1
|
Fulton KM, Mendoza-Barberà E, Tomás JM, Twine SM, Smith JC, Merino S. Polar flagellin glycan heterogeneity of Aeromonas hydrophila strain ATCC 7966 T. Bioorg Chem 2025; 158:108300. [PMID: 40058227 DOI: 10.1016/j.bioorg.2025.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/08/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Motile pathogens often rely upon flagellar motility as an essential virulence factor and in many species the structural flagellin protein is glycosylated. Flagellin glycosylation has been shown to be important for proper function of the flagellar filament in a number of bacterial species. Aeromonas hydrophila is a ubiquitous aquatic pathogen with a constitutively expressed polar flagellum. Using a suite of mass spectrometry techniques, the flagellin FlaA and FlaB structural proteins of A. hydrophila strain ATCC 7966T were shown to be glycosylated with significant microheterogeneity, macroheterogeneity, and metaheterogeneity. The primary linking sugar in this strain was a novel and previously unreported pseudaminic acid derivative with a mass of 422 Da. The pseudaminic acid derivative was followed in sequence by two hexoses, an N-acetylglucosamine (with additional variable secondary modification), and a deoxy N-acetylglucosamine derivative. These pentasaccharide glycans were observed modifying all eight modification sites. Hexasaccharides, which included an additional N-acetylhexosamine residue as the capping sugar, were observed exclusively modifying a pair of isobaric peptides from FlaA and FlaB. Interestingly, these isobaric peptides are immediately adjacent to a toll-like receptor 5 binding site in both protein sequences. Glycosylation status was also linked to motility, a critical bacterial virulence factor.
Collapse
Affiliation(s)
- Kelly M Fulton
- Department of Chemistry, Faculty of Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada; Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1N 5A2, Canada.
| | - Elena Mendoza-Barberà
- Departamento de Biologia, Sanidad y Medio Ambiente, Facultad de Farmacia y Ciencias de la Alimentación, Universidad de Barcelona, C/ Joan XXIII, 27, 08028 Barcelona, Barcelona, Spain; Instituto de Investigación en Nutrición y Seguridad Alimentaria (INSA), Universidad de Barcelona, Av. Prat de la Riba, 171, 08921, Santa Coloma de Gramenet, Barcelona, Spain
| | - Juan M Tomás
- Instituto de Investigación en Nutrición y Seguridad Alimentaria (INSA), Universidad de Barcelona, Av. Prat de la Riba, 171, 08921, Santa Coloma de Gramenet, Barcelona, Spain; Departamento de Genética, Microbiología y Estadística, Facultad de Biología, Universidad de Barcelona, Avd. Diagonal 643, 08028 Barcelona, Barcelona, Spain
| | - Susan M Twine
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1N 5A2, Canada; Department of Biology, Faculty of Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Jeffrey C Smith
- Department of Chemistry, Faculty of Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Susana Merino
- Instituto de Investigación en Nutrición y Seguridad Alimentaria (INSA), Universidad de Barcelona, Av. Prat de la Riba, 171, 08921, Santa Coloma de Gramenet, Barcelona, Spain; Departamento de Genética, Microbiología y Estadística, Facultad de Biología, Universidad de Barcelona, Avd. Diagonal 643, 08028 Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Zhao X, Wang W, Zeng X, Xu R, Yuan B, Yu W, Wang M, Jia R, Chen S, Zhu D, Liu M, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Sun D, Cheng A. Klebicin E, a pore-forming bacteriocin of Klebsiella pneumoniae, exploits the porin OmpC and the Ton system for translocation. J Biol Chem 2024; 300:105694. [PMID: 38301890 PMCID: PMC10906532 DOI: 10.1016/j.jbc.2024.105694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Bacteriocins, which have narrow-spectrum activity and limited adverse effects, are promising alternatives to antibiotics. In this study, we identified klebicin E (KlebE), a small bacteriocin derived from Klebsiella pneumoniae. KlebE exhibited strong efficacy against multidrug-resistant K. pneumoniae isolates and conferred a significant growth advantage to the producing strain during intraspecies competition. A giant unilamellar vesicle leakage assay demonstrated the unique membrane permeabilization effect of KlebE, suggesting that it is a pore-forming toxin. In addition to a C-terminal toxic domain, KlebE also has a disordered N-terminal domain and a globular central domain. Pulldown assays and soft agar overlay experiments revealed the essential role of the outer membrane porin OmpC and the Ton system in KlebE recognition and cytotoxicity. Strong binding between KlebE and both OmpC and TonB was observed. The TonB-box, a crucial component of the toxin-TonB interaction, was identified as the 7-amino acid sequence (E3ETLTVV9) located in the N-terminal region. Further studies showed that a region near the bottom of the central domain of KlebE plays a primary role in recognizing OmpC, with eight residues surrounding this region identified as essential for KlebE toxicity. Finally, based on the discrepancies in OmpC sequences between the KlebE-resistant and sensitive strains, it was found that the 91st residue of OmpC, an aspartic acid residue, is a key determinant of KlebE toxicity. The identification and characterization of this toxin will facilitate the development of bacteriocin-based therapies targeting multidrug-resistant K. pneumoniae infections.
Collapse
Affiliation(s)
- Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China
| | - Wenyu Wang
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Zeng
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Rong Xu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
| | - Wenyao Yu
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Fivenson EM, Rohs PDA, Vettiger A, Sardis MF, Torres G, Forchoh A, Bernhardt TG. A role for the Gram-negative outer membrane in bacterial shape determination. Proc Natl Acad Sci U S A 2023; 120:e2301987120. [PMID: 37607228 PMCID: PMC10469335 DOI: 10.1073/pnas.2301987120] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/21/2023] [Indexed: 08/24/2023] Open
Abstract
The cell envelope of Gram-negative bacteria consists of three distinct layers: the cytoplasmic membrane, a cell wall made of peptidoglycan (PG), and an asymmetric outer membrane (OM) composed of phospholipid in the inner leaflet and lipopolysaccharide (LPS) glycolipid in the outer leaflet. The PG layer has long been thought to be the major structural component of the envelope protecting cells from osmotic lysis and providing them with their characteristic shape. In recent years, the OM has also been shown to be a load-bearing layer of the cell surface that fortifies cells against internal turgor pressure. However, whether the OM also plays a role in morphogenesis has remained unclear. Here, we report that changes in LPS synthesis or modification predicted to strengthen the OM can suppress the growth and shape defects of Escherichia coli mutants with reduced activity in a conserved PG synthesis machine called the Rod complex (elongasome) that is responsible for cell elongation and shape determination. Evidence is presented that OM fortification in the shape mutants restores the ability of MreB cytoskeletal filaments to properly orient the synthesis of new cell wall material by the Rod complex. Our results are therefore consistent with a role for the OM in the propagation of rod shape during growth in addition to its well-known function as a diffusion barrier promoting the intrinsic antibiotic resistance of Gram-negative bacteria.
Collapse
Affiliation(s)
- Elayne M. Fivenson
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Patricia D. A. Rohs
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Andrea Vettiger
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Marios F. Sardis
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Grasiela Torres
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Alison Forchoh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
4
|
Harnagel AP, Sheshova M, Zheng M, Zheng M, Skorupinska-Tudek K, Swiezewska E, Lupoli TJ. Preference of Bacterial Rhamnosyltransferases for 6-Deoxysugars Reveals a Strategy To Deplete O-Antigens. J Am Chem Soc 2023. [PMID: 37437030 PMCID: PMC10375533 DOI: 10.1021/jacs.3c03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Bacteria synthesize hundreds of bacteria-specific or "rare" sugars that are absent in mammalian cells and enriched in 6-deoxy monosaccharides such as l-rhamnose (l-Rha). Across bacteria, l-Rha is incorporated into glycans by rhamnosyltransferases (RTs) that couple nucleotide sugar substrates (donors) to target biomolecules (acceptors). Since l-Rha is required for the biosynthesis of bacterial glycans involved in survival or host infection, RTs represent potential antibiotic or antivirulence targets. However, purified RTs and their unique bacterial sugar substrates have been difficult to obtain. Here, we use synthetic nucleotide rare sugar and glycolipid analogs to examine substrate recognition by three RTs that produce cell envelope components in diverse species, including a known pathogen. We find that bacterial RTs prefer pyrimidine nucleotide-linked 6-deoxysugars, not those containing a C6-hydroxyl, as donors. While glycolipid acceptors must contain a lipid, isoprenoid chain length, and stereochemistry can vary. Based on these observations, we demonstrate that a 6-deoxysugar transition state analog inhibits an RT in vitro and reduces levels of RT-dependent O-antigen polysaccharides in Gram-negative cells. As O-antigens are virulence factors, bacteria-specific sugar transferase inhibition represents a novel strategy to prevent bacterial infections.
Collapse
Affiliation(s)
- Alexa P Harnagel
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Mia Sheshova
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Meng Zheng
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Maggie Zheng
- Department of Chemistry, New York University, New York, New York 10003, United States
| | | | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
5
|
Fivenson EM, Rohs PD, Vettiger A, Sardis MF, Torres G, Forchoh A, Bernhardt TG. A role for the Gram-negative outer membrane in bacterial shape determination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527047. [PMID: 36778245 PMCID: PMC9915748 DOI: 10.1101/2023.02.03.527047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cell envelope of Gram-negative bacteria consists of three distinct layers: the cytoplasmic membrane, a cell wall made of peptidoglycan (PG), and an asymmetric outer membrane (OM) composed of phospholipid in the inner leaflet and lipopolysaccharide (LPS) glycolipid in the outer leaflet. The PG layer has long been thought to be the major structural component of the envelope protecting cells from osmotic lysis and providing them with their characteristic shape. In recent years, the OM has also been shown to be a load-bearing layer of the cell surface that fortifies cells against internal turgor pressure. However, whether the OM also plays a role in morphogenesis has remained unclear. Here, we report that changes in LPS synthesis or modification predicted to strengthen the OM can suppress the growth and shape defects of Escherichia coli mutants with reduced activity in a conserved PG synthesis machine called the Rod system (elongasome) that is responsible for cell elongation and shape determination. Evidence is presented that OM fortification in the shape mutants restores the ability of MreB cytoskeletal filaments to properly orient the synthesis of new cell wall material by the Rod system. Our results are therefore consistent with a role for the OM in the propagation of rod shape during growth in addition to its well-known function as a diffusion barrier promoting the intrinsic antibiotic resistance of Gram-negative bacteria. SIGNIFICANCE The cell wall has traditionally been thought to be the main structural determinant of the bacterial cell envelope that resists internal turgor and determines cell shape. However, the outer membrane (OM) has recently been shown to contribute to the mechanical strength of Gram-negative bacterial envelopes. Here, we demonstrate that changes to OM composition predicted to increase its load bearing capacity rescue the growth and shape defects of Escherichia coli mutants defective in the major cell wall synthesis machinery that determines rod shape. Our results therefore reveal a previously unappreciated role for the OM in bacterial shape determination in addition to its well-known function as a diffusion barrier that protects Gram-negative bacteria from external insults like antibiotics.
