1
|
Arnold ND, Paper M, Fuchs T, Ahmad N, Jung P, Lakatos M, Rodewald K, Rieger B, Qoura F, Kandawa‐Schulz M, Mehlmer N, Brück TB. High-quality genome of a novel Thermosynechococcaceae species from Namibia and characterization of its protein expression patterns at elevated temperatures. Microbiologyopen 2024; 13:e70000. [PMID: 39365014 PMCID: PMC11450739 DOI: 10.1002/mbo3.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Thermophilic cyanobacteria thrive in extreme environments, making their thermoresistant enzymes valuable for industrial applications. Common habitats include hot springs, which act as evolutionary accelerators for speciation due to geographical isolation. The family Thermosynechococcaceae comprises thermophilic cyanobacteria known for their ability to thrive in high-temperature environments. These bacteria are notable for their photosynthetic capabilities, significantly contributing to primary production in extreme habitats. Members of Thermosynechococcaceae exhibit unique adaptations that allow them to perform photosynthesis efficiently at elevated temperatures, making them subjects of interest for studies on microbial ecology, evolution, and potential biotechnological applications. In this study, the genome of a thermophilic cyanobacterium, isolated from a hot spring near Okahandja in Namibia, was sequenced using a PacBio Sequel IIe long-read platform. Cultivations were performed at elevated temperatures of 40, 50, and 55°C, followed by proteome analyses based on the annotated genome. Phylogenetic investigations, informed by the 16S rRNA gene and aligned nucleotide identity (ANI), suggest that the novel cyanobacterium is a member of the family Thermosynechococcaceae. Furthermore, the new species was assigned to a separate branch, potentially representing a novel genus. Whole-genome alignments supported this finding, revealing few conserved regions and multiple genetic rearrangement events. Additionally, 129 proteins were identified as differentially expressed in a temperature-dependent manner. The results of this study broaden our understanding of cyanobacterial adaptation to extreme environments, providing a novel high-quality genome of Thermosynechococcaceae cyanobacterium sp. Okahandja and several promising candidate proteins for expression and characterization studies.
Collapse
Affiliation(s)
- Nathanael D. Arnold
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Michael Paper
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Tobias Fuchs
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Nadim Ahmad
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Patrick Jung
- Department of Integrative BiotechnologyUniversity of Applied Sciences KaiserslauternPirmasensGermany
| | - Michael Lakatos
- Department of Integrative BiotechnologyUniversity of Applied Sciences KaiserslauternPirmasensGermany
| | - Katia Rodewald
- Department of Chemistry, WACKER‐Chair of Macromolecular Chemistry, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Bernhard Rieger
- Department of Chemistry, WACKER‐Chair of Macromolecular Chemistry, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Farah Qoura
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | | | - Norbert Mehlmer
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Thomas B. Brück
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| |
Collapse
|
2
|
Rodriguez Gallo MC, Li Q, Mehta D, Uhrig RG. Genome-scale analysis of Arabidopsis splicing-related protein kinase families reveals roles in abiotic stress adaptation. BMC PLANT BIOLOGY 2022; 22:496. [PMID: 36273172 PMCID: PMC9587599 DOI: 10.1186/s12870-022-03870-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/04/2022] [Indexed: 05/24/2023]
Abstract
Nearly 60 - 80 % of intron-containing plant genes undergo alternative splicing in response to either stress or plant developmental cues. RNA splicing is performed by a large ribonucleoprotein complex called the spliceosome in conjunction with associated subunits such as serine arginine (SR) proteins, all of which undergo extensive phosphorylation. In plants, there are three main protein kinase families suggested to phosphorylate core spliceosome subunits and related splicing factors based on orthology to human splicing-related kinases: the SERINE/ARGININE PROTEIN KINASES (SRPK), ARABIDOPSIS FUS3 COMPLEMENT (AFC), and Pre-mRNA PROCESSING FACTOR 4 (PRP4K) protein kinases. To better define the conservation and role(s) of these kinases in plants, we performed a genome-scale analysis of the three families across photosynthetic eukaryotes, followed by extensive transcriptomic and bioinformatic analysis of all Arabidopsis thaliana SRPK, AFC, and PRP4K protein kinases to elucidate their biological functions. Unexpectedly, this revealed the existence of SRPK and AFC phylogenetic groups with distinct promoter elements and patterns of transcriptional response to abiotic stress, while PRP4Ks possess no phylogenetic sub-divisions, suggestive of functional redundancy. We also reveal splicing-related kinase families are both diel and photoperiod regulated, implicating different orthologs as discrete time-of-day RNA splicing regulators. This foundational work establishes a number of new hypotheses regarding how reversible spliceosome phosphorylation contributes to both diel plant cell regulation and abiotic stress adaptation in plants.
Collapse
Affiliation(s)
- M C Rodriguez Gallo
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Q Li
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - D Mehta
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - R G Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Zhou K, Liang J, Dong X, Zhang P, Feng C, Shi W, Gao M, Li Q, Zhang X, Lu J, Lin X, Li K, Zhang H, Zhu M, Bao Q. Identification and Characterization of a Novel Chromosomal Aminoglycoside 2'- N-Acetyltransferase, AAC(2')-If, From an Isolate of a Novel Providencia Species, Providencia wenzhouensis R33. Front Microbiol 2021; 12:711037. [PMID: 34867838 PMCID: PMC8640171 DOI: 10.3389/fmicb.2021.711037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/08/2021] [Indexed: 11/15/2022] Open
Abstract
Multidrug-resistant bacteria from different sources have been steadily emerging, and an increasing number of resistance mechanisms are being uncovered. In this work, we characterized a novel resistance gene named aac(2′)-If from an isolate of a novel Providencia species, Providencia wenzhouensis R33 (CCTCC AB 2021339). Susceptibility testing and enzyme kinetic parameter analysis were conducted to determine the function of the aminoglycoside 2′-N-acetyltransferase. Whole-genome sequencing and comparative genomic analysis were performed to elucidate the molecular characteristics of the genome and the genetic context of the resistance gene-related sequences. Among the functionally characterized resistance genes, AAC(2′)-If shares the highest amino acid sequence identity of 70.79% with AAC(2′)-Ia. AAC(2′)-If confers resistance to several aminoglycoside antibiotics, showing the highest resistance activity against ribostamycin and neomycin. The recombinant strain harboring aac(2′)-If (pUCP20-aac(2′)-If/DH5α) showed 256- and 128-fold increases in the minimum inhibitory concentration (MIC) levels to ribostamycin and neomycin, respectively, compared with those of the control strains (DH5α and pUCP20/DH5α). The results of the kinetic analysis of AAC(2′)-If were consistent with the MIC results of the cloned aac(2′)-If with the highest catalytic efficiency for ribostamycin (kcat/Km ratio = [3.72 ± 0.52] × 104 M–1⋅s–1). Whole-genome sequencing demonstrated that the aac(2′)-If gene was located on the chromosome with a relatively unique genetic environment. Identification of a novel aminoglycoside resistance gene in a strain of a novel Providencia species will help us find ways to elucidate the complexity of resistance mechanisms in the microbial population.
