1
|
Hsu LW, Lin YH, Guo JY, Chen CF, Chou YJ, Yeh YC. Simultaneous Determination of l-Phenylalanine, Phenylethylamine, and Phenylacetic Acid Using Three-Color Whole-Cell Biosensors within a Microchannel Device. ACS APPLIED BIO MATERIALS 2020; 3:5120-5125. [PMID: 35021688 DOI: 10.1021/acsabm.0c00590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The neurotransmitter phenylethylamine (PEA) is highly susceptible to oxidation to produce phenylacetic acid (PA). The fact that PEA and PA are both metabolites of phenylalanine (Phe) in humans makes them important indicators in the diagnosis of phenylketonuria. In this work, three-color whole-cell biosensors were developed to simultaneously detect these analytes (Phe, PEA, and PA). The tyrosine-responsive promoter was used to control the production of green fluorescent protein signals in response to Phe levels. The FeaR regulon was first used to indicate the presence of PEA, whereas the Paa regulon was used for the detection of PA. The combination of three sensor strains together made it possible to semiquantify the three analytes according to unique color outputs without cross-interference. We sought to optimize various modular components (ribosomal binding sites and fluorescent proteins) to ensure the rapid generation of fluorescent signals. Finally, the biosensors were implemented within a microchannel device to reduce sample consumption in point-of-care assays.
Collapse
Affiliation(s)
- Li-Wen Hsu
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yu-Hsuan Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jun-Yu Guo
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Ju Chou
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
2
|
Rihtar E, Žgur Bertok D, Podlesek Z. The Uropathogenic Specific Protein Gene usp from Escherichia coli and Salmonella bongori is a Novel Member of the TyrR and H-NS Regulons. Microorganisms 2020; 8:E330. [PMID: 32111072 PMCID: PMC7142922 DOI: 10.3390/microorganisms8030330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
The Escherichia coli PAIusp is a small pathogenicity island encoding usp, for the uropathogenic specific protein (Usp), a genotoxin and three associated downstream imu1-3 genes that protect the producer against its own toxin. Bioinformatic analysis revealed the presence of the PAIusp also in publically available Salmonella bongori and Salmonella enterica subps. salamae genome sequences. PAIusp is in all examined sequences integrated within the aroP-pdhR chromosomal intergenic region. The focus of this work was identification of the usp promoter and regulatory elements controlling its activity. We show that, in both E. coli and S. bongori, the divergent TyrR regulated P3 promoter of the aroP gene, encoding an aromatic amino acid membrane transporter, drives usp transcription while H-NS acts antagonistically repressing expression. Our results show that the horizontally acquired PAIusp has integrated into the TyrR regulatory network and that environmental factors such as aromatic amino acids, temperature and urea induce usp expression.
Collapse
Affiliation(s)
- Erik Rihtar
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.R.); (Z.P.)
- National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Darja Žgur Bertok
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.R.); (Z.P.)
| | - Zdravko Podlesek
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.R.); (Z.P.)
| |
Collapse
|
3
|
Coulson TJD, Patten CL. The TyrR transcription factor regulates the divergent akr-ipdC operons of Enterobacter cloacae UW5. PLoS One 2015; 10:e0121241. [PMID: 25811953 PMCID: PMC4374768 DOI: 10.1371/journal.pone.0121241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/30/2015] [Indexed: 12/11/2022] Open
Abstract
The TyrR transcription factor regulates genes involved in the uptake and biosynthesis of aromatic amino acids in Enterobacteriaceae. Genes may be positively or negatively regulated depending on the presence or absence of each aromatic amino acid, all three of which function as cofactors for TyrR. In this report we detail the transcriptional control of two divergently transcribed genes, akr and ipdC, by TyrR, elucidated by promoter fusion expression assays and electrophoretic mobility shift assays to assess protein-DNA interactions. Expression of both genes was shown to be controlled by TyrR via interactions with two TyrR boxes located within the akr-ipdC intergenic region. Expression of ipdC required TyrR bound to the proximal strong box, and is strongly induced by phenylalanine, and to a lesser extent by tryptophan and tyrosine. Down-regulation of akr was reliant on interactions with the weak box, and may also require a second, as yet unidentified protein for further repression. Tyrosine enhanced repression of akr. Electrophoretic mobility shift assays demonstrated that TyrR interacts with both the strong and weak boxes, and that binding of the weak box in vitro requires an intact adjacent strong box. While the strong box shows a high degree of conservation with the TyrR binding site consensus sequence, the weak box has atypical spacing of the two half sites comprising the palindromic arms. Site-directed mutagenesis demonstrated sequence-specific interaction between TyrR and the weak box. This is the first report of TyrR-controlled expression of two divergent protein-coding genes, transcribed from independent promoters. Moreover, the identification of a predicted aldo-keto reductase as a member of the TyrR regulon further extends the function of the TyrR regulon.
