1
|
Schroeder K, Jonas K. The Protein Quality Control Network in Caulobacter crescentus. Front Mol Biosci 2021; 8:682967. [PMID: 33996917 PMCID: PMC8119881 DOI: 10.3389/fmolb.2021.682967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
The asymmetric life cycle of Caulobacter crescentus has provided a model in which to study how protein quality control (PQC) networks interface with cell cycle and developmental processes, and how the functions of these systems change during exposure to stress. As in most bacteria, the PQC network of Caulobacter contains highly conserved ATP-dependent chaperones and proteases as well as more specialized holdases. During growth in optimal conditions, these systems support a regulated circuit of protein synthesis and degradation that drives cell differentiation and cell cycle progression. When stress conditions threaten the proteome, most components of the Caulobacter proteostasis network are upregulated and switch to survival functions that prevent, revert, and remove protein damage, while simultaneously pausing the cell cycle in order to regain protein homeostasis. The specialized physiology of Caulobacter influences how it copes with proteotoxic stress, such as in the global management of damaged proteins during recovery as well as in cell type-specific stress responses. Our mini-review highlights the discoveries that have been made in how Caulobacter utilizes its PQC network for regulating its life cycle under optimal and proteotoxic stress conditions, and discusses open research questions in this model.
Collapse
Affiliation(s)
- Kristen Schroeder
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kristina Jonas
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Degradation of Lon in Caulobacter crescentus. J Bacteriol 2020; 203:JB.00344-20. [PMID: 33020222 DOI: 10.1128/jb.00344-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/29/2020] [Indexed: 11/20/2022] Open
Abstract
Protein degradation is an essential process in all organisms. This process is irreversible and energetically costly; therefore, protein destruction must be tightly controlled. While environmental stresses often lead to upregulation of proteases at the transcriptional level, little is known about posttranslational control of these critical machines. In this study, we show that in Caulobacter crescentus levels of the Lon protease are controlled through proteolysis. Lon turnover requires active Lon and ClpAP proteases. We show that specific determinants dictate Lon stability with a key carboxy-terminal histidine residue driving recognition. Expression of stabilized Lon variants results in toxic levels of protease that deplete normal Lon substrates, such as the replication initiator DnaA, to lethally low levels. Taken together, results of this work demonstrate a feedback mechanism in which ClpAP and Lon collaborate to tune Lon proteolytic capacity for the cell.IMPORTANCE Proteases are essential, but unrestrained activity can also kill cells by degrading essential proteins. The quality-control protease Lon must degrade many misfolded and native substrates. We show that Lon is itself controlled through proteolysis and that bypassing this control results in toxic consequences for the cell.
Collapse
|
3
|
Schramm FD, Schroeder K, Jonas K. Protein aggregation in bacteria. FEMS Microbiol Rev 2020; 44:54-72. [PMID: 31633151 PMCID: PMC7053576 DOI: 10.1093/femsre/fuz026] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Protein aggregation occurs as a consequence of perturbations in protein homeostasis that can be triggered by environmental and cellular stresses. The accumulation of protein aggregates has been associated with aging and other pathologies in eukaryotes, and in bacteria with changes in growth rate, stress resistance and virulence. Numerous past studies, mostly performed in Escherichia coli, have led to a detailed understanding of the functions of the bacterial protein quality control machinery in preventing and reversing protein aggregation. However, more recent research points toward unexpected diversity in how phylogenetically different bacteria utilize components of this machinery to cope with protein aggregation. Furthermore, how persistent protein aggregates localize and are passed on to progeny during cell division and how their presence impacts reproduction and the fitness of bacterial populations remains a controversial field of research. Finally, although protein aggregation is generally seen as a symptom of stress, recent work suggests that aggregation of specific proteins under certain conditions can regulate gene expression and cellular resource allocation. This review discusses recent advances in understanding the consequences of protein aggregation and how this process is dealt with in bacteria, with focus on highlighting the differences and similarities observed between phylogenetically different groups of bacteria.
Collapse
Affiliation(s)
- Frederic D Schramm
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm 10691, Sweden
| | - Kristen Schroeder
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm 10691, Sweden
| | - Kristina Jonas
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm 10691, Sweden
| |
Collapse
|
4
|
Mitsui H, Minamisawa K. Expression of Two RpoH Sigma Factors in Sinorhizobium meliloti upon Heat Shock. Microbes Environ 2017; 32:394-397. [PMID: 29199214 PMCID: PMC5745026 DOI: 10.1264/jsme2.me17087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The plant symbiotic α-proteobacterium Sinorhizobium meliloti has two RpoH-type sigma factors, RpoH1 and RpoH2. The former induces the synthesis of heat shock proteins and optimizes interactions with the host. Using a Western blot analysis, we examined time course changes in the intracellular contents of these factors upon a temperature upshift. The RpoH1 level was relatively high and constant, suggesting that its regulatory role in the heat shock response is attained through the activation of the pre-existing RpoH1 protein. In contrast, the RpoH2 level was initially undetectable, and gradually increased. These differential patterns reflect the functional diversification of these factors.
Collapse
|
5
|
Yung MC, Ma J, Salemi MR, Phinney BS, Bowman GR, Jiao Y. Shotgun proteomic analysis unveils survival and detoxification strategies by Caulobacter crescentus during exposure to uranium, chromium, and cadmium. J Proteome Res 2014; 13:1833-47. [PMID: 24555639 DOI: 10.1021/pr400880s] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ubiquitous bacterium Caulobacter crescentus holds promise to be used in bioremediation applications due to its ability to mineralize U(VI) under aerobic conditions. Here, cell free extracts of C. crescentus grown in the presence of uranyl nitrate [U(VI)], potassium chromate [Cr(VI)], or cadmium sulfate [Cd(II)] were used for label-free proteomic analysis. Proteins involved in two-component signaling and amino acid metabolism were up-regulated in response to all three metals, and proteins involved in aerobic oxidative phosphorylation and chemotaxis were down-regulated under these conditions. Clustering analysis of proteomic enrichment revealed that the three metals also induce distinct patterns of up- or down-regulated expression among different functional classes of proteins. Under U(VI) exposure, a phytase enzyme and an ABC transporter were up-regulated. Heat shock and outer membrane responses were found associated with Cr(VI), while efflux pumps and oxidative stress proteins were up-regulated with Cd(II). Experimental validations were performed on select proteins. We found that a phytase plays a role in U(VI) and Cr(VI) resistance and detoxification and that a Cd(II)-specific transporter confers Cd(II) resistance. Interestingly, analysis of promoter regions in genes associated with differentially expressed proteins suggests that U(VI) exposure affects cell cycle progression.
Collapse
Affiliation(s)
- Mimi C Yung
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | | | | | | | | | | |
Collapse
|
6
|
Implication of proteins containing tetratricopeptide repeats in conditional virulence phenotypes of Legionella pneumophila. J Bacteriol 2012; 194:3579-88. [PMID: 22563053 DOI: 10.1128/jb.00399-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, is a ubiquitous freshwater bacterium whose virulence phenotypes require a type IV secretion system (T4SS). L. pneumophila strain JR32 contains two virulence-associated T4SSs, the Dot/Icm and Lvh T4SSs. Defective entry and phagosome acidification phenotypes of dot/icm mutants are conditional and reversed by incubating broth-grown stationary-phase cultures in water (WS treatment) prior to infection, as a mimic of the aquatic environment of Legionella. Reversal of dot/icm virulence defects requires the Lvh T4SS and is associated with a >10-fold induction of LpnE, a tetratricopeptide repeat (TPR)-containing protein. In the current study, we demonstrated that defective entry and phagosome acidification phenotypes of mutants with changes in LpnE and EnhC, another TPR-containing protein, were similarly reversed by WS treatment. In contrast to dot/icm mutants for which the Lvh T4SS was required, reversal for the ΔlpnE or the ΔenhC mutant required that the other TPR-containing protein be present. The single and double ΔlpnE and ΔenhC mutants showed a hypersensitivity to sodium ion, a phenotype associated with dysfunction of the Dot/Icm T4SS. The ΔlpnE single and the ΔlpnE ΔenhC double mutant showed 3- to 9-fold increases in translocation of Dot/Icm T4SS substrates, LegS2/SplY and LepB. Taken together, these data identify TPR-containing proteins in a second mechanism by which the WS mimic of a Legionella environmental niche can reverse virulence defects of broth-grown cultures and implicate LpnE and EnhC directly or indirectly in translocation of Dot/Icm T4SS protein substrates.
Collapse
|
7
|
Brown PJ, Hardy GG, Trimble MJ, Brun YV. Complex regulatory pathways coordinate cell-cycle progression and development in Caulobacter crescentus. Adv Microb Physiol 2009; 54:1-101. [PMID: 18929067 PMCID: PMC2621326 DOI: 10.1016/s0065-2911(08)00001-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Caulobacter crescentus has become the predominant bacterial model system to study the regulation of cell-cycle progression. Stage-specific processes such as chromosome replication and segregation, and cell division are coordinated with the development of four polar structures: the flagellum, pili, stalk, and holdfast. The production, activation, localization, and proteolysis of specific regulatory proteins at precise times during the cell cycle culminate in the ability of the cell to produce two physiologically distinct daughter cells. We examine the recent advances that have enhanced our understanding of the mechanisms of temporal and spatial regulation that occur during cell-cycle progression.
