1
|
Abuladze M, Asatiani N, Kartvelishvili T, Krivonos D, Popova N, Safonov A, Sapojnikova N, Yushin N, Zinicovscaia I. Adaptive Mechanisms of Shewanella xiamenensis DCB 2-1 Metallophilicity. TOXICS 2023; 11:304. [PMID: 37112530 PMCID: PMC10142276 DOI: 10.3390/toxics11040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The dose-dependent effects of single metals (Zn, Ni, and Cu) and their combinations at steady time-actions on the cell viability of the bacteria Shewanella xiamenensis DCB 2-1, isolated from a radionuclide-contaminated area, have been estimated. The accumulation of metals by Shewanella xiamenensis DCB 2-1 in single and multi-metal systems was assessed using the inductively coupled plasma atomic emission spectroscopy. To estimate the response of the bacteria's antioxidant defense system, doses of 20 and 50 mg/L of single studied metals and 20 mg/L of each metal in their combinations (non-toxic doses, determined by the colony-forming viability assay) were used. Emphasis was given to catalase and superoxide dismutase since they form the primary line of defense against heavy metal action and their regulatory circuit of activity is crucial. The effect of metal ions on total thiol content, an indicator of cellular redox homeostasis, in bacterial cells was evaluated. Genome sequencing of Shewanella xiamenensis DCB 2-1 reveals genes responsible for heavy metal tolerance and detoxification, thereby improving understanding of the potential of the bacterial strain for bioremediation.
Collapse
Affiliation(s)
- Marina Abuladze
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., 0162 Tbilisi, Georgia; (M.A.); (N.A.); (T.K.)
| | - Nino Asatiani
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., 0162 Tbilisi, Georgia; (M.A.); (N.A.); (T.K.)
| | - Tamar Kartvelishvili
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., 0162 Tbilisi, Georgia; (M.A.); (N.A.); (T.K.)
| | - Danil Krivonos
- Research Institute for Systems Biology and Medicine (RISBM), 18, Nauchniy Proezd, 117246 Moscow, Russia
- Department of Molecular and Translational Medicine, Moscow Institute of Physics and Technology, State University, 141700 Dolgoprudny, Russia
| | - Nadezhda Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31, Leninsky Ave., 199071 Moscow, Russia; (N.P.); (A.S.)
| | - Alexey Safonov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31, Leninsky Ave., 199071 Moscow, Russia; (N.P.); (A.S.)
| | - Nelly Sapojnikova
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., 0162 Tbilisi, Georgia; (M.A.); (N.A.); (T.K.)
| | - Nikita Yushin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980 Dubna, Russia; (N.Y.); (I.Z.)
| | - Inga Zinicovscaia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980 Dubna, Russia; (N.Y.); (I.Z.)
- Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Str. MG-6, 077125 Bucharest, Romania
- The Institute of Chemistry, 3 Academiei Str., 2028 Chisinau, Moldova
| |
Collapse
|
2
|
Shimada T, Furuhata S, Ishihama A. Whole set of constitutive promoters for RpoN sigma factor and the regulatory role of its enhancer protein NtrC in Escherichia coli K-12. Microb Genom 2021; 7. [PMID: 34787538 PMCID: PMC8743547 DOI: 10.1099/mgen.0.000653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The promoter selectivity of Escherichia coli RNA polymerase (RNAP) is determined by its promoter-recognition sigma subunit. The model prokaryote E. coli K-12 contains seven species of the sigma subunit, each recognizing a specific set of promoters. Using genomic SELEX (gSELEX) screening in vitro, we identified the whole set of ‘constitutive’ promoters recognized by the reconstituted RNAP holoenzyme alone, containing RpoD (σ70), RpoS (σ38), RpoH (σ32), RpoF (σ28) or RpoE (σ24), in the absence of other supporting regulatory factors. In contrast, RpoN sigma (σ54), involved in expression of nitrogen-related genes and also other cellular functions, requires an enhancer (or activator) protein, such as NtrC, for transcription initiation. In this study, a series of gSELEX screenings were performed to search for promoters recognized by the RpoN RNAP holoenzyme in the presence and absence of the major nitrogen response enhancer NtrC, the best-characterized enhancer. Based on the RpoN holoenzyme-binding sites, a total of 44 to 61 putative promoters were identified, which were recognized by the RpoN holoenzyme alone. In the presence of the enhancer NtrC, the recognition target increased to 61–81 promoters. Consensus sequences of promoters recognized by RpoN holoenzyme in the absence and presence of NtrC were determined. The promoter activity of a set of NtrC-dependent and -independent RpoN promoters was verified in vivo under nitrogen starvation, in the presence and absence of RpoN and/or NtrC. The promoter activity of some RpoN-recognized promoters increased in the absence of RpoN or NtrC, supporting the concept that the promoter-bound NtrC-enhanced RpoN holoenzyme functions as a repressor against RpoD holoenzyme. Based on our findings, we propose a model in which the RpoN holoenzyme fulfils the dual role of repressor and transcriptase for the same set of genes. We also propose that the promoter recognized by RpoN holoenzyme in the absence of enhancers is the ‘repressive’ promoter. The presence of high-level RpoN sigma in growing E. coli K-12 in rich medium may be related to the repression role of a set of genes needed for the utilization of ammonia as a nitrogen source in poor media. The list of newly identified regulatory targets of RpoN provides insight into E. coli survival under nitrogen-depleted conditions in nature.
