1
|
Huang M, He P, He P, Wu Y, Munir S, He Y. Novel Virulence Factors Deciphering Klebsiella pneumoniae KpC4 Infect Maize as a Crossing-Kingdom Pathogen: An Emerging Environmental Threat. Int J Mol Sci 2022; 23:ijms232416005. [PMID: 36555647 PMCID: PMC9785288 DOI: 10.3390/ijms232416005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Klebsiella pneumoniae is not only a human and animal opportunistic pathogen, but a food-borne pathogen. Cross-kingdom infection has been focused on since K. pneumoniae was identified as the pathogen of maize, banana, and pomegranate. Although the pathogenicity of K. pneumoniae strains (from ditch water, maize, and human) on plant and mice has been confirmed, there are no reports to explain the molecular mechanisms of the pathogen. This study uncovered the K. pneumoniae KpC4 isolated from maize top rot for the determination of various virulence genes and resistance genes. At least thirteen plant disease-causing genes are found to be involved in the disruption of plant defense. Among them, rcsB is responsible for causing disease in both plants and animals. The novel sequence types provide solid evidence that the pathogen invades plant and has robust ecological adaptability. It is imperative to perform further studies on the verification of these KpC4 genes’ functions to understand the molecular mechanisms involved in plant−pathogen interactions.
Collapse
Affiliation(s)
- Min Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- College of Agronomy and Life Sciences and Engineering Research Center for Urban Modern Agriculture of Higher Education in Yunnan Province, Kunming University, Kunming 650214, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (S.M.); (Y.H.)
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (S.M.); (Y.H.)
| |
Collapse
|
2
|
Knecht LE, Heinrich N, Born Y, Felder K, Pelludat C, Loessner MJ, Fieseler L. Bacteriophage S6 requires bacterial cellulose for Erwinia amylovora infection. Environ Microbiol 2022; 24:3436-3450. [PMID: 35289468 DOI: 10.1111/1462-2920.15973] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 01/21/2023]
Abstract
Bacteriophages are highly selective in targeting bacteria. This selectivity relies on the specific adsorption of phages to the host cell surface. In this study, a Tn5 transposon mutant library of Erwinia amylovora, the causative agent of fire blight, was screened to identify bacterial receptors required for infection by the podovirus S6. Phage S6 was unable to infect mutants with defects in the bacterial cellulose synthase operon (bcs). The Bcs complex produces and secretes bacterial cellulose, an extracellular polysaccharide associated with bacterial biofilms. Deletion of the bcs operon or associated genes (bcsA, bcsC and bcsZ) verified the crucial role of bacterial cellulose for S6 infection. Application of the cellulose binding dye Congo Red blocked infection by S6. We demonstrate that infective S6 virions degraded cellulose and that Gp95, a phage-encoded cellulase, is involved to catalyse the reaction. In planta S6 did not significantly inhibit fire blight symptom development. Moreover, deletion of bcs genes in E. amylovora did not affect bacterial virulence in blossom infections, indicating that sole application of cellulose targeting phages is less appropriate to biologically control E. amylovora. The interplay between cellulose synthesis, host cell infection and maintenance of the host cell population is discussed.
Collapse
Affiliation(s)
- Leandra E Knecht
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland.,Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Nadine Heinrich
- Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Yannick Born
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Katja Felder
- Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Cosima Pelludat
- Agroscope, Plant Pathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Lars Fieseler
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| |
Collapse
|
3
|
Yuan X, McGhee GC, Slack SM, Sundin GW. A Novel Signaling Pathway Connects Thiamine Biosynthesis, Bacterial Respiration, and Production of the Exopolysaccharide Amylovoran in Erwinia amylovora. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1193-1208. [PMID: 34081536 DOI: 10.1094/mpmi-04-21-0095-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Erwinia amylovora is a plant pathogen causing necrotrophic fire blight disease of apple, pear, and other rosaceous plants. This bacterium colonizes host vascular tissues via the production of exopolysaccharides (EPSs) including amylovoran. It is well-established that the nearly ubiquitous plasmid pEA29 of E. amylovora is an essential virulence factor, but the underlying mechanism remains uncharacterized. Here, we demonstrated that pEA29 was required for E. amylovora to produce amylovoran and to form a biofilm, and this regulation was dependent on the thiamine biosynthesis operon thiOSGF. We then conducted carbohydrate and genetic analyses demonstrating that the thiamine-mediated effect on amylovoran production was indirect, as cells lacking thiOSGF produced an EPS that did not contain glucuronic acid, one of the key components of amylovoran, whereas the transcriptional activity and RNA levels of the amylovoran biosynthesis genes were not altered. Alternatively, addition of exogenous thiamine restored amylovoran production in the pEA29-cured strain of E. amylovora and positively impacted amylovoran production in a dose-dependent manner. Individual deletion of several chromosomal thiamine biosynthesis genes also affected amylovoran production, implying that a complete thiamine biosynthesis pathway is required for the thiamine-mediated effect on amylovoran production in E. amylovora. Finally, we determined that an imbalanced tricarboxylic acid cycle negatively affected amylovoran production, which was restored by addition of exogenous thiamine or overexpression of the thiOSGF operon. In summary, our report revealed a novel signaling pathway that impacts E. amylovora virulence in which thiamine biosynthesis enhances bacterial respiration that provides energetic requirements for the biosynthesis of EPS amylovoran.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Gayle C McGhee
- United States Department of Agriculture, Agriculture Research Service, Horticultural Crops Research Laboratory, Corvallis, OR 97330, U.S.A
| | - Suzanne M Slack
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
4
|
Gurevich D, Dor S, Erov M, Dan Y, Moy JC, Mairesse O, Dafny-Yelin M, Adler-Abramovich L, Afriat-Jurnou L. Directed Enzyme Evolution and Encapsulation in Peptide Nanospheres of Quorum Quenching Lactonase as an Antibacterial Treatment against Plant Pathogen. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2179-2188. [PMID: 33405501 DOI: 10.1021/acsami.0c15808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The need to increase agricultural yield has led to an extensive use of antibiotics against plant pathogens, which has resulted in the emergence of resistant strains. Therefore, there is an increasing demand for new methods, preferably with lower chances of developing resistant strains and a lower risk to the environment or public health. Many Gram-negative bacterial pathogens use quorum sensing, a population-density-dependent regulatory mechanism, to monitor the secretion of N-acyl-homoserine lactones (AHLs) and pathogenicity. Therefore, quorum sensing represents an attractive antivirulence target. AHL lactonases hydrolyze AHLs and have potential antibacterial properties; however, their use is limited by thermal instability and durability, or low activity. Here, we demonstrate that an AHL lactonase from the phosphotriesterase-like lactonase family exhibits high activity with the AHL secreted from the plant pathogen Erwinia amylovora and attenuates infection in planta. Using directed enzyme evolution, we were able to increase the enzyme's temperature resistance (T50, the temperature at which 50% of the activity is retained) by 8 °C. Then, by performing enzyme encapsulation in nanospherical capsules composed of tertbutoxycarbonyl-Phe-Phe-OH peptide, the shelf life was extended for more than 5 weeks. Furthermore, the encapsulated and free mutant were able to significantly inhibit up to 70% blossom's infection in the field, achieving the same efficacy as seen with antibiotics commonly used today to treat the plant pathogen. We conclude that specific AHL lactonase can inhibit E. amylovora infection in the field, as it degrades the AHL secreted by this plant pathogen. The combination of directed enzyme evolution and peptide nanostructure encapsulation significantly improved the thermal resistance and shelf life of the enzyme, respectively, increasing its potential in future development as antibacterial treatment.