Collapse
Affiliation(s)
- Pamela J.B. Brown
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405-3700, USA
| | - Gail G. Hardy
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405-3700, USA
| | - Michael J. Trimble
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405-3700, USA
| | - Yves V. Brun
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405-3700, USA
| |
Collapse
|
8
|
Ueki T, Lovley DR. Heat-shock sigma factor RpoH from Geobacter sulfurreducens. MICROBIOLOGY-SGM 2007; 153:838-846. [PMID: 17322204 DOI: 10.1099/mic.0.2006/000638-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Recent studies with Myxococcus xanthus have suggested that homologues of the Escherichia coli heat-shock sigma factor, RpoH, may not be involved in the heat-shock response in this delta-proteobacterium. The genome of another delta-proteobacterium, Geobacter sulfurreducens, which is considered to be a representative of the Fe(III)-reducing Geobacteraceae that predominate in a diversity of subsurface environments, contains an rpoH homologue. Characterization of the G. sulfurreducens rpoH homologue revealed that it was induced by a temperature shift from 30 degrees C to 42 degrees C and that an rpoH-deficient mutant was unable to grow at 42 degrees C. The predicted heat-shock genes, hrcA, grpE, dnaK, groES and htpG, were heat-shock inducible in an rpoH-dependent manner, and comparison of promoter regions of these genes identified the consensus sequences for the -10 and -35 promoter elements. In addition, DNA elements identical to the CIRCE consensus sequence were found in promoters of rpoH, hrcA and groES, suggesting that these genes are regulated by a homologue of the repressor HrcA, which is known to bind the CIRCE element. These results suggest that the G. sulfurreducens RpoH homologue is the heat-shock sigma factor and that heat-shock response in G. sulfurreducens is regulated positively by RpoH as well as negatively by the HrcA/CIRCE system.
Collapse
Affiliation(s)
- Toshiyuki Ueki
- Department of Microbiology, Morrill Science Center IV North, University of Massachusetts Amherst, 639 North Pleasant Street, Amherst, MA 01003-9298, USA
| | - Derek R Lovley
- Department of Microbiology, Morrill Science Center IV North, University of Massachusetts Amherst, 639 North Pleasant Street, Amherst, MA 01003-9298, USA
| |
Collapse
|
9
|
McGrath PT, Lee H, Zhang L, Iniesta AA, Hottes AK, Tan MH, Hillson NJ, Hu P, Shapiro L, McAdams HH. High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. Nat Biotechnol 2007; 25:584-92. [PMID: 17401361 DOI: 10.1038/nbt1294] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 03/01/2007] [Indexed: 11/08/2022]
Abstract
Using 62 probe-level datasets obtained with a custom-designed Caulobacter crescentus microarray chip, we identify transcriptional start sites of 769 genes, 53 of which are transcribed from multiple start sites. Transcriptional start sites are identified by analyzing probe signal cross-correlation matrices created from probe pairs tiled every 5 bp upstream of the genes. Signals from probes binding the same message are correlated. The contribution of each promoter for genes transcribed from multiple promoters is identified. Knowing the transcription start site enables targeted searching for regulatory-protein binding motifs in the promoter regions of genes with similar expression patterns. We identified 27 motifs, 17 of which share no similarity to the characterized motifs of other C. crescentus transcriptional regulators. Using these motifs, we predict coregulated genes. We verified novel promoter motifs that regulate stress-response genes, including those responding to uranium challenge, a stress-response sigma factor and a stress-response noncoding RNA.
Collapse
Affiliation(s)
- Patrick T McGrath
- Department of Physics, Stanford University, Varian Physics, 382 Via Pueblo Mall, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Susin MF, Baldini RL, Gueiros-Filho F, Gomes SL. GroES/GroEL and DnaK/DnaJ have distinct roles in stress responses and during cell cycle progression in Caulobacter crescentus. J Bacteriol 2006; 188:8044-53. [PMID: 16980445 PMCID: PMC1698207 DOI: 10.1128/jb.00824-06] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Misfolding and aggregation of protein molecules are major threats to all living organisms. Therefore, cells have evolved quality control systems for proteins consisting of molecular chaperones and proteases, which prevent protein aggregation by either refolding or degrading misfolded proteins. DnaK/DnaJ and GroES/GroEL are the best-characterized molecular chaperone systems in bacteria. In Caulobacter crescentus these chaperone machines are the products of essential genes, which are both induced by heat shock and cell cycle regulated. In this work, we characterized the viabilities of conditional dnaKJ and groESL mutants under different types of environmental stress, as well as under normal physiological conditions. We observed that C. crescentus cells with GroES/EL depleted are quite resistant to heat shock, ethanol, and freezing but are sensitive to oxidative, saline, and osmotic stresses. In contrast, cells with DnaK/J depleted are not affected by the presence of high concentrations of hydrogen peroxide, NaCl, and sucrose but have a lower survival rate after heat shock, exposure to ethanol, and freezing and are unable to acquire thermotolerance. Cells lacking these chaperones also have morphological defects under normal growth conditions. The absence of GroE proteins results in long, pinched filamentous cells with several Z-rings, whereas cells lacking DnaK/J are only somewhat more elongated than normal predivisional cells, and most of them do not have Z-rings. These findings indicate that there is cell division arrest, which occurs at different stages depending on the chaperone machine affected. Thus, the two chaperone systems have distinct roles in stress responses and during cell cycle progression in C. crescentus.
Collapse
Affiliation(s)
- Michelle F Susin
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brasil
| | | | | | | |
Collapse
|
11
|
Gould P, Maguire M, Lund PA. Distinct mechanisms regulate expression of the two major groEL homologues in Rhizobium leguminosarum. Arch Microbiol 2006; 187:1-14. [PMID: 16944097 DOI: 10.1007/s00203-006-0164-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 07/25/2006] [Accepted: 08/04/2006] [Indexed: 01/16/2023]
Abstract
We investigated the regulation of the two of the three groE operons (cpn.1 and cpn.2) of the root-nodulating bacterium R. leguminosarum strain A34. Both are heat inducible, and both have a CIRCE sequence in their upstream regions, suggesting regulation by an HrcA repressor. Mutagenesis of the CIRCE sequence upstream of cpn.1 led to an increase in the levels of cpn.1 mRNA, and knock-out of the hrcA gene increased the level of Cpn60.1 protein (the GroEL homologue encoded by the cpn.1 operon). Inactivation of the hrcA gene also caused increased expression of a 29 kDa protein that was identified as RhiA, a component of a quorum-sensing system. However, neither loss of the upstream CIRCE sequence, nor loss of HrcA function, had any effect on expression from the cpn.2 promoter. Further analysis of the cpn.2 upstream region suggested regulation could be mediated by an RpoH system, and this was confirmed by deleting the rpoH gene from the chromosome, which led to a decreased level of Cpn60.2 expression. Inactivation of RpoH led to a reduction in growth rate which could be partly compensated for by inactivation of HrcA, indicating an overlap in the in vivo function of the proteins regulated by these two systems.
Collapse
Affiliation(s)
- Phillip Gould
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK,
| | | | | |
Collapse
|
12
|
Alvarez-Martinez CE, Baldini RL, Gomes SL. A caulobacter crescentus extracytoplasmic function sigma factor mediating the response to oxidative stress in stationary phase. J Bacteriol 2006; 188:1835-46. [PMID: 16484194 PMCID: PMC1426549 DOI: 10.1128/jb.188.5.1835-1846.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alternative sigma factors of the extracytoplasmic function (ECF) subfamily are important regulators of stress responses in bacteria and have been implicated in the control of homeostasis of the extracytoplasmic compartment of the cell. This work describes the characterization of sigF, encoding 1 of the 13 members of this subfamily identified in Caulobacter crescentus. A sigF-null strain was obtained and shown to be severely impaired in resistance to oxidative stress, caused by hydrogen peroxide treatment, exclusively during the stationary phase. Although sigF mRNA levels decrease in stationary-phase cells, the amount of sigma(F) protein is greatly increased at this stage, indicating a posttranscriptional control. Data obtained indicate that the FtsH protease is either directly or indirectly involved in the control of sigma(F) levels, as cells lacking this enzyme present larger amounts of the sigma factor. Increased stability of sigma(F) protein in stationary-phase cells of the parental strain and in exponential-phase cells of the ftsH-null strain is also demonstrated. Transcriptome analysis of the sigF-null strain led to the identification of eight genes regulated by sigma(F) during the stationary phase, including sodA and msrA, which are known to be involved in oxidative stress response.