Collapse
Affiliation(s)
| | - Cheryl L. Patten
- Department of Biology, University of New Brunswick, Fredericton, Canada
- * E-mail:
| |
Collapse
|
4
|
Gerstle K, Klätschke K, Hahn U, Piganeau N. The small RNA RybA regulates key-genes in the biosynthesis of aromatic amino acids under peroxide stress in E. coli. RNA Biol 2012; 9:458-68. [PMID: 22336764 DOI: 10.4161/rna.19065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In bacteria, adaptive response to external stimuli is often regulated by small RNAs (sRNAs). In Escherichia coli, the organism in which sRNAs have been best characterized so far, no function could be attributed to 40 out of 79 sRNAs. Here we decipher the function of RybA, one of these orphan sRNAs. RybA was discovered in 2001 by Wassarman et al. using comparative genomics. This sRNA is conserved between E. coli, Salmonella typhimurium and Klebsiella pneumoniae. We determined the expression pattern of RybA under different growth conditions and identified its exact 5' and 3' ends. Using microarray and Northern analysis we show that, under peroxide stress, the absence of RybA leads to an upregulation of key genes of the TyrR regulon involved in the metabolism of aromatic compounds including the aromatic amino acids. Although containing an open reading frame, which might have an independent function, RybA does not require translation for this activity and therefore acts at the RNA level. Furthermore we demonstrate that regulation requires the transcription regulator TyrR. The mechanism of activation of TyrR, probably the primary target of RybA, remains to be elucidated. The downregulation of aromatic amino acid biosynthesis might regulate the cellular concentration of chorismate and its availability for other downstream products like ubiquinone or enterobactin. While ubiquinone participates in the defense against oxidative stress in the cytoplasmic membrane, enterobactin is involved in iron import and is therefore detrimental under oxidative stress.
Collapse
Affiliation(s)
- Kirstin Gerstle
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, Hamburg University, Hamburg, Germany
| | | | | | | |
Collapse
|
5
|
Abstract
This chapter describes in detail the genes and proteins of Escherichia coli involved in the biosynthesis and transport of the three aromatic amino acids tyrosine, phenylalanine, and tryptophan. It provides a historical perspective on the elaboration of the various reactions of the common pathway converting erythrose-4-phosphate and phosphoenolpyruvate to chorismate and those of the three terminal pathways converting chorismate to phenylalanine, tyrosine, and tryptophan. The regulation of key reactions by feedback inhibition, attenuation, repression, and activation are also discussed. Two regulatory proteins, TrpR (108 amino acids) and TyrR (513 amino acids), play a major role in transcriptional regulation. The TrpR protein functions only as a dimer which, in the presence of tryptophan, represses the expression of trp operon plus four other genes (the TrpR regulon). The TyrR protein, which can function both as a dimer and as a hexamer, regulates the expression of nine genes constituting the TyrR regulon. TyrR can bind each of the three aromatic amino acids and ATP and under their influence can act as a repressor or activator of gene expression. The various domains of this protein involved in binding the aromatic amino acids and ATP, recognizing DNA binding sites, interacting with the alpha subunit of RNA polymerase, and changing from a monomer to a dimer or a hexamer are all described. There is also an analysis of the various strategies which allow TyrR in conjunction with particular amino acids to differentially affect the expression of individual genes of the TyrR regulon.