Collapse
Affiliation(s)
- David Gurevich
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Shlomit Dor
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Mayan Erov
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Yoav Dan
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jehudith Clara Moy
- Northern Agriculture Research & Development, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Orly Mairesse
- Northern Agriculture Research & Development, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Mery Dafny-Yelin
- Northern Agriculture Research & Development, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The ADAMA Center for Novel Delivery Systems in Crop Protection, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Livnat Afriat-Jurnou
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- The Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee 1220800, Israel
| |
Collapse
|
5
|
Chen G, Cao M, Yu J, Guo X, Shi S. Prediction and functional analysis of prokaryote lysine acetylation site by incorporating six types of features into Chou's general PseAAC. J Theor Biol 2019; 461:92-101. [DOI: 10.1016/j.jtbi.2018.10.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/09/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022]
|
6
|
Lee JH, Ancona V, Zhao Y. Lon protease modulates virulence traits in Erwinia amylovora by direct monitoring of major regulators and indirectly through the Rcs and Gac-Csr regulatory systems. MOLECULAR PLANT PATHOLOGY 2018; 19:827-840. [PMID: 28509355 PMCID: PMC6638003 DOI: 10.1111/mpp.12566] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 05/10/2023]
Abstract
Lon, an ATP-dependent protease in bacteria, influences diverse cellular processes by degrading damaged, misfolded and short-lived regulatory proteins. In this study, we characterized the effects of lon mutation and determined the molecular mechanisms underlying Lon-mediated virulence regulation in Erwinia amylovora, an enterobacterial pathogen of apple. Erwinia amylovora depends on the type III secretion system (T3SS) and the exopolysaccharide (EPS) amylovoran to cause disease. Our results showed that mutation of the lon gene led to the overproduction of amylovoran, increased T3SS gene expression and the non-motile phenotype. Western blot analyses showed that mutation in lon directly affected the accumulation and stability of HrpS/HrpA and RcsA. Mutation in lon also indirectly influenced the expression of flhD, hrpS and csrB through the accumulation of the RcsA/RcsB proteins, which bind to the promoter of these genes. In addition, lon expression is under the control of CsrA, possibly at both the transcriptional and post-transcriptional levels. Although mutation in csrA abolished both T3SS and amylovoran production, deletion of the lon gene in the csrA mutant only rescued amylovoran production, but not T3SS. These results suggest that CsrA might positively control both T3SS and amylovoran production partly by suppressing Lon, whereas CsrA may also play a critical role in T3SS by affecting unknown targets.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL 61801USA
| | - Veronica Ancona
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL 61801USA
- Present address:
Texas A&M University‐Kingsville, Citrus CenterWeslacoTX 78596USA
| | | |
Collapse
|
7
|
Borruso L, Salomone-Stagni M, Polsinelli I, Schmitt AO, Benini S. Conservation of Erwinia amylovora pathogenicity-relevant genes among Erwinia genomes. Arch Microbiol 2017; 199:1335-1344. [PMID: 28695265 PMCID: PMC5663808 DOI: 10.1007/s00203-017-1409-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/10/2017] [Accepted: 07/03/2017] [Indexed: 11/28/2022]
Abstract
The Erwinia genus comprises species that are plant pathogens, non-pathogen, epiphytes, and opportunistic human pathogens. Within the genus, Erwinia amylovora ranks among the top 10 plant pathogenic bacteria. It causes the fire blight disease and is a global threat to commercial apple and pear production. We analyzed the presence/absence of the E. amylovora genes reported to be important for pathogenicity towards Rosaceae within various Erwinia strains genomes. This simple bottom-up approach, allowed us to correlate the analyzed genes to pathogenicity, host specificity, and make useful considerations to drive targeted studies.
Collapse
Affiliation(s)
- Luigimaria Borruso
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Marco Salomone-Stagni
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Ivan Polsinelli
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Armin Otto Schmitt
- Department of Nutztierwissenschaften, Breeding Informatics, Georg-August-Universität Göttingen, Carl-Sprengel-Weg 1, 37075, Göttingen, Germany
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy.
| |
Collapse
|
8
|
Kim MK, Lee SM, Seuk SW, Ryu JS, Kim HD, Kwon JH, Choi YJ, Yun HD. Characterization of the rcsA Gene from Pantoea sp. Strain PPE7 and Its Influence on Extracellular Polysaccharide Production and Virulence on Pleurotus eryngii. THE PLANT PATHOLOGY JOURNAL 2017; 33:276-287. [PMID: 28592946 PMCID: PMC5461046 DOI: 10.5423/ppj.oa.08.2016.0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 06/07/2023]
Abstract
RcsA is a positive activator of extracellular polysaccharide (EPS) synthesis in the Enterobacteriaceae. The rcsA gene of the soft rot pathogen Pantoea sp. strain PPE7 in Pleurotus eryngii was cloned by PCR amplification, and its role in EPS synthesis and virulence was investigated. The RcsA protein contains 3 highly conserved domains, and the C-terminal end of the open reading frame shared significant amino acid homology to the helix-turn-helix DNA binding motif of bacterial activator proteins. The inactivation of rcsA by insertional mutagenesis created mutants that had decreased production of EPS compared to the wild-type strain and abolished the virulence of Pantoea sp. strain PPE7 in P. eryngii. The Pantoea sp. strain PPE7 rcsA gene was shown to strongly affect the formation of the disease symptoms of a mushroom pathogen and to act as the virulence factor to cause soft rot disease in P. eryngii.
Collapse
Affiliation(s)
- Min Keun Kim
- Environment-Friendly Research Division, Gyeongsangnam-do Agricultural Research & Extension Services, Jinju 52733,
Korea
| | - Sun Mi Lee
- Environment-Friendly Research Division, Gyeongsangnam-do Agricultural Research & Extension Services, Jinju 52733,
Korea
| | - Su Won Seuk
- Environment-Friendly Research Division, Gyeongsangnam-do Agricultural Research & Extension Services, Jinju 52733,
Korea
| | - Jae San Ryu
- Environment-Friendly Research Division, Gyeongsangnam-do Agricultural Research & Extension Services, Jinju 52733,
Korea
| | - Hee Dae Kim
- Environment-Friendly Research Division, Gyeongsangnam-do Agricultural Research & Extension Services, Jinju 52733,
Korea
| | - Jin Hyeuk Kwon
- Environment-Friendly Research Division, Gyeongsangnam-do Agricultural Research & Extension Services, Jinju 52733,
Korea
| | - Yong Jo Choi
- Environment-Friendly Research Division, Gyeongsangnam-do Agricultural Research & Extension Services, Jinju 52733,
Korea
| | - Han Dae Yun
- Department of Applied Life Chemistry, College of Agriculture and Life Science, Gyeongsang National University, JinJu 52828,
Korea
| |
Collapse
|
9
|
Ren J, Sang Y, Lu J, Yao YF. Protein Acetylation and Its Role in Bacterial Virulence. Trends Microbiol 2017; 25:768-779. [PMID: 28462789 DOI: 10.1016/j.tim.2017.04.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/21/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
Abstract
Protein acetylation is a universal post-translational modification which is found in both eukaryotes and prokaryotes. This process is achieved enzymatically by the protein acetyltransferase Pat, and nonenzymatically by metabolic intermediates (e.g., acetyl phosphate) in bacteria. Protein acetylation plays a role in bacterial chemotaxis, metabolism, DNA replication, and other cellular processes. Recently, accumulating evidence has suggested that protein acetylation might be involved in bacterial virulence because a number of bacterial virulence factors are acetylated. In this review, we summarize the progress in understanding bacterial protein acetylation and discuss how it mediates bacterial virulence.
Collapse
Affiliation(s)
- Jie Ren
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Sang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jie Lu
- Department of Infectious Diseases, Shanghai Ruijin Hospital, Shanghai 200025, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
10
|
Abdallah K, Hartman K, Pletzer D, Zhurina D, Ullrich MS. The bacteriophage-derived transcriptional regulator, LscR, activates the expression of levansucrase genes in Pseudomonas syringae. Mol Microbiol 2016; 102:1062-1074. [PMID: 27664099 DOI: 10.1111/mmi.13536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2016] [Indexed: 11/30/2022]
Abstract
Synthesis of the exopolysaccharide levan occurs in the bacterial blight pathogen of soybean, Pseudomonas syringae pv. glycinea PG4180, when this bacterium encounters moderate to high concentrations of sucrose inside its host plant. The process is mediated by the temperature-dependent expression and secretion of two levansucrases, LscB and LscC. Previous studies showed the importance of a prophage-associated promoter element in driving the expression of levansucrase genes. Herein, heterologous screening for transcriptional activators revealed that the prophage-borne transcriptional regulator, LscR, from P. syringae mediates expression of levansucrase. A lscR-deficient mutant was generated and exhibited a levan-negative phenotype when grown on a sucrose-rich medium. This phenotype was confirmed by zymographic analysis and Western blots which demonstrated absence of levansucrase in the supernatant and total cell lysates. Transcriptional analysis showed a down-regulation of expression levels of levansucrase and glycosyl hydrolase genes in the lscR-deficient mutant. Ultimately, a direct binding of LscR to the promoter region of levansucrase was demonstrated using electrophoretic mobility shift assays allowing to conclude that a bacteriophage-derived regulator dictates expression of bacterial genes involved in in planta fitness.
Collapse
Affiliation(s)
- Khaled Abdallah
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, Bremen, 28759, Germany
| | - Katharina Hartman
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, Bremen, 28759, Germany
| | - Daniel Pletzer
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, Bremen, 28759, Germany
| | - Daria Zhurina
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, Bremen, 28759, Germany
| | - Matthias S Ullrich
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, Bremen, 28759, Germany
| |
Collapse
|
11
|
Abstract
Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides that is integral in the formation of bacterial communities. Historical studies of polysaccharides revealed that their overproduction often alters the colony morphology and can be diagnostic in identifying certain species. The polysaccharide component of the matrix can provide many diverse benefits to the cells in the biofilm, including adhesion, protection, and structure. Aggregative polysaccharides act as molecular glue, allowing the bacterial cells to adhere to each other as well as surfaces. Adhesion facilitates the colonization of both biotic and abiotic surfaces by allowing the bacteria to resist physical stresses imposed by fluid movement that could separate the cells from a nutrient source. Polysaccharides can also provide protection from a wide range of stresses, such as desiccation, immune effectors, and predators such as phagocytic cells and amoebae. Finally, polysaccharides can provide structure to biofilms, allowing stratification of the bacterial community and establishing gradients of nutrients and waste products. This can be advantageous for the bacteria by establishing a heterogeneous population that is prepared to endure stresses created by the rapidly changing environments that many bacteria encounter. The diverse range of polysaccharide structures, properties, and roles highlight the importance of this matrix constituent to the successful adaptation of bacteria to nearly every niche. Here, we present an overview of the current knowledge regarding the diversity and benefits that polysaccharide production provides to bacterial communities within biofilms.