Collapse
Affiliation(s)
- Kexin Zhou
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jialei Liang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xu Dong
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peiyao Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunlin Feng
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weina Shi
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengdi Gao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiaoling Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xueya Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mei Zhu
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Qiyu Bao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Tang Q, Feng M, Xia H, Zhao Y, Hou B, Ye J, Wu H, Zhang H. Differential quantitative proteomics reveals the functional difference of two yigP locus products, UbiJ and EsrE. J Basic Microbiol 2019; 59:1125-1133. [PMID: 31553492 DOI: 10.1002/jobm.201900350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/15/2019] [Accepted: 09/07/2019] [Indexed: 11/06/2022]
Abstract
The yigP (ubiJ) locus has been shown to be associated with many phenotypic changes in Escherichia coli, while the individual function of its two products, EsrE small RNA and UbiJ protein, is still elusive. In this study, we constructed two single-element mutants, EsrE mutant strain Mut and UbiJ mutant strain Ter, on the basis of the base substitution programs. The variable antibiotics resistance and ubiquinone (UQ, coenzyme Q) yield and the similar cell growth between mutants revealed the division of labor and collaboration of EsrE and UbiJ in JM83. Furthermore, we detected the concentration of intracellular proteins of Mut and Ter by stable isotope-labeled quantitative proteomics. The results demonstrate that both EsrE and UbiJ are involved in the aerobic growth of E. coli, while EsrE preferentially contributes to the amino acid-related pathway, and UbiJ is an indispensable factor in the biosynthesis of UQ. Moreover, we uncovered a potential regulatory circuit of d-cycloserine (DCS) that composed of EsrE, GcvA, and GcvB by proteomic analysis.
Collapse
Affiliation(s)
- Qiongwei Tang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Meilin Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hui Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yiming Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
5
|
In silico characterization of a novel putative aerotaxis chemosensory system in the myxobacterium, Corallococcus coralloides. BMC Genomics 2018; 19:757. [PMID: 30340510 PMCID: PMC6194562 DOI: 10.1186/s12864-018-5151-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 11/23/2022] Open
Abstract
Background An efficient signal transduction system allows a bacterium to sense environmental cues and then to respond positively or negatively to those signals; this process is referred to as taxis. In addition to external cues, the internal metabolic state of any bacterium plays a major role in determining its ability to reside and thrive in its current environment. Similar to external signaling molecules, cytoplasmic signals are also sensed by methyl-accepting chemotaxis proteins (MCPs) via diverse ligand binding domains. Myxobacteria are complex soil-dwelling social microbes that can perform a variety of physiologic and metabolic activities ranging from gliding motility, sporulation, biofilm formation, carotenoid and secondary metabolite biosynthesis, predation, and slime secretion. To live such complex lifestyles, they have evolved efficient signal transduction systems with numerous one- and two-component regulatory system along with a large array of chemosensory systems to perceive and integrate both external and internal cues. Results Here we report the in silico characterization of a putative energy taxis cluster, Cc-5, which is present in only one amongst 34 known and sequenced myxobacterial genomes, Corallococcus coralloides. In addition, we propose that this energy taxis cluster is involved in oxygen sensing, suggesting that C. coralloides can sense (either directly or indirectly) and then respond to changing concentrations of molecular oxygen. Conclusions This hypothesis is based on the presence of a unique MCP encoded in this gene cluster that contains two different oxygen-binding sensor domains, PAS and globin. In addition, the two monooxygenases encoded in this cluster may contribute to aerobic respiration via ubiquinone biosynthesis, which is part of the cytochrome bc1 complex. Finally, we suggest that this cluster was acquired from Actinobacteria, Gammaproteobacteria or Cyanobacteria. Overall, this in silico study has identified a potentially innovative and evolved mechanism of energy taxis in only one of the myxobacteria, C. coralloides. Electronic supplementary material The online version of this article (10.1186/s12864-018-5151-6) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
González-Mariscal I, Martín-Montalvo A, Ojeda-González C, Rodríguez-Eguren A, Gutiérrez-Ríos P, Navas P, Santos-Ocaña C. Balanced CoQ 6 biosynthesis is required for lifespan and mitophagy in yeast. MICROBIAL CELL 2017; 4:38-51. [PMID: 28357388 PMCID: PMC5349121 DOI: 10.15698/mic2017.02.556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coenzyme Q is an essential lipid with redox capacity that is present in all
organisms. In yeast its biosynthesis depends on a multiprotein complex in which
Coq7 protein has both catalytic and regulatory functions. Coq7 modulates
CoQ6 levels through a phosphorylation cycle, where
dephosphorylation of three amino acids (Ser/Thr) by the mitochondrial
phosphatase Ptc7 increases the levels of CoQ6. Here we analyzed the
role of Ptc7 and the phosphorylation state of Coq7 in yeast mitochondrial
function. The conversion of the three Ser/Thr to alanine led to a permanently
active form of Coq7 that caused a 2.5-fold increase of CoQ6 levels,
albeit decreased mitochondrial respiratory chain activity and oxidative stress
resistance capacity. This resulted in an increase in endogenous ROS production
and shortened the chronological life span (CLS) compared to wild type. The null
PTC7 mutant (ptc7∆) strain showed a lower
biosynthesis rate of CoQ6 and a significant shortening of the CLS.
The reduced CLS observed in ptc7Δ was restored by the
overexpression of PTC7 but not by the addition of exogenous
CoQ6. Overexpression of PTC7 increased mitophagy
in a wild type strain. This finding suggests an additional Ptc7 function beyond
the regulation of CoQ biosynthesis. Genetic disruption of PTC7
prevented mitophagy activation in conditions of nitrogen deprivation. In brief,
we show that, in yeast, Ptc7 modulates the adaptation to respiratory metabolism
by dephosphorylating Coq7 to supply newly synthesized CoQ6, and by
activating mitophagy to remove defective mitochondria at stationary phase,
guaranteeing a proper CLS in yeast.
Collapse
Affiliation(s)
- Isabel González-Mariscal
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III, Sevilla, 41013, Spain
| | - Aléjandro Martín-Montalvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III, Sevilla, 41013, Spain
| | - Cristina Ojeda-González
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III, Sevilla, 41013, Spain
| | - Adolfo Rodríguez-Eguren
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III, Sevilla, 41013, Spain
| | - Purificación Gutiérrez-Ríos
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III, Sevilla, 41013, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III, Sevilla, 41013, Spain
| | - Carlos Santos-Ocaña
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III, Sevilla, 41013, Spain
| |
Collapse
|
7
|
Versluis D, Rodriguez de Evgrafov M, Sommer MOA, Sipkema D, Smidt H, van Passel MWJ. Sponge Microbiota Are a Reservoir of Functional Antibiotic Resistance Genes. Front Microbiol 2016; 7:1848. [PMID: 27909433 PMCID: PMC5112248 DOI: 10.3389/fmicb.2016.01848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 11/16/2022] Open
Abstract
Wide application of antibiotics has contributed to the evolution of multi-drug resistant human pathogens, resulting in poorer treatment outcomes for infections. In the marine environment, seawater samples have been investigated as a resistance reservoir; however, no studies have methodically examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional resistance genes in the sponges Aplysina aerophoba, Petrosia ficiformis, and Corticium candelabrum. We obtained 37 insert sequences facilitating resistance to D-cycloserine (n = 6), gentamicin (n = 1), amikacin (n = 7), trimethoprim (n = 17), chloramphenicol (n = 1), rifampicin (n = 2) and ampicillin (n = 3). Fifteen of 37 inserts harbored resistance genes that shared <90% amino acid identity with known gene products, whereas on 13 inserts no resistance gene could be identified with high confidence, in which case we predicted resistance to be mainly mediated by antibiotic efflux. One marine-specific ampicillin-resistance-conferring β-lactamase was identified in the genus Pseudovibrio with 41% global amino acid identity to the closest β-lactamase with demonstrated functionality, and subsequently classified into a new family termed PSV. Taken together, our results show that sponge microbiota host diverse and novel resistance genes that may be harnessed by phylogenetically distinct bacteria.