Collapse
|
6
|
Samaluru H, SaiSree L, Reddy M. Role of SufI (FtsP) in cell division of Escherichia coli: evidence for its involvement in stabilizing the assembly of the divisome. J Bacteriol 2007; 189:8044-52. [PMID: 17766410 PMCID: PMC2168700 DOI: 10.1128/jb.00773-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The function of SufI, a well-studied substrate of the TatABC translocase in Escherichia coli, is not known. It was earlier implicated in cell division, based on the finding that multiple copies of sufI suppressed the phenotypes of cells with mutations in ftsI (ftsI23), which encodes a divisomal transpeptidase. Recently, sufI was identified as both a multicopy suppressor gene and a synthetic lethal mutant of ftsEX, which codes for a division-specific putative ABC transporter. In this study, we show that sufI is essential for the viability of E. coli cells subjected to various forms of stress, including oxidative stress and DNA damage. The sufI mutant also exhibits sulA-independent filamentation, indicating a role in cell division. The phenotypes of the sufI mutant are suppressed by factors that stabilize FtsZ ring assembly, such as increased expression of cell division proteins FtsQAZ or FtsN or the presence of the gain-of-function ftsA* (FtsA R286W) mutation, suggesting that SufI is a divisomal protein required during stress conditions. In support of this, multicopy sufI suppressed the divisional defects of mutants carrying the ftsA12, ftsQ1, or ftsK44 allele but not those of mutants carrying ftsZ84. Most of the division-defective mutants, in particular those carrying a DeltaftsEX or ftsI23 allele, exhibited sensitivity to oxidative stress or DNA damage, and this sensitivity was also abolished by multiple copies of SufI. All of these data suggest that SufI is a division component involved in protecting or stabilizing the divisomal assembly under conditions of stress. Since sufI fulfils the requirements to be designated an fts gene, we propose that it be renamed ftsP.
Collapse
Affiliation(s)
- Harish Samaluru
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | | | |
Collapse
|
7
|
Kawano M, Storz G, Rao BS, Rosner JL, Martin RG. Detection of low-level promoter activity within open reading frame sequences of Escherichia coli. Nucleic Acids Res 2005; 33:6268-76. [PMID: 16260475 PMCID: PMC1275588 DOI: 10.1093/nar/gki928] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The search for promoters has largely been confined to sequences upstream of open reading frames (ORFs) or stable RNA genes. Here we used a cloning approach to discover other potential promoters in Escherichia coli. Chromosomal fragments of approximately 160 bp were fused to a promoterless lacZ reporter gene on a multi-copy plasmid. Eight clones were deliberately selected for high activity and 105 clones were selected at random. All eight of the high-activity clones carried promoters that were located upstream of an ORF. Among the randomly-selected clones, 56 had significantly elevated activity. Of these, 7 had inserts which also mapped upstream of an ORF, while 49 mapped within or downstream of ORFs. Surprisingly, the eight promoters selected for high activity matched the canonical sigma70 -35 and -10 sequences no better than sequences from the randomly-selected clones. For six of the nine most active sequences with orientations opposite to that of the ORF, chromosomal expression was detected by RT-PCR, but defined transcripts were not detected by northern analysis. Our results indicate that the E.coli chromosome carries numerous -35 and -10 sequences with weak promoter activity but that most are not productively expressed because other features needed to enhance promoter activity and transcript stability are absent.