Collapse
|
12
|
Schmid J, Sieber V, Rehm B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 2015; 6:496. [PMID: 26074894 PMCID: PMC4443731 DOI: 10.3389/fmicb.2015.00496] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022] Open
Abstract
Bacteria produce a wide range of exopolysaccharides which are synthesized via different biosynthesis pathways. The genes responsible for synthesis are often clustered within the genome of the respective production organism. A better understanding of the fundamental processes involved in exopolysaccharide biosynthesis and the regulation of these processes is critical toward genetic, metabolic and protein-engineering approaches to produce tailor-made polymers. These designer polymers will exhibit superior material properties targeting medical and industrial applications. Exploiting the natural design space for production of a variety of biopolymer will open up a range of new applications. Here, we summarize the key aspects of microbial exopolysaccharide biosynthesis and highlight the latest engineering approaches toward the production of tailor-made variants with the potential to be used as valuable renewable and high-performance products for medical and industrial applications.
Collapse
Affiliation(s)
- Jochen Schmid
- Chair of Chemistry of Biogenic Resources, Technische Universität MünchenStraubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technische Universität MünchenStraubing, Germany
| | - Bernd Rehm
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand
- The MacDiarmid Institute for Advanced Materials and NanotechnologyPalmerston North, New Zealand
| |
Collapse
|
13
|
Pletzer D, Stahl A, Oja AE, Weingart H. Role of the cell envelope stress regulators BaeR and CpxR in control of RND-type multidrug efflux pumps and transcriptional cross talk with exopolysaccharide synthesis in Erwinia amylovora. Arch Microbiol 2015; 197:761-72. [DOI: 10.1007/s00203-015-1109-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 01/31/2023]
|
14
|
Ancona V, Chatnaparat T, Zhao Y. Conserved aspartate and lysine residues of RcsB are required for amylovoran biosynthesis, virulence, and DNA binding in Erwinia amylovora. Mol Genet Genomics 2015; 290:1265-76. [PMID: 25577258 DOI: 10.1007/s00438-015-0988-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/05/2015] [Indexed: 11/25/2022]
Abstract
In Erwinia amylovora, the Rcs phosphorelay system is essential for amylovoran production and virulence. To further understand the role of conserved aspartate residue (D56) in the phosphor receiver (PR) domain and lysine (K180) residue in the function domain of RcsB, amino acid substitutions of RcsB mutant alleles were generated by site-directed mutagenesis and complementation of various rcs mutants were performed. A D56E substitution of RcsB, which mimics the phosphorylation state of RcsB, complemented the rcsB mutant, resulting in increased amylovoran production and gene expression, reduced swarming motility, and restored pathogenicity. In contrast, D56N and K180A or K180Q substitutions of RcsB did not complement the rcsB mutant. Electrophoresis mobility shift assays showed that D56E, but not D56N, K180Q and K180A substitutions of RcsB bound to promoters of amsG and flhD, indicating that both D56 and K180 are required for DNA binding. Interestingly, the RcsBD56E allele could also complement rcsAB, rcsBC and rcsABCD mutants with restored virulence and increased amylovoran production, indicating that RcsB phosphorylation is essential for virulence of E. amylovora. In addition, mutations of T904 and A905, but not phosphorylation mimic mutation of D876 in the PR domain of RcsC, constitutively activate the Rcs system, suggesting that phosphor transfer is required for activating the Rcs system and indicating both A905 and T904 are required for the phosphatase activity of RcsC. Our results demonstrated that RcsB phosphorylation and dephosphorylation, phosphor transfer from RcsC are essential for the function of the Rcs system, and also suggested that constitutive activation of the Rcs system could reduce the fitness of E. amylovora.
Collapse
Affiliation(s)
- Veronica Ancona
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr, Urbana, IL, 61801, USA
| | | | | |
Collapse
|
15
|
Santander RD, Monte-Serrano M, Rodríguez-Herva JJ, López-Solanilla E, Rodríguez-Palenzuela P, Biosca EG. Exploring new roles for the rpoS gene in the survival and virulence of the fire blight pathogen Erwinia amylovora. FEMS Microbiol Ecol 2014; 90:895-907. [PMID: 25331301 DOI: 10.1111/1574-6941.12444] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/13/2014] [Accepted: 10/18/2014] [Indexed: 01/19/2023] Open
Abstract
Erwinia amylovora causes fire blight in economically important plants of the family Rosaceae. This bacterial pathogen spends part of its life cycle coping with starvation and other fluctuating environmental conditions. In many Gram-negative bacteria, starvation and other stress responses are regulated by the sigma factor RpoS. We obtained an E. amylovora rpoS mutant to explore the role of this gene in starvation responses and its potential implication in other processes not yet studied in this pathogen. Results showed that E. amylovora needs rpoS to develop normal starvation survival and viable but nonculturable (VBNC) responses. Furthermore, this gene contributed to stationary phase cross-protection against oxidative, osmotic, and acid stresses and was essential for cross-protection against heat shock, but nonessential against acid shock. RpoS also mediated regulation of motility, exopolysaccharide synthesis, and virulence in immature loquats, but not in pear plantlets, and contributed to E. amylovora survival in nonhost tissues during incompatible interactions. Our results reveal some unique roles for the rpoS gene in E. amylovora and provide new knowledge on the regulation of different processes related to its ecology, including survival in different environments and virulence in immature fruits.
Collapse
Affiliation(s)
- Ricardo D Santander
- Departmento de Microbiología y Ecología, Universitat de València, Burjassot, Valencia, Spain; Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Host exopolysaccharide quantity and composition impact Erwinia amylovora bacteriophage pathogenesis. Appl Environ Microbiol 2013; 79:3249-56. [PMID: 23503310 DOI: 10.1128/aem.00067-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Erwinia amylovora bacteriophages (phages) belonging to the Myoviridae and Podoviridae families demonstrated a preference for either high-exopolysaccharide-producing (HEP) or low-exopolysaccharide-producing (LEP) bacterial hosts when grown on artificial medium without or with sugar supplementation. Myoviridae phages produced clear plaques on LEP hosts and turbid plaques on HEP hosts. The reverse preference was demonstrated by most Podoviridae phages, where clear plaques were seen on HEP hosts. Efficiency of plating (EOP) was determined by comparing phage growth on the original isolation host to the that on the LEP or HEP host. Nine of 10 Myoviridae phages showed highest EOPs on LEP hosts, and 8 of 11 Podoviridae phages had highest EOPs on HEP hosts. Increasing the production of EPS on sugar-supplemented medium or decreasing production by knocking out the synthesis of amylovoran or levan, the two EPSs produced by E. amylovora, indicated that these components play crucial roles in phage infection. Amylovoran was virtually essential for proliferation of most Podoviridae phages when phage population growth was compared to the wild type. Decreased levan production resulted in a significant reduction of progeny from phages in the Myoviridae family. Thus, Podoviridae phages are adapted to hosts that produce high levels of exopolysaccharides and are dependent on host-produced amylovoran for pathogenesis. Myoviridae phages are adapted to hosts that produce lower levels of exopolysaccharides and host-produced levan.
Collapse
|
17
|
Sammer UF, Reiher K, Spiteller D, Wensing A, Völksch B. Assessment of the relevance of the antibiotic 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine from Pantoea agglomerans biological control strains against bacterial plant pathogens. Microbiologyopen 2012; 1:438-49. [PMID: 23233458 PMCID: PMC3535389 DOI: 10.1002/mbo3.43] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 09/09/2012] [Accepted: 09/12/2012] [Indexed: 11/08/2022] Open
Abstract
The epiphyte Pantoea agglomerans 48b/90 (Pa48b) is a promising biocontrol strain against economically important bacterial pathogens such as Erwinia amylovora. Strain Pa48b produces the broad-spectrum antibiotic 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine (APV) in a temperature-dependent manner. An APV-negative mutant still suppressed the E. amylovora population and fire blight disease symptoms in apple blossom experiments under greenhouse conditions, but was inferior to the Pa48b wild-type indicating the influence of APV in the antagonism. In plant experiments with the soybean pathogen Pseudomonas syringae pv. glycinea both, Pa48b and the APV-negative mutant, successfully suppressed the pathogen. Our results demonstrate that the P. agglomerans strain Pa48b is an efficient biocontrol organism against plant pathogens, and we prove its ability for fast colonization of plant surfaces over a wide temperature range.
Collapse
Affiliation(s)
- Ulrike F Sammer
- Institute for Microbiology, Microbial Communication, University of Jena, Neugasse 25, D-07743, Jena, Germany.
| | | | | | | | | |
Collapse
|
18
|
Wang LY, Lin SS, Hung TH, Li TK, Lin NC, Shen TL. Multiple domains of the tobacco mosaic virus p126 protein can independently suppress local and systemic RNA silencing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:6-17. [PMID: 22324815 DOI: 10.1094/mpmi-08-11-0207] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Small RNA-mediated RNA silencing is a widespread antiviral mechanism in plants and other organisms. Many viruses encode suppressors of RNA silencing for counter-defense. The p126 protein encoded by Tobacco mosaic virus (TMV) has been reported to be a suppressor of RNA silencing but the mechanism of its function remains unclear. This protein is unique among the known plant viral silencing suppressors because of its large size and multiple domains. Here, we report that the methyltransferase, helicase, and nonconserved region II (NONII) of p126 each has silencing-suppressor function. The silencing-suppression activities of methyltransferase and helicase can be uncoupled from their enzyme activities. Specific amino acids in NONII previously shown to be crucial for viral accumulation and symptom development are also crucial for silencing suppression. These results suggest that some viral proteins have evolved to possess modular structural domains that can independently interfere with host silencing, and that this may be an effective mechanism of increasing the robustness of a virus.