Collapse
Affiliation(s)
- Elayne M. Fivenson
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Patricia D.A. Rohs
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Andrea Vettiger
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Marios F. Sardis
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Grasiela Torres
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Alison Forchoh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Boston, United States
| |
Collapse
|
6
|
Shimada T, Murayama R, Mashima T, Kawano N, Ishihama A. Regulatory role of CsuR (YiaU) in determination of cell surface properties of Escherichia coli K-12. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35438626 DOI: 10.1099/mic.0.001166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genomic SELEX screening was performed to identify the binding sites of YiaU, an uncharacterized LysR family transcription factor, on the Escherichia coli K-12 genome. Five high-affinity binding targets of YiaU were identified, all of which were involved in the structures of the bacterial cell surface such as outer and inner membrane proteins, and lipopolysaccharides. Detailed in vitro and in vivo analyses suggest that YiaU activates these target genes. To gain insight into the effects of YiaU in vivo on physiological properties, we used phenotype microarrays, biofilm screening assays and the sensitivity against serum complement analysed using a yiaU deletion mutant or YiaU expression strain. Together, these results suggest that the YiaU regulon confers resistance to some antibiotics, and increases biofilm formation and complement sensitivity. We propose renaming YiaU as CsuR (regulator of cell surface).
Collapse
Affiliation(s)
- Tomohiro Shimada
- Meiji University, School of Agriculture, Kawasaki, Kanagawa 214-8571, Japan.,Hosei University, Department of Frontier Bioscience, Koganei, Tokyo 184-8584, Japan
| | - Rie Murayama
- Hosei University, Research Institute of Micro-Nano Technology, Koganei, Tokyo 184-0003, Japan
| | - Tomoki Mashima
- Meiji University, School of Agriculture, Kawasaki, Kanagawa 214-8571, Japan
| | - Natsuko Kawano
- Meiji University, School of Agriculture, Kawasaki, Kanagawa 214-8571, Japan
| | - Akira Ishihama
- Hosei University, Department of Frontier Bioscience, Koganei, Tokyo 184-8584, Japan.,Hosei University, Research Institute of Micro-Nano Technology, Koganei, Tokyo 184-0003, Japan
| |
Collapse
|
7
|
Zhao X, Yang F, Shen H, Liao Y, Zhu D, Wang M, Jia R, Chen S, Liu M, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Immunogenicity and protection of a Pasteurella multocida strain with a truncated lipopolysaccharide outer core in ducks. Vet Res 2022; 53:17. [PMID: 35236414 PMCID: PMC8889768 DOI: 10.1186/s13567-022-01035-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022] Open
Abstract
Pasteurella multocida infection frequently causes fowl cholera outbreaks, leading to huge economic losses to the poultry industry worldwide. This study developed a novel live attenuated P. multocida vaccine strain for ducks named PMZ2 with deletion of the gatA gene and first four bases of the hptE gene, both of which are required for the synthesis of the lipopolysaccharide (LPS) outer core. PMZ2 produced a truncated LPS phenotype and was highly attenuated in ducks with a > 105-fold higher LD50 than the wild-type strain. PMZ2 colonized the blood and organs, including the spleen, liver and lung, at remarkably reduced levels, and its high dose of oral infection did not cause adverse effects on body temperatures and body weights in ducks. To evaluate the vaccine efficacy of the mutant, ducklings were inoculated orally or intranasally with PMZ2 or PBS twice and subsequently subjected to a lethal challenge. Compared with the PBS control, PMZ2 immunization stimulated significantly elevated serum IgG, bile IgA and tracheal IgA responses, especially after the boost immunization in both the oral and intranasal groups, and the induced serum had significant bactericidal effects against the wild-type strain. Furthermore, the two PMZ2 immunization groups exhibited alleviated tissue lesions and significantly decreased bacterial loads in the blood and organs compared with the PBS group post-challenge. All the ducks in the PMZ2 oral and intranasal groups survived the challenge, while 70% of ducks in the PBS group succumbed to the challenge. Thus, the P. multocida mutant with mutation of the gatA gene and part of the hptE gene proved to be an effective live attenuated vaccine candidate for prevention of fowl cholera in ducks.
Collapse
Affiliation(s)
- Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
| | - Fuxiang Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hui Shen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Liao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Bin Tian
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
8
|
Amemiya HM, Goss TJ, Nye TM, Hurto RL, Simmons LA, Freddolino PL. Distinct heterochromatin-like domains promote transcriptional memory and silence parasitic genetic elements in bacteria. EMBO J 2022; 41:e108708. [PMID: 34961960 PMCID: PMC8804932 DOI: 10.15252/embj.2021108708] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023] Open
Abstract
There is increasing evidence that prokaryotes maintain chromosome structure, which in turn impacts gene expression. We recently characterized densely occupied, multi-kilobase regions in the E. coli genome that are transcriptionally silent, similar to eukaryotic heterochromatin. These extended protein occupancy domains (EPODs) span genomic regions containing genes encoding metabolic pathways as well as parasitic elements such as prophages. Here, we investigate the contributions of nucleoid-associated proteins (NAPs) to the structuring of these domains, by examining the impacts of deleting NAPs on EPODs genome-wide in E. coli and B. subtilis. We identify key NAPs contributing to the silencing of specific EPODs, whose deletion opens a chromosomal region for RNA polymerase binding at genes contained within that region. We show that changes in E. coli EPODs facilitate an extra layer of transcriptional regulation, which prepares cells for exposure to exotic carbon sources. Furthermore, we distinguish novel xenogeneic silencing roles for the NAPs Fis and Hfq, with the presence of at least one being essential for cell viability in the presence of domesticated prophages. Our findings reveal previously unrecognized mechanisms through which genomic architecture primes bacteria for changing metabolic environments and silences harmful genomic elements.
Collapse
Affiliation(s)
- Haley M Amemiya
- Cellular and Molecular Biology ProgramUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Department of Computational Medicine and BioinformaticsUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Present address:
Broad Institute of MIT and HarvardCambridgeMAUSA
| | - Thomas J Goss
- Department of Biological ChemistryUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Taylor M Nye
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMIUSA
- Present address:
Department of Molecular MicrobiologyWashington University in St. Louis School of MedicineSt. LouisMOUSA
| | - Rebecca L Hurto
- Department of Biological ChemistryUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMIUSA
| | - Peter L Freddolino
- Cellular and Molecular Biology ProgramUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Department of Computational Medicine and BioinformaticsUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Department of Biological ChemistryUniversity of Michigan Medical SchoolAnn ArborMIUSA
| |
Collapse
|
9
|
Qin X, Liu Y, Shi X. Resistance-Nodulation-Cell Division (RND) Transporter AcrD Confers Resistance to Egg White in Salmonella enterica Serovar Enteritidis. Foods 2021; 11:foods11010090. [PMID: 35010216 PMCID: PMC8750817 DOI: 10.3390/foods11010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/11/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022] Open
Abstract
The excellent survival ability of Salmonella enterica serovar Enteritidis (S. Enteritidis) in egg white leads to outbreaks of salmonellosis frequently associated with eggs and egg products. Our previous proteomic study showed that the expression of multidrug efflux RND transporter AcrD in S. Enteritidis was significantly up-regulated (4.06-fold) in response to an egg white environment. In this study, the potential role of AcrD in the resistance of S. Enteritidis to egg white was explored by gene deletion, survival ability test, morphological observation, Caco-2 cell adhesion and invasion. It was found that deletion of acrD had no apparent effect on the growth of S. Enteritidis in Luria-Bertani (LB) broth but resulted in a significant (p < 0.05) decrease in resistance of S. Enteritidis to egg white and a small number of cell lysis. Compared to the wild type, a 2-log population reduction was noticed in the ΔacrD mutant with different initial concentrations after incubation with egg white for 3 days. Furthermore, no significant difference (p > 0.05) in the adhesion and invasion was found between the wild type and ΔacrD mutant in LB broth and egg white, but the invasion ability of the ΔacrD mutant in egg white was significantly (p < 0.05) lower than that in LB broth. This indicates that acrD is involved in virulence in Salmonella. Taken together, these results reveal the importance of AcrD on the resistance of S. Enteritidis to egg white.
Collapse
Affiliation(s)
- Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Yanhong Liu
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA;
| | - Xianming Shi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence:
| |
Collapse
|
10
|
Li J, Tang L, Wang P, Li G, Jin H, Mo Z. Identification and application of T3SS translocation signal in Edwardsiella piscicida attenuated carrier as a bivalent vaccine. JOURNAL OF FISH DISEASES 2021; 44:513-520. [PMID: 33682163 DOI: 10.1111/jfd.13338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Type III secretion system (T3SS)-dependent translocation has been used to deliver heterologous antigens by vaccine carriers into host cells. In this research, we identified the translocation signal of Edwardsiella piscicida T3SS effector EseG and constructed an antibiotic resistance-free balanced-lethal system as attenuated vaccine carrier to present antigens by T3SS. Edwardsiella piscicida LSE40 asd gene deletion mutant was constructed and complemented with pYA3342 harbouring the asd (aspartate β-semialdehyde dehydrogenase) gene from Salmonella. Fusion proteins composed of EseG N-terminal 1-108 amino acids and the TEM1-β-lactamase reporter were inserted in plasmid pYA3342. The fusion protein could secrete into the cell culture, translocate into HeLa cells, and localize in the membrane fraction. Then, the double gene deletion mutant LSE40ΔasdΔpurA was constructed as an attenuated vaccine carrier, and Aeromonas hydrophila GapA (glyceraldehyde-3-phosphate dehydrogenase) was fused with the translocation signal, instead of the TEM1-β-lactamase reporter. The bivalent vaccine could protect blue gourami (Trichogaster trichopterus) against E. piscicida and A. hydrophila, with the relative per cent survival of 80.77% and 63.83%, respectively. These results indicated that EseG N-terminal 1-108 amino acid peptide was the translocation signal of E. piscicida T3SS, which could be used to construct bivalent vaccines based on an attenuated E. piscicida carrier.
Collapse
Affiliation(s)
- Jie Li
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Lei Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Pengmei Wang
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Guiyang Li
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Huaiyuan Jin
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Aquaculture, Tianjin Agricultural University, Tianjin, China
| | - Zhaolan Mo
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
11
|
Zhao X, Shen H, Liang S, Zhu D, Wang M, Jia R, Chen S, Liu M, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Gao Q, Zhang L, Liu Y, Yu Y, Pan L, Cheng A. The lipopolysaccharide outer core transferase genes pcgD and hptE contribute differently to the virulence of Pasteurella multocida in ducks. Vet Res 2021; 52:37. [PMID: 33663572 PMCID: PMC7931556 DOI: 10.1186/s13567-021-00910-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Fowl cholera caused by Pasteurella multocida exerts a massive economic burden on the poultry industry. Lipopolysaccharide (LPS) is essential for the growth of P. multocida genotype L1 strains in chickens and specific truncations to the full length LPS structure can attenuate bacterial virulence. Here we further dissected the roles of the outer core transferase genes pcgD and hptE in bacterial resistance to duck serum, outer membrane permeability and virulence in ducks. Two P. multocida mutants, ΔpcgD and ΔhptE, were constructed, and silver staining confirmed that they all produced truncated LPS profiles. Inactivation of pcgD or hptE did not affect bacterial susceptibility to duck serum and outer membrane permeability but resulted in attenuated virulence in ducks to some extent. After high-dose inoculation, ΔpcgD showed remarkably reduced colonization levels in the blood and spleen but not in the lung and liver and caused decreased injuries in the spleen and liver compared with the wild-type strain. In contrast, the ΔhptE loads declined only in the blood, and ΔhptE infection caused decreased splenic lesions but also induced severe hepatic lesions. Furthermore, compared with the wild-type strain, ΔpcgD was significantly attenuated upon oral or intramuscular challenge, whereas ΔhptE exhibited reduced virulence only upon oral infection. Therefore, the pcgD deletion caused greater virulence attenuation in ducks, indicating the critical role of pcgD in P. multocida infection establishment and survival.