Collapse
Affiliation(s)
- Tomohiro Shimada
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Shun Furuhata
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Akira Ishihama
- Micro-Nanotechnology Research Center, Hosei University, Koganei, Tokyo, Japan
| |
Collapse
|
3
|
Engl C, Jovanovic G, Brackston RD, Kotta-Loizou I, Buck M. The route to transcription initiation determines the mode of transcriptional bursting in E. coli. Nat Commun 2020; 11:2422. [PMID: 32415118 PMCID: PMC7229158 DOI: 10.1038/s41467-020-16367-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/24/2020] [Indexed: 11/20/2022] Open
Abstract
Transcription is fundamentally noisy, leading to significant heterogeneity across bacterial populations. Noise is often attributed to burstiness, but the underlying mechanisms and their dependence on the mode of promotor regulation remain unclear. Here, we measure E. coli single cell mRNA levels for two stress responses that depend on bacterial sigma factors with different mode of transcription initiation (σ70 and σ54). By fitting a stochastic model to the observed mRNA distributions, we show that the transition from low to high expression of the σ70-controlled stress response is regulated via the burst size, while that of the σ54-controlled stress response is regulated via the burst frequency. Therefore, transcription initiation involving σ54 differs from other bacterial systems, and yields bursting kinetics characteristic of eukaryotic systems. Transcription noise in bacteria is often attributed to burstiness, but the mechanisms are unclear. Here, the authors show that the transition from low to high expression can be regulated via burst size or burst frequency, depending on the mode of transcription initiation determined by different sigma factors.
Collapse
Affiliation(s)
- Christoph Engl
- School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - Goran Jovanovic
- Faculty of Medicine, Department of Medicine, Imperial College London, London, SW7 2AZ, UK.,Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.,Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Rowan D Brackston
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Ioly Kotta-Loizou
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Martin Buck
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
4
|
DeAngelis CM, Nag D, Withey JH, Matson JS. Characterization of the Vibrio cholerae Phage Shock Protein Response. J Bacteriol 2019; 201:e00761-18. [PMID: 30858296 PMCID: PMC6597379 DOI: 10.1128/jb.00761-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/26/2019] [Indexed: 12/25/2022] Open
Abstract
The phage shock protein (Psp) system is a stress response pathway that senses and responds to inner membrane damage. The genetic components of the Psp system are present in several clinically relevant Gram-negative bacteria, including Vibrio cholerae However, most of the current knowledge about the Psp response stems from in vitro studies in Escherichia coli and Yersinia enterocolitica In fact, the Psp response in V. cholerae has remained completely uncharacterized. In this study, we demonstrate that V. cholerae does have a functional Psp response system. We found that overexpression of GspD (EpsD), the type II secretion system secretin, induces the Psp response, whereas other V. cholerae secretins do not. In addition, we have identified several environmental conditions that induce this stress response. Our studies on the genetic regulation and induction of the Psp system in V. cholerae suggest that the key regulatory elements are conserved with those of other Gram-negative bacteria. While a psp null strain is fully capable of colonizing the infant mouse intestine, it exhibits a colonization defect in a zebrafish model, indicating that this response may be important for disease transmission in the environment. Overall, these studies provide an initial understanding of a stress response pathway that has not been previously investigated in V. choleraeIMPORTANCEVibrio cholerae leads a dual life cycle, as it can exist in the aquatic environment and colonize the human small intestine. In both life cycles, V. cholerae encounters a variety of stressful conditions, including fluctuating pH and temperature and exposure to other agents that may negatively affect cell envelope homeostasis. The phage shock protein (Psp) response is required to sense and respond to such insults in other bacteria but has remained unstudied in V. cholerae Interestingly, the Psp system has protein homologs, principally, PspA, in a number of bacterial clades as well as in archaea and plants. Therefore, our findings not only fill a gap in knowledge about an unstudied extracytoplasmic stress response in V. cholerae, but also may have far-reaching implications.