Collapse
Affiliation(s)
- Li-Ya Wang
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Exopolysaccharide production is influenced by sugars, N-acylhomoserine lactone, and transcriptional regulators RcsA and RcsB, but does not affect pathogenicity in the plant pathogen Pantoea ananatis. Biosci Biotechnol Biochem 2011; 75:997-9. [PMID: 21597171 DOI: 10.1271/bbb.100888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pantoea ananatis SK-1 produced EPS by AHL-mediated quorum sensing on an LB agar plate containing glucose, fructose, and sucrose. rcsA and rcsB mutants did not produce EPS with or without AHLs and with or without sugars, but they induced necrotic symptoms in onion leaves. These results indicate that EPS production does not relate to the pathogenicity of SK-1.
Collapse
|
20
|
Reckseidler-Zenteno SL, Viteri DF, Moore R, Wong E, Tuanyok A, Woods DE. Characterization of the type III capsular polysaccharide produced by Burkholderia pseudomallei. J Med Microbiol 2010; 59:1403-1414. [DOI: 10.1099/jmm.0.022202-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Burkholderia pseudomallei has been shown to produce more than one capsular polysaccharide (CPS). Analysis of the B. pseudomallei genome has revealed that the organism contains four CPS operons (I–IV). One of these operons (CPS III) was selected for further study. Comparative sequencing analysis revealed that the genes encoding CPS III are present in B. pseudomallei and Burkholderia thailandensis but not in Burkholderia mallei. In this study, CPS III was not found to contribute to the virulence of B. pseudomallei. Strains containing mutations in CPS III had the same LD50 value as the wild-type when tested in an animal infection model. Production of CPS III was shown to be induced in water but inhibited in 30 % normal human serum using a lux reporter fusion assay. Microarray analysis of capsule gene expression in infected hamsters revealed that the genes encoding CPS III were not significantly expressed in vivo compared with the genes encoding the previously characterized mannoheptose capsule (CPS I), which is an important virulence factor in B. pseudomallei. Glycosyl-composition analysis by combined GC/MS indicated that the CPS III genes are involved in the synthesis of a capsule composed of galactose, glucose, mannose and xylose.
Collapse
Affiliation(s)
- Shauna L. Reckseidler-Zenteno
- Centre for Science, Athabasca University, Athabasca, AB T9S 9Z9, Canada
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, Calgary, AB T2N 4N1, Canada
| | - Duber-Frey Viteri
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, Calgary, AB T2N 4N1, Canada
| | - Richard Moore
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, Calgary, AB T2N 4N1, Canada
| | - Erica Wong
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, Calgary, AB T2N 4N1, Canada
| | - Apichai Tuanyok
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, Calgary, AB T2N 4N1, Canada
| | - Donald E. Woods
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
21
|
Ordax M, Marco-Noales E, López MM, Biosca EG. Exopolysaccharides favor the survival of Erwinia amylovora under copper stress through different strategies. Res Microbiol 2010; 161:549-55. [DOI: 10.1016/j.resmic.2010.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/30/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
|
22
|
Lee SA, Ngugi HK, Halbrendt NO, O'Keefe G, Lehman B, Travis JW, Sinn JP, McNellis TW. Virulence characteristics accounting for fire blight disease severity in apple trees and seedlings. PHYTOPATHOLOGY 2010; 100:539-50. [PMID: 20465409 DOI: 10.1094/phyto-100-6-0539] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The gram-negative bacterium Erwinia amylovora is the causal agent of fire blight, the most destructive bacterial disease of rosaceous plants, including apple and pear. Here, we compared the virulence levels of six E. amylovora strains (Ea273, CFBP1367, Ea581a, E2002a, E4001a, and HKN06P1) on apple trees and seedlings. The strains produced a range of disease severity, with HKN06P1 producing the greatest disease severity in every assay. We then compared virulence characteristic expression among the six strains, including growth rates in immature apple fruit, amylovoran production, levansucrase activity, biofilm formation, carbohydrate utilization, hypersensitive cell death elicitation in tobacco leaves, and protein secretion profiles. Multiple regression analysis indicated that three of the virulence characteristics (amylovoran production, biofilm formation, and growth in immature apple fruit) accounted for >70% of the variation in disease severity on apple seedlings. Furthermore, in greenhouse-grown 'Gala' trees, >75% of the variation in disease severity was accounted for by five of the virulence characteristics: amylovoran production, biofilm formation, growth in immature apple fruit, hypersensitive cell death elicitation, and sorbitol utilization. This study demonstrates that virulence factor expression levels account for differences in disease severity caused by wild isolates of E. amylovora on apple trees.
Collapse
Affiliation(s)
- Steven A Lee
- Department of Plant Pathology, The Pennsylvania State University, University Park, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Velázquez-Hernández M, Baizabal-Aguirre V, Bravo-Patiño A, Cajero-Juárez M, Chávez-Moctezuma M, Valdez-Alarcón J. Microbial fructosyltransferases and the role of fructans. J Appl Microbiol 2009; 106:1763-78. [DOI: 10.1111/j.1365-2672.2008.04120.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Zhao Y, Wang D, Nakka S, Sundin GW, Korban SS. Systems level analysis of two-component signal transduction systems in Erwinia amylovora: role in virulence, regulation of amylovoran biosynthesis and swarming motility. BMC Genomics 2009; 10:245. [PMID: 19470164 PMCID: PMC2698875 DOI: 10.1186/1471-2164-10-245] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 05/26/2009] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Two-component signal transduction systems (TCSTs), consisting of a histidine kinase (HK) and a response regulator (RR), represent a major paradigm for signal transduction in prokaryotes. TCSTs play critical roles in sensing and responding to environmental conditions, and in bacterial pathogenesis. Most TCSTs in Erwinia amylovora have either not been identified or have not yet been studied. RESULTS We used a systems approach to identify TCST and related signal transduction genes in the genome of E. amylovora. Comparative genomic analysis of TCSTs indicated that E. amylovora TCSTs were closely related to those of Erwinia tasmaniensis, a saprophytic enterobacterium isolated from apple flowers, and to other enterobacteria. Forty-six TCST genes in E. amylovora including 17 sensor kinases, three hybrid kinases, 20 DNA- or ligand-binding RRs, four RRs with enzymatic output domain (EAL-GGDEF proteins), and two kinases were characterized in this study. A systematic TCST gene-knockout experiment was conducted, generating a total of 59 single-, double-, and triple-mutants. Virulence assays revealed that five of these mutants were non-pathogenic on immature pear fruits. Results from phenotypic characterization and gene expression experiments indicated that several groups of TCST systems in E. amylovora control amylovoran biosynthesis, one of two major virulence factors in E. amylovora. Both negative and positive regulators of amylovoran biosynthesis were identified, indicating a complex network may control this important feature of pathogenesis. Positive (non-motile, EnvZ/OmpR), negative (hypermotile, GrrS/GrrA), and intermediate regulators for swarming motility in E. amylovora were also identified. CONCLUSION Our results demonstrated that TCSTs in E. amylovora played major roles in virulence on immature pear fruit and in regulating amylovoran biosynthesis and swarming motility. This suggested presence of regulatory networks governing expression of critical virulence genes in E. amylovora.
Collapse
Affiliation(s)
- Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
25
|
Wang D, Korban SS, Zhao Y. The Rcs phosphorelay system is essential for pathogenicity in Erwinia amylovora. MOLECULAR PLANT PATHOLOGY 2009; 10:277-90. [PMID: 19236575 PMCID: PMC6640219 DOI: 10.1111/j.1364-3703.2008.00531.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Rcs phosphorelay system is a modified two-component signal transduction system found exclusively in Enterobacteriaceae. In this study, we characterized the roles of the Rcs system in Erwinia amylovora, a highly virulent and necrogenic enterobacterium causing fire blight disease on rosaceous plants. Our results showed that rcsB, rcsC, rcsD and rcsBD mutants were non-pathogenic on immature pear fruit. The bacterial growth of these mutants was also greatly reduced compared with that of the wild-type strain in immature pear fruit. In an in vitro amylovoran assay, rcsB and rcsD mutants were deficient in amylovoran production, whereas the rcsC mutant exhibited higher amylovoran production than that of the wild-type. Consistent with amylovoran production, expression of the amylovoran biosynthetic gene amsG, using green fluorescent protein as a reporter, was not detectable in rcsB, rcsD and rcsBD mutants both in vitro and in vivo. The expression of amsG in vitro was higher in the rcsC mutant than in the wild-type, whereas its expression in vivo was higher in the wild-type than in the rcsC mutant. In addition, rcs mutants were more susceptible to polymyxin B treatment than the wild-type, suggesting that the Rcs system conferred some level of resistance to polymyxin B. Furthermore, rcs mutants showed irregular and slightly reduced motility on swarming plates. Together, these results indicate that the Rcs system plays a major role in virulence and survival of E. amylovora in immature pear fruit.
Collapse
Affiliation(s)
- Dongping Wang
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
26
|
Regulation of igaA and the Rcs system by the MviA response regulator in Salmonella enterica. J Bacteriol 2009; 191:2743-52. [PMID: 19218385 DOI: 10.1128/jb.01519-08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IgaA is a membrane protein that prevents overactivation of the Rcs regulatory system in enteric bacteria. Here we provide evidence that igaA is the first gene in a sigma(70)-dependent operon of Salmonella enterica serovar Typhimurium that also includes yrfG, yrfH, and yrfI. We also show that the Lon protease and the MviA response regulator participate in regulation of the igaA operon. Our results indicate that MviA regulates igaA transcription in an RpoS-dependent manner, but the results also suggest that MviA may regulate RcsB activation in an RpoS- and IgaA-independent manner.