Collapse
Affiliation(s)
- Cristina E Alvarez-Martinez
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | | | | |
Collapse
|
13
|
Yamauchi S, Okuyama H, Nishiyama Y, Hayashi H. The rpoH gene encoding heat shock sigma factor sigma32 of psychrophilic bacterium Colwellia maris. Extremophiles 2005; 10:149-58. [PMID: 16362517 DOI: 10.1007/s00792-005-0485-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 09/20/2005] [Indexed: 01/25/2023]
Abstract
The rpoH gene encoding a heat shock sigma factor, sigma(32), was cloned from the psychrophilic bacterium Colwellia maris. The deduced amino acid sequence of sigma(32) from C. maris is more than 60% homologous to that of sigma(32) from mesophilic bacteria. The RpoH box, a 9-amino-acid sequence region (QRKLFFNLR) specific to sigma(32), and two downstream box sequences complementary to a part of 16S rRNA were identified. Primer extension analysis showed that the C. maris rpoH is expressed from only one sigma(70)-type promoter. Northern blot analysis showed that the level of rpoH mRNA was clearly increased at 20 degrees C, a temperature that induces heat shock in this organism. In the presence of an inhibitor of transcriptional initiation, the degradation of rpoH mRNA was much slower at 20 degrees C than at 10 degrees C. Thus, increased stability of the rpoH mRNA might be responsible for the rpoH mRNA accumulation. The predicted secondary structure of the 5'-region of C. maris rpoH mRNA was different from the conserved patterns reported for most mesophilic bacteria, and the base pairing of the downstream boxes appeared to be less stable than that of Escherichia coli rpoH mRNA. Thus, essential features that ensure the HSP expression at a relatively low temperature are embedded in the rpoH gene of psychrophiles.
Collapse
Affiliation(s)
- Seiji Yamauchi
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | | | | | | |
Collapse
|
14
|
Simão RCG, Susin MF, Alvarez-Martinez CE, Gomes SL. Cells lacking ClpB display a prolonged shutoff phase of the heat shock response in Caulobacter crescentus. Mol Microbiol 2005; 57:592-603. [PMID: 15978087 DOI: 10.1111/j.1365-2958.2005.04713.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The heat shock response in Caulobacter crescentus was previously shown to be positively regulated by the alternative sigma factor of RNA polymerase (RNAP) sigma(32), and negatively modulated by DnaK during the induction phase of the heat shock response but not during the recovery phase. In the present work we have investigated the involvement of the chaperone ClpB in the control of the heat shock response in C. crescentus. Data obtained indicated a role of ClpB in downregulation of heat shock protein (HSP) synthesis, as cells lacking this chaperone showed a prolonged shutoff phase of the heat shock response. In Escherichia coli, it has been proposed that the DnaK chaperone system switches transcription back to constitutively expressed genes through simultaneous reactivation of heat-aggregated sigma(70), as well as sequestration of sigma(32) away from RNAP. In C. crescentus, results obtained with a clpB null mutant indicate that ClpB could be involved in the reactivation of the major sigma factor sigma(73). In support of this hypothesis, we showed that transcription directed from sigma(73)-dependent promoters is not switched back in the clpB null mutant during the recovery phase. Furthermore, we observed that resolubilization of heat-aggregated sigma(73) is dependent on the presence of ClpB. Our findings also indicated that the absence of ClpB made cells more sensitive to heat shock and ethanol but not to other stresses, and unable to acquire thermotolerance.
Collapse
Affiliation(s)
- Rita C G Simão
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C. P. 26077, São Paulo, SP, 05513-970, Brazil
| | | | | | | |
Collapse
|
15
|
Grandvalet C, Coucheney F, Beltramo C, Guzzo J. CtsR is the master regulator of stress response gene expression in Oenococcus oeni. J Bacteriol 2005; 187:5614-23. [PMID: 16077106 PMCID: PMC1196072 DOI: 10.1128/jb.187.16.5614-5623.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although many stress response genes have been characterized in Oenococcus oeni, little is known about the regulation of stress response in this malolactic bacterium. The expression of eubacterial stress genes is controlled both positively and negatively at the transcriptional level. Overall, negative regulation of heat shock genes appears to be more widespread among gram-positive bacteria. We recently identified an ortholog of the ctsR gene in O. oeni. In Bacillus subtilis, CtsR negatively regulates expression of the clp genes, which belong to the class III family of heat shock genes. The ctsR gene of O. oeni is cotranscribed with the downstream clpC gene. Sequence analysis of the O. oeni IOB 8413 (ATCC BAA-1163) genome revealed the presence of potential CtsR operator sites upstream from most of the major molecular chaperone genes, including the clp genes and the groES and dnaK operons. Using B. subtilis as a heterologous host, CtsR-dependent regulation of O. oeni molecular chaperone genes was demonstrated with transcriptional fusions. No alternative sigma factors appear to be encoded by the O. oeni IOB 8413 (ATCC BAA-1163) genome. Moreover, apart from CtsR, no known genes encoding regulators of stress response, such as HrcA, could be identified in this genome. Unlike the multiple regulatory mechanisms of stress response described in many closely related gram-positive bacteria, this is the first example where dnaK and groESL are controlled by CtsR but not by HrcA.
Collapse
Affiliation(s)
- Cosette Grandvalet
- Laboratoire de Microbiologie, UMR UB/INRA 1232, ENSBANA, Université de Bourgogne, 1 Esplanade Erasme, F-21000 Dijon, France.
| | | | | | | |
Collapse
|
16
|
Susin MF, Perez HR, Baldini RL, Gomes SL. Functional and structural analysis of HrcA repressor protein from Caulobacter crescentus. J Bacteriol 2004; 186:6759-67. [PMID: 15466027 PMCID: PMC522201 DOI: 10.1128/jb.186.20.6759-6767.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A large number of bacteria regulate chaperone gene expression during heat shock by the HrcA-CIRCE system, in which the DNA element called CIRCE serves as binding site for the repressor protein HrcA under nonstress conditions. In Caulobacter crescentus, the groESL operon presents a dual type of control. Heat shock induction is controlled by a sigma32-dependent promoter and the HrcA-CIRCE system plays a role in regulation of groESL expression under physiological temperatures. To study the activity of HrcA in vitro, we purified a histidine-tagged version of the protein, and specific binding to the CIRCE element was obtained by gel shift assays. The amount of retarded DNA increased significantly in the presence of GroES/GroEL, suggesting that the GroE chaperonin machine modulates HrcA activity. Further evidence of this modulation was obtained using lacZ transcription fusions with the groESL regulatory region in C. crescentus cells, producing different amounts of GroES/GroEL. In addition, we identified the putative DNA-binding domain of HrcA through extensive protein sequence comparison and constructed various HrcA mutant proteins containing single amino acid substitutions in or near this region. In vitro and in vivo experiments with these mutated proteins indicated several amino acids important for repressor activity.
Collapse
Affiliation(s)
- Michelle F Susin
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748 São Paulo, SP 05508-900, Brazil
| | | | | | | |
Collapse
|
17
|
da Silva ACA, Simão RCG, Susin MF, Baldini RL, Avedissian M, Gomes SL. Downregulation of the heat shock response is independent of DnaK and sigma32 levels in Caulobacter crescentus. Mol Microbiol 2003; 49:541-53. [PMID: 12828648 DOI: 10.1046/j.1365-2958.2003.03581.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Expression of heat shock genes in Gram-negative proteobacteria is positively modulated by the transcriptional regulator RpoH, the sigma(32) subunit of RNA polymerase (RNAP). In this study we investigated the chaperones DnaK/DnaJ and GroES/GroEL as possible modulators of the heat response in Caulobacter crescentus. We have shown that cells overexpressing DnaK show poor induction of heat shock protein (HSP) synthesis, even though sigma(32) levels present a normal transient increase upon heat stress. On the other hand, depletion of DnaK led to higher levels of sigma(32) and increased transcription of HSP genes, at normal growth temperature. In contrast, changes in the amount of GroES/EL had little effect on sigma(32) levels and HSP gene transcription. Despite the strong effect of DnaK levels on the induction phase of the heat shock response, downregulation of HSP synthesis was not affected by changes in the amount this chaperone. Thus, we propose that competition between sigma(32) and sigma(73), the major sigma factor, for the core RNAP could be the most important factor controlling the shut-off of HSP synthesis during recovery phase. In agreement with this hypothesis, we have shown that expression of sigma(73) gene is heat shock inducible.
Collapse
Affiliation(s)
- Antonio C A da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C. P. 26077, São Paulo, SP, 05513-970, Brazil
| | | | | | | | | | | |
Collapse
|
18
|
Fischer B, Rummel G, Aldridge P, Jenal U. The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus. Mol Microbiol 2002; 44:461-78. [PMID: 11972783 DOI: 10.1046/j.1365-2958.2002.02887.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ftsH gene of Caulobacter crescentus has been isolated and identified as a component of the general stress response of this organism. In C. crescentus, ftsH expression is transiently induced after temperature upshift and in stationary phase. Consistent with this, mutants deprived of the FtsH protease are viable at normal growth conditions, but are highly sensitive to elevated temperature, increased salt concentration or the presence of antibiotics. Overexpression of ftsH resulted in an increased salt but not thermotolerance, emphasizing the importance of the FtsH protease in stress response. Mutants lacking FtsH were unable to undergo morphological and physiological adaptation in stationary phase and, upon starvation, experienced a more pronounced loss of viability than cells containing FtsH. In addition, cells lacking FtsH had an increased cellular concentration of the heat shock sigma factor sigma32, indicating that, as in Escherichia coli, the FtsH protease is involved in the control of the C. crescentus heat shock response. In agreement with this, transcription of the heat-induced sigma32-dependent gene dnaK was derepressed at normal temperature when FtsH was absent. In contrast, the groEL gene, which is controlled in response to heat stress by both sigma32 and a HcrA/CIRCE mechanism, was not derepressed in an ftsH mutant. Finally, FtsH is involved in C. crescentus development and cell cycle control. ftsH mutants were unable to synthesize stalks efficiently and had a severe cell division phenotype. In the absence of FtsH, swarmer cells differentiated into stalked cells faster than when FtsH was present, even though the entire cell cycle was longer under these conditions. Thus, directly or indirectly, the FtsH protease is involved in the inherent biological clock mechanism, which controls the timing of cell differentiation in C. crescentus.