Collapse
Affiliation(s)
- Cara M DeAngelis
- Department of Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Dhrubajyoti Nag
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jeffrey H Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jyl S Matson
- Department of Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
5
|
Zhang N, Jovanovic G, McDonald C, Ces O, Zhang X, Buck M. Transcription Regulation and Membrane Stress Management in Enterobacterial Pathogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:207-30. [DOI: 10.1007/978-3-319-32189-9_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Osadnik H, Schöpfel M, Heidrich E, Mehner D, Lilie H, Parthier C, Risselada HJ, Grubmüller H, Stubbs MT, Brüser T. PspF-binding domain PspA1-144and the PspA·F complex: New insights into the coiled-coil-dependent regulation of AAA+ proteins. Mol Microbiol 2015; 98:743-59. [DOI: 10.1111/mmi.13154] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Hendrik Osadnik
- Institute of Microbiology; Leibniz Universität Hannover; Herrenhäuser Str. 2 Hannover 30419 Germany
| | - Michael Schöpfel
- Institute of Biochemistry and Biotechnology; Martin-Luther University Halle-Wittenberg; Kurt-Mothes-Straße 3 Halle (Saale) 06120 Germany
| | - Eyleen Heidrich
- Institute of Microbiology; Leibniz Universität Hannover; Herrenhäuser Str. 2 Hannover 30419 Germany
| | - Denise Mehner
- Institute of Microbiology; Leibniz Universität Hannover; Herrenhäuser Str. 2 Hannover 30419 Germany
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology; Martin-Luther University Halle-Wittenberg; Kurt-Mothes-Straße 3 Halle (Saale) 06120 Germany
| | - Christoph Parthier
- Institute of Biochemistry and Biotechnology; Martin-Luther University Halle-Wittenberg; Kurt-Mothes-Straße 3 Halle (Saale) 06120 Germany
| | - H. Jelger Risselada
- Max Planck Institute for Biophysical Chemistry; Am Fassberg 11 Göttingen 37077 Germany
| | - Helmut Grubmüller
- Max Planck Institute for Biophysical Chemistry; Am Fassberg 11 Göttingen 37077 Germany
| | - Milton T. Stubbs
- Institute of Biochemistry and Biotechnology; Martin-Luther University Halle-Wittenberg; Kurt-Mothes-Straße 3 Halle (Saale) 06120 Germany
| | - Thomas Brüser
- Institute of Microbiology; Leibniz Universität Hannover; Herrenhäuser Str. 2 Hannover 30419 Germany
| |
Collapse
|
7
|
Hoch PG, Burenina OY, Weber MHW, Elkina DA, Nesterchuk MV, Sergiev PV, Hartmann RK, Kubareva EA. Phenotypic characterization and complementation analysis of Bacillus subtilis 6S RNA single and double deletion mutants. Biochimie 2015; 117:87-99. [PMID: 25576829 DOI: 10.1016/j.biochi.2014.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
Abstract
6S RNA, a global regulator of transcription in bacteria, binds to housekeeping RNA polymerase (RNAP) holoenzymes to competitively inhibit transcription from DNA promoters. Bacillus subtilis encodes two 6S RNA homologs whose differential functions are as yet unclear. We constructed derivative strains of B. subtilis PY79 lacking 6S-1 RNA (ΔbsrA), 6S-2 RNA (ΔbsrB) or both (ΔbsrAB) to study the physiological role of the two 6S RNAs. We observed two growth phenotypes of mutant strains: (i) accelerated decrease of optical density toward extended stationary phase and (ii) faster outgrowth from stationary phase under alkaline stress conditions (pH 9.8). The first phenotype was observed for bacteria lacking bsrA, and even more pronounced for ΔbsrAB bacteria, but not for those lacking bsrB. The magnitude of the second phenotype was relatively weak for ΔbsrB, moderate for ΔbsrA and again strongest for ΔbsrAB bacteria. Whereas ΔbsrAB bacteria complemented with bsrB or bsrA (strains ΔbsrAB + B and ΔbsrAB + A) mimicked the phenotypes of the ΔbsrA and ΔbsrB strains, respectively, complementation with the gene ssrS encoding Escherichia coli 6S RNA failed to cure the "low stationary optical density" phenotype of the double mutant, despite ssrS expression, in line with previous findings. Finally, proteomics (two-dimensional differential gel electrophoresis, 2D-DIGE) of B. subtilis 6S RNA deletion strains unveiled a set of proteins that were expressed at higher levels particularly during exponential growth and preferentially in mutant strains lacking 6S-2 RNA. Several of these proteins are involved in metabolism and stress responses.
Collapse
Affiliation(s)
- Philipp G Hoch
- Philipps-Universität Marburg, Fachbereich Pharmazie, Institut für Pharmazeutische Chemie, Marbacher Weg 6, D-35037 Marburg, Germany.
| | - Olga Y Burenina
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia.
| | - Michael H W Weber
- Philipps-Universität Marburg, Fachbereich Pharmazie, Institut für Pharmazeutische Chemie, Marbacher Weg 6, D-35037 Marburg, Germany.
| | - Daria A Elkina
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia.
| | - Mikhail V Nesterchuk
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia.
| | - Petr V Sergiev
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia.
| | - Roland K Hartmann
- Philipps-Universität Marburg, Fachbereich Pharmazie, Institut für Pharmazeutische Chemie, Marbacher Weg 6, D-35037 Marburg, Germany.
| | - Elena A Kubareva
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia.
| |
Collapse
|
8
|
Male AL, Oyston PCF, Tavassoli A. Self-Assembly of <i>Escherichia coli</i> Phage Shock Protein A. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aim.2014.47042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Mehta P, Jovanovic G, Lenn T, Bruckbauer A, Engl C, Ying L, Buck M. Dynamics and stoichiometry of a regulated enhancer-binding protein in live Escherichia coli cells. Nat Commun 2013; 4:1997. [PMID: 23764692 PMCID: PMC3709507 DOI: 10.1038/ncomms2997] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 05/09/2013] [Indexed: 12/02/2022] Open
Abstract
Bacterial enhancer-dependent transcription systems support major adaptive responses and offer a singular paradigm in gene control analogous to complex eukaryotic systems. Here we report new mechanistic insights into the control of one-membrane stress-responsive bacterial enhancer-dependent system. Using millisecond single-molecule fluorescence microscopy of live cells we determine the localizations, two-dimensional diffusion dynamics and stoichiometries of complexes of the bacterial enhancer-binding ATPase PspF during its action at promoters as regulated by inner membrane interacting negative controller PspA. We establish that a stable repressive PspF–PspA complex is located in the nucleoid, transiently communicating with the inner membrane via PspA. The PspF as a hexamer stably binds only one of the two psp promoters at a time, suggesting that psp promoters will fire asynchronously and cooperative interactions of PspF with the basal transcription complex influence dynamics of the PspF hexamer–DNA complex and regulation of the psp promoters. Cellular adaptive responses require temporal and spatial control of key regulatory protein complexes. Mehta et al. describe the dynamic interaction of a transcriptional activator mediating membrane stress response in E. coli with its negative regulator, the cell membrane and the transcription machinery.