Collapse
Affiliation(s)
- Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hui Shen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Sheng Liang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ling Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yanling Yu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Leichang Pan
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
12
|
Forn-Cuní G, Fulton KM, Smith JC, Twine SM, Mendoza-Barberà E, Tomás JM, Merino S. Polar Flagella Glycosylation in Aeromonas: Genomic Characterization and Involvement of a Specific Glycosyltransferase (Fgi-1) in Heterogeneous Flagella Glycosylation. Front Microbiol 2021; 11:595697. [PMID: 33584564 PMCID: PMC7874193 DOI: 10.3389/fmicb.2020.595697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/21/2020] [Indexed: 01/27/2023] Open
Abstract
Polar flagella from mesophilic Aeromonas strains have previously been shown to be modified with a range of glycans. Mass spectrometry studies of purified polar flagellins suggested the glycan typically includes a putative pseudaminic acid like derivative; while some strains are modified with this single monosaccharide, others modified with a heterologous glycan. In the current study, we demonstrate that genes involved in polar flagella glycosylation are clustered in highly polymorphic genomic islands flanked by pseudaminic acid biosynthetic genes (pse). Bioinformatic analysis of mesophilic Aeromonas genomes identified three types of polar flagella glycosylation islands (FGIs), denoted Group I, II and III. FGI Groups I and III are small genomic islands present in Aeromonas strains with flagellins modified with a single monosaccharide pseudaminic acid derivative. Group II were large genomic islands, present in strains found to modify polar flagellins with heterogeneous glycan moieties. Group II, in addition to pse genes, contained numerous glycosyltransferases and other biosynthetic enzymes. All Group II strains shared a common glycosyltransferase downstream of luxC that we named flagella glycosylation island 1, fgi-1, in A. piscicola AH-3. We demonstrate that Fgi-1 transfers the first sugar of the heterogeneous glycan to the pseudaminic acid derivative linked to polar flagellins and could be used as marker for polysaccharidic glycosylation of Aeromonas polar flagella.
Collapse
Affiliation(s)
- Gabriel Forn-Cuní
- Departamento de Genética, Microbiología y Estadística, Sección Microbiología, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | - Kelly M. Fulton
- National Research Council Canada, Human Health Therapeutics Research Centre, Ottawa, ON, Canada
- Faculty of Science, Carleton University, Ottawa, ON, Canada
| | | | - Susan M. Twine
- National Research Council Canada, Human Health Therapeutics Research Centre, Ottawa, ON, Canada
- Faculty of Science, Carleton University, Ottawa, ON, Canada
| | - Elena Mendoza-Barberà
- Departamento de Genética, Microbiología y Estadística, Sección Microbiología, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | - Juan M. Tomás
- Departamento de Genética, Microbiología y Estadística, Sección Microbiología, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | - Susana Merino
- Departamento de Genética, Microbiología y Estadística, Sección Microbiología, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Zhao X, Zeng X, Dai Q, Hou Y, Zhu D, Wang M, Jia R, Chen S, Liu M, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Gao Q, Zhang L, Liu Y, Yu Y, Cheng A. Immunogenicity and protection efficacy of a Salmonella enterica serovar Typhimurium fnr, arcA and fliC mutant. Vaccine 2020; 39:588-595. [PMID: 33341307 DOI: 10.1016/j.vaccine.2020.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/05/2020] [Accepted: 12/01/2020] [Indexed: 01/17/2023]
Abstract
Salmonella enterica serovar Typhimurium is a major food-borne pathogen that can cause self-limited gastroenteritis or life-threatening invasive diseases in humans. There is no licensed S. Typhimurium vaccine for humans to date. In this study, we attempted to construct a live attenuated vaccine strain of S. Typhimurium based on three genes, namely, the two global regulator genes fnr and arcA and the flagellin subunit gene fliC. The S. Typhimurium three-gene mutant, named SLT39 (ΔfnrΔarcAΔfliC), exhibited a high level of attenuation with a colonization defect in mouse tissues and approximately 104-fold decreased virulence compared with that of the wild-type strain. To evaluate the immunogenicity and protection efficacy of STL39, mice were inoculated twice with a dose of 107 CFU or 108 CFU at a 28-day interval, and the immunized mice were challenged with a lethal dose of the wild-type S. Typhimurium strain one month post second immunization. Compared with mock immunization, SLT39 immunization with either dose elicited significant serum total IgG, IgG1 and IgG2a and faecal IgA responses against inactivated S. Typhimurium antigens at a comparable level post second immunization, whereas the 108 CFU group induced higher levels of duodenal and caecal IgA than the 107 CFU group. Furthermore, the bacterial loads in mouse tissues, including Peyer's patches, spleen and liver, significantly decreased in the two SLT39 immunization groups compared to those in the control group post challenge. Additionally, all mice in the SLT39 (108 CFU) group and 80% of the mice in the SLT39 (107 CFU) group survived the lethal challenge, suggesting full protection and 80% protection efficacy, respectively. Thus, the S. Typhimurium fnr, arcA and fliC mutant proved to be a potential attenuated live vaccine candidate for prevention of homologous infection.
Collapse
Affiliation(s)
- Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Zeng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qinlong Dai
- Liziping National Nature Reserve, Shimian, Sichuan, China
| | - Yulong Hou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ling Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunya Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanling Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Zhou S, Tu X, Pang H, Hoare R, Monaghan SJ, Luo J, Jian J. A T3SS Regulator Mutant of Vibrio alginolyticus Affects Antibiotic Susceptibilities and Provides Significant Protection to Danio rerio as a Live Attenuated Vaccine. Front Cell Infect Microbiol 2020; 10:183. [PMID: 32411620 PMCID: PMC7198820 DOI: 10.3389/fcimb.2020.00183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
Vibrio alginolyticus is a major cause of Vibriosis in farmed marine aquatic animals and has caused large economic losses to the Asian aquaculture industry in recent years. Therefore, it is necessary to control V. alginolyticus effectively. The virulence mechanism of V. alginolyticus, the Type III secretion system (T3SS), is closely related to its pathogenicity. In this study, the T3SS gene tyeA was cloned from V. alginolyticus wild-type strain HY9901 and the results showed that the deduced amino acid sequence of V. alginolyticus tyeA shared 75–83% homology with other Vibrio spp. The mutant strain HY9901ΔtyeA was constructed by Overlap-PCR and homologous recombination techniques. The HY9901ΔtyeA mutant exhibited an attenuated swarming phenotype and an ~40-fold reduction in virulence to zebrafish. However, the HY9901ΔtyeA mutant showed no difference in growth, biofilm formation and ECPase activity. Antibiotic susceptibility test was observed that wild and mutant strains were extremely susceptible to Amikacin, Minocycline, Gentamicin, Cefperazone; and resistant to oxacillin, clindamycin, ceftazidime. In contrast wild strains are sensitive to tetracycline, chloramphenicol, kanamycin, doxycycline, while mutant strains are resistant to them. qRT-PCR was employed to analyze the transcription levels of T3SS-related genes, the results showed that compared with HY9901 wild type, ΔtyeA had increased expression of vscL, vscK, vscO, vopS, vopN, vscN, and hop. Following vaccination with the mutant strain, zebrafish had significantly higher survival than controls following infection with the wild-type HY9901 (71.2% relative percent survival; RPS). Analysis of immune gene expression by qPCR showed that vaccination with HY9901ΔtyeA increased the expression of IgM, IL-1β, IL-6, and TNF-α in zebrafish. This study provides evidence of protective efficacy of a live attenuated vaccine targeting the T3SS of V. alginolyticus which may be facilitated by up-regulated pro-inflammatory and immunoglobulin-related genes.
Collapse
Affiliation(s)
- Shihui Zhou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China.,Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.,Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xueting Tu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China.,Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.,Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Huanying Pang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China.,Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.,Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Rowena Hoare
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Sean J Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Jiajun Luo
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.,Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Jichan Jian
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.,Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
15
|
Zorzoli A, Meyer BH, Adair E, Torgov VI, Veselovsky VV, Danilov LL, Uhrin D, Dorfmueller HC. Group A, B, C, and G Streptococcus Lancefield antigen biosynthesis is initiated by a conserved α-d-GlcNAc-β-1,4-l-rhamnosyltransferase. J Biol Chem 2019; 294:15237-15256. [PMID: 31506299 PMCID: PMC6802508 DOI: 10.1074/jbc.ra119.009894] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/30/2019] [Indexed: 12/18/2022] Open
Abstract
Group A carbohydrate (GAC) is a bacterial peptidoglycan-anchored surface rhamnose polysaccharide (RhaPS) that is essential for growth of Streptococcus pyogenes and contributes to its ability to infect the human host. In this study, using molecular and synthetic biology approaches, biochemistry, radiolabeling techniques, and NMR and MS analyses, we examined the role of GacB, encoded in the S. pyogenes GAC gene cluster, in the GAC biosynthesis pathway. We demonstrate that GacB is the first characterized α-d-GlcNAc-β-1,4-l-rhamnosyltransferase that synthesizes the committed step in the biosynthesis of the GAC virulence determinant. Importantly, the substitution of S. pyogenes gacB with the homologous gene from Streptococcus agalactiae (Group B Streptococcus), Streptococcus equi subsp. zooepidemicus (Group C Streptococcus), Streptococcus dysgalactiae subsp. equisimilis (Group G Streptococcus), or Streptococcus mutans complemented the GAC biosynthesis pathway. These results, combined with those from extensive in silico studies, reveal a common phylogenetic origin of the genes required for this priming step in >40 pathogenic species of the Streptococcus genus, including members from the Lancefield Groups B, C, D, E, G, and H. Importantly, this priming step appears to be unique to streptococcal ABC transporter-dependent RhaPS biosynthesis, whereas the Wzx/Wzy-dependent streptococcal capsular polysaccharide pathways instead require an α-d-Glc-β-1,4-l-rhamnosyltransferase. The insights into the RhaPS priming step obtained here open the door to targeting the early steps of the group carbohydrate biosynthesis pathways in species of the Streptococcus genus of high clinical and veterinary importance.
Collapse
Affiliation(s)
- Azul Zorzoli
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Benjamin H Meyer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Elaine Adair
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Vladimir I Torgov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - Vladimir V Veselovsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - Leonid L Danilov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - Dusan Uhrin
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
16
|
Wang Y, Jia B, Xu X, Zhang L, Wei C, Ou H, Cui Y, Shi C, Shi X. Comparative Genomic Analysis and Characterization of Two Salmonella enterica Serovar Enteritidis Isolates From Poultry With Notably Different Survival Abilities in Egg Whites. Front Microbiol 2018; 9:2111. [PMID: 30245675 PMCID: PMC6137255 DOI: 10.3389/fmicb.2018.02111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Salmonellaenterica serovar Enteritidis (Salmonella Enteritidis) is a globally important foodborne pathogen, and the contaminated chicken eggs are the major source of salmonellosis in humans. Salmonella Enteritidis strains are differentially susceptible to the hostile environment of egg whites. Strains with superior survival ability in egg whites are more likely to contaminate eggs and consequently infect humans. However, the genetic basis for this phenotype is unclear. We characterized two Salmonella Enteritidis strains isolated from chicken meat that had similar genetic backgrounds but large differences in survival ability in egg whites. Although genome comparisons indicated that the gene content and genomic synteny were highly conserved, variations including six insertions or deletions (INDELs) and 70 single nucleotide polymorphisms (SNPs) were observed between the two genomes. Of these, 38 variations including four INDELs and 34 non-synonymous SNPs (nsSNP) were annotated to result in amino acid substitutions or INDELs in coding proteins. These variations were located in 38 genes involved in lysozyme inhibition, vitamin biosynthesis, cell division and DNA damage response, osmotic and oxidative protection, iron-related functions, cell envelope maintenance, amino acid and carbohydrate metabolism, antimicrobial resistance, and type III secretion system. We carried out allelic replacements for two nsSNPs in bioC (biotin synthesis) and pliC (lysozyme inhibition), and two INDELs in ftsK and yqiJ (DNA damage response) by homologous recombination, and these replacements did not alter the bacterial survival ability in egg whites. However, the bacterial survival ability in egg whites was reduced when deletion mutation of the genes bioC and pliC occurred. This study provides initial correlations between observed genotypes and phenotypes and serves as an important caveat for further functional studies.
