1
|
Warren ME, Pickett BE, Adams BJ, Villalva C, Applegate A, Robison RA. Comparative sequence analysis elucidates the evolutionary patterns of Yersinia pestis in New Mexico over thirty-two years. PeerJ 2023; 11:e16007. [PMID: 37780382 PMCID: PMC10541020 DOI: 10.7717/peerj.16007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/09/2023] [Indexed: 10/03/2023] Open
Abstract
Background Yersinia pestis, a Gram-negative bacterium, is the causative agent of plague. Y. pestis is a zoonotic pathogen that occasionally infects humans and became endemic in the western United States after spreading from California in 1899. Methods To better understand evolutionary patterns in Y. pestis from the southwestern United States, we sequenced and analyzed 22 novel genomes from New Mexico. Analytical methods included, assembly, multiple sequences alignment, phylogenetic tree reconstruction, genotype-phenotype correlation, and selection pressure. Results We identified four genes, including Yscp and locus tag YPO3944, which contained codons undergoing negative selection. We also observed 42 nucleotide sites displaying a statistically significant skew in the observed residue distribution based on the year of isolation. Overall, the three genes with the most statistically significant variations that associated with metadata for these isolates were sapA, fliC, and argD. Phylogenetic analyses point to a single introduction of Y. pestis into the United States with two subsequent, independent movements into New Mexico. Taken together, these analyses shed light on the evolutionary history of this pathogen in the southwestern US over a focused time range and confirm a single origin and introduction into North America.
Collapse
Affiliation(s)
- Mary E. Warren
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States
| | - Brett E. Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States
| | - Byron J. Adams
- Department of Biology, Brigham Young University, Provo, UT, United States
- Monte L. Bean Life Science Museum, Provo, UT, United States
| | - Crystal Villalva
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States
| | - Alyssa Applegate
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States
| |
Collapse
|
2
|
Abstract
This chapter presents an analysis of the organization and distribution of the IS200/IS605 family of insertion sequences (IS). Members of this family are widespread in both bacteria and archaea. They are unusual because they use obligatory single-strand DNA intermediates, which distinguishes them from classical IS. We summarize studies of the experimental model systems IS608 (from Helicobacter pylori) and ISDra2 (from Deinococcus radiodurans) and present biochemical, genetic, and structural data that describe their transposition pathway and the way in which their transposase (an HuH rather than a DDE enzyme) catalyzes this process. The transposition of IS200/IS605 family members can be described as a "Peel-and-Paste" mechanism. We also address the probable domestication of IS200/IS605 family transposases as enzymes involved in multiplication of repeated extragenic palindromes and as potential homing endonucleases in intron-IS chimeras.
Collapse
|
3
|
Qi Z, Cui Y, Zhang Q, Yang R. Taxonomy of Yersinia pestis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 918:35-78. [PMID: 27722860 DOI: 10.1007/978-94-024-0890-4_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This chapter summarized the taxonomy and typing works of Yersinia pestis since it's firstly identified in Hong Kong in 1894. Phenotyping methods that based on phenotypic characteristics, including biotyping, serotyping, antibiogram analysis, bacteriocin typing, phage typing, and plasmid typing, were firstly applied in classification of Y. pestis in subspecies level. And then, with the advancement of molecular biological technology, the methods based on outer membrane protein profiles, fatty acid composition, and bacterial mass fingerprinting were also used to identify the populations within Y. pestis. However, Y. pestis is a highly homogenous species; therefore, the above typing methods could only provide low resolution, e.g., only one serotype and one phage type were observed for the whole species. Since the 1990s, molecular typing based on DNA variations, including single-nucleotide polymorphism, gene gain/loss, variable-number tandem repeats, clustered regularly interspaced short palindromic repeat, etc., was introduced and improved the resolution and robust of typing result. Especially in recent years, genotyping-based whole-genome-wide variations were successfully employed in Y. pestis, which built the "gold standard" of typing scheme of the species and could distinguish the samples under the strain level. The taxonomy and typing works leaved us enormous polymorphism data; therefore, a comprehensive fingerprint database of Y. pestis was needed to collect and standardize these data, for facilitating future works on evolution, plague surveillance and control, anti-bioterrorism, and microbial forensic researches.
Collapse
Affiliation(s)
- Zhizhen Qi
- Qinghai Provincial Key Laboratory for Plague Control and Research, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai Province, 811602, China
| | - Yujun Cui
- Beijing Institute of Microbiology and Epidemiology, No. Dongdajie, Fengtai, Beijing, 100071, China
| | - Qingwen Zhang
- Qinghai Provincial Key Laboratory for Plague Control and Research, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai Province, 811602, China
| | - Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology, No. Dongdajie, Fengtai, Beijing, 100071, China.