Collapse
Affiliation(s)
- B Fischer
- Division of Molecular Microbiology, Biozentrum, University of Basel, CH-4056, Switzerland
| | | | | | | |
Collapse
|
19
|
Nakahigashi K, Yanagi H, Yura T. DnaK chaperone-mediated control of activity of a sigma(32) homolog (RpoH) plays a major role in the heat shock response of Agrobacterium tumefaciens. J Bacteriol 2001; 183:5302-10. [PMID: 11514513 PMCID: PMC95412 DOI: 10.1128/jb.183.18.5302-5310.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RpoH (Escherichia coli sigma(32) and its homologs) is the central regulator of the heat shock response in gram-negative proteobacteria. Here we studied salient regulatory features of RpoH in Agrobacterium tumefaciens by examining its synthesis, stability, and activity while increasing the temperature from 25 to 37 degrees C. Heat induction of RpoH synthesis occurred at the level of transcription from an RpoH-dependent promoter, coordinately with that of DnaK, and followed by an increase in the RpoH level. Essentially normal induction of heat shock proteins was observed even with a strain that was unable to increase the RpoH level upon heat shock. Moreover, heat-induced accumulation of dnaK mRNA occurred without protein synthesis, showing that preexisting RpoH was sufficient for induction of the heat shock response. These results suggested that controlling the activity, rather than the amount, of RpoH plays a major role in regulation of the heat shock response. In addition, increasing or decreasing the DnaK-DnaJ chaperones specifically reduced or enhanced the RpoH activity, respectively. On the other hand, the RpoH protein was normally stable and remained stable during the induction phase but was destabilized transiently during the adaptation phase. We propose that the DnaK-mediated control of RpoH activity plays a primary role in the induction of heat shock response in A. tumefaciens, in contrast to what has been found in E. coli.
Collapse
Affiliation(s)
- K Nakahigashi
- HSP Research Institute, Kyoto Research Park, Kyoto 600-8813, Japan
| | | | | |
Collapse
|
20
|
Nierman WC, Feldblyum TV, Laub MT, Paulsen IT, Nelson KE, Eisen JA, Heidelberg JF, Alley MR, Ohta N, Maddock JR, Potocka I, Nelson WC, Newton A, Stephens C, Phadke ND, Ely B, DeBoy RT, Dodson RJ, Durkin AS, Gwinn ML, Haft DH, Kolonay JF, Smit J, Craven MB, Khouri H, Shetty J, Berry K, Utterback T, Tran K, Wolf A, Vamathevan J, Ermolaeva M, White O, Salzberg SL, Venter JC, Shapiro L, Fraser CM, Eisen J. Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci U S A 2001; 98:4136-41. [PMID: 11259647 PMCID: PMC31192 DOI: 10.1073/pnas.061029298] [Citation(s) in RCA: 394] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complete genome sequence of Caulobacter crescentus was determined to be 4,016,942 base pairs in a single circular chromosome encoding 3,767 genes. This organism, which grows in a dilute aquatic environment, coordinates the cell division cycle and multiple cell differentiation events. With the annotated genome sequence, a full description of the genetic network that controls bacterial differentiation, cell growth, and cell cycle progression is within reach. Two-component signal transduction proteins are known to play a significant role in cell cycle progression. Genome analysis revealed that the C. crescentus genome encodes a significantly higher number of these signaling proteins (105) than any bacterial genome sequenced thus far. Another regulatory mechanism involved in cell cycle progression is DNA methylation. The occurrence of the recognition sequence for an essential DNA methylating enzyme that is required for cell cycle regulation is severely limited and shows a bias to intergenic regions. The genome contains multiple clusters of genes encoding proteins essential for survival in a nutrient poor habitat. Included are those involved in chemotaxis, outer membrane channel function, degradation of aromatic ring compounds, and the breakdown of plant-derived carbon sources, in addition to many extracytoplasmic function sigma factors, providing the organism with the ability to respond to a wide range of environmental fluctuations. C. crescentus is, to our knowledge, the first free-living alpha-class proteobacterium to be sequenced and will serve as a foundation for exploring the biology of this group of bacteria, which includes the obligate endosymbiont and human pathogen Rickettsia prowazekii, the plant pathogen Agrobacterium tumefaciens, and the bovine and human pathogen Brucella abortus.
Collapse
Affiliation(s)
- W C Nierman
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bandyopadhyay P, Steinman HM. Catalase-peroxidases of Legionella pneumophila: cloning of the katA gene and studies of KatA function. J Bacteriol 2000; 182:6679-86. [PMID: 11073912 PMCID: PMC111410 DOI: 10.1128/jb.182.23.6679-6686.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Legionella pneumophila, the causative organism of Legionnaires' pneumonia, contains two enzymes with catalatic and peroxidatic activity, KatA and KatB. To address the issue of redundant, overlapping, or discrete in vivo functions of highly homologous catalase-peroxidases, the gene for katA was cloned and its function was studied in L. pneumophila and Escherichia coli and compared with prior studies of katB in this laboratory. katA is induced during exponential growth and is the predominant peroxidase in stationary phase. When katA is inactivated, L. pneumophila is more sensitive to exogenous hydrogen peroxide and less virulent in the THP-1 macrophage cell line, similar to katB. Catalatic-peroxidatic activity with different peroxidatic cosubstrates is comparable for KatA and KatB, but KatA is five times more active towards dianisidine. In contrast with these examples of redundant or overlapping function, stationary-phase survival is decreased by 100- to 10,000-fold when katA is inactivated, while no change from wild type is seen for the katB null. The principal clue for understanding this discrete in vivo function was the demonstration that KatA is periplasmic and KatB is cytosolic. This stationary-phase phenotype suggests that targets sensitive to hydrogen peroxide are present outside the cytosol in stationary phase or that the peroxidatic activity of KatA is critical for stationary-phase redox reactions in the periplasm, perhaps disulfide bond formation. Since starvation-induced stationary phase is a prerequisite to acquisition of virulence by L. pneumophila, further studies on the function and regulation of katA in stationary phase may give insights on the mechanisms of infectivity of this pathogen.
Collapse
Affiliation(s)
- P Bandyopadhyay
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
22
|
The RheA repressor is the thermosensor of the HSP18 heat shock response in Streptomyces albus. Proc Natl Acad Sci U S A 2000. [PMID: 10716740 PMCID: PMC16275 DOI: 10.1073/pnas.070426197] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Microorganisms have mechanisms to sense their environment and rapidly adapt to survive changes in conditions. In Streptomyces albus, various transcriptional repressors mediate the induction of heat shock genes. The RheA repressor regulates the synthesis of HSP18, a small heat shock protein, which plays a role in thermotolerance. The RheA protein was purified to determine how it responds rapidly to temperature. Gel retardation assays and footprinting experiments identified the specific target of RheA as an inverted repeat (TGTCATC 5N GATGACA) located in Phsp18, PrheA which is the common promoter region of the divergon. Gel retardation assays detected RheA-complexes formed with the hsp18-rheA promoters. The complexes did not form at higher temperature. In vitro transcription experiments showed that RheA is an autoregulatory protein and that its activity is inhibited by high temperature. The temperature-induced derepression by RheA is reversible. Dichroism circular spectroscopy revealed a reversible change of RheA conformation in relation with the temperature that could represent a transition between an active and an inactive form. Our experiments demonstrate that RheA acts as a cellular thermometer in hsp18 regulation.
Collapse
|
23
|
Servant P, Grandvalet C, Mazodier P. The RheA repressor is the thermosensor of the HSP18 heat shock response in Streptomyces albus. Proc Natl Acad Sci U S A 2000; 97:3538-43. [PMID: 10716740 PMCID: PMC16275 DOI: 10.1073/pnas.97.7.3538] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Microorganisms have mechanisms to sense their environment and rapidly adapt to survive changes in conditions. In Streptomyces albus, various transcriptional repressors mediate the induction of heat shock genes. The RheA repressor regulates the synthesis of HSP18, a small heat shock protein, which plays a role in thermotolerance. The RheA protein was purified to determine how it responds rapidly to temperature. Gel retardation assays and footprinting experiments identified the specific target of RheA as an inverted repeat (TGTCATC 5N GATGACA) located in Phsp18, PrheA which is the common promoter region of the divergon. Gel retardation assays detected RheA-complexes formed with the hsp18-rheA promoters. The complexes did not form at higher temperature. In vitro transcription experiments showed that RheA is an autoregulatory protein and that its activity is inhibited by high temperature. The temperature-induced derepression by RheA is reversible. Dichroism circular spectroscopy revealed a reversible change of RheA conformation in relation with the temperature that could represent a transition between an active and an inactive form. Our experiments demonstrate that RheA acts as a cellular thermometer in hsp18 regulation.