Collapse
Affiliation(s)
- Yanyan Wang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Ben Jia
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuebin Xu
- Department of Microbiology, Shanghai Center for Disease Control and Prevention, Shanghai, China
| | - Lida Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Chaochun Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Ou
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Cui
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Pang H, Qiu M, Zhao J, Hoare R, Monaghan SJ, Song D, Chang Y, Jian J. Construction of a Vibrio alginolyticus hopPmaJ (hop) mutant and evaluation of its potential as a live attenuated vaccine in orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2018; 76:93-100. [PMID: 29427720 DOI: 10.1016/j.fsi.2018.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Vibrio alginolyticus, a bacterial pathogen in fish and humans, expresses a type III secretion system (T3SS) that is critical for pathogen virulence and disease development. However, little is known about the associated effectors (T3SEs) and their physiological role. In this study, the T3SE gene hopPmaJ (hop) was cloned from V. alginolyticus wild-type strain HY9901 and the mutant strain HY9901Δhop was constructed by the in-frame deletion method. The results showed that the deduced amino acid sequence of V. alginolyticus HopPmaJ shared 78-98% homology with other Vibrio spp. In addition, the HY9901Δhop mutant showed an attenuated swarming phenotype and a 2600-fold decrease in the virulence to grouper. However, the HY9901Δhop mutant showed no difference in morphology, growth, biofilm formation and ECPase activity. Finally, grouper vaccinated via intraperitoneal (IP) injection with HY9901Δhop induced a high antibody titer with a relative percent survival (RPS) value of 84% after challenging with the wild-type HY9901. Real-time PCR assays showed that vaccination with HY9901Δhop enhanced the expression of immune-related genes, including MHC-Iα, MHC-IIα, IgM, and IL-1β after vaccination, indicating that it is able to induce humoral and cell-mediated immune response in grouper. These results demonstrate that the HY9901Δhop mutant could be used as an effective live vaccine to combat V. alginolyticus in grouper.
Collapse
Affiliation(s)
- Huanying Pang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Mingsheng Qiu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Jingmin Zhao
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Rowena Hoare
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Sean J Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Dawei Song
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Yunsheng Chang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524025, China.
| |
Collapse
|
18
|
Cai S, Cheng H, Pang H, Jian J, Wu Z. AcfA is an essential regulator for pathogenesis of fish pathogen Vibrio alginolyticus. Vet Microbiol 2017; 213:35-41. [PMID: 29292001 DOI: 10.1016/j.vetmic.2017.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 09/25/2017] [Accepted: 11/17/2017] [Indexed: 12/22/2022]
Abstract
V. alginolyticus is an important opportunistic pathogen which causes vibriosis in aquatic animals. AcfA, as an accessory colonization factor, is hypothesized to be involved in the pathogenesis of infection. In this study, a mutant strain with an in-frame deletion removed nucleotides 86 to 561 of the acfA gene was constructed to reveal the role of AcfA in the physiology and virulence from V. alginolyticus. An acfA mutant showed a similar growth level, an obvious decrease in swarming motility and the activity of ECPase, a higher LD50 value by intraperitoneal injection of grouper fish compared to that of the wild-type. Furthermore, the deletion of acfA could enhance the level of biofilm formation and suppress the polar flagellum forming. The comparative proteomic analysis demonstrated the deletion mutation of acfA could up-regulate the expression of 4 proteins of p4alcd, deoD, phb and DctP, and down-regulate the expression of 8 proteins of Clp, hpV36980, ABCtp, pepD, arA, aggp, fla and ompA compared to that of the wild-type. The analysis of RT-qPCR showed the mRNA levels of DctP and deoD were significantly induced, and the mRNA levels of pepD, arA, fla and ompA were significantly reduced in acfA mutant compared with the wild-type. The results suggest that acfA may contribute to the overall success in the pathogenesis of V. alginolyticus by regulating the expression of some relevant genes.
Collapse
Affiliation(s)
- Shuanghu Cai
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China.
| | - Haiyan Cheng
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Huanying Pang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Jichang Jian
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Zaohe Wu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
19
|
Cai S, Cheng H, Pang H, Lu Y, Jian J. Role of the toxR Gene from Fish Pathogen Vibiro alginolyticus in the Physiology and Virulence. Indian J Microbiol 2017; 57:477-484. [PMID: 29151649 DOI: 10.1007/s12088-017-0685-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/21/2017] [Indexed: 12/19/2022] Open
Abstract
A mutant strain of Vibiro alginolyticus with an in-frame deletion of the toxR gene was constructed to reveal the role of ToxR in the physiology and virulence of V. alginolyticus. The statistical analysis showed no significant difference in the growth ability, swarming motility, activity of extracellular protease and the virulence by injection (the value of LD50) between the wild-type and the toxR mutant. However, the deletion of toxR could decrease the level of biofilm formation. The comparative proteomic analysis demonstrated the deletion mutation of toxR could up-regulate the expression of glutamine synthetase and levansucrase, and down-regulate the expression of 10 proteins such as OmpU, DnaK, etc. These results suggest that ToxR may be involved in the early stages of infection by influencing colonization of the bacteria on the surface of the intestine through enhancing the biofilm information of V. alginolyticus via modulating the expression of glutamine synthetize, levansucrase and OmpU.
Collapse
Affiliation(s)
- Shuanghu Cai
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals and Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Haiyan Cheng
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals and Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Huanying Pang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals and Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Yishan Lu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals and Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Jichan Jian
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals and Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
20
|
Zhao X, Dai Q, Jia R, Zhu D, Liu M, Wang M, Chen S, Sun K, Yang Q, Wu Y, Cheng A. Two Novel Salmonella Bivalent Vaccines Confer Dual Protection against Two Salmonella Serovars in Mice. Front Cell Infect Microbiol 2017; 7:391. [PMID: 28929089 PMCID: PMC5591321 DOI: 10.3389/fcimb.2017.00391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/22/2017] [Indexed: 12/12/2022] Open
Abstract
Non-typhoidal Salmonella includes thousands of serovars that are leading causes of foodborne diarrheal illness worldwide. In this study, we constructed three bivalent vaccines for preventing both Salmonella Typhimurium and Salmonella Newport infections by using the aspartate semialdehyde dehydrogenase (Asd)-based balanced-lethal vector-host system. The constructed Asd+ plasmid pCZ11 carrying a subset of the Salmonella Newport O-antigen gene cluster including the wzx-wbaR-wbaL-wbaQ-wzy-wbaW-wbaZ genes was introduced into three Salmonella Typhimurium mutants: SLT19 (Δasd) with a smooth LPS phenotype, SLT20 (Δasd ΔrfbN) with a rough LPS phenotype, and SLT22 (Δasd ΔrfbN ΔpagL::T araC PBADrfbN) with a smooth LPS phenotype when grown with arabinose. Immunoblotting demonstrated that SLT19 harboring pCZ11 [termed SLT19 (pCZ11)] co-expressed the homologous and heterologous O-antigens; SLT20 (pCZ11) exclusively expressed the heterologous O-antigen; and when arabinose was available, SLT22 (pCZ11) expressed both types of O-antigens, while in the absence of arabinose, SLT22 (pCZ11) expressed only the heterologous O-antigen. Exclusive expression of the heterologous O-antigen in Salmonella Typhimurium decreased the swimming ability of the bacterium and its susceptibility to polymyxin B. Next, the crp gene was deleted from the three recombinant strains for attenuation purposes, generating the three bivalent vaccine strains SLT25 (pCZ11), SLT26 (pCZ11), and SLT27 (pCZ11), respectively. Groups of BALB/c mice (12 mice/group) were orally immunized with 109 CFU of each vaccine strain twice at an interval of 4 weeks. Compared with a mock immunization, immunization with all three vaccine strains induced significant serum IgG responses against both Salmonella Typhimurium and Salmonella Newport LPS. The bacterial loads in the mouse tissues were significantly lower in the three vaccine-strain-immunized groups than in the mock group after either Salmonella Typhimurium or Salmonella Newport lethal challenge. All of the mice in the three vaccine-immunized groups survived the lethal Salmonella Typhimurium challenge. In contrast, SLT26 (pCZ11) and SLT27 (pCZ11) conferred full protection against lethal Salmonella Newport challenge, but SLT25 (pCZ11) provided only 50% heterologous protection. Thus, we developed two novel Salmonella bivalent vaccines, SLT26 (pCZ11) and SLT27 (pCZ11), suggesting that the delivery of a heterologous O-antigen in attenuated Salmonella strains is a prospective approach for developing Salmonella vaccines with broad serovar coverage.
Collapse
Affiliation(s)
- Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Qinlong Dai
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Kunfeng Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
21
|
Merino S, Tomás JM. The FlgT Protein Is Involved in Aeromonas hydrophila Polar Flagella Stability and Not Affects Anchorage of Lateral Flagella. Front Microbiol 2016; 7:1150. [PMID: 27507965 PMCID: PMC4960245 DOI: 10.3389/fmicb.2016.01150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/11/2016] [Indexed: 12/28/2022] Open
Abstract
Aeromonas hydrophila sodium-driven polar flagellum has a complex stator-motor. Consist of two sets of redundant and non-exchangeable proteins (PomA/PomB and PomA2/PomB2), which are homologs to other sodium-conducting polar flagellum stator motors; and also two essential proteins (MotX and MotY), that they interact with one of those two redundant pairs of proteins and form the T-ring. In this work, we described an essential protein for polar flagellum stability and rotation which is orthologs to Vibrio spp. FlgT and it is encoded outside of the A. hydrophila polar flagellum regions. The flgT was present in all mesophilic Aeromonas strains tested and also in the non-motile Aeromonas salmonicida. The A. hydrophila ΔflgT mutant is able to assemble the polar flagellum but is more unstable and released into the culture supernatant from the cell upon completion assembly. Presence of FlgT in purified polar hook-basal bodies (HBB) of wild-type strain was confirmed by Western blotting and electron microscopy observations showed an outer ring of the T-ring (H-ring) which is not present in the ΔflgT mutant. Anchoring and motility of proton-driven lateral flagella was not affected in the ΔflgT mutant and specific antibodies did not detect FlgT in purified lateral HBB of wild type strain.