Collapse
Affiliation(s)
- Dennis Versluis
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | | | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark Hørsholm, Denmark
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | - Mark W J van Passel
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands; National Institute for Public Health and the EnvironmentBilthoven, Netherlands
| |
Collapse
|
8
|
Manara A, DalCorso G, Furini A. The Role of the Atypical Kinases ABC1K7 and ABC1K8 in Abscisic Acid Responses. FRONTIERS IN PLANT SCIENCE 2016; 7:366. [PMID: 27047531 PMCID: PMC4805650 DOI: 10.3389/fpls.2016.00366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 03/09/2016] [Indexed: 05/10/2023]
Abstract
The ABC1K family of atypical kinases (activity of bc1 complex kinase) is represented in bacteria, archaea, and eukaryotes. In plants they regulate diverse physiological processes in the chloroplasts and mitochondria, but their precise functions are poorly defined. ABC1K7 and ABC1K8 are probably involved in oxidative stress responses, isoprenyl lipid synthesis and distribution of iron within chloroplasts. Because reactive oxygen species take part in abscisic acid (ABA)-mediated processes, we investigated the functions of ABC1K7 and ABC1K8 during germination, stomatal movement, and leaf senescence. Both genes were upregulated by ABA treatment and some ABA-responsive physiological processes were affected in abc1k7 and abc1k8 mutants. Germination was more severely affected by ABA, osmotic stress and salt stress in the single and double mutants; the stomatal aperture was smaller in the mutants under standard growth conditions and was not further reduced by exogenous ABA application; ABA-induced senescence symptoms were more severe in the leaves of the single and double mutants compared to wild type leaves. Taken together, our results suggest that ABC1K7 and ABC1K8 might be involved in the cross-talk between ABA and ROS signaling.
Collapse
|
9
|
Li T, Jiang J, Zhang S, Shu H, Wang Y, Lai J, Du J, Yang C. OsAGSW1, an ABC1-like kinase gene, is involved in the regulation of grain size and weight in rice. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5691-5701. [PMID: 25922483 DOI: 10.1093/jxb/erv160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Grain shape and weight are two determining agronomic traits of rice yield. ABC1 (Activity of bc1 complex) is a newly found atypical kinase in plants. Here, we report on an ABC1 protein kinase gene, OsAGSW1 (ABC1-like kinase related to Grain size and Weight). Expression of OsAGSW1-GFP in rice revealed that OsAGSW1 is localized to the chloroplasts in rice. Analysis of OsAGSW1 promoter::β-glucuronidase transgenic rice indicated that this gene was highly expressed in vascular bundles in shoot, hull and caryopsis. Furthermore, OsAGSW1-RNAi and overexpressed transgenic rice lines were generated. Stable transgenic lines overexpressing OsAGSW1 exhibited a phenotype with a significant increase in grain size, grain weight, grain filling rate and 1000-grain weight compared with the wild-type and RNAi transgenic plants. Microscopy analysis showed that spikelet hulls just before heading were different in the OsAGSW1-overexpressed plants compared with wild-type and OsAGSW1 RNAi rice. Further cytological analysis showed that the number of external parenchyma cells in rice hulls of OsAGSW1-overexpressed plants increased, leading to wider and longer spikelet hulls than those of the wild-type and OsAGSW1-RNAi plants. The vascular cross-sectional area in lemma, carpopodium and ovules also strikingly increased and area of both xylem and phloem were enlarged in the OsAGSW1-overexpressed plants. Thus, our results demonstrated that OsAGSW1 plays an important role in seed shape and size of rice by regulating the number of external parenchyma cells and the development of vascular bundles, providing a new insight into the functions of ABC1 genes in plants.
Collapse
Affiliation(s)
- Tao Li
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Jieming Jiang
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shengchun Zhang
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Haoran Shu
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yaqin Wang
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jianbin Lai
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jinju Du
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chengwei Yang
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
10
|
Mining microbial metatranscriptomes for expression of antibiotic resistance genes under natural conditions. Sci Rep 2015; 5:11981. [PMID: 26153129 PMCID: PMC4495384 DOI: 10.1038/srep11981] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/15/2015] [Indexed: 11/08/2022] Open
Abstract
Antibiotic resistance genes are found in a broad range of ecological niches associated with complex microbiota. Here we investigated if resistance genes are not only present, but also transcribed under natural conditions. Furthermore, we examined the potential for antibiotic production by assessing the expression of associated secondary metabolite biosynthesis gene clusters. Metatranscriptome datasets from intestinal microbiota of four human adults, one human infant, 15 mice and six pigs, of which only the latter have received antibiotics prior to the study, as well as from sea bacterioplankton, a marine sponge, forest soil and sub-seafloor sediment, were investigated. We found that resistance genes are expressed in all studied ecological niches, albeit with niche-specific differences in relative expression levels and diversity of transcripts. For example, in mice and human infant microbiota predominantly tetracycline resistance genes were expressed while in human adult microbiota the spectrum of expressed genes was more diverse, and also included β-lactam, aminoglycoside and macrolide resistance genes. Resistance gene expression could result from the presence of natural antibiotics in the environment, although we could not link it to expression of corresponding secondary metabolites biosynthesis clusters. Alternatively, resistance gene expression could be constitutive, or these genes serve alternative roles besides antibiotic resistance.
Collapse
|
11
|
Manara A, DalCorso G, Leister D, Jahns P, Baldan B, Furini A. AtSIA1 AND AtOSA1: two Abc1 proteins involved in oxidative stress responses and iron distribution within chloroplasts. THE NEW PHYTOLOGIST 2014; 201:452-465. [PMID: 24117441 DOI: 10.1111/nph.12533] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/27/2013] [Indexed: 05/25/2023]
Abstract
The Abc1 protein kinases are a large family of functionally diverse proteins with multiple roles in the regulation of respiration and oxidative stress tolerance. A functional characterization was carried out for AtSIA1, an Arabidopsis thaliana Abc1-like protein, focusing on its potential redundancy with its homolog AtOSA1. Both proteins are located within chloroplasts, even if a different subplastidial localization seems probable. The comparison of atsia1 and atosa1 mutants, atsia1/atosa1 double mutant and wild-type plants revealed a reduction in plastidial iron-containing proteins of the Cytb6 f complex in the mutants. Iron uptake from soil is not hampered in mutant lines, suggesting that AtSIA1 and AtOSA1 affect iron distribution within the chloroplast. Mutants accumulated more ferritin and superoxide, and showed reduced tolerance to reactive oxygen species (ROS), potentially indicating a basal role in oxidative stress. The mutants produced higher concentrations of plastochromanol and plastoquinones than wild-type plants, but only atsia1 plants developed larger plastoglobules and contained higher concentrations of α- and γ-tocopherol and VTE1. Taken together, these data suggest that AtSIA1 and AtOSA1 probably act in signaling pathways that influence responses to ROS production and oxidative stress.