| |
Collapse
|
4
|
Ellis MJ, Trussler RS, Haniford DB. A cis-encoded sRNA, Hfq and mRNA secondary structure act independently to suppress IS200 transposition. Nucleic Acids Res 2015; 43:6511-27. [PMID: 26044710 PMCID: PMC4513863 DOI: 10.1093/nar/gkv584] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/22/2015] [Indexed: 12/13/2022] Open
Abstract
IS200 is found throughout Enterobacteriaceae and transposes at a notoriously low frequency. In addition to the transposase protein (TnpA), IS200 encodes an uncharacterized Hfq-binding sRNA that is encoded opposite to the tnpA 5'UTR. In the current work we asked if this sRNA represses tnpA expression. We show here that the IS200 sRNA (named art200 for antisense regulator of transposase IS200) basepairs with tnpA to inhibit translation initiation. Unexpectedly, art200-tnpA pairing is limited to 40 bp, despite 90 nt of perfect complementarity. Additionally, we show that Hfq and RNA secondary structure in the tnpA 5'UTR each repress tnpA expression in an art200-independent manner. Finally, we show that disrupting translational control of tnpA expression leads to increased IS200 transposition in E. coli. The current work provides new mechanistic insight into why IS200 transposition is so strongly suppressed. The possibility of art200 acting in trans to regulate a yet-unidentified target is discussed as well as potential applications of the IS200 system for designing novel riboregulators.
Collapse
Affiliation(s)
- Michael J Ellis
- Department of Biochemistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Ryan S Trussler
- Department of Biochemistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - David B Haniford
- Department of Biochemistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| |
Collapse
|
5
|
Naville M, Gautheret D, Naville M, Gautheret D. Transcription attenuation in bacteria: theme and variations. Brief Funct Genomics 2010; 9:178-89. [DOI: 10.1093/bfgp/elq008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
6
|
Naville M, Gautheret D. Transcription attenuation in bacteria: theme and variations. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:482-92. [PMID: 19651704 DOI: 10.1093/bfgp/elp025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Premature termination of transcription, or attenuation, is an efficient RNA-based regulatory strategy that is commonly used in bacterial organisms. Attenuators are generally located in the 5' untranslated regions of genes or operons and combine a Rho-independent terminator, controlling transcription, with an RNA element that senses specific environmental signals. A striking diversity of sensing elements enable regulation of gene expression in response to multiple environmental conditions, including temperature changes, availability of small metabolites (such as ions, amino acids, nucleobases or vitamins), or availability of macromolecules such as tRNAs and regulatory proteins. The wide distribution of attenuators suggests an early emergence among bacteria. However, attenuators also display a great mobility and lability, illustrated by a multiplicity of recent horizontal transfers and duplications. For these reasons, attenuation systems are of high interest both from a fundamental evolutionary perspective and for possible biotechnological applications.
Collapse
Affiliation(s)
- Magali Naville
- Institut de Génétique et de Microbiologie, Paris-Sud University, Bâtiment 400, F-91405 Orsay Cedex, France
| | | |
Collapse
|
7
|
Yersinia pestis IS1541 transposition provides for escape from plague immunity. Infect Immun 2009; 77:1807-16. [PMID: 19237527 DOI: 10.1128/iai.01162-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis is perhaps the most feared infectious agent due to its ability to cause epidemic outbreaks of plague disease in animals and humans with high mortality. Plague infections elicit strong humoral immune responses against the capsular antigen (fraction 1 [F1]) of Y. pestis, and F1-specific antibodies provide protective immunity. Here we asked whether Y. pestis generates mutations that enable bacterial escape from protective immunity and isolated a variant with an IS1541 insertion in caf1A encoding the F1 outer membrane usher. The caf1A::IS1541 insertion prevented assembly of F1 pili and provided escape from plague immunity via F1-specific antibodies without a reduction in virulence in mouse models of bubonic or pneumonic plague. F1-specific antibodies interfere with Y. pestis type III transport of effector proteins into host cells, an inhibitory effect that was overcome by the caf1A::IS1541 insertion. These findings suggest a model in which IS1541 insertion into caf1A provides for reversible changes in envelope structure, enabling Y. pestis to escape from adaptive immune responses and plague immunity.
Collapse
|
8
|
Gu J, Neary JL, Sanchez M, Yu J, Lilburn TG, Wang Y. Genome evolution and functional divergence in Yersinia. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:37-49. [PMID: 16838303 DOI: 10.1002/jez.b.21120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The steadily increasing number of prokaryotic genomes has accelerated the study of genome evolution; in particular, the availability of sets of genomes from closely related bacteria has made exploration of questions surrounding the evolution of pathogenesis tractable. Here we present the results of a detailed comparison of the genomes of Yersinia pseudotuberculosis IP32593 and three strains of Yersinia pestis (CO92, KIM10, and 91001). There appear to be between 241 and 275 multigene families in these organisms. There are 2,568 genes that are identical in the three Y. pestis strains, but differ from the Y. pseudotuberculosis strain. The changes found in some of these families, such as the kinases, proteases, and transporters, are illustrative of how the evolutionary jump from the free-living enteropathogen Y. pseudotuberculosis to the obligate host-borne blood pathogen Y. pestis was achieved. We discuss the composition of some of the most important families and discuss the observed divergence between Y. pseudotuberculosis and Y. pestis homologs.