Collapse
Affiliation(s)
- Susana Merino
- Departamento de Genética, Microbiología y Estadística, Sección Microbiologia, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona Barcelona, Spain
| | - Juan M Tomás
- Departamento de Genética, Microbiología y Estadística, Sección Microbiologia, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona Barcelona, Spain
| |
Collapse
|
22
|
Wang M, Arbatsky NP, Xu L, Shashkov AS, Wang L, Knirel YA. O antigen of FranconibacterpulverisG3872 (O1) is a 4-deoxy-d-arabino-hexose-containing polysaccharide synthesized by the ABC-transporter-dependent pathway. MICROBIOLOGY-SGM 2016; 162:1103-1113. [PMID: 27166227 DOI: 10.1099/mic.0.000307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Franconibacter (Enterobacter, Cronobacter) pulveris bacteria share several typical characteristics with, and hence pose a challenge for the detection of, Cronobacter sakazakii, an emerging opportunistic pathogen, which can cause severe infections in neonates. A structurally variable O-specific polysaccharide (OPS) called O antigen provides the major basis for the typing of Gram-negative bacteria. We investigated the structure and genetics of the O antigen of F. pulveris G3872 (designated O1). An OPS was isolated by mild alkaline degradation of the LPS, whereas the same polysaccharide and its oligosaccharide fragments were obtained by mild acid degradation. Studies by sugar analysis and NMR spectroscopy showed that the OPS contained d-ribose, l-rhamnose (l-Rha) and a rarely occurring monosaccharide 4-deoxy-d-arabino-hexose, and the OPS structure was established. The O-antigen gene cluster of F. pulveris G3872 between JUMPStart and gnd genes includes putative genes for glycosyltransferases, ATP-binding cassette (ABC)-transporter genes wzm and wzt, and genes for the synthesis of l-Rha, but no genes for the synthesis of 4-deoxy-d-arabino-hexose. A mutation test with the wzm gene confirmed that the OPS is synthesized and exported by the ABC-transporter-dependent pathway. A trifunctional transferase was suggested to catalyse formation of two glycosidic linkages and add a methyl group to the non-reducing end of the OPS to terminate the chain elongation. A carbohydrate-binding module that presumably recognizes the terminal methyl-modified monosaccharide was found at the C-terminus of Wzt. Primers specific for F. pulveris G3872 were designed based on the wzm gene, which has potential to be used for identification and detection of the O1 serogroup.
Collapse
Affiliation(s)
- Min Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457 Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Nikolay P Arbatsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Lingling Xu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457 Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457 Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
23
|
Merino S, Aquilini E, Fulton KM, Twine SM, Tomás JM. The polar and lateral flagella from Plesiomonas shigelloides are glycosylated with legionaminic acid. Front Microbiol 2015; 6:649. [PMID: 26167161 PMCID: PMC4481668 DOI: 10.3389/fmicb.2015.00649] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/15/2015] [Indexed: 12/30/2022] Open
Abstract
Plesiomonas shigelloides is the unique member of the Enterobacteriaceae family able to produce polar flagella when grow in liquid medium and lateral flagella when grown in solid or semisolid media. In this study on P. shigelloides 302-73 strain, we found two different gene clusters, one exclusively for the lateral flagella biosynthesis and the other one containing the biosynthetic polar flagella genes with additional putative glycosylation genes. P. shigelloides is the first Enterobacteriaceae were a complete lateral flagella cluster leading to a lateral flagella production is described. We also show that both flagella in P. shigelloides 302-73 strain are glycosylated by a derivative of legionaminic acid (Leg), which explains the presence of Leg pathway genes between the two polar flagella regions in their biosynthetic gene cluster. It is the first bacterium reported with O-glycosylated Leg in both polar and lateral flagella. The flagella O-glycosylation is essential for bacterial flagella formation, either polar or lateral, because gene mutants on the biosynthesis of Leg are non-flagellated. Furthermore, the presence of the lateral flagella cluster and Leg O-flagella glycosylation genes are widely spread features among the P. shigelloides strains tested.
Collapse
Affiliation(s)
- Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona Barcelona, Spain
| | - Eleonora Aquilini
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona Barcelona, Spain
| | | | | | - Juan M Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona Barcelona, Spain
| |
Collapse
|
24
|
Tomás A, Lery L, Regueiro V, Pérez-Gutiérrez C, Martínez V, Moranta D, Llobet E, González-Nicolau M, Insua JL, Tomas JM, Sansonetti PJ, Tournebize R, Bengoechea JA. Functional Genomic Screen Identifies Klebsiella pneumoniae Factors Implicated in Blocking Nuclear Factor κB (NF-κB) Signaling. J Biol Chem 2015; 290:16678-97. [PMID: 25971969 PMCID: PMC4505419 DOI: 10.1074/jbc.m114.621292] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Indexed: 01/01/2023] Open
Abstract
Klebsiella pneumoniae is an etiologic agent of community-acquired and nosocomial pneumonia. It has been shown that K. pneumoniae infections are characterized by reduced early inflammatory response. Recently our group has shown that K. pneumoniae dampens the activation of inflammatory responses by antagonizing the activation of the NF-κB canonical pathway. Our results revealed that K. pneumoniae capsule polysaccharide (CPS) was necessary but not sufficient to attenuate inflammation. To identify additional Klebsiella factors required to dampen inflammation, we standardized and applied a high-throughput gain-of-function screen to examine a Klebsiella transposon mutant library. We identified 114 mutants that triggered the activation of NF-κB. Two gene ontology categories accounted for half of the loci identified in the screening: metabolism and transport genes (32% of the mutants) and envelope-related genes (17%). Characterization of the mutants revealed that the lack of the enterobactin siderophore was linked to a reduced CPS expression, which in turn underlined the NF-κB activation induced by the mutant. The lipopolysaccharide (LPS) O-polysaccharide and the pullulanase (PulA) type 2 secretion system (T2SS) are required for full effectiveness of the immune evasion. Importantly, these factors do not play a redundant role. The fact that LPS O-polysaccharide and T2SS mutant-induced responses were dependent on TLR2-TLR4-MyD88 activation suggested that LPS O-polysaccharide and PulA perturbed Toll-like receptor (TLR)-dependent recognition of K. pneumoniae. Finally, we demonstrate that LPS O-polysaccharide and pulA mutants are attenuated in the pneumonia mouse model. We propose that LPS O-polysaccharide and PulA T2SS could be new targets for the design of new antimicrobials. Increasing TLR-governed defense responses might provide also selective alternatives for the management of K. pneumoniae pneumonia.
Collapse
Affiliation(s)
- Anna Tomás
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Leticia Lery
- the Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75724 Paris, France, INSERM U786, 75724 Paris, France
| | - Verónica Regueiro
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Camino Pérez-Gutiérrez
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Verónica Martínez
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - David Moranta
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Enrique Llobet
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Mar González-Nicolau
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jose L Insua
- the Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 7AE, United Kingdom
| | - Juan M Tomas
- the Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, 08028 Barcelona, Spain
| | - Philippe J Sansonetti
- the Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75724 Paris, France, INSERM U786, 75724 Paris, France, Chaire de Microbiologie et Maladies Infectieuses, Collège de France, 75231 Paris, France
| | - Régis Tournebize
- the Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75724 Paris, France, INSERM U786, 75724 Paris, France, Imagopole, Plateforme d'Imagerie Dynamique, Institut Pasteur, 75724 Paris, France, and
| | - José A Bengoechea
- the Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 7AE, United Kingdom, the Consejo Superior de Investigaciones Científicas (CSIC), 28008 Madrid, Spain
| |
Collapse
|
25
|
Vivijs B, Haberbeck LU, Baiye Mfortaw Mbong V, Bernaerts K, Geeraerd AH, Aertsen A, Michiels CW. Formate hydrogen lyase mediates stationary-phase deacidification and increases survival during sugar fermentation in acetoin-producing enterobacteria. Front Microbiol 2015; 6:150. [PMID: 25762991 PMCID: PMC4340222 DOI: 10.3389/fmicb.2015.00150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/09/2015] [Indexed: 12/02/2022] Open
Abstract
Two fermentation types exist in the Enterobacteriaceae family. Mixed-acid fermenters produce substantial amounts of lactate, formate, acetate, and succinate, resulting in lethal medium acidification. On the other hand, 2,3-butanediol fermenters switch to the production of the neutral compounds acetoin and 2,3-butanediol and even deacidify the environment after an initial acidification phase, thereby avoiding cell death. We equipped three mixed-acid fermenters (Salmonella Typhimurium, S. Enteritidis and Shigella flexneri) with the acetoin pathway from Serratia plymuthica to investigate the mechanisms of deacidification. Acetoin production caused attenuated acidification during exponential growth in all three bacteria, but stationary-phase deacidification was only observed in Escherichia coli and Salmonella, suggesting that it was not due to the consumption of protons accompanying acetoin production. To identify the mechanism, 34 transposon mutants of acetoin-producing E. coli that no longer deacidified the culture medium were isolated. The mutations mapped to 16 genes, all involved in formate metabolism. Formate is an end product of mixed-acid fermentation that can be converted to H2 and CO2 by the formate hydrogen lyase (FHL) complex, a reaction that consumes protons and thus can explain medium deacidification. When hycE, encoding the large subunit of hydrogenase 3 that is part of the FHL complex, was deleted in acetoin-producing E. coli, deacidification capacity was lost. Metabolite analysis in E. coli showed that introduction of the acetoin pathway reduced lactate and acetate production, but increased glucose consumption and formate and ethanol production. Analysis of a hycE mutant in S. plymuthica confirmed that medium deacidification in this organism is also mediated by FHL. These findings improve our understanding of the physiology and function of fermentation pathways in Enterobacteriaceae.
Collapse
Affiliation(s)
- Bram Vivijs
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| | - Leticia U Haberbeck
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium ; Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| | - Victor Baiye Mfortaw Mbong
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| | - Kristel Bernaerts
- Chemical and Biochemical Process Technology and Control Section, Department of Chemical Engineering, Faculty of Engineering Science KU Leuven, Leuven, Belgium
| | - Annemie H Geeraerd
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| | - Chris W Michiels
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| |
Collapse
|
26
|
Duarte AS, Cavaleiro E, Pereira C, Merino S, Esteves AC, Duarte EP, Tomás JM, Correia AC. Aeromonas piscicola AH-3 expresses an extracellular collagenase with cytotoxic properties. Lett Appl Microbiol 2014; 60:288-97. [PMID: 25443157 DOI: 10.1111/lam.12373] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/10/2014] [Accepted: 11/26/2014] [Indexed: 01/01/2023]
Abstract
UNLABELLED The aim of this study was to investigate the presence and the phenotypic expression of a gene coding for a putative collagenase. This gene (AHA_0517) was identified in Aeromonas hydrophila ATCC 7966 genome and named colAh. We constructed and characterized an Aeromonas piscicola AH-3::colAh knockout mutant. Collagenolytic activity of the wild-type and mutant strains was determined, demonstrating that colAh encodes for a collagenase. ColAh-collagen interaction was assayed by Far-Western blot, and cytopathic effects were investigated in Vero cells. We demonstrated that ColAh is a gluzincin metallopeptidase (approx. 100 kDa), able to cleave and physically interact with collagen, that contributes for Aeromonas collagenolytic activity and cytotoxicity. ColAh possess the consensus HEXXH sequence and a glutamic acid as the third zinc binding positioned downstream the HEXXH motif, but has low sequence similarity and distinct domain architecture to the well-known clostridial collagenases. In addition, these results highlight the importance of exploring new microbial collagenases that may have significant relevance for the health and biotechnological industries. SIGNIFICANCE AND IMPACT OF THE STUDY Collagenases play a central role in processes where collagen digestion is needed, for example host invasion by pathogenic micro-organisms. We identified a new collagenase from Aeromonas using an integrated in silico/in vitro strategy. This enzyme is able to bind and cleave collagen, contributes for AH-3 cytotoxicity and shares low similarity with known bacterial collagenases. This is the first report of an enzyme belonging to the gluzincin subfamily of the M9 family of peptidases in Aeromonas. This study increases the current knowledge on collagenolytic enzymes bringing new perspectives for biotechnology/medical purposes.