Collapse
Affiliation(s)
- Anna Manara
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, Italy
| | - Giovanni DalCorso
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, Italy
| | - Dario Leister
- Dept Biologie I, Botanik, Biozentrum der LMU München, Großhaderner Str. 2-4, Planegg-Martinsried, Germany
| | - Peter Jahns
- Heinrich-Heine-Universität Biochemie der Pflanzen, Universitätsstraße 1, Düsseldorf, Germany
| | - Barbara Baldan
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi, 58/B, Padova, Italy
| | - Antonella Furini
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, Italy
| |
Collapse
|
12
|
Lundquist PK, Poliakov A, Giacomelli L, Friso G, Appel M, McQuinn RP, Krasnoff SB, Rowland E, Ponnala L, Sun Q, van Wijk KJ. Loss of plastoglobule kinases ABC1K1 and ABC1K3 causes conditional degreening, modified prenyl-lipids, and recruitment of the jasmonic acid pathway. THE PLANT CELL 2013; 25:1818-39. [PMID: 23673981 PMCID: PMC3694708 DOI: 10.1105/tpc.113.111120] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/02/2013] [Accepted: 04/25/2013] [Indexed: 05/04/2023]
Abstract
Plastoglobules (PGs) are plastid lipid-protein particles. This study examines the function of PG-localized kinases ABC1K1 and ABC1K3 in Arabidopsis thaliana. Several lines of evidence suggested that ABC1K1 and ABC1K3 form a protein complex. Null mutants for both genes (abc1k1 and abc1k3) and the double mutant (k1 k3) displayed rapid chlorosis upon high light stress. Also, k1 k3 showed a slower, but irreversible, senescence-like phenotype during moderate light stress that was phenocopied by drought and nitrogen limitation, but not cold stress. This senescence-like phenotype involved degradation of the photosystem II core and upregulation of chlorophyll degradation. The senescence-like phenotype was independent of the EXECUTER pathway that mediates genetically controlled cell death from the chloroplast and correlated with increased levels of the singlet oxygen-derived carotenoid β-cyclocitral, a retrograde plastid signal. Total PG volume increased during light stress in wild type and k1 k3 plants, but with different size distributions. Isolated PGs from k1 k3 showed a modified prenyl-lipid composition, suggesting reduced activity of PG-localized tocopherol cyclase (VTE1), and was consistent with loss of carotenoid cleavage dioxygenase 4. Plastid jasmonate biosynthesis enzymes were recruited to the k1 k3 PGs but not wild-type PGs, while pheophytinase, which is involved in chlorophyll degradation, was induced in k1 k3 and not wild-type plants and was localized to PGs. Thus, the ABC1K1/3 complex contributes to PG function in prenyl-lipid metabolism, stress response, and thylakoid remodeling.
Collapse
Affiliation(s)
| | - Anton Poliakov
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Lisa Giacomelli
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Mason Appel
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Ryan P. McQuinn
- Boyce Thompson Institute for Plant Science Research, Ithaca, New York 14853
| | - Stuart B. Krasnoff
- U.S. Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - Elden Rowland
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Klaas J. van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
13
|
|
14
|
Yang S, Zeng X, Li T, Liu M, Zhang S, Gao S, Wang Y, Peng C, Li L, Yang C. AtACDO1, an ABC1-like kinase gene, is involved in chlorophyll degradation and the response to photooxidative stress in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3959-73. [PMID: 22447966 DOI: 10.1093/jxb/ers072] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
ABC1 (activity of bc1 complex) is a newly discovered atypical kinase in plants. Here, it is reported that an ABC1 protein kinase-encoded gene, AtACDO1 (ABC1-like kinase related to chlorophyll degradation and oxidative stress), located in chloroplasts, was up-regulated by methyl viologen (MV) treatment. AtACDO1 RNAi (RNA interference) plants showed developmental defects, including yellow-green leaves and reduced contents of carotenoids and chlorophyll; the chlorophyll reduction was associated with a change in the numbers of chlorophyll-binding proteins of the photosynthetic complexes. Chlorophyllide (Chlide) a the first product of chlorophyll degradation, and pheophorbide a, a subsequent intermediate of Chlide a degradation, were increased in AtACDO1 RNAi plants. The AtACDO1 RNAi plants were more sensitive to high light and MV than wild-type plants. The AtACDO1 RNAi plants had lower transcript levels of the oxidative stress response genes FSD1, CSD1, CAT1, and UTG71C1 after MV treatment compared with wild-type or 35S::AtACDO1 plants. Taken together, the results suggest that the chloroplast AtACDO1 protein plays important roles in mediating chlorophyll degradation and maintaining the number of chlorophyll-binding photosynthetic thylakoid membranes, as well as in the photooxidative stress response.
Collapse
Affiliation(s)
- Songguang Yang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gao Q, Yang Z, Zhou Y, Yin Z, Qiu J, Liang G, Xu C. Characterization of an Abc1 kinase family gene OsABC1-2 conferring enhanced tolerance to dark-induced stress in rice. Gene 2012; 498:155-63. [DOI: 10.1016/j.gene.2012.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Xie LX, Hsieh EJ, Watanabe S, Allan CM, Chen JY, Tran UC, Clarke CF. Expression of the human atypical kinase ADCK3 rescues coenzyme Q biosynthesis and phosphorylation of Coq polypeptides in yeast coq8 mutants. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1811:348-60. [PMID: 21296186 PMCID: PMC3075350 DOI: 10.1016/j.bbalip.2011.01.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/17/2011] [Accepted: 01/28/2011] [Indexed: 12/31/2022]
Abstract
Coenzyme Q (ubiquinone or Q) is a lipid electron and proton carrier in the electron transport chain. In yeast Saccharomyces cerevisiae eleven genes, designated COQ1 through COQ9, YAH1 and ARH1, have been identified as being required for Q biosynthesis. One of these genes, COQ8 (ABC1), encodes an atypical protein kinase, containing six (I, II, III, VIB, VII, and VIII) of the twelve motifs characteristically present in canonical protein kinases. Here we characterize seven distinct Q-less coq8 yeast mutants and show that unlike the coq8 null mutant, each maintained normal steady-state levels of the Coq8 polypeptide. The phosphorylation states of Coq polypeptides were determined with two-dimensional gel analyses. Coq3p, Coq5p, and Coq7p were phosphorylated in a Coq8p-dependent manner. Expression of a human homolog of Coq8p, ADCK3(CABC1) bearing an amino-terminal yeast mitochondrial leader sequence, rescued growth of yeast coq8 mutants on medium containing a nonfermentable carbon source and partially restored biosynthesis of Q(6). The phosphorylation state of several of the yeast Coq polypeptides was also rescued, indicating a profound conservation of yeast Coq8p and human ADCK3 protein kinase function in Q biosynthesis.