Collapse
|
27
|
Synchronous gene expression of the Yersinia enterocolitica Ysa type III secretion system and its effectors. J Bacteriol 2009; 191:1816-26. [PMID: 19124573 DOI: 10.1128/jb.01402-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type III secretion systems (T3SSs) are complex units that consist of many proteins. Often the proteins are encoded as a cohesive unit on virulence plasmids, but several systems have their various components dispersed around the chromosome. The Yersinia enterocolitica Ysa T3SS is such a system, where the apparatus genes, some regulatory genes, and four genes encoding secreted proteins (ysp genes) are contained in a single locus. The remaining ysp genes and at least one additional regulator are found elsewhere on the chromosome. Expression of ysa genes requires conditions of high ionic strength, neutral/basic pH, and low temperatures (26 degrees C) and is stimulated by exposure to solid surfaces. The AraC-like regulator YsaE and the dual-function chaperone/regulator SycB are required to stimulate the sycB promoter, which transcribes sycB and probably yspBCDA as well. The putative phosphorelay proteins YsrRS (located at the distal end of the ysa locus) and RcsB, the response regulator of the RcsBCD phosphorelay system, are required to initiate transcription at the ysaE promoter, which drives transcription of many apparatus genes. In this work, we sought to determine which ysp genes were coordinately regulated with the genes within the ysa locus. We found that six unlinked ysp genes responded to NaCl and required YsaE/SycB, YsrRS, and RcsB for expression. Three ysp genes had unique patterns, one of which was unaffected by all elements tested except NaCl. Thus, while the ysp genes were likely to have been acquired independently, most have acquired a synchronous regulatory pattern.
Collapse
|
28
|
MacRitchie DM, Buelow DR, Price NL, Raivio TL. Two-component signaling and gram negative envelope stress response systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:80-110. [PMID: 18792683 DOI: 10.1007/978-0-387-78885-2_6] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dawn M MacRitchie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | | | |
Collapse
|
29
|
BOCSANCZY ANAM, NISSINEN RIITTAM, OH CHANG, BEER STEVENV. HrpN of Erwinia amylovora functions in the translocation of DspA/E into plant cells. MOLECULAR PLANT PATHOLOGY 2008; 9:425-34. [PMID: 18705858 PMCID: PMC6640523 DOI: 10.1111/j.1364-3703.2008.00471.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The type III secretion system (T3SS) is required by plant pathogenic bacteria for the translocation of certain bacterial proteins to the cytoplasm of plant cells or secretion of some proteins to the apoplast. The T3SS of Erwinia amylovora, which causes fire blight of pear, apple and other rosaceous plants, secretes DspA/E, which is an indispensable pathogenicity factor. Several other proteins, including HrpN, a critical virulence factor, are also secreted by the T3SS. Using a CyaA reporter system, we demonstrated that DspA/E is translocated into the cells of Nicotiana tabacum'Xanthi'. To determine if other T3-secreted proteins are needed for translocation of DspA/E, we examined its translocation in several mutants of E. amylovora strain Ea321. DspA/E was translocated by both hrpW and hrpK mutants, although with some delay, indicating that these two proteins are dispensable in the translocation of DspA/E. Remarkably, translocation of DspA/E was essentially abolished in both hrpN and hrpJ mutants; however, secretion of DspA/E into medium was not affected in any of the mentioned mutants. In contrast to the more virulent strain Ea273, secretion of HrpN was abolished in a hrpJ mutant of strain Ea321. In addition, HrpN was weakly translocated into plant cytoplasm. These results suggest that HrpN plays a significant role in the translocation of DspA/E, and HrpJ affects the translocation of DspA/E by affecting secretion or stability of HrpN. Taken together, these results explain the critical importance of HrpN and HrpJ to the development of fire blight.
Collapse
|
30
|
Kube M, Migdoll AM, Müller I, Kuhl H, Beck A, Reinhardt R, Geider K. The genome of Erwinia tasmaniensis strain Et1/99, a non-pathogenic bacterium in the genus Erwinia. Environ Microbiol 2008; 10:2211-22. [PMID: 18462403 DOI: 10.1111/j.1462-2920.2008.01639.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The complete genome of the bacterium Erwinia tasmaniensis strain Et1/99 consisting of a 3.9 Mb circular chromosome and five plasmids was sequenced. Strain Et1/99 represents an epiphytic plant bacterium related to Erwinia amylovora and E. pyrifoliae, which are responsible for the important plant diseases fire blight and Asian pear shoot blight, respectively. Strain Et1/99 is a non-pathogenic bacterium and is thought to compete with these and other bacteria when occupying the same habitat during initial colonization. Genome analysis revealed tools for colonization, cellular communication and defence modulation, as well as genes coding for the synthesis of levan and a not detected capsular exopolysaccharide. Strain Et1/99 may secrete indole-3-acetic acid to increase availability of nutrients provided on plant surfaces. These nutrients are subsequently accessed and metabolized. Secretion systems include the hypersensitive response type III pathway present in many pathogens. Differences or missing parts within the virulence-related factors distinguish strain Et1/99 from pathogens such as Pectobacterium atrosepticum and the related Erwinia spp. Strain Et1/99 completely lacks the sorbitol operon, which may also affect its inability to invade fire blight host plants. Erwinia amylovora in contrast depends for virulence on utilization of sorbitol, the dominant carbohydrate in rosaceous plants. The presence of other virulence-associated factors in strain Et1/99 indicates the ancestral genomic background of many plant-associated bacteria.
Collapse
Affiliation(s)
- Michael Kube
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
García-Calderón CB, Casadesús J, Ramos-Morales F. Rcs and PhoPQ regulatory overlap in the control of Salmonella enterica virulence. J Bacteriol 2007; 189:6635-44. [PMID: 17616593 PMCID: PMC2045174 DOI: 10.1128/jb.00640-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genetic screens based on the use of MudJ-generated lac fusions permitted the identification of novel genes regulated by the Rcs signal transduction system in Salmonella enterica serovar Typhimurium. Besides genes that are also found in the Escherichia coli genome, our screens identified Salmonella-specific genes regulated by RcsB, including bapA, siiE, srfA, and srfB. Here we show that the srfABC operon is negatively regulated by RcsB and by PhoP. In vivo studies using mutants with constitutive activation of the Rcs and/or PhoPQ system suggested that there is an overlap between these regulatory systems in the control of Salmonella virulence.
Collapse
Affiliation(s)
- Clara B García-Calderón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes, 6, 41012 Sevilla, Spain
| | | | | |
Collapse
|
32
|
Castanié-Cornet MP, Treffandier H, Francez-Charlot A, Gutierrez C, Cam K. The glutamate-dependent acid resistance system in Escherichia coli: essential and dual role of the His-Asp phosphorelay RcsCDB/AF. MICROBIOLOGY-SGM 2007; 153:238-46. [PMID: 17185552 DOI: 10.1099/mic.0.29278-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The RcsCDB signal transduction system is an atypical His-Asp phosphorelay. Notably, the response regulator RcsB can be activated either by phosphorylation through the RcsCD pathway or by an accessory cofactor RcsA. Although conserved in Enterobacteriaceae, the role of this system in adaptation to environmental stress conditions is largely unknown. This study reveals that the response regulator RcsB is essential to glutamate-dependent acid resistance, a condition pertinent to the lifestyle of Escherichia coli. The requirement for RcsB is independent of its activation by either the RcsCD or the RcsA pathway. The basal activity of RcsB appears to be necessary and sufficient for acid resistance. The sensitivity of the rcsB strain to low pH is correlated to a strong reduction of the expression of the glutamate decarboxylase genes, gadA and gadB, during the stationary phase of growth. This effect on gadA/B expression is not mediated by the general stress sigma factor RpoS, but does require a functional gadE allele and the previously identified GadE box. Therefore activation of gadAB expression and acid resistance absolutely requires both GadE and RcsB. In contrast, an increase in RcsB activity through the activation of the RcsCD phosphorelay or the RcsA pathway or through overproduction of the protein leads to general repression of the expression of the gad genes and a corresponding reduction in acid resistance.
Collapse
Affiliation(s)
- Marie-Pierre Castanié-Cornet
- Laboratoire de Microbiologie et de Génétique Moléculaire, Centre National de la Recherche Scientifique, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | | | | | | | | |
Collapse
|
33
|
Hildebrand M, Aldridge P, Geider K. Characterization of hns genes from Erwinia amylovora. Mol Genet Genomics 2006; 275:310-9. [PMID: 16404571 DOI: 10.1007/s00438-005-0085-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 12/05/2005] [Indexed: 12/16/2022]
Abstract
The small basic histone-like protein H-NS is known for bacteria to attenuate virulence of several animal pathogens. An hns homologue from E. amylovora was identified by complementing an E. coli hns-mutant strain with a cosmid library from E. amylovora. A 1.6 kb EcoRI-fragment complemented the mucoid phenotype and repressed the ss-glucosidase activity of E. coli PD32. The open reading frame encoding an H-NS-like protein of 134 amino acid was later shown to be located on plasmid pEA29 (McGhee and Jones 2000). A chromosomal hns gene was amplified with PCR consensus primers and localized near galU of E. amylovora. E. amylovora mutants were created by insertion of a resistance cassette, and the intact gene was inserted into a high copy number plasmid for constitutive expression. Purified chromosomal H-NS protein preferentially bound to a DNA fragment from the lsc region and bending was predicted for an adjacent fragment with the rlsB-promoter. Levan production was significantly increased by hns mutations. Synthesis of the capsular exopolysaccharide amylovoran and of levan were reduced, when hns from the E. amylovora plasmid was overexpressed. A mutation in chromosomal hns of E. amylovora increased amylovoran synthesis, and both mutations retarded symptom formation on immature pears.