Collapse
Affiliation(s)
- A S Duarte
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhou X, Liu B, Shi C, Shi X. Mutation of a Salmonella serogroup-C1-specific gene abrogates O7-antigen biosynthesis and triggers NaCl-dependent motility deficiency. PLoS One 2014; 9:e106708. [PMID: 25211341 PMCID: PMC4161368 DOI: 10.1371/journal.pone.0106708] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 08/04/2014] [Indexed: 01/12/2023] Open
Abstract
Several molecular detection marker genes specific for a number of individual Salmonella serogroups have been recently identified in our lab by comparative genomics for the genotyping of diverse serogroups. To further understand the correlation between serotype and genotype, the function of a Salmonella serogroup-C1-specific gene (SC_2092) was analyzed in this study. It was indicated from the topological prediction using the deduced amino acid sequence of SC_2092 that this putative protein was highly similar to the confirmed Wzx flippases. Furthermore, SDS-PAGE revealed that lipopolysaccharide (LPS) biosynthesis, specifically O-antigen synthesis, was incomplete in an SC_2092 in-frame deletion mutant, and no agglutination reaction with the O7 antibody was exhibited in this mutant. Therefore, it was revealed that this Salmonella serogroup-C1-specific gene SC_2092 encoded a putative flippase, which was required for O7-polysaccharide biosynthesis, and was designated here as wzxC1. Subsequently, the effects of the deletion of wzxC1 on bacterial motility and sodium chloride (NaCl) tolerance were evaluated. The wzxC1 mutant lacked swarming motility on solid surfaces and was impaired in swimming motility in soft agar. Moreover, microscopic examination and RT-qPCR exhibited that an increased auto-aggregation and a strong defect in flagella expression, respectively, were responsible for the reduced motility in this mutant. In addition, the wzxC1 mutant was more sensitive than the wild-type strain to NaCl, and auto-aggregation of mutant cells was observed immediately up on the addition of 1% NaCl to the medium. Interestingly, the motility deficiency of the mutant strain, as well as the cell agglomeration and the decrease in flagellar expression, were relieved in a NaCl-free medium. This is the first study to experimentally demonstrate a connection between a Salmonella serogroup specific gene identified by comparative genomics with the synthesis of a specific O-antigen biosynthesis. Also, our results show that the mutation of wzxC1 triggers a NaCl-dependent motility deficiency.
Collapse
Affiliation(s)
- Xiujuan Zhou
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest Agriculture & Forestry University, Shaanxi, Yangling, China
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (CS); (XS)
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (CS); (XS)
| |
Collapse
|
28
|
Dissecting Escherichia coli outer membrane biogenesis using differential proteomics. PLoS One 2014; 9:e100941. [PMID: 24967819 PMCID: PMC4072712 DOI: 10.1371/journal.pone.0100941] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/30/2014] [Indexed: 11/19/2022] Open
Abstract
The cell envelope of Gram-negative bacteria is a complex multi-layered structure comprising an inner cytoplasmic membrane and an additional asymmetric lipid bilayer, the outer membrane, which functions as a selective permeability barrier and is essential for viability. Lipopolysaccharide, an essential glycolipid located in the outer leaflet of the outer membrane, greatly contributes to the peculiar properties exhibited by the outer membrane. This complex molecule is transported to the cell surface by a molecular machine composed of seven essential proteins LptABCDEFG that form a transenvelope complex and function as a single device. While advances in understanding the mechanisms that govern the biogenesis of the cell envelope have been recently made, only few studies are available on how bacterial cells respond to severe envelope biogenesis defects on a global scale. Here we report the use of differential proteomics based on Multidimensional Protein Identification Technology (MudPIT) to investigate how Escherichia coli cells respond to a block of lipopolysaccharide transport to the outer membrane. We analysed the envelope proteome of a lptC conditional mutant grown under permissive and non permissive conditions and identified 123 proteins whose level is modulated upon LptC depletion. Most such proteins belong to pathways implicated in cell envelope biogenesis, peptidoglycan remodelling, cell division and protein folding. Overall these data contribute to our understanding on how E. coli cells respond to LPS transport defects to restore outer membrane functionality.
Collapse
|
29
|
Edwardsiella tarda-Induced cytotoxicity depends on its type III secretion system and flagellin. Infect Immun 2014; 82:3436-45. [PMID: 24891103 DOI: 10.1128/iai.01065-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many Gram-negative bacteria utilize a type III secretion system (T3SS) to translocate virulence proteins into host cells to cause diseases. In responding to infection, macrophages detect some of the translocated proteins to activate caspase-1-mediated cell death, called pyroptosis, and secretion of proinflammatory cytokines to control the infection. Edwardsiella tarda is a Gram-negative enteric pathogen that causes hemorrhagic septicemia in fish and both gastrointestinal and extraintestinal infections in humans. In this study, we report that the T3SS of E. tarda facilitates its survival and replication in murine bone marrow-derived macrophages, and E. tarda infection triggers pyroptosis of infected macrophages from mice and fish and increased secretion of the cytokine interleukin 1β in a T3SS-dependent manner. Deletion of the flagellin gene fliC of E. tarda results in decreased cytotoxicity for infected macrophages and does not attenuate its virulence in a fish model of infection, whereas upregulated expression of FliC in the fliC mutant strain reduces its virulence. We propose that the host controls E. tarda infection partially by detecting FliC translocated by the T3SS, whereas the bacteria downregulate the expression of FliC to evade innate immunity.
Collapse
|
30
|
2,3-Butanediol fermentation promotes growth of Serratia plymuthica at low pH but not survival of extreme acid challenge. Int J Food Microbiol 2014; 175:36-44. [DOI: 10.1016/j.ijfoodmicro.2014.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/23/2014] [Accepted: 01/26/2014] [Indexed: 01/10/2023]
|
31
|
Polissi A, Sperandeo P. The lipopolysaccharide export pathway in Escherichia coli: structure, organization and regulated assembly of the Lpt machinery. Mar Drugs 2014; 12:1023-42. [PMID: 24549203 PMCID: PMC3944529 DOI: 10.3390/md12021023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 01/22/2014] [Accepted: 01/28/2014] [Indexed: 01/12/2023] Open
Abstract
The bacterial outer membrane (OM) is a peculiar biological structure with a unique composition that contributes significantly to the fitness of Gram-negative bacteria in hostile environments. OM components are all synthesized in the cytosol and must, then, be transported efficiently across three compartments to the cell surface. Lipopolysaccharide (LPS) is a unique glycolipid that paves the outer leaflet of the OM. Transport of this complex molecule poses several problems to the cells due to its amphipatic nature. In this review, the multiprotein machinery devoted to LPS transport to the OM is discussed together with the challenges associated with this process and the solutions that cells have evolved to address the problem of LPS biogenesis.
Collapse
Affiliation(s)
- Alessandra Polissi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Paola Sperandeo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
32
|
Zhou Z, Pang H, Ding Y, Cai J, Huang Y, Jian J, Wu Z. VscO, a putative T3SS chaperone escort of Vibrio alginolyticus, contributes to virulence in fish and is a target for vaccine development. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1523-1531. [PMID: 23994282 DOI: 10.1016/j.fsi.2013.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 06/02/2023]
Abstract
Type III secretion system (T3SS) in Vibrio alginolyticus is essential for its pathogenesis. VscO's homologous proteins FliJ, InvI and YscO have been suggested to be putative chaperone escorts although its function in V. alginolyticus is unclear. To investigate the physiological role of VscO, a mutant strain of V. alginolyticus with an in-frame deletion of the vscO gene was constructed in the present study. One finding was that the mRNA expression levels of SycD, VopB and VopD proteins decreased in the ΔvscO mutant. In addition, the ΔvscO mutant showed an attenuated swarming ability and a ten-fold decrease in the virulence to fish. However, the ΔvscO mutant showed no difference in the biofilm formation and ECPase activity. Complementation of the mutant strain with the vscO gene could restore the phenotypes of the wild-type strain. Finally, the recombinant VscO protein caused a high antibody titer and an effective protection against lethal challenge with the wild-type strain V. alginolyticus. These results indicated that VscO protein has a specific role in the pathogenesis of V. alginolyticus and it may be a candidate antigen for development of a subunit vaccine against vibriosis.
Collapse
Affiliation(s)
- Zejun Zhou
- Fisheries College, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, PR China; Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | | | | | | | | | | | | |
Collapse
|
33
|
Aquilini E, Merino S, Tomás JM. The Plesiomonas shigelloides wbO1 gene cluster and the role of O1-antigen LPS in pathogenicity. Microb Pathog 2013; 63:1-7. [DOI: 10.1016/j.micpath.2013.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
|
34
|
Zhao LJ, Lu JF, Nie P, Li AH, Xiong BX, Xie HX. Roles of plasmid-encoded proteins, EseH, EseI and EscD in invasion, replication and virulence of Edwardsiella ictaluri. Vet Microbiol 2013; 166:233-41. [PMID: 23850444 DOI: 10.1016/j.vetmic.2013.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 12/25/2022]
Abstract
Native plasmids pEI1 and pEI2 were detected in Edwardsiella ictaluri HSN-1 isolated from diseased yellow catfish (Pelteobagrus fulvidraco). EseH encoded by pEI1 and other two proteins, EseI and EscD, encoded by pEI2, were found with homology to type III secretion system (T3SS) proteins. To investigate their roles in pathogenesis, the native plasmids were cured based on plasmid incompatibility by introducing a Kan positive and SacB negative selection marker into gene spacer of the native plasmids. Mutants with the deletion of the target genes were obtained by reverse PCR and self-ligation, and all mutants were examined for their virulence effect in yellow catfish. Compared with the HSN-1 strain, the two mutants ΔeseH and ΔeseI were attenuated, while mutant ΔescD had increased virulence with higher Competitive Index (CI) value. The adherence and invasion assays on fish EPC cells indicated that ΔeseH and ΔeseI had decreased ability in adherence. Using E. tarda as surrogate, EseH and EseI were detected in culture supernatants, but EscD was not, with the secretion of EseH depending on T3SS. In addition, EseH and EseI were found translocated into host cells, and by means of subcellular fractionation, EseH was localized in membrane fraction of ZF4 cells, and EseI in the cytosol fraction. Hence, the role of these three genes in adherence, invasion and cellular replication was revealed from the pathogenic bacterium E. ictaluri.
Collapse
Affiliation(s)
- Li Juan Zhao
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | | | | | | | | | | |
Collapse
|
35
|
Browning DF, Wells TJ, França FLS, Morris FC, Sevastsyanovich YR, Bryant JA, Johnson MD, Lund PA, Cunningham AF, Hobman JL, May RC, Webber MA, Henderson IR. Laboratory adapted Escherichia coli K-12 becomes a pathogen of Caenorhabditis elegans upon restoration of O antigen biosynthesis. Mol Microbiol 2013; 87:939-50. [PMID: 23350972 DOI: 10.1111/mmi.12144] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2012] [Indexed: 01/13/2023]
Abstract
Escherichia coli has been the leading model organism for many decades. It is a fundamental player in modern biology, facilitating the molecular biology revolution of the last century. The acceptance of E. coli as model organism is predicated primarily on the study of one E. coli lineage; E. coli K-12. However, the antecedents of today's laboratory strains have undergone extensive mutagenesis to create genetically tractable offspring but which resulted in loss of several genetic traits such as O antigen expression. Here we have repaired the wbbL locus, restoring the ability of E. coli K-12 strain MG1655 to express the O antigen. We demonstrate that O antigen production results in drastic alterations of many phenotypes and the density of the O antigen is critical for the observed phenotypes. Importantly, O antigen production enables laboratory strains of E. coli to enter the gut of the Caenorhabditis elegans worm and to kill C. elegans at rates similar to pathogenic bacterial species. We demonstrate C. elegans killing is a feature of other commensal E. coli. We show killing is associated with bacterial resistance to mechanical shear and persistence in the C. elegans gut. These results suggest C. elegans is not an effective model of human-pathogenic E. coli infectious disease.