Collapse
Affiliation(s)
- Letian X. Xie
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angles, Los Angeles, California 90095-1569
| | - Edward J. Hsieh
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angles, Los Angeles, California 90095-1569
| | - Shota Watanabe
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angles, Los Angeles, California 90095-1569
| | - Christopher M. Allan
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angles, Los Angeles, California 90095-1569
| | - Jia Y. Chen
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angles, Los Angeles, California 90095-1569
| | - UyenPhuong C. Tran
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angles, Los Angeles, California 90095-1569
| | - Catherine F. Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angles, Los Angeles, California 90095-1569
| |
Collapse
|
17
|
GAO QS, YANG ZF, ZHOU Y, ZHANG D, YAN CH, LIANG GH, XU CW. Cloning of an ABC1-like Gene ZmABC1-10 and Its Responses to Cadmium and Other Abiotic Stresses in Maize (Zea mays L.). ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1875-2780(09)60089-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
|
19
|
Abstract
Phylogenetic profiles describe the presence or absence of a protein in a set of reference genomes. Similarity between profiles is an indicator of functional coupling between gene products: the greater the similarity, the greater the likelihood of proteins sharing membership in the same pathway or cellular system. By virtue of this property, uncharacterized proteins can be assigned putative functions, based on the similarity of their profiles with those of known proteins. Profile comparisons, when extended to the entire genome, have the power to reveal functional linkages on a genome-wide scale (the functional "interactome"), elucidating both known and novel pathways and cellular systems.
Collapse
|
20
|
Jasinski M, Sudre D, Schansker G, Schellenberg M, Constant S, Martinoia E, Bovet L. AtOSA1, a member of the Abc1-like family, as a new factor in cadmium and oxidative stress response. PLANT PHYSIOLOGY 2008; 147:719-31. [PMID: 18390807 PMCID: PMC2409006 DOI: 10.1104/pp.107.110247] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 03/20/2008] [Indexed: 05/20/2023]
Abstract
The analysis of gene expression in Arabidopsis (Arabidopsis thaliana) using cDNA microarrays and reverse transcription-polymerase chain reaction showed that AtOSA1 (A. thaliana oxidative stress-related Abc1-like protein) transcript levels are influenced by Cd2+ treatment. The comparison of protein sequences revealed that AtOSA1 belongs to the family of Abc1 proteins. Up to now, Abc1-like proteins have been identified in prokaryotes and in the mitochondria of eukaryotes. AtOSA1 is the first member of this family to be localized in the chloroplasts. However, despite sharing homology to the mitochondrial ABC1 of Saccharomyces cerevisiae, AtOSA1 was not able to complement yeast strains deleted in the endogenous ABC1 gene, thereby suggesting different function between AtOSA1 and the yeast ABC1. The atosa1-1 and atosa1-2 T-DNA insertion mutants were more affected than wild-type plants by Cd2+ and revealed an increased sensitivity toward oxidative stress (hydrogen peroxide) and high light. The mutants exhibited higher superoxide dismutase activities and differences in the expression of genes involved in the antioxidant pathway. In addition to the conserved Abc1 region in the AtOSA1 protein sequence, putative kinase domains were found. Protein kinase assays in gelo using myelin basic protein as a kinase substrate revealed that chloroplast envelope membrane fractions from the AtOSA1 mutant lacked a 70-kD phosphorylated protein compared to the wild type. Our data suggest that the chloroplast AtOSA1 protein is a new factor playing a role in the balance of oxidative stress.
Collapse
Affiliation(s)
- Michal Jasinski
- University of Zurich, Institute of Plant Biology, 8008 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
21
|
Lagier-Tourenne C, Tazir M, López LC, Quinzii CM, Assoum M, Drouot N, Busso C, Makri S, Ali-Pacha L, Benhassine T, Anheim M, Lynch DR, Thibault C, Plewniak F, Bianchetti L, Tranchant C, Poch O, DiMauro S, Mandel JL, Barros MH, Hirano M, Koenig M. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet 2008; 82:661-72. [PMID: 18319074 DOI: 10.1016/j.ajhg.2007.12.024] [Citation(s) in RCA: 231] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/15/2007] [Accepted: 12/28/2007] [Indexed: 01/17/2023] Open
Abstract
Muscle coenzyme Q(10) (CoQ(10) or ubiquinone) deficiency has been identified in more than 20 patients with presumed autosomal-recessive ataxia. However, mutations in genes required for CoQ(10) biosynthetic pathway have been identified only in patients with infantile-onset multisystemic diseases or isolated nephropathy. Our SNP-based genome-wide scan in a large consanguineous family revealed a locus for autosomal-recessive ataxia at chromosome 1q41. The causative mutation is a homozygous splice-site mutation in the aarF-domain-containing kinase 3 gene (ADCK3). Five additional mutations in ADCK3 were found in three patients with sporadic ataxia, including one known to have CoQ(10) deficiency in muscle. All of the patients have childhood-onset cerebellar ataxia with slow progression, and three of six have mildly elevated lactate levels. ADCK3 is a mitochondrial protein homologous to the yeast COQ8 and the bacterial UbiB proteins, which are required for CoQ biosynthesis. Three out of four patients tested showed a low endogenous pool of CoQ(10) in their fibroblasts or lymphoblasts, and two out of three patients showed impaired ubiquinone synthesis, strongly suggesting that ADCK3 is also involved in CoQ(10) biosynthesis. The deleterious nature of the three identified missense changes was confirmed by the introduction of them at the corresponding positions of the yeast COQ8 gene. Finally, a phylogenetic analysis shows that ADCK3 belongs to the family of atypical kinases, which includes phosphoinositide and choline kinases, suggesting that ADCK3 plays an indirect regulatory role in ubiquinone biosynthesis possibly as part of a feedback loop that regulates ATP production.
Collapse
|
22
|
Mollet J, Delahodde A, Serre V, Chretien D, Schlemmer D, Lombes A, Boddaert N, Desguerre I, de Lonlay P, Ogier de Baulny H, Munnich A, Rötig A. CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet 2008; 82:623-30. [PMID: 18319072 DOI: 10.1016/j.ajhg.2007.12.022] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/06/2007] [Accepted: 12/12/2007] [Indexed: 01/28/2023] Open
Abstract
Coenzyme Q(10) (CoQ(10)) plays a pivotal role in oxidative phosphorylation (OXPHOS) in that it distributes electrons between the various dehydrogenases and the cytochrome segments of the respiratory chain. Primary coenzyme Q(10) deficiency represents a clinically heterogeneous condition suggestive of genetic heterogeneity, and several disease genes have been previously identified. The CABC1 gene, also called COQ8 or ADCK3, is the human homolog of the yeast ABC1/COQ8 gene, one of the numerous genes involved in the ubiquinone biosynthesis pathway. The exact function of the Abc1/Coq8 protein is as yet unknown, but this protein is classified as a putative protein kinase. We report here CABC1 gene mutations in four ubiquinone-deficient patients in three distinct families. These patients presented a similar progressive neurological disorder with cerebellar atrophy and seizures. In all cases, enzymological studies pointed to ubiquinone deficiency. CoQ(10) deficiency was confirmed by decreased content of ubiquinone in muscle. Various missense mutations (R213W, G272V, G272D, and E551K) modifying highly conserved amino acids of the protein and a 1 bp frameshift insertion c.[1812_1813insG] were identified. The missense mutations were introduced into the yeast ABC1/COQ8 gene and expressed in a Saccharomyces cerevisiae strain in which the ABC1/COQ8 gene was deleted. All the missense mutations resulted in a respiratory phenotype with no or decreased growth on glycerol medium and a severe reduction in ubiquinone synthesis, demonstrating that these mutations alter the protein function.