Collapse
Affiliation(s)
- M Hildebrand
- Max-Planck-Institut für Zellbiologie, Ladenburg, Germany
| | | | | |
Collapse
|
34
|
Abstract
RcsC, RcsB, and RcsA were first identified as a sensor kinase, a response regulator, and an auxiliary regulatory protein, respectively, regulating the genes of capsular polysaccharide synthesis. Recent advances have demonstrated that these proteins are part of a complex phosphorelay, in which phosphate travels from the histidine kinase domain in RcsC to a response regulator domain in the same protein; from there to a phosphotransfer protein, RcsD; and from there to RcsB. In addition to capsule synthesis, which requires the unstable regulatory protein RcsA, RcsB also stimulates transcription of a small RNA, RprA; the cell division gene ftsZ; and genes encoding membrane and periplasmic proteins, including the osmotically inducible genes osmB and osmC. The Rcs system appears to play an important role in the later stages of biofilm development; induction of Rcs signaling by surfaces is consistent with this role.
Collapse
Affiliation(s)
- Nadim Majdalani
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
35
|
Zhao Y, Blumer SE, Sundin GW. Identification of Erwinia amylovora genes induced during infection of immature pear tissue. J Bacteriol 2005; 187:8088-103. [PMID: 16291682 PMCID: PMC1291285 DOI: 10.1128/jb.187.23.8088-8103.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 09/16/2005] [Indexed: 02/02/2023] Open
Abstract
The enterobacterium Erwinia amylovora is a devastating plant pathogen causing necrotrophic fire blight disease of apple, pear, and other rosaceous plants. In this study, we used a modified in vivo expression technology system to identify E. amylovora genes that are activated during infection of immature pear tissue, a process that requires the major pathogenicity factors of this organism. We identified 394 unique pear fruit-induced (pfi) genes on the basis of sequence similarity to known genes and separated them into nine putative function groups including host-microbe interactions (3.8%), stress response (5.3%), regulation (11.9%), cell surface (8.9%), transport (13.5%), mobile elements (1.0%), metabolism (20.3%), nutrient acquisition and synthesis (15.5%), and unknown or hypothetical proteins (19.8%). Known virulence genes, including hrp/hrc components of the type III secretion system, the major effector gene dspE, type II secretion, levansucrase (lsc), and regulators of levansucrase and amylovoran biosynthesis, were upregulated during pear tissue infection. Known virulence factors previously identified in E. (Pectobacterium) carotovora and Pseudomonas syringae were identified for the first time in E. amylovora and included HecA hemagglutinin family adhesion, Peh polygalacturonase, new effector HopPtoC(EA), and membrane-bound lytic murein transglycosylase MltE(EA). An insertional mutation within hopPtoC(EA) did not result in reduced virulence; however, an mltE(EA) knockout mutant was reduced in virulence and growth in immature pears. This study suggests that E. amylovora utilizes a variety of strategies during plant infection and to overcome the stressful and poor nutritional environment of its plant hosts.
Collapse
Affiliation(s)
- Youfu Zhao
- Department of Plant Pathology, Michigan State University, East Lansing, 48824, USA
| | | | | |
Collapse
|
36
|
Oh CS, Beer SV. Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiol Lett 2005; 253:185-92. [PMID: 16253442 DOI: 10.1016/j.femsle.2005.09.051] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 09/27/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022] Open
Abstract
The bacterial plant pathogen, Erwinia amylovora, causes the devastating disease known as fire blight in some Rosaceous plants like apple, pear, quince, raspberry and several ornamentals. Knowledge of the factors affecting the development of fire blight has mushroomed in the last quarter century. On the molecular level, genes encoding a Hrp type III secretion system, genes encoding enzymes involved in synthesis of extracellular polysaccharides and genes facilitating the growth of E. amylovora in its host plants have been characterized. The Hrp pathogenicity island, delimited by genes suggesting horizontal gene transfer, is composed of four distinct regions, the hrp/hrc region, the HEE (Hrp effectors and elicitors) region, the HAE (Hrp-associated enzymes) region, and the IT (Island transfer) region. The Hrp pathogenicity island encodes a Hrp type III secretion system (TTSS), which delivers several proteins from bacteria to plant apoplasts or cytoplasm. E. amylovora produces two exopolysaccharides, amylovoran and levan, which cause the characteristic fire blight wilting symptom in host plants. In addition, other genes, and their encoded proteins, have been characterized as virulence factors of E. amylovora that encode enzymes facilitating sorbitol metabolism, proteolytic activity and iron harvesting. This review summarizes our understanding of the genes and gene products of E. amylovora that are involved in the development of the fire blight disease.
Collapse
Affiliation(s)
- Chang-Sik Oh
- Department of Plant Pathology, Cornell University, 334 Plant Science Building, Ithaca, NY 14853, USA
| | | |
Collapse
|
37
|
Dubuisson JF, Vianney A, Hugouvieux-Cotte-Pattat N, Lazzaroni JC. Tol-Pal proteins are critical cell envelope components of Erwinia chrysanthemi affecting cell morphology and virulence. MICROBIOLOGY (READING, ENGLAND) 2005; 151:3337-3347. [PMID: 16207916 DOI: 10.1099/mic.0.28237-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The tol-pal genes are necessary for maintaining the outer-membrane integrity of Gram-negative bacteria. These genes were first described in Escherichia coli, and more recently in several other species. They are involved in the pathogenesis of E. coli, Haemophilus ducreyi, Vibrio cholerae and Salmonella enterica. The role of the tol-pal genes in bacterial pathogenesis was investigated in the phytopathogenic enterobacterium Erwinia chrysanthemi, assuming that this organism might be a good model for such a study. The whole Er. chrysanthemi tol-pal region was characterized. Tol-Pal proteins, except TolA, showed high identity scores with their E. coli homologues. Er. chrysanthemi mutants were constructed by introducing a uidA-kan cassette in the ybgC, tolQ, tolA, tolB, pal and ybgF genes. All the mutants were hypersensitive to bile salts. Mutations in tolQ, tolA, tolB and pal were deleterious for the bacteria, which required high concentrations of sugars or osmoprotectants for their viability. Consistent with this observation, they were greatly impaired in their cell morphology and division, which was evidenced by observations of cell filaments, spherical forms, membrane blebbing and mislocalized bacterial septa. Moreover, tol-pal mutants showed a reduced virulence in a potato tuber model and on chicory leaves. This could be explained by a combination of impaired phenotypes in the tol-pal mutants, such as reduced growth and motility and a decreased production of pectate lyases, the major virulence factor of Er. chrysanthemi.
Collapse
Affiliation(s)
- Jean-François Dubuisson
- Unité de Microbiologie et Génétique, UMR 5122 CNRS-INSA-UCBL, Université Claude Bernard Lyon I, bât. André Lwoff, 69622 Villeurbanne Cedex, France
| | - Anne Vianney
- Unité de Microbiologie et Génétique, UMR 5122 CNRS-INSA-UCBL, Université Claude Bernard Lyon I, bât. André Lwoff, 69622 Villeurbanne Cedex, France
| | - Nicole Hugouvieux-Cotte-Pattat
- Unité de Microbiologie et Génétique, UMR 5122 CNRS-INSA-UCBL, Université Claude Bernard Lyon I, bât. André Lwoff, 69622 Villeurbanne Cedex, France
| | - Jean Claude Lazzaroni
- Unité de Microbiologie et Génétique, UMR 5122 CNRS-INSA-UCBL, Université Claude Bernard Lyon I, bât. André Lwoff, 69622 Villeurbanne Cedex, France
| |
Collapse
|
38
|
Molina L, Rezzonico F, Défago G, Duffy B. Autoinduction in Erwinia amylovora: evidence of an acyl-homoserine lactone signal in the fire blight pathogen. J Bacteriol 2005; 187:3206-13. [PMID: 15838048 PMCID: PMC1082838 DOI: 10.1128/jb.187.9.3206-3213.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erwinia amylovora causes fire blight disease of apple, pear, and other members of the Rosaceae. Here we present the first evidence for autoinduction in E. amylovora and a role for an N-acyl-homoserine lactone (AHL)-type signal. Two major plant virulence traits, production of extracellular polysaccharides (amylovoran and levan) and tolerance to free oxygen radicals, were controlled in a bacterial-cell-density-dependent manner. Two standard autoinducer biosensors, Agrobacterium tumefaciens NTL4 and Vibrio harveyi BB886, detected AHL in stationary-phase cultures of E. amylovora. A putative AHL synthase gene, eamI, was partially sequenced, which revealed homology with autoinducer genes from other bacterial pathogens (e.g., carI, esaI, expI, hsII, yenI, and luxI). E. amylovora was also found to carry eamR, a convergently transcribed gene with homology to luxR AHL activator genes in pathogens such as Erwinia carotovora. Heterologous expression of the Bacillus sp. strain A24 acyl-homoserine lactonase gene aiiA in E. amylovora abolished induction of AHL biosensors, impaired extracellular polysaccharide production and tolerance to hydrogen peroxide, and reduced virulence on apple leaves.