Collapse
Affiliation(s)
| | | | - B. Sridhar Rao
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesda, MD 20892-0560, USA
| | - Judah L. Rosner
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney DiseasesBuilding 5, Room 333, Bethesda, MD 20892-0560, USA
| | - Robert G. Martin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney DiseasesBuilding 5, Room 333, Bethesda, MD 20892-0560, USA
- To whom correspondence should be addressed. Tel: +1 301 496 5466; Fax: +1 301 496 0201;
| |
Collapse
|
8
|
Choi SK, Saier MH. Regulation of sigL expression by the catabolite control protein CcpA involves a roadblock mechanism in Bacillus subtilis: potential connection between carbon and nitrogen metabolism. J Bacteriol 2005; 187:6856-61. [PMID: 16166551 PMCID: PMC1251575 DOI: 10.1128/jb.187.19.6856-6861.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 07/14/2005] [Indexed: 11/20/2022] Open
Abstract
A catabolite-responsive element (CRE), a binding site for the CcpA transcription factor, was identified within the sigL structural gene encoding sigma(L) in Bacillus subtilis. We show that CcpA binds to this CRE to regulate sigL expression by a "roadblock" mechanism and that this mechanism in part accounts for catabolite repression of sigma(L)-directed levD operon expression.
Collapse
Affiliation(s)
- Soo-Keun Choi
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
9
|
Abstract
The TyrR protein of Escherichia coli can act both as a repressor and as an activator of transcription. It can interact with each of the three aromatic amino acids, with ATP and, under certain circumstances, with the C-terminal region of the alpha-subunit of RNA polymerase. TyrR protein is a dimer in solution but in the presence of tyrosine and ATP it self-associates to form a hexamer. Whereas TyrR dimers can, in the absence of any aromatic amino acids, bind to certain recognition sequences referred to as 'strong TyrR boxes', hexamers can bind to extended sequences including lower-affinity sites called 'weak TyrR boxes', some of which overlap the promoter. There is no single mechanism for repression, which in some cases involves exclusion of RNA polymerase from the promoter and in others, interference with the ability of bound RNA polymerase to form open complexes or to exit the promoter. When bound to a site upstream of certain promoters, TyrR protein in the presence of phenylalanine, tyrosine or tryptophan can interact with the alpha-subunit of RNA polymerase to activate transcription. In one unusual case, activation of a non-productive promoter is used to repress transcription from a promoter on the opposite strand. Regulation of individual transcription units within the regulon reflects their physiological function and is determined by the position and nature of the recognition sites (TyrR boxes) associated with each of the promoters. The intracellular levels of the various forms of the TyrR protein are also postulated to be of critical importance in determining regulatory outcomes. TyrR protein remains a paradigm for a regulator that is able to interact with multiple cofactors and exert a range of regulatory effects by forming different oligomers on DNA and making contact with other proteins. A recent analysis identifying putative TyrR boxes in the E. coli genome raises the possibility that the TyrR regulon may extend beyond the well-characterized transcription units described in this review.
Collapse
Affiliation(s)
- James Pittard
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia.
| | | | | |
Collapse
|
10
|
Yang J, Hwang JS, Camakaris H, Irawaty W, Ishihama A, Pittard J. Mode of action of the TyrR protein: repression and activation of the tyrP promoter of Escherichia coli. Mol Microbiol 2004; 52:243-56. [PMID: 15049824 DOI: 10.1111/j.1365-2958.2003.03965.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The tyrP gene of Escherichia coli encodes a tyrosine specific transporter. Its synthesis is repressed by tyrosine but is activated by phenylalanine and to a lesser extent by tryptophan. Both of these effects are mediated by the TyrR protein when it binds to one or both of its cognate binding sites (TyrR boxes) which encompass nucleotides -30 to -75. Activation in the presence of phenylalanine or tryptophan involves a dimer binding to the upstream box and interacting with the alpha subunit (alphaCTD) of RNA polymerase (RNAP). Repression in the presence of tyrosine involves a hexamer binding to both TyrR boxes. The molecular basis for this repression has been studied in vitro. Whereas initial gel shift experiments fail to show the exclusion of RNAP from the promoter region when TyrR hexamer is bound, a DNase I analysis of slices from the gel shows that in the presence of TyrR, RNAP now binds to a previously unrecognized upstream promoter. Although this upstream promoter is bound strongly by RNAP and forms an open complex on linear DNA templates, it fails to form an open complex on supercoiled templates in vitro and is unable to initiate transcription in vivo. A subsequent gel shift assay using a tyrP fragment which eliminates the upstream RNAP binding site confirms conclusively that, in the presence of tyrosine and ATP, the TyrR protein prevents RNAP from binding to the tyrP promoter. In vitro studies have also been carried out in the presence of TyrR protein and phenylalanine. Binding of TyrR protein to the upstream TyrR box in the presence of phenylalanine is shown to increase the affinity of RNAP for the promoter and stimulate open complex formation at the -10 region of the tyrP promoter. This observation coupled with the results from mutational analysis supports the proposal that TyrR-phenylalanine activates tyrP transcription by stimulating the onset of open complex formation.