Collapse
Affiliation(s)
- Parul Mehta
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
10
|
Huvet M, Toni T, Sheng X, Thorne T, Jovanovic G, Engl C, Buck M, Pinney J, Stumpf M. The evolution of the phage shock protein response system: interplay between protein function, genomic organization, and system function. Mol Biol Evol 2011; 28:1141-55. [PMID: 21059793 PMCID: PMC3041696 DOI: 10.1093/molbev/msq301] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Sensing the environment and responding appropriately to it are key capabilities for the survival of an organism. All extant organisms must have evolved suitable sensors, signaling systems, and response mechanisms allowing them to survive under the conditions they are likely to encounter. Here, we investigate in detail the evolutionary history of one such system: The phage shock protein (Psp) stress response system is an important part of the stress response machinery in many bacteria, including Escherichia coli K12. Here, we use a systematic analysis of the genes that make up and regulate the Psp system in E. coli in order to elucidate the evolutionary history of the system. We compare gene sharing, sequence evolution, and conservation of protein-coding as well as noncoding DNA sequences and link these to comparative analyses of genome/operon organization across 698 bacterial genomes. Finally, we evaluate experimentally the biological advantage/disadvantage of a simplified version of the Psp system under different oxygen-related environments. Our results suggest that the Psp system evolved around a core response mechanism by gradually co-opting genes into the system to provide more nuanced sensory, signaling, and effector functionalities. We find that recruitment of new genes into the response machinery is closely linked to incorporation of these genes into a psp operon as is seen in E. coli, which contains the bulk of genes involved in the response. The organization of this operon allows for surprising levels of additional transcriptional control and flexibility. The results discussed here suggest that the components of such signaling systems will only be evolutionarily conserved if the overall functionality of the system can be maintained.
Collapse
Affiliation(s)
- M. Huvet
- Centre for Bioinformatics, Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - T. Toni
- Centre for Bioinformatics, Division of Molecular Biosciences, Imperial College London, London, United Kingdom
- Institute of Mathematical Sciences, Imperial College London, London, United Kingdom
| | - X. Sheng
- Centre for Bioinformatics, Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - T. Thorne
- Centre for Bioinformatics, Division of Molecular Biosciences, Imperial College London, London, United Kingdom
- Institute of Mathematical Sciences, Imperial College London, London, United Kingdom
| | - G. Jovanovic
- Division of Biology, Imperial College London, London, United Kingdom
| | - C. Engl
- Division of Biology, Imperial College London, London, United Kingdom
| | - M. Buck
- Division of Biology, Imperial College London, London, United Kingdom
| | - J.W. Pinney
- Centre for Bioinformatics, Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - M.P.H. Stumpf
- Centre for Bioinformatics, Division of Molecular Biosciences, Imperial College London, London, United Kingdom
- Institute of Mathematical Sciences, Imperial College London, London, United Kingdom
- Centre for Integrative Systems Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Joly N, Engl C, Jovanovic G, Huvet M, Toni T, Sheng X, Stumpf MPH, Buck M. Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol Rev 2010; 34:797-827. [PMID: 20636484 DOI: 10.1111/j.1574-6976.2010.00240.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The bacterial phage shock protein (Psp) response functions to help cells manage the impacts of agents impairing cell membrane function. The system has relevance to biotechnology and to medicine. Originally discovered in Escherichia coli, Psp proteins and homologues are found in Gram-positive and Gram-negative bacteria, in archaea and in plants. Study of the E. coli and Yersinia enterocolitica Psp systems provides insights into how membrane-associated sensory Psp proteins might perceive membrane stress, signal to the transcription apparatus and use an ATP-hydrolysing transcription activator to produce effector proteins to overcome the stress. Progress in understanding the mechanism of signal transduction by the membrane-bound Psp proteins, regulation of the psp gene-specific transcription activator and the cell biology of the system is presented and discussed. Many features of the action of the Psp system appear to be dominated by states of self-association of the master effector, PspA, and the transcription activator, PspF, alongside a signalling pathway that displays strong conditionality in its requirement.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Imperial College London, South Kensington, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Critzer FJ, D'Souza DH, Saxton AM, Golden DA. Increased transcription of the phosphate-specific transport system of Escherichia coli O157:H7 after exposure to sodium benzoate. J Food Prot 2010; 73:819-24. [PMID: 20501031 DOI: 10.4315/0362-028x-73.5.819] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sodium benzoate is a widely used food antimicrobial in drinks and fruit juices. A microarray study was conducted to determine the transcriptional response of Escherichia coli O157:H7 to 0.5% (wt/vol) sodium benzoate. E. coli O157:H7 grown in 150 ml of Luria-Bertani broth was exposed to 0% (control) and 0.5% sodium benzoate. Each treatment was duplicated and sampled at 0 (immediately after exposure), 5, 15, 30, and 60 min. Total RNA was extracted and analyzed with E. coli 2.0 Gene Chips. Significant ontology categories affected by sodium benzoate exposure were determined with JProGO software. The phosphate-specific transport (Pst) system transports inorganic phosphate into bacterial cells, under phosphate-limited conditions. The Pst system was found to be highly upregulated. Increased expression of the Pst system was observed after the short 5 min of exposure to sodium benzoate; pstS, pstA, pstB, and pstC genes were upregulated more than twofold (linear scale) at 5, 15, 30, and 60 min. Increased expression of several other efflux systems, such as AcrAB-TolC, was also observed. The Pst system may act as an efflux pump under these stress-adapted conditions, as well as increase transport of phosphorus to aid in DNA, RNA, ATP, and phospholipid production. Understanding adaptations of Escherichia coli O157:H7 under antimicrobial exposure is essential to better understand and implement methods to inhibit or control its survival in foods.