Collapse
Affiliation(s)
- P Servant
- Unité de Biochimie Microbienne, Institut Pasteur, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
24
|
Nakahigashi K, Ron EZ, Yanagi H, Yura T. Differential and independent roles of a sigma(32) homolog (RpoH) and an HrcA repressor in the heat shock response of Agrobacterium tumefaciens. J Bacteriol 1999; 181:7509-15. [PMID: 10601208 PMCID: PMC94208 DOI: 10.1128/jb.181.24.7509-7515.1999] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heat shock response in alpha proteobacteria is unique in that a combination of two regulators is involved: a positive regulator, RpoH (sigma(32) homolog), found in the alpha, beta, and gamma proteobacteria, and a negative regulator, HrcA, widely distributed in eubacteria but not in the gamma proteobacteria. To assess the differential roles of the two regulators in these bacteria, we cloned the hrcA-grpE operon of Agrobacterium tumefaciens, analyzed its transcription, and constructed deletion mutants lacking RpoH and/or HrcA. The DeltarpoH mutant and DeltarpoH DeltahrcA double mutant were unable to grow above 30 degrees C. Whereas the synthesis of heat shock proteins (e.g., DnaK, GroEL, and ClpB) was transiently induced upon temperature upshift from 25 to 37 degrees C in the wild type, such induction was not observed in the DeltarpoH mutant, except that GroEL synthesis was still partially induced. By contrast, the DeltahrcA mutant grew normally and exhibited essentially normal heat induction except for a higher level of GroEL expression, especially before heat shock. The DeltarpoH DeltahrcA double mutant showed the combined phenotypes of each of the single mutants. The amounts of dnaK and groE transcripts before and after heat shock, as determined by primer extension, were consistent with those of the proteins synthesized. The cellular level of RpoH but not HrcA increased significantly upon heat shock. We conclude that RpoH plays a major and global role in the induction of most heat shock proteins, whereas HrcA plays a restricted role in repressing groE expression under nonstress conditions.
Collapse
Affiliation(s)
- K Nakahigashi
- HSP Research Institute, Kyoto Research Park, Shimogyo-ku, Kyoto 600-8813, Japan
| | | | | | | |
Collapse
|
25
|
Rava PS, Somma L, Steinman HM. Identification of a regulator that controls stationary-phase expression of catalase-peroxidase in Caulobacter crescentus. J Bacteriol 1999; 181:6152-9. [PMID: 10498730 PMCID: PMC103645 DOI: 10.1128/jb.181.19.6152-6159.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the catalase-peroxidase of Caulobacter crescentus, a gram-negative member of the alpha subdivision of the Proteobacteria, is 50-fold higher in stationary-phase cultures than in exponential cultures. To identify regulators of the starvation response, Tn5 insertion mutants were isolated with reduced expression of a katG::lacZ fusion on glucose starvation. One insertion interrupted an open reading frame encoding a protein with significant amino acid sequence identity to TipA, a helix-turn-helix transcriptional activator in the response of Streptomyces lividans to the peptide antibiotic thiostrepton, and lesser sequence similarity to other helix-turn-helix regulators in the MerR family. The C. crescentus orthologue of tipA was named skgA (stationary-phase regulation of katG). Stationary-phase expression of katG was reduced by 70% in the skgA::Tn5 mutant, and stationary-phase resistance to hydrogen peroxide decreased by a factor of 10. Like the wild type, the skgA mutant exhibited starvation-induced cross-resistance to heat and acid shock, entered into the helical morphology that occurs after 9 to 12 days in stationary phase, and during exponential growth induced katG in response to hydrogen peroxide challenge. Expression of skgA increased 5- to 10-fold in late exponential phase. skgA is the first regulator of a starvation-induced stress response identified in C. crescentus. SkgA is not a global regulator of the stationary-phase stress response; its action encompasses the oxidative stress-hydrogen peroxide response but not acid or heat responses. Moreover, SkgA is not an alternative sigma factor, like RpoS, which controls multiple aspects of starvation-induced cross-resistance to stress in enteric bacteria. These observations raise the possibility that regulation of stationary-phase gene expression in this member of the alpha subdivision of the Proteobacteria is different from that in Escherichia coli and other members of the gamma subdivision.
Collapse
Affiliation(s)
- P S Rava
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
26
|
Servant P, Rapoport G, Mazodier P. RheA, the repressor of hsp18 in Streptomyces albus G. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 9):2385-2391. [PMID: 10517591 DOI: 10.1099/00221287-145-9-2385] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Streptomyces albus, Hsp18, a protein belonging to the family of small heat-shock proteins, can be detected only at high temperature. Disruption of orfY, located upstream and in the opposite orientation to hsp18, resulted in an elevated level of hsp18 mRNA at low temperature. Genetic and biochemical experiments indicated that the product of orfY, now called RheA (Repressor of hsp eighteen), directly represses hsp18. In Escherichia coli, an hsp18'-bgaB transcriptional fusion was repressed in a strain expressing S. albus RheA. DNA-binding experiments with crude extracts of E. coli overproducing RheA indicated that RheA interacts specifically with the hsp18 promoter. Transcription analysis of rheA in the S. albus wild-type and in rheA mutant strains suggested that RheA represses transcription not only of hsp18 but also of rheA itself.
Collapse
Affiliation(s)
- Pascale Servant
- Unité de Biochimie Microbienne, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Georges Rapoport
- Unité de Biochimie Microbienne, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Philippe Mazodier
- Unité de Biochimie Microbienne, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| |
Collapse
|
27
|
Crymes WB, Zhang D, Ely B. Regulation of podJ expression during the Caulobacter crescentus cell cycle. J Bacteriol 1999; 181:3967-73. [PMID: 10383964 PMCID: PMC93886 DOI: 10.1128/jb.181.13.3967-3973.1999] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The polar organelle development gene, podJ, is expressed during the swarmer-to-stalked cell transition of the Caulobacter crescentus cell cycle. Mutants with insertions that inactivate the podJ gene are nonchemotactic, deficient in rosette formation, and resistant to polar bacteriophage, but they divide normally. In contrast, hyperexpression of podJ results in a lethal cell division defect. Nucleotide sequence analysis of the podJ promoter region revealed a binding site for the global response regulator, CtrA. Deletion of this site results in increased overall promoter activity, suggesting that CtrA is a negative regulator of the podJ promoter. Furthermore, synchronization studies have indicated that temporal regulation is not dependent on the presence of the CtrA binding site. Thus, although the level of podJ promoter activity is dependent on the CtrA binding site, the temporal control of podJ promoter expression is dependent on other factors.
Collapse
Affiliation(s)
- W B Crymes
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | |
Collapse
|
28
|
Osterås M, Stotz A, Schmid Nuoffer S, Jenal U. Identification and transcriptional control of the genes encoding the Caulobacter crescentus ClpXP protease. J Bacteriol 1999; 181:3039-50. [PMID: 10322004 PMCID: PMC93758 DOI: 10.1128/jb.181.10.3039-3050.1999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The region of the Caulobacter crescentus chromosome harboring the genes for the ClpXP protease was isolated and characterized. Comparison of the deduced amino acid sequences of the C. crescentus ClpP and ClpX proteins with those of their homologues from several gram-positive and gram-negative bacteria revealed stronger conservation for the ATPase regulatory subunit (ClpX) than for the peptidase subunit (ClpP). The C. crescentus clpX gene was shown by complementation analysis to be functional in Escherichia coli. However, clpX from E. coli was not able to substitute for the essential nature of the clpX gene in C. crescentus. The clpP and clpX genes are separated on the C. crescentus chromosome by an open reading frame pointing in the opposite direction from the clp genes, and transcription of clpP and clpX was found to be uncoupled. clpP is transcribed as a monocistronic unit with a promoter (PP1) located immediately upstream of the 5' end of the gene and a terminator structure following its 3' end. PP1 is under heat shock control and is induced upon entry of the cells into the stationary phase. At least three promoters for clpX (PX1, PX2, and PX3) were mapped in the clpP-clpX intergenic region. In contrast to PP1, the clpX promoters were found to be downregulated after heat shock but were also subject to growth phase control. In addition, the clpP and clpX promoters showed different activity patterns during the cell cycle. Together, these results demonstrate that the genes coding for the peptidase and the regulatory subunits of the ClpXP protease are under independent transcriptional control in C. crescentus. Determination of the numbers of ClpP and ClpX molecules per cell suggested that ClpX is the limiting component compared with ClpP.