Collapse
Affiliation(s)
- Douglas F Browning
- School of Immunity and Infection, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Aeromonas hydrophila AH-3 lateral flagella are not assembled when bacteria grow in liquid media; however, lateral flagellar genes are transcribed. Our results indicate that A. hydrophila lateral flagellar genes are transcribed at three levels (class I to III genes) and share some similarities with, but have many important differences from, genes of Vibrio parahaemolyticus. A. hydrophila lateral flagellum class I gene transcription is σ(70) dependent, which is consistent with the fact that lateral flagellum is constitutively transcribed, in contrast to the characteristics of V. parahaemolyticus. The fact that multiple genes are included in class I highlights that lateral flagellar genes are less hierarchically transcribed than polar flagellum genes. The A. hydrophila lafK-fliEJL gene cluster (where the subscript L distinguishes genes for lateral flagella from those for polar flagella) is exclusively from class I and is in V. parahaemolyticus class I and II. Furthermore, the A. hydrophila flgAMNL cluster is not transcribed from the σ(54)/LafK-dependent promoter and does not contain class II genes. Here, we propose a gene transcriptional hierarchy for the A. hydrophila lateral flagella.
Collapse
|
37
|
Wang K, Liu E, Song S, Wang X, Zhu Y, Ye J, Zhang H. Characterization of Edwardsiella tarda rpoN: roles in σ70 family regulation, growth, stress adaption and virulence toward fish. Arch Microbiol 2012; 194:493-504. [DOI: 10.1007/s00203-011-0786-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/15/2011] [Accepted: 12/23/2011] [Indexed: 12/26/2022]
|
38
|
Wilhelms M, Molero R, Shaw JG, Tomás JM, Merino S. Transcriptional hierarchy of Aeromonas hydrophila polar-flagellum genes. J Bacteriol 2011; 193:5179-90. [PMID: 21784933 PMCID: PMC3187393 DOI: 10.1128/jb.05355-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/13/2011] [Indexed: 12/30/2022] Open
Abstract
Aeromonas hydrophila polar-flagellum class I gene transcription is σ70 dependent, which is consistent with the fact that the A. hydrophila polar flagellum is constitutively expressed. In contrast to other bacteria with dual flagellar systems such as Vibrio parahaemolyticus, the A. hydrophila LafK protein does not compensate for the lack of the polar-flagellum regulator FlrA (V. parahaemolyticus FlaK homologue). This is consistent with the fact that the A. hydrophila FlrA mutation abolishes polar-flagellum formation in liquid and on solid surfaces but does not affect inducible lateral-flagellum formation. The results highlight that the polar- and lateral-flagellum interconnections and control networks are specific and that there are differences between the dual flagellar systems in A. hydrophila and V. parahaemolyticus. Furthermore, our results indicate that the A. hydrophila polar-flagellum transcriptional hierarchy (also in class II, III, and IV genes) shares some similarities with but has many important differences from the transcriptional hierarchies of Vibrio cholerae and Pseudomonas aeruginosa. The A. hydrophila flhF and flhG genes are essential for the assembly of a functional polar flagellum because in-frame mutants fail to swim in liquid medium and lack the polar flagellum. In Vibrio and Pseudomonas flhG disruption increases the number of polar flagella per cell, and Pseudomonas flhF disruption gives an aberrant placement of flagellum. Here, we propose the gene transcriptional hierarchy for the A. hydrophila polar flagellum.
Collapse
Affiliation(s)
- Markus Wilhelms
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Raquel Molero
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Jonathan G. Shaw
- Division of Genomic Medicine, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Juan M. Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| |
Collapse
|
39
|
Zheng J, Ho B, Mekalanos JJ. Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae. PLoS One 2011; 6:e23876. [PMID: 21909372 PMCID: PMC3166118 DOI: 10.1371/journal.pone.0023876] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/26/2011] [Indexed: 11/28/2022] Open
Abstract
A type VI secretion system (T6SS) was recently shown to be required for full virulence of Vibrio cholerae O37 serogroup strain V52. In this study, we systematically mutagenized each individual gene in T6SS locus and characterized their functions based on expression and secretion of the hemolysin co-regulated protein (Hcp), virulence towards amoebae of Dictyostelium discoideum and killing of Escherichia coli bacterial cells. We group the 17 proteins characterized in the T6SS locus into four categories: twelve (VipA, VipB, VCA0109–VCA0115, ClpV, VCA0119, and VasK) are essential for Hcp secretion and bacterial virulence, and thus likely function as structural components of the apparatus; two (VasH and VCA0122) are regulators that are required for T6SS gene expression and virulence; another two, VCA0121 and valine-glycine repeat protein G 3 (VgrG-3), are not essential for Hcp expression, secretion or bacterial virulence, and their functions are unknown; the last group is represented by VCA0118, which is not required for Hcp expression or secretion but still plays a role in both amoebae and bacterial killing and may therefore be an effector protein. We also showed that the clpV gene product is required for Dictyostelium virulence but is less important for killing E. coli. In addition, one vgrG gene (vgrG-2) outside of the T6SS gene cluster was required for bacterial killing but another (vgrG-1) was not. However, a bacterial killing defect was observed when vgrG-1 and vgrG-3 were both deleted. Several genes encoded in the same putative operon as vgrG-1 and vgrG-2 also contribute to virulence toward Dictyostelium but have a smaller effect on bacterial killing. Our results provide new insights into the functional requirements of V. cholerae's T6SS in the context of secretion as well as killing of bacterial and eukaryotic phagocytic cells.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian Ho
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John J. Mekalanos
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
40
|
OmpK26, a novel porin associated with carbapenem resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother 2011; 55:4742-7. [PMID: 21807980 DOI: 10.1128/aac.00309-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinical isolates of Klebsiella pneumoniae resistant to carbapenems are being isolated with increasing frequency. Loss of the expression of the major nonspecific porins OmpK35/36 is a frequent feature in these isolates. In this study, we looked for porins that could compensate for the loss of the major porins in carbapenem-resistant organisms. Comparison of the outer membrane proteins from two K. pneumoniae clinical isogenic isolates that are susceptible (KpCS-1) and resistant (KpCR-1) to carbapenems revealed the absence of OmpK35/36 and the presence of a new 26-kDa protein in the resistant isolate. An identical result was obtained when another pair of isogenic isolates that are homoresistant (Kpn-3) and heteroresistant (Kpn-17) to carbapenems were compared. Mass spectrometry and DNA sequencing analysis demonstrated that this new protein, designated OmpK26, is a small monomeric oligogalacturonate-specific porin that belongs to the KdgM family of porins. Insertion-duplication mutagenesis of the OmpK26 coding gene, yjhA, in the carbapenem-resistant, porin-deficient isolate KpCR-1 caused the expression of OmpK36 and the reversion to the carbapenem-susceptible phenotype, suggesting that OmpK26 is indispensable for KpCR-1 to lose OmpK36 and become resistant to these antibiotics. Moreover, loss of the major porin and expression of OmpK26 reduced in vitro fitness and attenuated virulence in a murine model of acute systemic infection. Altogether, these results indicate that expression of the oligogalacturonate-specific porin OmpK26 compensates for the absence of OmpK35/36 and allows carbapenem resistance in K. pneumoniae but cannot restore the fitness of the microorganism.
Collapse
|
41
|
Molero R, Wilhelms M, Infanzón B, Tomás JM, Merino S. Aeromonas hydrophila motY is essential for polar flagellum function, and requires coordinate expression of motX and Pom proteins. MICROBIOLOGY-SGM 2011; 157:2772-2784. [PMID: 21737499 DOI: 10.1099/mic.0.049544-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
By the analysis of the Aeromonas hydrophila ATCC7966(T) genome we identified A. hydrophila AH-3 MotY. A. hydrophila MotY, like MotX, is essential for the polar flagellum function energized by an electrochemical potential of Na(+) as coupling ion, but is not involved in lateral flagella function energized by the proton motive force. Thus, the A. hydrophila polar flagellum stator is a complex integrated by two essential proteins, MotX and MotY, which interact with one of two redundant pairs of proteins, PomAB and PomA(2)B(2). In an A. hydrophila motX mutant, polar flagellum motility is restored by motX complementation, but the ability of the A. hydrophila motY mutant to swim is not restored by introduction of the wild-type motY alone. However, its polar flagellum motility is restored when motX and -Y are expressed together from the same plasmid promoter. Finally, even though both the redundant A. hydrophila polar flagellum stators, PomAB and PomA(2)B(2), are energized by the Na(+) ion, they cannot be exchanged. Furthermore, Vibrio parahaemolyticus PomAB and Pseudomonas aeruginosa MotAB or MotCD are unable to restore swimming motility in A. hydrophila polar flagellum stator mutants.
Collapse
Affiliation(s)
- Raquel Molero
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Markus Wilhelms
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Belén Infanzón
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Juan M Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| |
Collapse
|
42
|
Buckner MMC, Croxen MA, Arena ET, Finlay BB. A comprehensive study of the contribution of Salmonella enterica serovar Typhimurium SPI2 effectors to bacterial colonization, survival, and replication in typhoid fever, macrophage, and epithelial cell infection models. Virulence 2011; 2:208-16. [PMID: 21540636 DOI: 10.4161/viru.2.3.15894] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica serovars are Gram-negative bacterial pathogens responsible for human diseases including gastroenteritis and typhoid fever. After ingestion, Salmonella cross the intestinal epithelial barrier, where they are phagocytosed by macrophages and dendritic cells, which then enables their spread to systemic sites during cases of typhoid fever. Salmonella use two type 3 secretion systems encoded by Salmonella pathogenicity islands (SPI) 1 and 2 to inject virulence proteins into host cells to modify cellular functions. SPI1 is involved in host cell invasion and inflammation, whereas SPI2 is required for intracellular survival and replication within phagocytes, and systemic spread. In this study the contribution of nearly all known SPI2 effectors was examined in an in vivo model of murine typhoid fever and cell culture models of macrophage and epithelial cell infection. Unmarked, in-frame deletions of SPI2 effectors were engineered in S. enterica serovar Typhimurium and the ability of the 16 different mutants to colonize and replicate was examined. In the typhoid model, we found that ΔspvB and ΔspiC mutants were attenuated for colonization of intestinal and systemic sites, while the ΔsseF mutant was attenuated in systemic organs. In epithelial cells, all mutants replicated to the same extent as the wild-type. In macrophages, ΔspiC, ΔsteC, ΔspvB, ΔssseK1/K2/K3, ΔsifA, and ΔsifB strains replicated poorly in comparison to wild-type Salmonella. This study provides a thorough screen of the majority of the known SPI2 effectors evaluated under the same conditions in various models of infection, providing a foundation for comparative examination of the roles and interactions of these effectors.