Collapse
Affiliation(s)
- Faith J Critzer
- Department of Food Science and Technology, The University of Tennessee, Knoxville, Tennessee 37996-4591, USA
| | | | | | | |
Collapse
|
13
|
Joly N, Burrows PC, Engl C, Jovanovic G, Buck M. A lower-order oligomer form of phage shock protein A (PspA) stably associates with the hexameric AAA(+) transcription activator protein PspF for negative regulation. J Mol Biol 2009; 394:764-75. [PMID: 19804784 PMCID: PMC3128695 DOI: 10.1016/j.jmb.2009.09.055] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 09/22/2009] [Indexed: 12/02/2022]
Abstract
To survive and colonise their various environments, including those used during infection, bacteria have developed a variety of adaptive systems. Amongst these is phage shock protein (Psp) response, which can be induced in Escherichia coli upon filamentous phage infection (specifically phage secretin pIV) and by other membrane-damaging agents. The E. coli Psp system comprises seven proteins, of which PspA is the central component. PspA is a bifunctional protein that is directly involved in (i) the negative regulation of the psp-specific transcriptional activator PspF and (ii) the maintenance of membrane integrity in a mechanism proposed to involve the formation of a 36-mer ring complex. Here we established that the PspA negative regulation of PspF ATPase activity is the result of a cooperative inhibition. We present biochemical evidence showing that an inhibitory PspA–PspF regulatory complex, which has significantly reduced PspF ATPase activity, is composed of around six PspF subunits and six PspA subunits, suggesting that PspA exists in at least two different oligomeric assemblies. We now establish that all four putative helical domains of PspA are critical for the formation of the 36-mer. In contrast, not all four helical domains are required for the formation of the inhibitory PspA–PspF complex. Since a range of initial PspF oligomeric states permit formation of the apparent PspA–PspF dodecameric assembly, we conclude that PspA and PspF demonstrate a strong propensity to self-assemble into a single defined heteromeric regulatory complex.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
14
|
Gao H, Wang X, Yang ZK, Palzkill T, Zhou J. Probing regulon of ArcA in Shewanella oneidensis MR-1 by integrated genomic analyses. BMC Genomics 2008; 9:42. [PMID: 18221523 PMCID: PMC2262068 DOI: 10.1186/1471-2164-9-42] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 01/25/2008] [Indexed: 01/02/2023] Open
Abstract
Background The Arc two-component system is a global regulator controlling many genes involved in aerobic/anaerobic respiration and fermentative metabolism in Escherichia coli. Shewanella oneidensis MR-1 contains a gene encoding a putative ArcA homolog with ~81% amino acid sequence identity to the E. coli ArcA protein but not a full-length arcB gene. Results To understand the role of ArcA in S. oneidensis, an arcA deletion strain was constructed and subjected to both physiological characterization and microarray analysis. Compared to the wild-type MR-1, the mutant exhibited impaired aerobic growth and a defect in utilizing DMSO in the absence of O2. Microarray analyses on cells grown aerobically and anaerobically on fumarate revealed that expression of 1009 genes was significantly affected (p < 0.05) by the mutation. In contrast to E. coli ArcA, the protein appears to be dispensable in regulation of the TCA cycle in S. oneidensis. To further determine genes regulated by the Arc system, an ArcA recognition weight matrix from DNA-binding data and bioinformatics analysis was generated and used to produce an ArcA sequence affinity map. By combining both techniques, we identified an ArcA regulon of at least 50 operons, of which only 6 were found to be directly controlled by ArcA in E. coli. Conclusion These results indicate that the Arc system in S. oneidensis differs from that in E. coli substantially in terms of its physiological function and regulon while their binding motif are strikingly similar.