Collapse
Affiliation(s)
- M Osterås
- Division of Molecular Microbiology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
29
|
|
30
|
Bandyopadhyay P, Steinman HM. Legionella pneumophila catalase-peroxidases: cloning of the katB gene and studies of KatB function. J Bacteriol 1998; 180:5369-74. [PMID: 9765568 PMCID: PMC107585 DOI: 10.1128/jb.180.20.5369-5374.1998] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila, the causative organism of Legionnaires' pneumonia, is spread by aerosolization from man-made reservoirs, e.g. , water cooling towers and air conditioning ducts, whose nutrient-poor conditions are conducive to entrance into stationary phase. Exposure to starvation conditions is known to induce several virulence traits in L. pneumophila. Since catalase-peroxidases have been extremely useful markers of the stationary-phase response in many bacterial species and may be an avenue for identifying virulence genes in L. pneumophila, an investigation of these enzymes was initiated. L. pneumophila was shown to contain two bifunctional catalase-peroxidases and to lack monofunctional catalase and peroxidase. The gene encoding the KatB catalase-peroxidase was cloned and sequenced, and lacZ fusion and null mutant strains were constructed. Null mutants in katB are delayed in the infection and lysis of cultured macrophage-like cell lines. KatB is similar to the KatG catalase-peroxidase of Escherichia coli in its 20-fold induction during exponential growth and in playing a role in resistance to hydrogen peroxide. Analysis of the changes in katB expression and in the total catalase and peroxidase activity during growth indicates that the 8- to 10-fold induction of peroxidase activity that occurs in stationary phase is attributable to KatA, the second L. pneumophila catalase-peroxidase.
Collapse
Affiliation(s)
- P Bandyopadhyay
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
31
|
Abstract
Stress response in bacteria is essential for effective adaptation to changes in the environment, as well as to the changes in the physiological state of the bacterial culture itself. This response is mediated by global regulatory mechanisms affecting several pathways. It now appears that these regulatory mechanisms operate by transcriptional control, translational control, and proteolysis. One example to be discussed extensively is the heat-shock response. In Escherichia coli, where it has been studied initially and most extensively, the expression of the heat-shock operon is transcriptionally controlled by the employment of the heat-shock transcription factor sigma 32, that recognizes specific heat-shock promoters. Later studies indicated that in most bacteria the control of the major heat-shock genes is much more complicated, and involves additional--or alternative--control channels. These regulatory elements will be reviewed looking at the groE and dnaK operons. These operons, coding for the bacterial equivalent of Hsp10+60 and Hsp70, respectively, contain in many bacteria a conserved regulatory inverted repeat (IR = CIRCE), and are transcribed either by the vegetative sigma factor--sigma 70--or by a sigma 32-like factor. The IR functions at the DNA level as a repressor binding site and also controls the half life of the transcript. In addition, in Agrobacterium tumefaciens there also exists a system for mRNA processing that involves a temperature-controlled cleavage of the groE transcript.
Collapse
Affiliation(s)
- G Segal
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Israel
| | | |
Collapse
|
32
|
Ramírez-Santos J, Gómez-Eichelmann MC. Identification of σ 32-like factors and ftsX-rpoH gene arrangements in enteric bacteria. Can J Microbiol 1998. [DOI: 10.1139/w98-041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Western blot analyses using anti-Escherichia coli K-12 σ32 antibodies and Southern blot analyses using rpoH and ftsX DNA probes were performed using different enteric bacteria. Results show that the bacterial strains analysed have σ32-like transcription factors and ftsX and rpoH homologs in a similar map position. Although the presence of σ32-like factors seems to be extended to all Proteobacteria, rpoH and ftsX homologs seem to be present as neighbors in the genome only in the enteric bacteria.Key words: enteric bacteria, heat shock, σ32, ftsX-rpoH.
Collapse
|
33
|
Nakahigashi K, Yanagi H, Yura T. Regulatory conservation and divergence of sigma32 homologs from gram-negative bacteria: Serratia marcescens, Proteus mirabilis, Pseudomonas aeruginosa, and Agrobacterium tumefaciens. J Bacteriol 1998; 180:2402-8. [PMID: 9573192 PMCID: PMC107182 DOI: 10.1128/jb.180.9.2402-2408.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The heat shock response in Escherichia coli is mediated primarily by the rpoH gene, encoding sigma32, which is specifically required for transcription of heat shock genes. A number of sigma32 homologs have recently been cloned from gram-negative bacteria that belong to the gamma or alpha subdivisions of the proteobacteria. We report here some of the regulatory features of several such homologs (RpoH) expressed in E. coli as well as in respective cognate bacteria. When expressed in an E. coli delta rpoH strain lacking its own sigma32, these homologs activated the transcription of heat shock genes (groE and dnaK) from the start sites normally used in E. coli. The level of RpoH in Serratia marcescens and Pseudomonas aeruginosa cells was very low at 30 degrees C but was elevated markedly upon a shift to 42 degrees C, as found previously with E. coli. The increased RpoH levels upon heat shock resulted from both increased synthesis and stabilization of the normally unstable RpoH protein. In contrast, the RpoH level in Proteus mirabilis was relatively high at 30 degrees C and increased less markedly upon heat shock, mostly by increased synthesis; this sigma32 homolog was already stable at 30 degrees C, and little further stabilization occurred upon the shift to 42 degrees C. The increased synthesis of RpoH homologs in all these gamma proteobacteria was observed even in the presence of rifampin, suggesting that the induction occurred at the level of translation. Thus, the basic regulatory strategy of the heat shock response by enhancing the RpoH level is well conserved in the gamma proteobacteria, but some divergence in the actual mechanisms used occurred during evolution.
Collapse
|
34
|
Baldini RL, Avedissian M, Gomes SL. The CIRCE element and its putative repressor control cell cycle expression of the Caulobacter crescentus groESL operon. J Bacteriol 1998; 180:1632-41. [PMID: 9537357 PMCID: PMC107072 DOI: 10.1128/jb.180.7.1632-1641.1998] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The groESL operon is under complex regulation in Caulobacter crescentus. In addition to strong induction after exposure to heat shock, under physiological growth conditions, its expression is subject to cell cycle control. Transcription and translation of the groE genes occur primarily in predivisional cells, with very low levels of expression in stalked cells. The regulatory region of groESL contains both a sigma32-like promoter and a CIRCE element. Overexpression of C. crescentus sigma32 gives rise to higher levels of GroEL and increased levels of the groESL transcript coming from the sigma32-like promoter. Site-directed mutagenesis in CIRCE has indicated a negative role for this cis-acting element in the expression of groESL only at normal growth temperatures, with a minor effect on heat shock induction. Furthermore, groESL-lacZ transcription fusions carrying mutations in CIRCE are no longer cell cycle regulated. Analysis of an hrcA null strain, carrying a disruption in the gene encoding the putative repressor that binds to the CIRCE element, shows constitutive synthesis of GroEL throughout the Caulobacter cell cycle. These results indicate a negative role for the hrcA gene product and the CIRCE element in the temporal control of the groESL operon.
Collapse
Affiliation(s)
- R L Baldini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | | | | |
Collapse
|
35
|
Huang LH, Tseng YH, Yang MT. Isolation and characterization of the Xanthomonas campestris rpoH gene coding for a 32-kDa heat shock sigma factor. Biochem Biophys Res Commun 1998; 244:854-60. [PMID: 9535756 DOI: 10.1006/bbrc.1998.8367] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Degenerate oligonucleotide primers corresponding to the conserved regions of bacterial heat shock sigma factor RpoH (sigma 32) were used to amplify a 190-bp fragment by PCR on the X. campestris pv. campestris strain 11 chromosome. Using this fragment as a probe, plasmid pXC57 carrying a 4.7-kb insert was isolated from a genomic library of Xc11. Sequence analysis of a stretch of 2,053 bp from the pXC57 insert revealed an ORF encoding a polypeptide of 291 aa (32,854 dal) which displays 59.6% and 57.3% identity to the rpoH gene products of E. coli and P. aeruginosa, respectively. The Xc11 rpoH gene was able to complement the RpoH deficient E. coli strain A7448. Both amino acid and mRNA sequences deduced from the Xc11 rpoH gene show structural features characteristics of the corresponding sequences from those of the gamma subgroup proteobacteria. The RpoH levels in Xc11 were demonstrated to increase transiently in response to heat shock treatment by immunoblot analysis using the polyclonal antibody raised against the purified Xc11 RpoH.