Collapse
|
23
|
Rötig A, Mollet J, Rio M, Munnich A. Infantile and pediatric quinone deficiency diseases. Mitochondrion 2007; 7 Suppl:S112-21. [PMID: 17442627 DOI: 10.1016/j.mito.2007.02.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 12/19/2006] [Accepted: 02/03/2007] [Indexed: 11/15/2022]
Abstract
Coenzyme Q10 (CoQ10) plays a pivotal role in oxidative phosphorylation (OXPHOS) as it distributes electrons between the various dehydrogenases and the cytochrome segments of the respiratory chain. Primary coenzyme Q10 deficiency is a rare, but possibly treatable, autosomal recessive condition with four major clinical presentations, an encephalomyopathic form, a generalized infantile variant with severe encephalopathy and renal disease, a myopathic form and an ataxic form. The diagnosis of ubiquinone deficiency is supported by respiratory chain analysis and eventually by the quantification of CoQ10 in patient tissues. We review here the infantile and pediatric quinone deficiency diseases as well as the clinical improvement after oral CoQ10 therapy. The clinical heterogeneity of ubiquinone deficiency is suggestive of a genetic heterogeneity that should be related to the large number of enzymes, and corresponding genes, involved in ubiquinone biosynthesis.
Collapse
Affiliation(s)
- Agnès Rötig
- INSERM U 781, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France.
| | | | | | | |
Collapse
|
24
|
Branicky R, Nguyen PAT, Hekimi S. Uncoupling the pleiotropic phenotypes of clk-1 with tRNA missense suppressors in Caenorhabditis elegans. Mol Cell Biol 2006; 26:3976-85. [PMID: 16648490 PMCID: PMC1488993 DOI: 10.1128/mcb.26.10.3976-3985.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
clk-1 encodes a demethoxyubiquinone (DMQ) hydroxylase that is necessary for ubiquinone biosynthesis. When Caenorhabditis elegans clk-1 mutants are grown on bacteria that synthesize ubiquinone (UQ), they are viable but have a pleiotropic phenotype that includes slowed development, behaviors, and aging. However, when grown on UQ-deficient bacteria, the mutants arrest development transiently before growing up to become sterile adults. We identified nine suppressors of the missense mutation clk-1(e2519), which harbors a Glu-to-Lys substitution. All suppress the mutant phenotypes on both UQ-replete and UQ-deficient bacteria. However, each mutant suppresses a different subset of phenotypes, indicating that most phenotypes can be uncoupled from each other. In addition, all suppressors restore the ability to synthesize exceedingly small amounts of UQ, although they still accumulate the precursor DMQ, suggesting that the presence of DMQ is not responsible for the Clk-1 phenotypes. We cloned six of the suppressors, and all encode tRNA(Glu) genes whose anticodons are altered to read the substituted Lys codon of clk-1(e2519). To our knowledge, these suppressors represent the first missense suppressors identified in any metazoan. The pattern of suppression we observe suggests that the individual members of the tRNA(Glu) family are expressed in different tissues and at different levels.
Collapse
Affiliation(s)
- Robyn Branicky
- Department of Biology, McGill University, 1205 Ave. Docteur Penfield, Montreal, Quebec, Canada H3A 1B1
| | | | | |
Collapse
|
25
|
Baticados WN, Witola WH, Inoue N, Kim JY, Kuboki N, Xuan X, Yokoyama N, Sugimoto C. Expression of a gene encoding Trypanosoma congolense putative Abc1 family protein is developmentally regulated. J Vet Med Sci 2005; 67:157-64. [PMID: 15750311 DOI: 10.1292/jvms.67.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During the attempt to seek T. congolense species-specific diagnostic antigens, we discovered one cDNA clone (P74) encoding 74 kDa putative abc1 protein (p74) from T. congolense PCF cDNA library. It has been suggested that members of the abc1 family are novel chaperonins and essential for both the mitochondrial electron transfer in the bc 1 complex and the coenzyme Q biosynthesis. Although abc1 protein in yeast has a nuclear or mitochondrial subcellular location, neither nuclear localization signal nor mitochondrial targeting signal was found within p74. Northern blot analysis revealed that the transcription level of P74 mRNA in bloodstream form (BSF) cells were 4 times higher than that in procyclic form cells. Western blot analysis also indicated that p74 was only expressed in T. congolense BSF cells, and revealed that molecular mass of native p74 was not 74 kDa but 56 kDa. This indicates extensive post-translational modification in p74. Although further characterization of p74 will be required, our findings provide implications for CoQ biosynthesis pathway in T. congolense.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern/veterinary
- Blotting, Southern/veterinary
- Blotting, Western/veterinary
- Cloning, Molecular
- DNA Primers
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation, Developmental
- Gene Library
- Genes, Protozoan/genetics
- Mice/parasitology
- Mice, Inbred Strains
- Molecular Sequence Data
- Protein Structure, Tertiary
- Sequence Analysis, DNA/veterinary
- Trypanosoma congolense/genetics
- Ubiquinone/biosynthesis
Collapse
Affiliation(s)
- Waren N Baticados
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Martin RE, Henry RI, Abbey JL, Clements JD, Kirk K. The 'permeome' of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum. Genome Biol 2005; 6:R26. [PMID: 15774027 PMCID: PMC1088945 DOI: 10.1186/gb-2005-6-3-r26] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 12/31/2004] [Accepted: 01/28/2005] [Indexed: 11/24/2022] Open
Abstract
Bioinformatic and expression analyses attribute putative functions to transporters and channels encoded by the Plasmodium falciparum genome. The malaria parasite has substantially more membrane transport proteins than previously thought. Background The uptake of nutrients, expulsion of metabolic wastes and maintenance of ion homeostasis by the intraerythrocytic malaria parasite is mediated by membrane transport proteins. Proteins of this type are also implicated in the phenomenon of antimalarial drug resistance. However, the initial annotation of the genome of the human malaria parasite Plasmodium falciparum identified only a limited number of transporters, and no channels. In this study we have used a combination of bioinformatic approaches to identify and attribute putative functions to transporters and channels encoded by the malaria parasite, as well as comparing expression patterns for a subset of these. Results A computer program that searches a genome database on the basis of the hydropathy plots of the corresponding proteins was used to identify more than 100 transport proteins encoded by P. falciparum. These include all the transporters previously annotated as such, as well as a similar number of candidate transport proteins that had escaped detection. Detailed sequence analysis enabled the assignment of putative substrate specificities and/or transport mechanisms to all those putative transport proteins previously without. The newly-identified transport proteins include candidate transporters for a range of organic and inorganic nutrients (including sugars, amino acids, nucleosides and vitamins), and several putative ion channels. The stage-dependent expression of RNAs for 34 candidate transport proteins of particular interest are compared. Conclusion The malaria parasite possesses substantially more membrane transport proteins than was originally thought, and the analyses presented here provide a range of novel insights into the physiology of this important human pathogen.