Collapse
Affiliation(s)
- Ji Yang
- Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3010, Australia
| | | | | | | | | | | |
Collapse
|
11
|
Koyanagi T, Katayama T, Suzuki H, Kumagai H. Identification of the LIV-I/LS system as the third phenylalanine transporter in Escherichia coli K-12. J Bacteriol 2004; 186:343-50. [PMID: 14702302 PMCID: PMC305776 DOI: 10.1128/jb.186.2.343-350.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, the active transport of phenylalanine is considered to be performed by two different systems, AroP and PheP. However, a low level of accumulation of phenylalanine was observed in an aromatic amino acid transporter-deficient E. coli strain (DeltaaroP DeltapheP Deltamtr Deltatna DeltatyrP). The uptake of phenylalanine by this strain was significantly inhibited in the presence of branched-chain amino acids. Genetic analysis and transport studies revealed that the LIV-I/LS system, which is a branched-chain amino acid transporter consisting of two periplasmic binding proteins, the LIV-binding protein (LIV-I system) and LS-binding protein (LS system), and membrane components, LivHMGF, is involved in phenylalanine accumulation in E. coli cells. The K(m) values for phenylalanine in the LIV-I and LS systems were determined to be 19 and 30 micro M, respectively. Competitive inhibition of phenylalanine uptake by isoleucine, leucine, and valine was observed for the LIV-I system and, surprisingly, also for the LS system, which has been assumed to be leucine specific on the basis of the results of binding studies with the purified LS-binding protein. We found that the LS system is capable of transporting isoleucine and valine with affinity comparable to that for leucine and that the LIV-I system is able to transport tyrosine with affinity lower than that seen with other substrates. The physiological importance of the LIV-I/LS system for phenylalanine accumulation was revealed in the growth of phenylalanine-auxotrophic E. coli strains under various conditions.
Collapse
Affiliation(s)
- Takashi Koyanagi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
12
|
Yang J, Camakaris H, Pittard J. Molecular analysis of tyrosine-and phenylalanine-mediated repression of the tyrB promoter by the TyrR protein of Escherichia coli. Mol Microbiol 2002; 45:1407-19. [PMID: 12207706 DOI: 10.1046/j.1365-2958.2002.03108.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanism of repression of the tyrB promoter by TyrR protein has been studied in vivo and in vitro. In tyrR+ strains, transcription of tyrB is repressed by either tyrosine or phenylalanine. Both of the TyrR binding sites (strong and weak TyrR boxes) lie downstream of the tyrB transcription start site and are required for tyrosine- or phenylalanine-mediated repression. Our results establish that the binding of the TyrR protein to the weak box, induced by cofactor tyrosine or phenylalanine, is critical for repression to occur. Neither the binding of the TyrR protein dimer formed in the presence of phenylalanine, nor the binding of the hexamer formed in the presence of tyrosine, blocks the binding of RNA polymerase to the promoter. Instead, open complex formation is inhibited in the presence of tyrosine whereas a step(s) following open complex formation is inhibited in the presence of phenylalanine. Moving the TyrR boxes 3 bp or more further away from the promoter affects tyrosine-mediated repression without affecting phenylalanine-mediated repression which remains unaltered until 6 bp are inserted between the TyrR boxes and the promoter. Analysis of deletion and insertion mutants fails to reveal any face of the helix specificity for either tyrosine- or phenylalanine-mediated repression.