Collapse
Affiliation(s)
- L H Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | | | | |
Collapse
|
36
|
Karls RK, Brooks J, Rossmeissl P, Luedke J, Donohue TJ. Metabolic roles of a Rhodobacter sphaeroides member of the sigma32 family. J Bacteriol 1998; 180:10-9. [PMID: 9422586 PMCID: PMC106842 DOI: 10.1128/jb.180.1.10-19.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/1997] [Accepted: 10/28/1997] [Indexed: 02/05/2023] Open
Abstract
We report the role of a gene (rpoH) from the facultative phototroph Rhodobacter sphaeroides that encodes a protein (sigma37) similar to Escherichia coli sigma32 and other members of the heat shock family of eubacterial sigma factors. R. sphaeroides sigma37 controls genes that function during environmental stress, since an R. sphaeroides deltaRpoH mutant is approximately 30-fold more sensitive to the toxic oxyanion tellurite than wild-type cells. However, the deltaRpoH mutant lacks several phenotypes characteristic of E. coli cells lacking sigma32. For example, an R. sphaeroides deltaRpoH mutant is not generally defective in phage morphogenesis, since it plates the lytic virus RS1, as well as its wild-type parent. In characterizing the response of R. sphaeroides to heat, we found that its growth temperature profile is different when cells generate energy by aerobic respiration, anaerobic respiration, or photosynthesis. However, growth of the deltaRpoH mutant is comparable to that of a wild-type strain under each of these conditions. The deltaRpoH mutant mounted a heat shock response when aerobically grown cells were shifted from 30 to 42 degrees C, but it exhibited altered induction kinetics of approximately 120-, 85-, 75-, and 65-kDa proteins. There was also reduced accumulation of several presumed heat shock transcripts (rpoD P(HS), groESL1, etc.) when aerobically grown deltaRpoH cells were placed at 42 degrees C. Under aerobic conditions, it appears that another sigma factor enables the deltaRpoH mutant to mount a heat shock response, since either RNA polymerase preparations from an deltaRpoH mutant, reconstituted Esigma37, or a holoenzyme containing a 38-kDa protein (sigma38) each transcribed E. coli Esigma32-dependent promoters. The lower growth temperature profile of photosynthetic cells is correlated with a difference in heat-inducible gene expression, since neither wild-type cells or the deltaRpoH mutant mount a typical heat shock response after such cultures were shifted from 30 to 37 degrees C.
Collapse
Affiliation(s)
- R K Karls
- Department of Bacteriology, University of Wisconsin-Madison, 53706, USA
| | | | | | | | | |
Collapse
|
37
|
Steinman HM, Fareed F, Weinstein L. Catalase-peroxidase of Caulobacter crescentus: function and role in stationary-phase survival. J Bacteriol 1997; 179:6831-6. [PMID: 9352936 PMCID: PMC179615 DOI: 10.1128/jb.179.21.6831-6836.1997] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Caulobacter crescentus is an obligate aerobe which is exposed to high concentrations of photosynthetic oxygen and low levels of nutrients in its aquatic environment. Physiological studies of oxidative and starvation stresses in C. crescentus were undertaken through a study of lacZ fusion and null mutant strains constructed from the cloned 5' end of katG, encoding a catalase-peroxidase. The katG gene was shown to be solely responsible for catalase and peroxidase activity in C. crescentus. Like the katG of Escherichia coli, C. crescentus katG is induced by hydrogen peroxide and is important in sustaining the exponential growth rate. However, dramatic differences are seen in growth stage induction. E. coli KatE catalase and KatG catalase-peroxidase activities are induced 15- to 20-fold during exponential growth and then approximately halved in the stationary phase. In contrast, C. crescentus KatG activity is constant throughout exponential growth and is induced 50-fold in the stationary phase. Moreover, the survival of a C. crescentus katG null mutant is reduced by more than 3 orders of magnitude after 24 h in stationary phase and more than 6 orders of magnitude after 48 h, a phenotype not seen for E. coli katE and katG null mutants. These results indicate a major role for C. crescentus catalase-peroxidase in stationary-phase survival and raise questions about whether the peroxidatic activity as well as the protective catalatic activity of the dual-function enzyme is important in the response to starvation stress.
Collapse
Affiliation(s)
- H M Steinman
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461-1602, USA.
| | | | | |
Collapse
|
38
|
Winzeler E, Wheeler R, Shapiro L. Transcriptional analysis of the Caulobacter 4.5 S RNA ffs gene and the physiological basis of an ffs mutant with a Ts phenotype. J Mol Biol 1997; 272:665-76. [PMID: 9368649 DOI: 10.1006/jmbi.1997.1261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A temperature-sensitive (ts) mutation in the ffs gene, encoding 4.5 S RNA, gives rise to cell division and DNA replication defects in Caulobacter crescentus. The ffs gene is transcribed throughout the cell-cycle and is transcribed at similar rates in mutant (ffs36) and wild-type strains, but in the mutant the 4.5 S RNA is unstable leading to lower 4.5 S RNA levels. The ffs36 phenotype results from a single base change in one of the non-conserved stems of the mature RNA, and is completely rescued by a compensating mutation in the opposite strand, providing confirmation of the predicted secondary structure of the 4.5 S RNA. The Caulobacter ffs gene was shown to be functionally comparable to the Escherichia coli ffs gene by complementation. Comparison of the ffs36 strain to a ts secA strain of Caulobacter, also having cell-cycle and DNA replication phenotypes, showed that both exhibit a permanent induction of a heat shock response at the restrictive temperature. To explain the phenotype of both the secA and ffs36 strains, we propose that a cell-cycle checkpoint prevents further progression through the cell-cycle in response to increased intracellular levels of heat shock and misfolded proteins.
Collapse
Affiliation(s)
- E Winzeler
- Department of Developmental Biology, Stanford University School of Medicine, CA 94305-5427, USA
| | | | | |
Collapse
|
39
|
Wu J, Ohta N, Benson AK, Ninfa AJ, Newton A. Purification, characterization, and reconstitution of DNA-dependent RNA polymerases from Caulobacter crescentus. J Biol Chem 1997; 272:21558-64. [PMID: 9261176 DOI: 10.1074/jbc.272.34.21558] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cell differentiation in the Caulobacter crescentus cell cycle requires differential gene expression that is regulated primarily at the transcriptional level. Until now, however, a defined in vitro transcription system for the biochemical study of developmentally regulated transcription factors had not been available in this bacterium. We report here the purification of C. crescentus RNA polymerase holoenzymes and resolution of the core RNA polymerase from holoenzymes by chromatography on single-stranded DNA cellulose. The three RNA polymerase holoenzymes Esigma54, Esigma32, and Esigma73 were reconstituted exclusively from purified C. crescentus core and sigma factors. Reconstituted Esigma54 initiated transcription from the sigma54-dependent fljK promoter of C. crescentus in the presence of the transcription activator FlbD, and active Esigma32 specifically initiated transcription from the sigma32-dependent promoter of the C. crescentus heat-shock gene dnaK. For reconstitution of the Esigma73 holoenzyme, we overexpressed the C. crescentus rpoD gene in Escherichia coli and purified the full-length sigma73 protein. The reconstituted Esigma73 recognized the sigma70-dependent promoters of the E. coli lacUV5 and neo genes, as well as the sigma73-dependent housekeeping promoters of the C. crescentus pleC and rsaA genes. The ability of the C. crescentus Esigma73 RNA polymerase to recognize E. coli sigma70-dependent promoters is consistent with relaxed promoter specificity of this holoenzyme previously observed in vivo.
Collapse
Affiliation(s)
- J Wu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | |
Collapse
|
40
|
Mogk A, Homuth G, Scholz C, Kim L, Schmid FX, Schumann W. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J 1997; 16:4579-90. [PMID: 9303302 PMCID: PMC1170084 DOI: 10.1093/emboj/16.15.4579] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Class I heat-inducible genes in Bacillus subtilis consist of the heptacistronic dnaK and the bicistronic groE operon and form the CIRCE regulon. Both operons are negatively regulated at the level of transcription by the HrcA repressor interacting with its operator, the CIRCE element. Here, we demonstrate that the DnaK chaperone machine is not involved in the regulation of HrcA and that the GroE chaperonin exerts a negative effect in the post-transcriptional control of HrcA. When expression of the groE operon was turned off, the dnaK operon was significantly activated and large amounts of apparently inactive HrcA repressor were produced. Overproduction of GroEL, on the other hand, resulted in decreased expression of the dnaK operon. Introduction of the hrcA gene and its operator into Escherichia coli was sufficient to elicit a transient heat shock response, indicating that no additional Bacillus-specific gene(s) was needed. As in B. subtilis, the groEL gene of E. coli negatively influenced the activity of HrcA. HrcA could be overproduced in E. coli, but formed inclusion bodies which could be dissolved in 8 M urea. Upon removal of urea, HrcA had a strong tendency to aggregate, but aggregation could be suppressed significantly by the addition of GroEL. Purified HrcA repressor was able specifically to retard a DNA fragment containing the CIRCE element, and the amount of retarded DNA was increased significantly in the presence of GroEL. These results suggest that the GroE chaperonin machine modulates the activity of the HrcA repressor and therefore point to a novel function of GroE as a modulator of the heat shock response.
Collapse
Affiliation(s)
- A Mogk
- Institute of Genetics, University of Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Roberts RC, Shapiro L. Transcription of genes encoding DNA replication proteins is coincident with cell cycle control of DNA replication in Caulobacter crescentus. J Bacteriol 1997; 179:2319-30. [PMID: 9079919 PMCID: PMC178970 DOI: 10.1128/jb.179.7.2319-2330.1997] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DNA replication in the dimorphic bacterium Caulobacter crescentus is tightly linked to its developmental cell cycle. The initiation of chromosomal replication occurs concomitantly with the transition of the motile swarmer cell to the sessile stalked cell. To identify the signals responsible for the cell cycle control of DNA replication initiation, we have characterized a region of the C. crescentus chromosome containing genes that are all involved in DNA replication or recombination, including dnaN, recF, and gyrB. The essential dnaN gene encodes a homolog of the Escherichia coli beta subunit of DNA polymerase III. It is transcribed from three promoters; one is heat inducible, and the other two are induced at the transition from swarmer to stalked cell, coincident with the initiation of DNA replication. The single gyrB promoter is induced at the same time point in the cell cycle. These promoters, as well as those for several other genes encoding DNA replication proteins that are induced at the same time in the cell cycle, share two sequence motifs, suggesting that they represent a family whose transcription is coordinately regulated.