Collapse
Affiliation(s)
- Lázaro Molina
- Swiss Federal Institute of Technology (ETHZ), Institute for Plant Sciences, Phytopathology Group, Zürich, Switzerland.
| | | | | | | |
Collapse
|
39
|
Laasik E, Ojarand M, Pajunen M, Savilahti H, Mäe A. Novel mutants of Erwinia carotovora subsp. carotovora defective in the production of plant cell wall degrading enzymes generated by Mu transpososome-mediated insertion mutagenesis. FEMS Microbiol Lett 2005; 243:93-9. [PMID: 15668006 DOI: 10.1016/j.femsle.2004.11.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 11/23/2004] [Accepted: 11/25/2004] [Indexed: 11/23/2022] Open
Abstract
As in Erwinia carotovora subsp. carotovora the regulation details of the main virulence factors, encoding extracellular enzymes that degrade the plant cell wall, is only rudimentally understood, we performed a genetic screen to identify novel candidate genes involved in the process. Initially, we used Mu transpososome-mediated mutagenesis approach to generate a comprehensive transposon insertion mutant library of ca. 10000 clones and screened the clones for the loss of extracellular enzyme production. Extracellular enzymes production was abolished by mutations in the chromosomal helEcc, trkAEcc yheLEcc, glsEcc, igaAEcc and cysQEcc genes. The findings reported here demonstrate that we have isolated six new representatives that belong to the pool of genes modulating the production of virulence factors in E. carotovora.
Collapse
Affiliation(s)
- Eve Laasik
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University, Estonian Biocenter, 23 Riia Street, Tartu 51010, Estonia
| | | | | | | | | |
Collapse
|
40
|
Domínguez-Bernal G, Pucciarelli MG, Ramos-Morales F, García-Quintanilla M, Cano DA, Casadesús J, García-del Portillo F. Repression of the RcsC-YojN-RcsB phosphorelay by the IgaA protein is a requisite for Salmonella virulence. Mol Microbiol 2004; 53:1437-49. [PMID: 15387821 DOI: 10.1111/j.1365-2958.2004.04213.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bacterial pathogenesis relies on regulators that activate virulence genes. Some of them act, in addition, as repressors of specific genes. Intracellular-growth-attenuator-A (IgaA) is a Salmonella enterica membrane protein that prevents overactivation of the RcsC-YojN-RcsB regulatory system. This negative control is critical for growth because disruption of the igaA gene is only possible in rcsC, yojN or rcsB strains. In this work, we examined the contribution of this regulatory circuit to virulence. Viable igaA point mutant alleles were isolated and characterized. These alleles encode IgaA variants leading to different levels of activation of the RcsC-YojN-RcsB system. IgaA-mediated repression of the RcsB-YojN-RcsC system occurred at the post-translational level, as shown by chromosomal epitope tagging of the rcsC, yojN and rcsB genes. The activity of the RcsC-YojN-RcsB system, monitored with the product of a tagged gmd-3xFLAG gene (positively regulated by RcsC-YojN-RcsB), was totally abolished by wild-type bacteria in mouse target organs. Such tight repression occurred only in vivo and was mediated by IgaA. Shutdown of the RcsC-YojN-RcsB system is a requisite for Salmonella virulence since all igaA point mutant strains were highly attenuated. The degree of attenuation correlated to that of the activation status of RcsC-YojN-RcsB. In some cases, the attenuation recorded was unprecedented, with competitive index (CI) values as low as 10(-6). Strikingly, IgaA is a protein absolutely dispensable for virulence in mutant strains having a non-functional RcsC-YojN-RcsB system. To our knowledge, IgaA exemplifies the first protein that contributes to virulence by exclusively acting as a negative regulator upon host colonization.
Collapse
Affiliation(s)
- Gustavo Domínguez-Bernal
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Walker KA, Miller VL. Regulation of the Ysa type III secretion system of Yersinia enterocolitica by YsaE/SycB and YsrS/YsrR. J Bacteriol 2004; 186:4056-66. [PMID: 15205407 PMCID: PMC421616 DOI: 10.1128/jb.186.13.4056-4066.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Yersinia enterocolitica biovar 1B contains two type III secretion systems (TTSSs), the plasmid-encoded Ysc-Yop system and the chromosomally encoded Ysa-Ysp system. Proteins secreted from the Ysa TTSS (Ysps) have only been detected in vitro when cells are cultured at 26 degrees C in a high-NaCl medium. However, the exact role of the Ysa TTSS is unclear. Thus, investigations into the regulation of this system may help elucidate the role of the Ysps during the life cycle of Y. enterocolitica. Here we present evidence that the AraC-like regulator YsaE acts together with the chaperone SycB to regulate transcription of the sycByspBCDA operon, a phenomenon similar to that seen in the closely related Salmonella SPI-1 and Shigella flexneri Mxi-Spa-Ipa TTSSs. Deletion of either sycB or ysaE results in a twofold reduction in the activity of a sycB-lacZ fusion compared to the wild type. In a reconstituted Escherichia coli system, transcription of sycB was activated sixfold only when both YsaE and SycB were present, demonstrating that they are necessary for activation. ysrR and ysrS are located near the ysa genes and encode a putative two-component regulatory system. Mutations in either gene indicated that both YsrR and YsrS were required for secretion of Ysps. In addition, transcription from sycB-lacZ and ysaE-lacZ fusions was decreased 6.5- and 25-fold, respectively, in the ysrS mutant compared to the wild type. Furthermore, in the absence of NaCl, the activity of ysaE-lacZ was reduced 25-fold in the wild-type and DeltaysrS strains, indicating that YsrS is probably required for the salt-dependent expression of the ysa locus. These results suggest that the putative two-component system YsrRS may be a key element in the regulatory cascade for the Ysa TTSS.
Collapse
Affiliation(s)
- Kimberly A Walker
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
42
|
Hagiwara D, Sugiura M, Oshima T, Mori H, Aiba H, Yamashino T, Mizuno T. Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. J Bacteriol 2003; 185:5735-46. [PMID: 13129944 PMCID: PMC193970 DOI: 10.1128/jb.185.19.5735-5746.2003] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, capsular colanic acid polysaccharide synthesis is regulated through the multistep RcsC-->YojN-->RcsB phosphorelay. By monitoring a hallmarked cps::lacZ reporter gene, we first searched for physiological stimuli that propagate the Rcs signaling system. The expression of cps::lacZ was activated when cells were grown at a low temperature (20 degrees C) in the presence of glucose as a carbon source and in the presence of a relatively high concentration of external zinc (1 mM ZnCl(2)). In this Rcs signaling system, the rcsF gene product (a putative outer membrane-located lipoprotein) was also an essential signaling component. Based on the defined signaling pathway and physiological stimuli for the Rcs signaling system, we conducted genome-wide analyses with microarrays to clarify the Rcs transcriptome (i.e., Rcs regulon). Thirty-two genes were identified as putative Rcs regulon members; these genes included 15 new genes in addition to 17 of the previously described cps genes. Using a set of 37 two-component system mutants, we performed alternative genome-wide analyses. The results showed that the propagation of the zinc-responsive Rcs signaling system was largely dependent on another two-component system, PhoQ/P. Considering the fact that the PhoQ/P signaling system responds to external magnesium, we obtained evidence which supports the view that there is a signaling network that connects the Rcs system with the PhoQ/P system, which coordinately regulates extracellular polysaccharide synthesis in response to the external concentrations of divalent cations.
Collapse
Affiliation(s)
- Daisuke Hagiwara
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Cano DA, Domínguez-Bernal G, Tierrez A, Garcia-Del Portillo F, Casadesús J. Regulation of capsule synthesis and cell motility in Salmonella enterica by the essential gene igaA. Genetics 2002; 162:1513-23. [PMID: 12524328 PMCID: PMC1462382 DOI: 10.1093/genetics/162.4.1513] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutants of Salmonella enterica carrying the igaA1 allele, selected as able to overgrow within fibroblast cells in culture, are mucoid and show reduced motility. Mucoidy is caused by derepression of wca genes (necessary for capsule synthesis); these genes are regulated by the RcsC/YojN/RcsB phosphorelay system and by the RcsA coregulator. The induction of wca expression in an igaA1 mutant is suppressed by mutations in rcsA and rcsC. Reduced motility is caused by lowered expression of the flagellar master operon, flhDC, and is suppressed by mutations in rcsB or rcsC, suggesting that mutations in the igaA gene reduce motility by activating the RcsB/C system. A null igaA allele can be maintained only in an igaA(+)/igaA merodiploid, indicating that igaA is an essential gene. Lethality is suppressed by mutations in rcsB, rcsC, and yojN, but not in rcsA, suggesting that the viability defect of an igaA null mutant is mediated by the RcsB/RcsC system, independently of RcsA (and therefore of the wca genes). Because all the defects associated with igaA mutations are suppressed by mutations that block the RcsB/RcsC system, we propose a functional interaction between the igaA gene product and either the Rcs regulatory network or one of its regulated products.