Collapse
Affiliation(s)
- Haichun Gao
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019, USA.
| | | | | | | | | |
Collapse
|
15
|
Buck M, Bose D, Burrows P, Cannon W, Joly N, Pape T, Rappas M, Schumacher J, Wigneshweraraj S, Zhang X. A second paradigm for gene activation in bacteria. Biochem Soc Trans 2007; 34:1067-71. [PMID: 17073752 DOI: 10.1042/bst0341067] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Control of gene expression is key to development and adaptation. Using purified transcription components from bacteria, we employ structural and functional studies in an integrative manner to elaborate a detailed description of an obligatory step, the accessing of the DNA template, in gene expression. Our work focuses on a specialized molecular machinery that utilizes ATP hydrolysis to initiate DNA opening and permits a description of how the events triggered by ATP hydrolysis within a transcriptional activator can lead to DNA opening and transcription. The bacterial EBPs (enhancer binding proteins) that belong to the AAA(+) (ATPases associated with various cellular activities) protein family remodel the RNAP (RNA polymerase) holoenzyme containing the sigma(54) factor and convert the initial, transcriptionally silent promoter complex into a transcriptionally proficient open complex using transactions that reflect the use of ATP hydrolysis to establish different functional states of the EBP. A molecular switch within the model EBP we study [called PspF (phage shock protein F)] is evident, and functions to control the exposure of a solvent-accessible flexible loop that engages directly with the initial RNAP promoter complex. The sigma(54) factor then controls the conformational changes in the RNAP required to form the open promoter complex.
Collapse
Affiliation(s)
- M Buck
- Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jovanovic G, Lloyd LJ, Stumpf MPH, Mayhew AJ, Buck M. Induction and Function of the Phage Shock Protein Extracytoplasmic Stress Response in Escherichia coli. J Biol Chem 2006; 281:21147-21161. [PMID: 16709570 DOI: 10.1074/jbc.m602323200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phage shock protein (Psp) F regulon response in Escherichia coli is thought to be induced by impaired inner membrane integrity and an associated decrease in proton motive force (pmf). Mechanisms by which the Psp system detects the stress signal and responds have so far remained undetermined. Here we demonstrate that PspA and PspG directly confront a variety of inducing stimuli by switching the cell to anaerobic respiration and fermentation and by down-regulating motility, thereby subtly adjusting and maintaining energy usage and pmf. Additionally, PspG controls iron usage. We show that the Psp-inducing protein IV secretin stress, in the absence of Psp proteins, decreases the pmf in an ArcB-dependent manner and that ArcB is required for amplifying and transducing the stress signal to the PspF regulon. The requirement of the ArcB signal transduction protein for induction of psp provides clear evidence for a direct link between the physiological redox state of the cell, the electron transport chain, and induction of the Psp response. Under normal growth conditions PspA and PspD control the level of activity of ArcB/ArcA system that senses the redox/metabolic state of the cell, whereas under stress conditions PspA, PspD, and PspG deliver their effector functions at least in part by activating ArcB/ArcA through positive feedback.
Collapse
Affiliation(s)
- Goran Jovanovic
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Louise J Lloyd
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Michael P H Stumpf
- Centre for Bioinformatics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Antony J Mayhew
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Martin Buck
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.
| |
Collapse
|
17
|
Lloyd LJ, Jones SE, Jovanovic G, Gyaneshwar P, Rolfe MD, Thompson A, Hinton JC, Buck M. Identification of a New Member of the Phage Shock Protein Response in Escherichia coli, the Phage Shock Protein G (PspG). J Biol Chem 2004; 279:55707-14. [PMID: 15485810 DOI: 10.1074/jbc.m408994200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phage shock protein operon (pspABCDE) of Escherichia coli is strongly up-regulated in response to overexpression of the filamentous phage secretin protein IV (pIV) and by many other stress conditions including defects in protein export. PspA has an established role in maintenance of the proton-motive force of the cell under stress conditions. Here we present evidence for a new member of the phage shock response in E. coli. Using transcriptional profiling, we show that the synthesis of pIV in E. coli leads to a highly restricted response limited to the up-regulation of the psp operon genes and yjbO. The psp operon and yjbO are also up-regulated in response to pIV in Salmonella enterica serovar Typhimurium. yjbO is a highly conserved gene found exclusively in bacteria that contain a psp operon but is physically unlinked to the psp operon. yjbO encodes a putative inner membrane protein that is co-controlled with the psp operon genes and is predicted to be an effector of the psp response in E. coli. We present evidence that yjbO expression is driven by sigma(54)-RNA polymerase, activated by PspF and integration host factor, and negatively regulated by PspA. PspF specifically regulates only members of the PspF regulon: pspABCDE and yjbO. We found that increased expression of YjbO results in decreased motility of bacteria. Because yjbO is co-conserved and co-regulated with the psp operon and is a member of the phage shock protein F regulon, we propose that yjbO be renamed pspG.