Collapse
Affiliation(s)
- Ji Yang
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
13
|
Reddy M, Gowrishankar J. Characterization of the uup locus and its role in transposon excisions and tandem repeat deletions in Escherichia coli. J Bacteriol 2000; 182:1978-86. [PMID: 10715006 PMCID: PMC101901 DOI: 10.1128/jb.182.7.1978-1986.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Null mutations in the Escherichia coli uup locus (at 21.8 min) serve to increase the frequency of RecA-independent precise excision of transposable elements such as Tn10 and to reduce the plaque size of bacteriophage Mu (Uup(-) phenotype). By the combined approaches of physical mapping of the mutations, complementation analyses, and protein overexpression from cloned gene fragments, we have demonstrated in this study that the Uup(-) phenotype is the consequence of the absence of expression of the downstream gene (uup) of a two-gene operon, caused either directly by insertions in uup or indirectly by the polar effect of insertions in the upstream gene (ycbY). The promoter for uup was mapped upstream of ycbY by primer extension analysis on cellular RNA, and assays of reporter gene expression indicated that it is a moderately active, constitutive promoter. The uup mutations were also shown to increase, in a RecA-independent manner, the frequencies of nearly precise excision of Tn10 derivatives and of the deletion of one copy of a chromosomal tandem repeat, suggesting the existence of a shared step or intermediate in the pathways of these latter events and that of precise excision. Finally, we found that mutations that increase the frequency of precise excision of Tn10 are divisible into two categories, depending upon whether they did (uup, ssb, polA, and topA) or did not (mutHLS, dam, and uvrD) also increase precise excision frequency of the mini-Tn10 derivatives. It is suggested that the differential response of mini-Tn10 and Tn10 to the second category of mutations is related to the presence, respectively, of perfect and of imperfect terminal inverted repeats in them.
Collapse
Affiliation(s)
- M Reddy
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | |
Collapse
|
14
|
Yang J, Wang P, Pittard AJ. Mechanism of repression of the aroP P2 promoter by the TyrR protein of Escherichia coli. J Bacteriol 1999; 181:6411-8. [PMID: 10515932 PMCID: PMC103777 DOI: 10.1128/jb.181.20.6411-6418.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we have shown that expression of the Escherichia coli aroP P2 promoter is partially repressed by the TyrR protein alone and strongly repressed by the TyrR protein in the presence of the coeffector tyrosine or phenylalanine (P. Wang, J. Yang, and A. J. Pittard, J. Bacteriol. 179:4206-4212, 1997). Here we present in vitro results showing that the TyrR protein and RNA polymerase can bind simultaneously to the aroP P2 promoter. In the presence of tyrosine, the TyrR protein inhibits open complex formation at the P2 promoter, whereas in the absence of any coeffector or in the presence of phenylalanine, the TyrR protein inhibits a step(s) following the formation of open complexes. We also present mutational evidence which implicates the N-terminal domain of the TyrR protein in the repression of P2 expression. The TyrR binding site of aroP, which includes one weak and one strong TyrR box, is located 5 bp downstream of the transcription start site of P2. Results from a mutational analysis show that the strong box (which is located more closely to the P2 promoter), but not the weak box, plays a critical role in P2 repression.