Collapse
Affiliation(s)
- David A Cano
- Departamento de Genética, Universidad de Sevilla, Seville 41012, Spain
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Page F, Altabe S, Hugouvieux-Cotte-Pattat N, Lacroix JM, Robert-Baudouy J, Bohin JP. Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity. J Bacteriol 2001; 183:3134-41. [PMID: 11325942 PMCID: PMC95214 DOI: 10.1128/jb.183.10.3134-3141.2001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2000] [Accepted: 03/06/2001] [Indexed: 11/20/2022] Open
Abstract
Erwinia chrysanthemi is a phytopathogenic enterobacterium causing soft rot disease in a wide range of plants. Osmoregulated periplasmic glucans (OPGs) are intrinsic components of the gram-negative bacterial envelope. We cloned the opgGH operon of E. chrysanthemi, encoding proteins involved in the glucose backbone synthesis of OPGs, by complementation of the homologous locus mdoGH of Escherichia coli. OpgG and OpgH show a high level of similarity with MdoG and MdoH, respectively, and mutations in the opgG or opgH gene abolish OPG synthesis. The opg mutants exhibit a pleiotropic phenotype, including overproduction of exopolysaccharides, reduced motility, bile salt hypersensitivity, reduced protease, cellulase, and pectate lyase production, and complete loss of virulence. Coinoculation experiments support the conclusion that OPGs present in the periplasmic space of the bacteria are necessary for growth in the plant host.
Collapse
Affiliation(s)
- F Page
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | |
Collapse
|
46
|
Takeda S, Fujisawa Y, Matsubara M, Aiba H, Mizuno T. A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC --> YojN --> RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Mol Microbiol 2001; 40:440-50. [PMID: 11309126 DOI: 10.1046/j.1365-2958.2001.02393.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we re-investigated the previously characterized RcsC (sensor His-kinase) --> RcsB (response regulator) phosphorelay system that is involved in the regulation of capsular polysaccharide synthesis in Escherichia coli. The previously proposed model hypothesized the occurrence of a direct phosphotransfer from RcsC to RcsB in response to an unknown external stimulus. As judged from the current general view as to the His --> Asp phosphorelay, this RcsC --> RcsB framework is somewhat puzzling, because RcsC appears to contain both a His-kinase domain and a receiver domain, but not a histidine (His)-containing phosphotransmitter domain (e.g. HPt domain). We thus suspected that an as yet unknown mechanism might be underlying in this particular His --> Asp phosphorelay system. Here, we provide several lines of in vivo and in vitro evidence that a novel and unique His-containing phosphotransmitter (named YojN) is essential for this signalling system. A revised model is proposed in which the multistep RcsC --> YojN --> RcsB phosphorelay is implicated. It was also demonstrated that this complex signalling system is somehow involved in the modulation of a characteristic behaviour of E. coli cells during colony formation on the surface of agar plates, namely swarming.
Collapse
Affiliation(s)
- S Takeda
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
47
|
Eastgate JA. Erwinia amylovora: the molecular basis of fireblight disease. MOLECULAR PLANT PATHOLOGY 2000; 1:325-329. [PMID: 20572979 DOI: 10.1046/j.1364-3703.2000.00044.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
UNLABELLED Summary Taxonomy: Bacteria; Proteobacteria; gamma subdivision; order Enterobacteriales; family Enterobacteriaceae; genus Erwinia. Microbiological properties: Gram-negative, motile rods. Related species:E. carotovora (soft-rot diseases), E. chrysanthemi (soft-rot diseases), E. (Pantoea) stewartii (Stewart's wilt of corn), E. (Pantoea) herbicola (epiphyte). HOST RANGE Affects rosaceous plants, primarily members of the Pomoideae. Economically important hosts are apple and pear. The commercial implications of fireblight outbreaks are aggravated by the limited effectiveness of current control measures. Disease symptoms:E. amylovora infection is characterized by water soaking of infected tissue, followed by wilting and tissue necrosis. Necrosis gives tissue a scorched, blackened appearance, giving rise to the name fireblight. Symptoms are often localized to blossom bracts or young shoots but, in highly susceptible hosts, can spread systemically resulting in death of the entire tree. Infections can vary in severity depending on climatic conditions and host susceptibility. Useful web site:http://www.agric.gov.ab.ca.
Collapse
Affiliation(s)
- J A Eastgate
- Biological Sciences, School of Engineering and Science, University of Paisley, Paisley, Scotland, PA1 2EB, UK
| |
Collapse
|
48
|
Wehland M, Bernhard F. The RcsAB box. Characterization of a new operator essential for the regulation of exopolysaccharide biosynthesis in enteric bacteria. J Biol Chem 2000; 275:7013-20. [PMID: 10702265 DOI: 10.1074/jbc.275.10.7013] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of the two transcriptional regulators RcsA and RcsB with a specific operator is a common mechanism in the activation of capsule biosynthesis in enteric bacteria. We describe RcsAB binding sites in the wza promoter of the operon for colanic acid biosynthesis in Escherichia coli K-12, in the galF promoter of the operon for K2 antigen biosynthesis in Klebsiella pneumoniae, and in the tviA (vipR) promoter of the operon for Vi antigen biosynthesis in Salmonella typhi. We further show the interaction of RcsAB with the rcsA promoters of various species, indicating that rcsA autoregulation also depends on the presence of both proteins. The compilation of all identified RcsAB binding sites revealed the conserved core sequence TaAGaatatTCctA, which we propose to be termed RcsAB box. The RcsAB box is also part of Bordetella pertussis BvgA binding sites and may represent a more distributed recognition motif within the LuxR superfamily of transcriptional regulators. The RcsAB box is essential for the induction of Rcs-regulated promoters. Site-specific mutations of conserved nucleotides in the RcsAB boxes of the E. coli wza and rcsA promoters resulted in an exopolysaccharide-negative phenotype and in the reduction of reporter gene expression.
Collapse
Affiliation(s)
- M Wehland
- Freie Universität Berlin, Institut für Kristallographie, Takustrasse 6, D-14195 Berlin, Germany
| | | |
Collapse
|
49
|
Rahn A, Drummelsmith J, Whitfield C. Conserved organization in the cps gene clusters for expression of Escherichia coli group 1 K antigens: relationship to the colanic acid biosynthesis locus and the cps genes from Klebsiella pneumoniae. J Bacteriol 1999; 181:2307-13. [PMID: 10094716 PMCID: PMC93651 DOI: 10.1128/jb.181.7.2307-2313.1999] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group 1 capsules of Escherichia coli are similar to the capsules produced by strains of Klebsiella spp. in terms of structure, genetics, and patterns of expression. The striking similarities between the capsules of these organisms prompted a more detailed investigation of the cps loci encoding group 1 capsule synthesis. Six strains of K. pneumoniae and 12 strains of E. coli were examined. PCR analysis showed that the clusters in these strains are conserved in their chromosomal locations. A highly conserved block of four genes, orfX-wza-wzb-wzc, was identified in all of the strains. The wza and wzc genes are required for translocation and surface assembly of E. coli K30 antigen. The conservation of these genes points to a common pathway for capsule translocation. A characteristic JUMPstart sequence was identified upstream of each cluster which may function in conjunction with RfaH to inhibit transcriptional termination at a stem-loop structure found immediately downstream of the "translocation-surface assembly" region of the cluster. Interestingly, the sequence upstream of the cps clusters in five E. coli strains and one Klebsiella strain indicated the presence of IS elements. We propose that the IS elements were responsible for the transfer of the cps locus between organisms and that they may continue to mediate recombination between strains.
Collapse
Affiliation(s)
- A Rahn
- Department of Microbiology, The University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
50
|
Wehland M, Kiecker C, Coplin DL, Kelm O, Saenger W, Bernhard F. Identification of an RcsA/RcsB recognition motif in the promoters of exopolysaccharide biosynthetic operons from Erwinia amylovora and Pantoea stewartii subspecies stewartii. J Biol Chem 1999; 274:3300-7. [PMID: 9920870 DOI: 10.1074/jbc.274.6.3300] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of capsule synthesis (Rcs) regulatory network is responsible for the induction of exopolysaccharide biosynthesis in many enterobacterial species. We have previously shown that two transcriptional regulators, RcsA and RcsB, do bind as a heterodimer to the promoter of amsG, the first reading frame in the operon for amylovoran biosynthesis in the plant pathogenic bacterium Erwinia amylovora. We now identified a 23-base pair fragment from position -555 to -533 upstream of the translational start site of amsG as sufficient for the specific binding of the Rcs proteins. In addition, we could detect an RcsA/RcsB-binding site in a corresponding region of the promoter of cpsA, the homologous counterpart to the E. amylovora amsG gene in the operon for stewartan biosynthesis of Pantoea stewartii. The specificity and characteristic parameters of the protein-DNA interaction were analyzed by DNA retardation, protein-DNA cross-linking, and directed mutagenesis. The central core motif TRVGAAWAWTSYG of the amsG promoter was found to be most important for the specific interaction with RcsA/RcsB, as evaluated by mutational analysis and an in vitro selection approach. The wild type P. stewartii Rcs binding motif is degenerated in two positions and an up-mutation according to our consensus motif resulted in about a 5-fold increased affinity of the RcsA/RcsB proteins.
Collapse
Affiliation(s)
- M Wehland
- Freie Universität Berlin, Institut für Kristallographie, Takustrasse 6, D-14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|