Collapse
Affiliation(s)
- Louise J Lloyd
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
sigma54 is unique among the bacterial sigma factors. Besides not being related in sequence with the rest of such factors, its mechanism of transcription initiation is completely different and requires the participation of a transcription activator. In addition, whereas the rest of the alternative sigma factors use to be involved in transcription of somehow related biological functions, this is not the case for sigma54 and many different and unrelated genes have been shown to be transcribed from sigma54-dependent promoters, ranging from flagellation, to utilization of several different carbon and nitrogen sources, or alginate biosynthesis. These genes have been characterized in many different bacterial species and, only until recently with the arrival of complete genome sequences, we have been able to look at the sigma54 functional role from a genomic perspective. Aided by computational methods, the sigma54 regulon has been studied both in Escherichia coli, Salmonella typhimurium and several species of the Rhizobiaceae. Here we present the analysis of the sigma54 regulon (sigmulon) in the complete genome of Pseudomonas putida KT2440. We have developed an improved method for the prediction of sigma54-dependent promoters which combines the scores of sigma54-RNAP target sequences and those of activator binding sites. In combination with other evidence obtained from the chromosomal context and the similarity with closely related bacteria, we have been able to predict more than 80% of the sigma54-dependent promoters of P. putida with high confidence. Our analysis has revealed new functions for sigma54 and, by means of comparative analysis with the previous studies, we have drawn a potential mechanism for the evolution of this regulatory system.
Collapse
Affiliation(s)
- Ildefonso Cases
- Centro Nacional de Biotecnología, CSIC Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
19
|
Adams H, Teertstra W, Demmers J, Boesten R, Tommassen J. Interactions between phage-shock proteins in Escherichia coli. J Bacteriol 2003; 185:1174-80. [PMID: 12562786 PMCID: PMC142853 DOI: 10.1128/jb.185.4.1174-1180.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the pspABCDE operon of Escherichia coli is induced upon infection by filamentous phage and by many other stress conditions, including defects in protein export. Expression of the operon requires the alternative sigma factor sigma54 and the transcriptional activator PspF. In addition, PspA plays a negative regulatory role, and the integral-membrane proteins PspB and PspC play a positive one. In this study, we investigated whether the suggested protein-protein interactions implicated in this complex regulatory network can indeed be demonstrated. Antisera were raised against PspB, PspC, and PspD, which revealed, in Western blotting experiments, that PspC forms stable sodium dodecyl sulfate-resistant dimers and that the hypothetical pspD gene is indeed expressed in vivo. Fractionation experiments showed that PspD localizes as a peripherally bound inner membrane protein. Cross-linking studies with intact cells revealed specific interactions of PspA with PspB and PspC, but not with PspD. Furthermore, affinity-chromatography suggested that PspB could bind PspA only in the presence of PspC. These data indicate that regulation of the psp operon is mediated via protein-protein interactions.
Collapse
Affiliation(s)
- Hendrik Adams
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Hutcheson SW, Bretz J, Sussan T, Jin S, Pak K. Enhancer-binding proteins HrpR and HrpS interact to regulate hrp-encoded type III protein secretion in Pseudomonas syringae strains. J Bacteriol 2001; 183:5589-98. [PMID: 11544221 PMCID: PMC95450 DOI: 10.1128/jb.183.19.5589-5598.2001] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Pseudomonas syringae strains, the hrp-hrc pathogenicity island consists of an HrpL-dependent regulon that encodes a type III protein translocation complex and translocated effector proteins required for pathogenesis. HrpR and HrpS function as positive regulatory factors for the hrpL promoter, but their mechanism of action has not been established. Both HrpR and HrpS are structurally related to enhancer-binding proteins, but they lack receiver domains and do not appear to require a cognate protein kinase for activity. hrpR and hrpS were shown to be expressed as an operon: a promoter was identified 5' to hrpR, and reverse transcriptase PCR detected the presence of an hrpRS transcript. The hrpR promoter and coding sequence were conserved among P. syringae strains. The coding sequences for hrpR and hrpS were cloned into compatible expression vectors, and their activities were monitored in Escherichia coli transformants carrying an hrpL'-lacZ fusion. HrpS could function as a weak activator of the hrpL promoter, but the activity was only 2.5% of the activity detected when both HrpR and HrpS were expressed in the reporter strain. This finding is consistent with a requirement for both HrpR and HrpS in the activation of the hrpL promoter. By using a yeast two-hybrid assay, an interaction between HrpR and HrpS was detected, suggestive of the formation of a heteromeric complex. Physical interaction of HrpR and HrpS was confirmed by column-binding experiments. The results show that HrpR and HrpS physically interact to regulate the sigma(54)-dependent hrpL promoter in P. syringae strains.
Collapse
Affiliation(s)
- S W Hutcheson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA.
| | | | | | | | | |
Collapse
|
21
|
Reitzer L, Schneider BL. Metabolic context and possible physiological themes of sigma(54)-dependent genes in Escherichia coli. Microbiol Mol Biol Rev 2001; 65:422-44, table of contents. [PMID: 11528004 PMCID: PMC99035 DOI: 10.1128/mmbr.65.3.422-444.2001] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sigma(54) has several features that distinguish it from other sigma factors in Escherichia coli: it is not homologous to other sigma subunits, sigma(54)-dependent expression absolutely requires an activator, and the activator binding sites can be far from the transcription start site. A rationale for these properties has not been readily apparent, in part because of an inability to assign a common physiological function for sigma(54)-dependent genes. Surveys of sigma(54)-dependent genes from a variety of organisms suggest that the products of these genes are often involved in nitrogen assimilation; however, many are not. Such broad surveys inevitably remove the sigma(54)-dependent genes from a potentially coherent metabolic context. To address this concern, we consider the function and metabolic context of sigma(54)-dependent genes primarily from a single organism, Escherichia coli, in which a reasonably complete list of sigma(54)-dependent genes has been identified by computer analysis combined with a DNA microarray analysis of nitrogen limitation-induced genes. E. coli appears to have approximately 30 sigma(54)-dependent operons, and about half are involved in nitrogen assimilation and metabolism. A possible physiological relationship between sigma(54)-dependent genes may be based on the fact that nitrogen assimilation consumes energy and intermediates of central metabolism. The products of the sigma(54)-dependent genes that are not involved in nitrogen metabolism may prevent depletion of metabolites and energy resources in certain environments or partially neutralize adverse conditions. Such a relationship may limit the number of physiological themes of sigma(54)-dependent genes within a single organism and may partially account for the unique features of sigma(54) and sigma(54)-dependent gene expression.