Collapse
Affiliation(s)
- Michelle M C Buckner
- Department of Microbiology and Immunology and Michael Smith Laboratories, University of British Columbia, Canada
| | | | | | | |
Collapse
|
43
|
Integrated regulation of acetoin fermentation by quorum sensing and pH in Serratia plymuthica RVH1. Appl Environ Microbiol 2011; 77:3422-7. [PMID: 21441339 DOI: 10.1128/aem.02763-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During fermentation of sugars, a number of bacterial species are able to switch from mixed acid production to acetoin and 2,3-butanediol production in order to avoid lethal acidification of their environment, although the regulation of this switch is only poorly understood. In this study, we report the identification of the budAB structural operon, involved in acetoin production in Serratia plymuthica RVH1, and its activation by a LysR-type regulator encoded by budR, immediately upstream of this operon. In addition, the regulation of budR transcription was elucidated and found to be subject to negative control by BudR itself and to positive control by external stimuli such as N-(3-oxohexanoyl)-L-homoserine lactone (OHHL) quorum sensing signaling molecules and acetate. Interestingly, however, we observed that induction of budR transcription by OHHL or acetate did not require BudR, indicating the involvement of additional regulatory factors in relaying these environmental signals to the budR promoter.
Collapse
|
44
|
Role of Klebsiella pneumoniae LamB Porin in antimicrobial resistance. Antimicrob Agents Chemother 2011; 55:1803-5. [PMID: 21282437 DOI: 10.1128/aac.01441-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the contribution of LamB in Klebsiella pneumoniae antimicrobial resistance, we determined the MICs of various antibiotics and the frequency of mutation to increased cefoxitin or meropenem resistance of the strains CSUB10S (expressing only OmpK36), CSUB10R (lacking OmpK35 and OmpK36), and their derived isogenic insertion-duplication mutants deficient in LamB. Expression of LamB was indispensable in order for CSUB10S to lose OmpK36 and become resistant to cefoxitin, while in CSUB10R, LamB deficiency promoted increased resistance to carbapenem.
Collapse
|
45
|
Noonin C, Jiravanichpaisal P, Söderhäll I, Merino S, Tomás JM, Söderhäll K. Melanization and pathogenicity in the insect, Tenebrio molitor, and the crustacean, Pacifastacus leniusculus, by Aeromonas hydrophila AH-3. PLoS One 2010; 5:e15728. [PMID: 21206752 PMCID: PMC3012084 DOI: 10.1371/journal.pone.0015728] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 11/22/2010] [Indexed: 12/27/2022] Open
Abstract
Aeromonas hydrophila is the most common Aeromonas species causing infections in human and other animals such as amphibians, reptiles, fish and crustaceans. Pathogenesis of Aeromonas species have been reported to be associated with virulence factors such as lipopolysaccharides (LPS), bacterial toxins, bacterial secretion systems, flagella, and other surface molecules. Several mutant strains of A. hydrophila AH-3 were initially used to study their virulence in two animal species, Pacifastacus leniusculus (crayfish) and Tenebrio molitor larvae (mealworm). The AH-3 strains used in this study have mutations in genes involving the synthesis of flagella, LPS structures, secretion systems, and some other factors, which have been reported to be involved in A. hydrophila pathogenicity. Our study shows that the LPS (O-antigen and external core) is the most determinant A. hydrophila AH-3 virulence factor in both animals. Furthermore, we studied the immune responses of these hosts to infection of virulent or non-virulent strains of A. hydrophila AH-3. The AH-3 wild type (WT) containing the complete LPS core is highly virulent and this bacterium strongly stimulated the prophenoloxidase activating system resulting in melanization in both crayfish and mealworm. In contrast, the ΔwaaE mutant which has LPS without O-antigen and external core was non-virulent and lost ability to stimulate this system and melanization in these two animals. The high phenoloxidase activity found in WT infected crayfish appears to result from a low expression of pacifastin, a prophenoloxidase activating enzyme inhibitor, and this gene expression was not changed in the ΔwaaE mutant infected animal and consequently phenoloxidase activity was not altered as compared to non-infected animals. Therefore we show that the virulence factors of A. hydrophila are the same regardless whether an insect or a crustacean is infected and the O-antigen and external core is essential for activation of the proPO system and as virulence factors for this bacterium.
Collapse
Affiliation(s)
- Chadanat Noonin
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | - Pikul Jiravanichpaisal
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Irene Söderhäll
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | - Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | - Juan M. Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
46
|
Orth JD, Palsson BØ. Systematizing the generation of missing metabolic knowledge. Biotechnol Bioeng 2010; 107:403-12. [PMID: 20589842 DOI: 10.1002/bit.22844] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome-scale metabolic network reconstructions are built from all of the known metabolic reactions and genes in a target organism. However, since our knowledge of any organism is incomplete, these network reconstructions contain gaps. Reactions may be missing, resulting in dead-ends in pathways, while unknown gene products may catalyze known reactions. New computational methods that analyze data, such as growth phenotypes or gene essentiality, in the context of genome-scale metabolic networks, have been developed to predict these missing reactions or genes likely to fill these knowledge gaps. A growing number of experimental studies are appearing that address these computational predictions, leading to discovery of new metabolic capabilities in the target organism. Gap-filling methods can thus be used to improve metabolic network models while simultaneously leading to discovery of new metabolic gene functions.
Collapse
Affiliation(s)
- Jeffrey D Orth
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, Mail Code 0412, La Jolla, California 92093-0412, USA
| | | |
Collapse
|
47
|
EseG, an effector of the type III secretion system of Edwardsiella tarda, triggers microtubule destabilization. Infect Immun 2010; 78:5011-21. [PMID: 20855515 DOI: 10.1128/iai.00152-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Edwardsiella tarda is a Gram-negative enteric pathogen that causes hemorrhagic septicemia in fish and both gastrointestinal and extraintestinal infections in humans. A type III secretion system (T3SS) was recently shown to contribute to pathogenesis, since deletions of various T3SS genes increased the 50% lethal dose (LD(50)) by about 1 log unit in the blue gourami infection model. In this study, we report EseG as the first identified effector protein of T3SS. EseG shares partial homology with two Salmonella T3SS effectors (SseG and SseF) over a conserved domain (amino acid residues 142 to 192). The secretion of EseG is dependent on a functional T3SS and, in particular, requires the chaperone EscB. Experiments using TEM-1 β-lactamase as a fluorescence-based reporter showed that EseG was translocated into HeLa cells at 35°C. Fractionation of infected HeLa cells demonstrated that EseG was localized to the host membrane fraction after translocation. EseG is able to disassemble microtubule structures when overexpressed in mammalian cells. This phenotype may require a conserved motif of EseG (EseG(142-192)), since truncated versions of EseG devoid of this motif lose their ability to cause microtubule destabilization. By demonstrating the function of EseG, our study contributes to the understanding of E. tarda pathogenesis. Moreover, the approach established in this study to identify type III effectors can be used to identify and characterize more type III and possible type VI effectors in Edwardsiella.
Collapse
|
48
|
Mertens K, Müller-Loennies S, Stengel P, Podschun R, Hansen DS, Mamat U. Antiserum against Raoultella terrigena ATCC 33257 identifies a large number of Raoultella and Klebsiella clinical isolates as serotype O12. Innate Immun 2010; 16:366-80. [PMID: 20053705 DOI: 10.1177/1753425909350057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Raoultella terrigena ATCC 33257, recently reclassified from the genus Klebsiella, is a drinking water isolate and belongs to a large group of non-typeable Klebsiella and Raoultella strains. Using an O-antiserum against a capsule-deficient mutant of this strain, we could show a high prevalence (10.5%) of the R. terrigena O-serotype among non-typeable, clinical Klebsiella and Raoultella isolates. We observed a strong serological cross-reaction with the K. pneumoniae O12 reference strain, indicating that a large percentage of these non-typeable strains may belong to the O12 serotype, although these are currently not detectable by the K. pneumoniae O12 reference antiserum in use. Therefore, we analyzed the O-polysaccharide (O-PS) structure and genetic organization of the wb gene cluster of R. terrigena ATCC 33257, and both confirmed a close relation of R. terrigena and K. pneumoniae O12. The two strains possess an identical O-PS, lipopolysaccharide core structure, and genetic organization of the wb gene cluster. Heterologous expression of the R. terrigena wb gene cluster in Escherichia coli K-12 resulted in the WecA-dependent synthesis of an O-PS reactive with the K. pneumoniae O12 antiserum. The serological data presented here suggest a higher prevalence of the O12-serotype among Klebsiella and Raoultella isolates than generally assumed.
Collapse
Affiliation(s)
- Katja Mertens
- Division of Medical and Biochemical Microbiology, Leibniz-Center for Medicine and Biosciences, Research Center Borstel, Borstel, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob Agents Chemother 2009; 54:177-83. [PMID: 19858254 DOI: 10.1128/aac.00715-09] [Citation(s) in RCA: 299] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Respiratory infections caused by Klebsiella pneumoniae are characterized by high rates of mortality and morbidity. Management of these infections is often difficult, due to the high frequency of strains that are resistant to multiple antimicrobial agents. Multidrug efflux pumps play a major role as a mechanism of antimicrobial resistance in Gram-negative pathogens. In the present study, we investigated the role of the K. pneumoniae AcrRAB operon in antimicrobial resistance and virulence by using isogenic knockouts deficient in the AcrB component and the AcrR repressor, both derived from the virulent strain 52145R. We demonstrated that the AcrB knockout was more susceptible, not only to quinolones, but also to other antimicrobial agents, including beta-lactams, than the wild-type strain and the AcrR knockout. We further showed that the AcrB knockout was more susceptible to antimicrobial agents present in human bronchoalveolar lavage fluid and to human antimicrobial peptides than the wild-type strain and the AcrR knockout. Finally, the AcrB knockout exhibited a reduced capacity to cause pneumonia in a murine model, in contrast to the wild-type strain. The results of this study suggest that, in addition to contributing to the multidrug resistance phenotype, the AcrAB efflux pump may represent a novel virulence factor required for K. pneumoniae to resist innate immune defense mechanisms of the lung, thus facilitating the onset of pneumonia.
Collapse
|
50
|
Jimenez N, Vilches S, Lacasta A, Regué M, Merino S, Tomás JM. A bifunctional enzyme in a single gene catalyzes the incorporation of GlcN into the Aeromonas core lipopolysaccharide. J Biol Chem 2009; 284:32995-3005. [PMID: 19805547 DOI: 10.1074/jbc.m109.038828] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The core lipopolysaccharide (LPS) of Aeromonas hydrophila AH-3 and Aeromonas salmonicida A450 is characterized by the presence of the pentasaccharide alpha-d-GlcN-(1-->7)-l-alpha-d-Hep-(1-->2)-l-alpha-d-Hep-(1-->3)-l-alpha-d-Hep-(1-->5)-alpha-Kdo. Previously it has been suggested that the WahA protein is involved in the incorporation of GlcN residue to outer core LPS. The WahA protein contains two domains: a glycosyltransferase and a carbohydrate esterase. In this work we demonstrate that the independent expression of the WahA glycosyltransferase domain catalyzes the incorporation of GlcNAc from UDP-GlcNAc to the outer core LPS. Independent expression of the carbohydrate esterase domain leads to the deacetylation of the GlcNAc residue to GlcN. Thus, the WahA is the first described bifunctional glycosyltransferase enzyme involved in the biosynthesis of core LPS. By contrast in Enterobacteriaceae containing GlcN in their outer core LPS the two reactions are performed by two different enzymes.
Collapse
Affiliation(s)
- Natalia Jimenez
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|