Collapse
Affiliation(s)
- Rowena E Martin
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
| | - Roselani I Henry
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
| | - Janice L Abbey
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
| | - John D Clements
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
- Division of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia
| | - Kiaran Kirk
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
27
|
Burgess J, Hihi AK, Benard CY, Branicky R, Hekimi S. Molecular mechanism of maternal rescue in the clk-1 mutants of Caenorhabditis elegans. J Biol Chem 2003; 278:49555-62. [PMID: 14517217 DOI: 10.1074/jbc.m308507200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The clk-1 mutants of Caenorhabditis elegans display an average slowing down of physiological rates, including those of development, various behaviors, and aging. clk-1 encodes a hydroxylase involved in the biosynthesis of the redox-active lipid ubiquinone (co-enzyme Q), and in clk-1 mutants, ubiquinone is replaced by its biosynthetic precursor demethoxyubiquinone. Surprisingly, homozygous clk-1 mutants display a wild-type phenotype when issued from a heterozygous mother. Here, we show that this maternal effect is the result of the persistence of small amounts of maternally derived CLK-1 protein and that maternal CLK-1 is sufficient for the synthesis of considerable amounts of ubiquinone during development. However, gradual depletion of CLK-1 and ubiquinone, and expression of the mutant phenotype, can be produced experimentally by developmental arrest. We also show that the very long lifespan observed in daf-2 clk-1 double mutants is not abolished by the maternal effect. This suggests that, like developmental arrest, the increased lifespan conferred by daf-2 allows for depletion of maternal CLK-1, resulting in the expression of the synergism between clk-1 and daf-2. Thus, increased adult longevity can be uncoupled from the early mutant phenotypes, indicating that it is possible to obtain an increased adult lifespan from the late inactivation of processes required for normal development and reproduction.
Collapse
Affiliation(s)
- Jason Burgess
- Department of Biology, McGill University, Montréal, Quebec H3A 1B1, Canada
| | | | | | | | | |
Collapse
|
28
|
Hihi AK, Gao Y, Hekimi S. Ubiquinone is necessary for Caenorhabditis elegans development at mitochondrial and non-mitochondrial sites. J Biol Chem 2002; 277:2202-6. [PMID: 11706003 DOI: 10.1074/jbc.m109034200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquinone (UQ) is a lipid co-factor that is involved in numerous enzymatic processes and is present in most cellular membranes. In particular, UQ is a crucial electron carrier in the mitochondrial respiratory chain. Recently, it was shown that clk-1 mutants of the nematode worm Caenorhabditis elegans do not synthesize UQ(9) but instead accumulate demethoxyubiquinone (DMQ(9)), a biosynthetic precursor of UQ(9) (the subscript refers to the length of the isoprenoid side chain). DMQ(9) is capable of carrying out the function of UQ(9) in the respiratory chain, as demonstrated by the functional competence of mitochondria isolated from clk-1 mutants, and the ability of DMQ(9) to act as a co-factor for respiratory enzymes in vitro. However, despite the presence of functional mitochondria, clk-1 mutant worms fail to complete development when feeding on bacteria that do not produce UQ(8). Here we show that clk-1 mutants cannot grow on bacteria producing only DMQ(8) and that worm coq-3 mutants, which produce neither UQ(9) nor DMQ(9), arrest development even on bacteria producing UQ(8). These results indicate that UQ is required for nematode development at mitochondrial and non-mitochondrial sites and that DMQ cannot functionally replace UQ at those non-mitochondrial sites.
Collapse
Affiliation(s)
- Abdelmadjid K Hihi
- Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada
| | | | | |
Collapse
|
29
|
Do TQ, Hsu AY, Jonassen T, Lee PT, Clarke CF. A defect in coenzyme Q biosynthesis is responsible for the respiratory deficiency in Saccharomyces cerevisiae abc1 mutants. J Biol Chem 2001; 276:18161-8. [PMID: 11279158 DOI: 10.1074/jbc.m100952200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquinone (coenzyme Q or Q) is an essential component of the mitochondrial respiratory chain in eukaryotic cells. There are eight complementation groups of Q-deficient Saccharomyces cerevisiae mutants designated coq1-coq8. Here we report that COQ8 is ABC1 (for Activity of bc(1) complex), which was originally isolated as a multicopy suppressor of a cytochrome b mRNA translation defect (Bousquet, I., Dujardin, G., and Slonimski, P. P. (1991) EMBO J. 10, 2023-2031). Previous studies of abc1 mutants suggested that the mitochondrial respiratory complexes were thermosensitive and function inefficiently. Although initial characterization of the abc1 mutants revealed characteristics of Q-deficient mutants, levels of Q were reported to be similar to wild type. The suggested function of Abc1p was that it acts as a chaperone-like protein essential for the proper conformation and functioning of the bc(1) and its neighboring complexes (Brasseur, G., Tron, P., Dujardin, G., Slonimski, P. P. (1997) Eur. J. Biochem. 246, 103-111). Studies presented here indicate that abc1/coq8 null mutants are defective in Q biosynthesis and accumulate 3-hexaprenyl-4-hydroxybenzoic acid as the predominant intermediate. As observed in other yeast coq mutants, supplementation of growth media with Q(6) rescues the abc1/coq8 null mutants for growth on nonfermentable carbon sources. Such supplementation also partially restores succinate-cytochrome c reductase activity in the abc1/coq8 null mutants. Abc1/Coq8p localizes to the mitochondria, and is proteolytically processed upon import. The findings presented here indicate that the previously reported thermosensitivity of the respiratory complexes of abc1/coq8 mutants results from the lack of Q and a general deficiency in respiration, rather than a specific phenotype due to dysfunction of the Abc1 polypeptide. These results indicate that ABC1/COQ8 is essential for Q-biosynthesis and that the critical defect of abc1/coq8 mutants is a lack of Q.