Collapse
Affiliation(s)
- R C Roberts
- Department of Developmental Biology, Stanford University School of Medicine, California 94305-5427, USA
| | | |
Collapse
|
42
|
Breyer MJ, Thompson NE, Burgess RR. Identification of the epitope for a highly cross-reactive monoclonal antibody on the major sigma factor of bacterial RNA polymerase. J Bacteriol 1997; 179:1404-8. [PMID: 9023229 PMCID: PMC178843 DOI: 10.1128/jb.179.4.1404-1408.1997] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A highly cross-reactive monoclonal antibody (MAb), 2G10, was found to react in a conserved region of Escherichia coli RNA polymerase sigma70. The epitope was localized to amino acids 470 to 486, which included part of conserved region 3.1. The epitope for MAb 3D3, a MAb which maps close to the 2G10 epitope, was also determined.
Collapse
Affiliation(s)
- M J Breyer
- McArdle Laboratory for Cancer Research, University of Wisconsin--Madison, 53706, USA
| | | | | |
Collapse
|
43
|
Wu J, Newton A. The Caulobacter heat shock sigma factor gene rpoH is positively autoregulated from a sigma32-dependent promoter. J Bacteriol 1997; 179:514-21. [PMID: 8990305 PMCID: PMC178723 DOI: 10.1128/jb.179.2.514-521.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sigma factor sigma32, encoded by rpoH, is required for the recognition of heat shock genes during normal growth conditions and in response to heat shock and other stresses. Unlike the well-studied Escherichia coli rpoH gene, which is transcribed from four promoters recognized by either a sigma70 (sigmaD)- or sigma24 (sigmaE)-containing RNA polymerase, the Caulobacter crescentus rpoH gene is transcribed from two promoters, P1 and P2. In this study, we have examined the structure and expression of these promoters and shown that the rpoH P2 promoter is sigma32 dependent. We present evidence here that P2 is specifically recognized and transcribed by the reconstituted C. crescentus Esigma32 RNA polymerase holoenzyme. We show that site-directed mutations within either the -10 or the -35 regions of P2 have substantial effects on the levels of transcription by the Esigma32 polymerase predicted from the sigma32 promoter consensus sequence. The mutations have similar effects in vivo as assayed with rpoH-lacZ transcription fusions. Analysis of the rpoH P1 promoter provided evidence that it is sigma70 dependent. S1 nuclease protection assays of rpoH P1- and P2-specific expression after heat shock at 42 or 50 degrees C and during synchronous cell division cycles under normal growth conditions showed that the two promoters are differentially regulated. Mutations within the rpoH P2 promoter consensus sequences abolished the response to heat shock induction in C. crescentus. We conclude from these results that, unlike rpoH genes studied previously in other bacteria, the major transcriptional response of the C. crescentus rpoH gene to heat shock depends on positive autoregulation of the sigma32-dependent promoter.
Collapse
Affiliation(s)
- J Wu
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA
| | | |
Collapse
|
44
|
Narberhaus F, Weiglhofer W, Fischer HM, Hennecke H. The Bradyrhizobium japonicum rpoH1 gene encoding a sigma 32-like protein is part of a unique heat shock gene cluster together with groESL1 and three small heat shock genes. J Bacteriol 1996; 178:5337-46. [PMID: 8808920 PMCID: PMC178348 DOI: 10.1128/jb.178.18.5337-5346.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The heat shock response of Bradyrhizobium japonicum is controlled by a complex network involving two known regulatory systems. While some heat shock genes are controlled by a highly conserved inverted-repeat structure (CIRCE), others depend on a sigma 32-type heat shock sigma factor. Using Western blot (immunoblot) analysis, we confirmed the presence of a sigma 32-like protein in B. japonicum and defined its induction pattern after heat shock. A B. japonicum rpoH-like gene (rpoH1) was cloned by complementation of an Escherichia coli strain lacking sigma 32. A knockout mutation in rpoH1 did not abolish sigma 32 production in B. japonicum, and the rpoH1 mutant showed the wild-type growth phenotype, suggesting the presence of multiple rpoH homologs in this bacterium. Further characterization of the rpoH1 gene region revealed that the rpoH1 gene is located in a heat shock gene cluster together with the previously characterized groESL1 operon and three genes encoding small heat shock proteins in the following arrangement: groES1, groEL1, hspA, rpoH1, hspB, and hspC. Three heat-inducible promoters are responsible for transcription of the six genes as three bicistronic operons. A sigma 32-dependent promoter has previously been described upstream of the groESL1 operon. Although the hspA-rpoH1 and hspBC operons were clearly heat inducible, they were preceded by sigma 70-like promoters. Interestingly, a stretch of about 100 bp between the transcription start site and the start codon of the first gene in each of these two operons was nearly identical, making it a candidate for a regulatory element potentially allowing heat shock induction of sigma 70-dependent promoters.
Collapse
Affiliation(s)
- F Narberhaus
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland.
| | | | | | | |
Collapse
|
45
|
Roberts RC, Toochinda C, Avedissian M, Baldini RL, Gomes SL, Shapiro L. Identification of a Caulobacter crescentus operon encoding hrcA, involved in negatively regulating heat-inducible transcription, and the chaperone gene grpE. J Bacteriol 1996; 178:1829-41. [PMID: 8606155 PMCID: PMC177876 DOI: 10.1128/jb.178.7.1829-1841.1996] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In response to elevated temperature, both prokaryotic and eukaryotic cells increase expression of a small family of chaperones. The regulatory network that functions to control the transcription of the heat shock genes in bacteria includes unique structural motifs in the promoter region of these genes and the expression of alternate sigma factors. One of the conserved structural motifs, the inverted repeat CIRCE element, is found in the 5' region of many heat shock operons, including the Caulobacter crescentus groESL operon. We report the identification of another C. crescentus heat shock operon containing two genes, hrcA (hrc for heat shock regulation at CIRCE elements) and a grpE homolog. Disruption of the hrcA gene, homologs of which are also found upstream of grpE in other bacteria, increased transcription of the groESL operon, and this effect was dependent on the presence of an intact CIRCE element. This suggests a role for HrcA in negative regulation of heat shock gene expression. We identified a major promoter transcribing both hrcA and grpE and a minor promoter located within the hrcA coding sequence just upstream of grpE. Both promoters were heat shock inducible, with maximal expression 10 to 20 min after heat shock. Both promoters were also expressed constitutively throughout the cell cycle under physiological conditions. C. crescentus GrpE, shown to be essential for viability at low and high temperatures, complemented an Escherichia coli delta grpE strain in spite of significant differences in the N- and C-terminal regions of these two proteins, demonstrating functional conservation of this important stress protein.
Collapse
Affiliation(s)
- R C Roberts
- Department of Developmental Biology, Stanford University School of Medicine, California 94305-5427, USA
| | | | | | | | | | | |
Collapse
|
46
|
Wu J, Newton A. Isolation, identification, and transcriptional specificity of the heat shock sigma factor sigma32 from Caulobacter crescentus. J Bacteriol 1996; 178:2094-101. [PMID: 8606189 PMCID: PMC177910 DOI: 10.1128/jb.178.7.2094-2101.1996] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We report the identification of the Caulobacter crescentus heat shock factor sigma32 as a 34-kDa protein that copurifies with the RNA polymerase holoenzyme. The N-terminal amino acid sequence of this protein was determined and used to design a degenerate oligonucleotide as a probe to identify the corresponding gene, rpoH, which encodes a predicted protein with a molecular mass of 33,659 Da. The amino acid sequence of this protein is similar to those of known bacterial heat shock sigma factors of Escherichia coli (41% identity), Pseudomonas aeruginosa (40% identity), and Citrobacter freundii (38% identity). The isolated C. crescentus gene complements the growth defect of an E. coli rpoH deletion strain at 37 degrees C, and Western blot (immunoblot) analysis confirmed that the gene product is related to the E. coli sigma32 protein. The purified RpoH protein in the presence of RNA polymerase core enzyme specifically recognizes the heat shock-regulated promoter P1 of the C. crescentus dnaK gene, and base pair substitutions in either the -10 or -35 region of this promoter abolish transcription. S1 nuclease mapping indicates that rpoH transcripts originate from two promoters, P1 and P2, under the normal growth conditions. The P2 promoter is similar to the sigma32 promoter consensus, and the P2-specific transcript increases dramatically during heat shock, while the P1-specific transcript remains relatively constant. These results suggest that although the structure and function of C. crescentus sigma32 appear to be very similar to those of its E. coli counterpart, the C. crescentus rpoH gene contains a novel promoter structure and may be positively autoregulated in response to environmental stress.
Collapse
Affiliation(s)
- J Wu
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | |
Collapse
|