms of this sort regulate differential expression. To understand the combinatorial control mechanism at deoP2, we have used quantitative footprint and gel shift analysis of CRP and CytR binding to evaluate the distribution of ligation states. By comparison to distributions for other CytR-regulated promoters, we hope to understand the roles of individual states in differential gene expression. The results indicate that CytR binds specifically to multiple sites at deoP2, including both the well recognized CytR site flanked by CRP1 and CRP2 and also sites coincident with CRP1 and CRP2. Binding to these multiple sites yields both cooperative and competitive interactions between CytR and CRP. Based on these findings we propose that CytR functions as a differential modulator of CRP1 versus CRP2-mediated activation. Additional high affinity specific sites are located at deoP1 and near the middle of the 600-base pair sequence separating P1 and P2. Evaluation of the DNA sequence requirement for specific CytR binding suggests that a limited array of contiguous and overlapping CytR sites exists at deoP2. Similar extended arrays, but with different arrangements of overlapping CytR and CRP sites, are found at the other CytR-regulated promoters. We propose that competition and cooperativity in CytR and CRP binding are important to differential regulation of these promoters.
Collapse
Affiliation(s)
- L T Perini
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA.
| | | | | | | |
Collapse
|
19
|
Abstract
The Escherichia coli DNA-binding protein FIS (factor for inversion stimulation) stimulates site-specific recombination reactions catalysed by DNA invertases and is an activator of stable RNA synthesis. To address the question of whether FIS is involved in other cellular processes we have identified and sequenced proteins whose expression pattern is affected by FIS. This has led to the identification of several E. coli genes whose expression in vivo is either enhanced or repressed by FIS. All of these genes encode enzymes or transport proteins involved in the catabolism of sugars or nucleic acids, and their expression is also dependent on the cAMP-CRP complex. In most cases studied the regulation by FIS is indirect and occurs through effects on the synthesis of the respective repressor proteins. We conclude that FIS is a transcriptional modulator involved in the regulation of metabolism in E. coli.
Collapse
Affiliation(s)
- G González-Gil
- Institut für Genbiologische Forschung Berlin GmbH, Berlin, Germany.
| | | | | |
Collapse
|