Collapse
Affiliation(s)
- T Q Do
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
30
|
Poon WW, Davis DE, Ha HT, Jonassen T, Rather PN, Clarke CF. Identification of Escherichia coli ubiB, a gene required for the first monooxygenase step in ubiquinone biosynthesis. J Bacteriol 2000; 182:5139-46. [PMID: 10960098 PMCID: PMC94662 DOI: 10.1128/jb.182.18.5139-5146.2000] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was recently discovered that the aarF gene in Providencia stuartii is required for coenzyme Q (CoQ) biosynthesis. Here we report that yigR, the Escherichia coli homologue of aarF, is ubiB, a gene required for the first monooxygenase step in CoQ biosynthesis. Both the P. stuartii aarF and E. coli ubiB (yigR) disruption mutant strains lack CoQ and accumulate octaprenylphenol. Octaprenylphenol is the CoQ biosynthetic intermediate found to accumulate in the E. coli strain AN59, which contains the ubiB409 mutant allele. Analysis of the mutation in the E. coli strain AN59 reveals no mutations within the ubiB gene, but instead shows the presence of an IS1 element at position +516 of the ubiE gene. The ubiE gene encodes a C-methyltransferase required for the synthesis of both CoQ and menaquinone, and it is the 5' gene in an operon containing ubiE, yigP, and ubiB. The data indicate that octaprenylphenol accumulates in AN59 as a result of a polar effect of the ubiE::IS1 mutation on the downstream ubiB gene. AN59 is complemented by a DNA segment containing the contiguous ubiE, yigP, and ubiB genes. Although transformation of AN59 with a DNA segment containing the ubiB coding region fails to restore CoQ biosynthesis, transformation with the ubiE coding region results in a low-frequency but significant rescue attributed to homologous recombination. In addition, the fre gene, previously considered to correspond to ubiB, was found not to be involved in CoQ biosynthesis. The ubiB gene is a member of a predicted protein kinase family of which the Saccharomyces cerevisiae ABC1 gene is the prototypic member. The possible protein kinase function of UbiB and Abc1 and the role these polypeptides may play in CoQ biosynthesis are discussed.
Collapse
Affiliation(s)
- W W Poon
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles 90095, USA
| | | | | | | | | | | |
Collapse
|
31
|
Bush K, Miller GH. Bacterial enzymatic resistance: beta-lactamases and aminoglycoside-modifying enzymes. Curr Opin Microbiol 1998; 1:509-15. [PMID: 10066532 DOI: 10.1016/s1369-5274(98)80082-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Numerous novel beta-lactamases and aminoglycoside-modifying enzymes with altered substrate profiles continue to be identified. Plasmid-mediated transmission of many of these enzymes readily occurs due to inclusion of the encoding genes in mobile gene cassettes. Recent crystallographic determinations of the structures of metallo-beta-lactamases and aminoglycoside-modifying enzymes provide the opportunity for the rational design of inhibitors.
Collapse
Affiliation(s)
- K Bush
- RW Johnson Pharmaceutical Research Institute, 1000 Route 202, Raritan NJ 08869, USA.
| | | |
Collapse
|
32
|
Leonard CJ, Aravind L, Koonin EV. Novel families of putative protein kinases in bacteria and archaea: evolution of the "eukaryotic" protein kinase superfamily. Genome Res 1998; 8:1038-47. [PMID: 9799791 DOI: 10.1101/gr.8.10.1038] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The central role of serine/threonine and tyrosine protein kinases in signal transduction and cellular regulation in eukaryotes is well established and widely documented. Considerably less is known about the prevalence and role of these protein kinases in bacteria and archaea. In order to examine the evolutionary origins of the eukaryotic-type protein kinase (ePK) superfamily, we conducted an extensive analysis of the proteins encoded by the completely sequenced bacterial and archaeal genomes. We detected five distinct families of known and predicted putative protein kinases with representatives in bacteria and archaea that share a common ancestry with the eukaryotic protein kinases. Four of these protein families have not been identified previously as protein kinases. From the phylogenetic distribution of these families, we infer the existence of an ancestral protein kinase(s) prior to the divergence of eukaryotes, bacteria, and archaea.
Collapse
Affiliation(s)
- C J Leonard
- National Center for Biotechnology Information (NCBI), National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894 USA
| | | | | |
Collapse
|
33
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
34
|
Sargent F, Bogsch EG, Stanley NR, Wexler M, Robinson C, Berks BC, Palmer T. Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J 1998; 17:3640-50. [PMID: 9649434 PMCID: PMC1170700 DOI: 10.1093/emboj/17.13.3640] [Citation(s) in RCA: 411] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We describe the identification of two Escherichia coli genes required for the export of cofactor-containing periplasmic proteins, synthesized with signal peptides containing a twin arginine motif. Both gene products are homologous to the maize HCF106 protein required for the translocation of a subset of lumenal proteins across the thylakoid membrane. Disruption of either gene affects the export of a range of such proteins, and a complete block is observed when both genes are inactivated. The Sec protein export pathway was unaffected, indicating the involvement of the gene products in a novel export system. The accumulation of active cofactor-containing proteins in the cytoplasm of the mutant strains suggests a role for the gene products in the translocation of folded proteins. One of the two HCF106 homologues is encoded by the first gene of a four cistron operon, tatABCD, and the second by an unlinked gene, tatE. A mutation previously assigned to the hcf106 homologue encoded at the tatABCD locus, mttA, lies instead in the tatB gene.
Collapse
Affiliation(s)
- F Sargent
- Nitrogen Fixation Laboratory, John Innes Centre, Colney, Norwich NR4 7UH
| | | | | | | | | | | | | |
Collapse
|
35
|
Paradise MR, Cook G, Poole RK, Rather PN. Mutations in aarE, the ubiA homolog of Providencia stuartii, result in high-level aminoglycoside resistance and reduced expression of the chromosomal aminoglycoside 2'-N-acetyltransferase. Antimicrob Agents Chemother 1998; 42:959-62. [PMID: 9559821 PMCID: PMC105580 DOI: 10.1128/aac.42.4.959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aarE1 allele was identified on the basis of the resulting phenotype of increased aminoglycoside resistance. The aarE1 mutation also resulted in a small-colony phenotype and decreased levels of aac(2')-Ia mRNA. The deduced AarE gene product displayed 61% amino acid identity to the Escherichia coli UbiA protein, an octaprenyltransferase required for the second step of ubiquinone biosynthesis. Complementation experiments in both Providencia stuartii and E. coli demonstrated that aarE and ubiA are functionally equivalent.
Collapse
Affiliation(s)
- M R Paradise
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
36
|
Proctor RA, von Humboldt A. Bacterial energetics and antimicrobial resistance. Drug Resist Updat 1998; 1:227-35. [PMID: 16904405 DOI: 10.1016/s1368-7646(98)80003-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/1998] [Revised: 05/13/1998] [Accepted: 05/20/1998] [Indexed: 10/25/2022]
Abstract
Defining resistance to antimicrobics with specific terms is very useful as the precise mechanisms often lead to better susceptibility testing and improved treatment of bacterial infections. When one can characterize a class of phenotypic resistant organisms as electron transport variants, this has value in that it provides information about the basis for resistance and removes them from the non-specific categorization as phenotypically resistant. Studies of bacterial small colony variants (SCVs) has provided new insights into antimicrobial resistance as well as the connection between expression of virulence factors and energy metabolism. It also provides a framework for further studies which link antibiotic resistance to phase of growth, availability of nutrients, other environmental conditions, and adaptations to stress into a single model wherein the bacterial cell uses the products of energy metabolism to detect its sense of well being and to alter its response to antibiotics (Fig. I). Levels of NADH and ATP are able to act as signaling molecules in both gram positive an gram negative bacteria to activate stress sigma factors and two component systems. In the future, a full understanding of the signaling pathways in bacterial pathogens may provide new targets for the development of drugs to reduce bacterial virulence and to enhance the activity of existing antibiotics.
Collapse
Affiliation(s)
- R A Proctor
- Dept of Medical Microbiology and Immunology, University of Wisconsin Medical School, Madison, WI 53706, USA.
| | | |
Collapse
|