Collapse
Affiliation(s)
- L Reitzer
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, TX 75083-0688, USA.
| | | |
Collapse
|
22
|
O’Neill E, Wikström P, Shingler V. An active role for a structured B-linker in effector control of the sigma54-dependent regulator DmpR. EMBO J 2001; 20:819-27. [PMID: 11179226 PMCID: PMC145425 DOI: 10.1093/emboj/20.4.819] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The activities of many prokaryotic sigma54-dependent transcriptional activators are controlled by the N-terminal A-domain of the protein, which is linked to the central transcriptional activation domain via a short B-linker. It used to be thought that these B-linkers simply serve as flexible tethers. Here we show that the B-linker of the aromatic-responsive regulator DmpR and many other regulators of the family contain signature heptad repeats with regularly spaced hydrophobic amino acids. Mutant analysis of this region of DmpR demonstrates that B-linker function is dependent on the heptad repeats and is critical for activation of the protein by aromatic effectors. The phenotypes of DmpR mutants refute the existing model that the level of ATPase activity directly controls the level of transcription it promotes. The mutant analysis also shows that the B-linker is involved in repression of ATPase activity and that allosteric changes upon effector binding are transduced to alleviate both B-linker repression of ATP hydrolysis and A-domain repression of transcriptional activation. The mechanistic implications of these findings for DmpR and other family members are discussed.
Collapse
Affiliation(s)
| | | | - Victoria Shingler
- Department of Cell and Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
Corresponding author e-mail:
| |
Collapse
|
23
|
Dworkin J, Jovanovic G, Model P. The PspA protein of Escherichia coli is a negative regulator of sigma(54)-dependent transcription. J Bacteriol 2000; 182:311-9. [PMID: 10629175 PMCID: PMC94278 DOI: 10.1128/jb.182.2.311-319.2000] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/1999] [Accepted: 10/27/1999] [Indexed: 11/20/2022] Open
Abstract
In Eubacteria, expression of genes transcribed by an RNA polymerase holoenzyme containing the alternate sigma factor sigma(54) is positively regulated by proteins belonging to the family of enhancer-binding proteins (EBPs). These proteins bind to upstream activation sequences and are required for the initiation of transcription at the sigma(54)-dependent promoters. They are typically inactive until modified in their N-terminal regulatory domain either by specific phosphorylation or by the binding of a small effector molecule. EBPs lacking this domain, such as the PspF activator of the sigma(54)-dependent pspA promoter, are constitutively active. We describe here the in vivo and in vitro properties of the PspA protein of Escherichia coli, which negatively regulates expression of the pspA promoter without binding DNA directly.
Collapse
Affiliation(s)
- J Dworkin
- Laboratory of Genetics, The Rockefeller University, New York, New York 10021, USA.
| | | | | |
Collapse
|
24
|
Jovanovic G, Rakonjac J, Model P. In vivo and in vitro activities of the Escherichia coli sigma54 transcription activator, PspF, and its DNA-binding mutant, PspFDeltaHTH. J Mol Biol 1999; 285:469-83. [PMID: 9878422 DOI: 10.1006/jmbi.1998.2263] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription of the phage-shock protein (psp) operon in Escherichia coli is driven by a sigma54 promoter, stimulated by integration host factor and dependent on an upstream, cis-acting sequence and an activator protein, PspF. PspF belongs to the enhancer binding protein family but lacks an N-terminal regulatory domain. Purified PspF is not modified and has an ATPase activity that is increased twofold in the presence of DNA carrying the psp cis-acting sequence. Purified mutant His-tagged PspF that lacks the C-terminal DNA-binding motif has a DNA-independent ATPase activity when present at 30-fold the concentration of the wild-type protein. Both proteins oligomerize in solution in an ATP and DNA-independent manner. The wild-type activator protein, but not the DNA-binding mutant, binds specifically to the cis-acting sequence. Analysis of the sequence protected by PspF demonstrates the presence of two upstream binding sites within the sequence, UAS I and UAS II, which together constitute the psp enhancer. Protection at low protein concentrations is more pronounced and more extensive on a supercoiled DNA than on a linear template. Full expression of the psp operon upon hyperosmotic shock depends on wild-type PspF, but only partially requires the presence of the psp enhancer.
Collapse
Affiliation(s)
- G Jovanovic
- Laboratory of Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | | | | |
Collapse
|
25
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|