Collapse
Affiliation(s)
- J Yang
- Department of Microbiology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
15
|
Gowrishankar J, Pittard AJ. Superimposition of tyrR protein-mediated regulation on osmoresponsive transcription of Escherichia coli proU in vivo. J Bacteriol 1998; 180:6743-8. [PMID: 9852023 PMCID: PMC107782 DOI: 10.1128/jb.180.24.6743-6748.1998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Osmotic regulation of proU expression in the enterobacteria is achieved, at least in part, by a repression mechanism involving the histone-like nucleoid protein H-NS. By the creation of binding sites for the TyrR regulator protein in the vicinity of the sigma70-controlled promoter of proU in Escherichia coli, we were able to demonstrate a superposed TyrR-mediated activation by L-phenylalanine (Phe), as well as repression by L-tyrosine, of proU expression in vivo. Based on the facts that pronounced activation in the presence of Phe was observed even at a low osmolarity and that the affinity of binding of TyrR to its cognate sites on DNA is not affected by Phe, we argue that H-NS-mediated repression of proU at a low osmolarity may not involve a classical silencing mechanism. Our data also suggest the involvement of recruited RNA polymerase in the mechanism of antirepression in E. coli.
Collapse
Affiliation(s)
- J Gowrishankar
- Centre for Cellular & Molecular Biology, Hyderabad 500007, India.
| | | |
Collapse
|
16
|
Wang P, Yang J, Ishihama A, Pittard AJ. Demonstration that the TyrR protein and RNA polymerase complex formed at the divergent P3 promoter inhibits binding of RNA polymerase to the major promoter, P1, of the aroP gene of Escherichia coli. J Bacteriol 1998; 180:5466-72. [PMID: 9765583 PMCID: PMC107600 DOI: 10.1128/jb.180.20.5466-5472.1998] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous studies, we have identified three promoters (P1, P2, and P3) in the regulatory region of the Escherichia coli aroP gene (P. Wang, J. Yang, and A. J. Pittard, J. Bacteriol. 179:4206-4212, 1997). Both P1 and P2 can direct mRNA synthesis for aroP expression, whereas P3 is a divergent promoter which overlaps with P1. The repression of transcription from the major promoter, P1, has been postulated to involve the activation of the divergent promoter, P3, by the TyrR protein (P. Wang, J. Yang, B. Lawley, and A. J. Pittard, J. Bacteriol. 179:4213-4218, 1997). In the present study, we confirmed the proposed mechanism of P3-mediated repression of P1 transcription by studying the binding of RNA polymerase to the promoters P1 and P3 in vitro in the presence and absence of TyrR protein and its cofactors. Our results show that (i) only one RNA polymerase molecule can bind to the DNA fragment carrying the aroP regulatory region, (ii) RNA polymerase has a higher affinity for P1 than for either P2 or P3 and binds to P1 in the absence of TyrR protein, (iii) in the presence of TyrR protein and its cofactor, phenylalanine or tyrosine, RNA polymerase preferentially binds to P3, and (iv) RNA polymerase does not respond to the activation-defective mutant TyrR protein TyrR-RQ10 and remains bound to P1 in the presence of TyrR-RQ10 and either of the cofactors.
Collapse
Affiliation(s)
- P Wang
- Department of Microbiology, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | | | |
Collapse
|
17
|
Wang P, Yang J, Lawley B, Pittard AJ. Repression of the aroP gene of Escherichia coli involves activation of a divergent promoter. J Bacteriol 1997; 179:4213-8. [PMID: 9209035 PMCID: PMC179241 DOI: 10.1128/jb.179.13.4213-4218.1997] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The repression of aroP expression which is mediated by the TyrR protein with phenylalanine, tyrosine, or tryptophan has been shown to be primarily a direct result of TyrR-mediated activation of a divergent promoter, P3, which directs the RNA polymerase away from promoter P1. Evidence which has been presented to support this conclusion is as follows. Repression of P1 does not occur either in vitro or in vivo if wild-type TyrR protein is substituted by the activation-negative mutant RQ10 (with an R-to-Q change at position 10). Repression of P1 is greatly diminished if the P3 promoter is inactivated or if a 5-bp insertion is made between the P3 promoter and the binding sites for TyrR. Repression is also abolished if the promoter strength of P1 is increased or a putative UP element associated with P3 is altered. Repression of the second promoter, P2, still occurs if the wild-type TyrR protein is substituted with RQ10 or EQ274. The tryptophan-mediated repression of aroP does not involve the TrpR protein.
Collapse
Affiliation(s)
- P Wang
- Department of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|