Collapse
Affiliation(s)
- Jianying Gu
- Department of Biology, College of Staten Island, City University of New York, Staten Island, NY 10314, USA
| | | | | | | | | | | |
Collapse
|
9
|
De Gregorio E, Silvestro G, Venditti R, Carlomagno MS, Di Nocera PP. Structural organization and functional properties of miniature DNA insertion sequences in yersiniae. J Bacteriol 2006; 188:7876-84. [PMID: 16963573 PMCID: PMC1636318 DOI: 10.1128/jb.00942-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YPALs (Yersinia palindromic sequences) are miniature DNA insertions scattered along the chromosomes of yersiniae. The spread of these intergenic repeats likely occurred via transposition, as suggested by the presence of target site duplications at their termini and the identification of syntenic chromosomal regions which differ in the presence/absence of YPAL DNA among Yersinia strains. YPALs tend to be inserted closely downstream from the stop codon of flanking genes, and many YPAL targets overlap rho-independent transcriptional terminator-like sequences. This peculiar pattern of insertion supports the hypothesis that most of these repeats are cotranscribed with upstream sequences into mRNAs. YPAL RNAs fold into stable hairpins which may modulate mRNA decay. Accordingly, we found that YPAL-positive transcripts accumulate in Yersinia enterocolitica cells at significantly higher levels than homologous transcripts lacking YPAL sequences in their 3' untranslated region.
Collapse
Affiliation(s)
- Eliana De Gregorio
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina, Università Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | | | | | | | | |
Collapse
|
10
|
Ton-Hoang B, Guynet C, Ronning DR, Cointin-Marty B, Dyda F, Chandler M. Transposition of ISHp608, member of an unusual family of bacterial insertion sequences. EMBO J 2005; 24:3325-38. [PMID: 16163392 PMCID: PMC1224677 DOI: 10.1038/sj.emboj.7600787] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 07/25/2005] [Indexed: 11/09/2022] Open
Abstract
ISHp608 from Helicobacter pylori is active in Escherichia coli and represents a recently recognised group of insertion sequences. Its transposase and organisation suggest that it transposes using a different mechanism to that of other known transposons. The IS was shown to excise as a circular form, which is accompanied by the formation of a resealed donor plasmid backbone. We also demonstrate that TnpA, which is less than half the length of other transposases, is responsible for this and for ISHp608 transposition. Transposition was shown to be site specific: both insertion and transposon excision require a conserved target, 5'TTAC. Deletion analysis suggested that potential secondary structures at the left and right ends are important for transposition. In vitro TnpA bound both ends, showed a strong preference for a specific single-stranded DNA and introduced a single-strand break on the same strand at each end. Although many of the characteristics of ISHp608 appear similar to rolling-circle transposons, there are differences suggesting that, overall, transposition occurs by a different mechanism. The results have permitted the formulation of several related models.
Collapse
Affiliation(s)
- Bao Ton-Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR5100, Toulouse, France
| | - Catherine Guynet
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR5100, Toulouse, France
| | - Donald R Ronning
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | | | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Michael Chandler
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR5100, Toulouse, France
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), CNRS UMR5100, 118 route de Narbonne, 31062 Toulouse Cedex, France. Tel.: +33 561 335858; Fax: +33 561 335861/-5886; E-mail:
| |
Collapse
|
11
|
Drancourt M, Roux V, Dang LV, Tran-Hung L, Castex D, Chenal-Francisque V, Ogata H, Fournier PE, Crubézy E, Raoult D. Genotyping, Orientalis-like Yersinia pestis, and plague pandemics. Emerg Infect Dis 2004; 10:1585-92. [PMID: 15498160 PMCID: PMC3320270 DOI: 10.3201/eid1009.030933] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Three pandemics have been attributed to plague in the last 1,500 years. Yersinia pestis caused the third, and its DNA was found in human remains from the second. The Antiqua biovar of Y. pestis may have caused the first pandemic; the other two biovars, Medievalis and Orientalis, may have caused the second and third pandemics, respectively. To test this hypothesis, we designed an original genotyping system based on intergenic spacer sequencing called multiple spacer typing (MST). We found that MST differentiated every biovar in a collection of 36 Y. pestis isolates representative of the three biovars. When MST was applied to dental pulp collected from remains of eight persons who likely died in the first and second pandemics, this system identified original sequences that matched those of Y. pestis Orientalis. These data indicate that Y. pestis caused cases of Justinian plague. The two historical plague pandemics were likely caused by Orientalis-like strains.
Collapse
Affiliation(s)
| | | | - La Vu Dang
- Université de la Méditerranée, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wilde C, Bachellier S, Hofnung M, Carniel E, Clément JM. Palindromic unit-independent transposition of IS1397 in Yersinia pestis. J Bacteriol 2002; 184:4739-46. [PMID: 12169598 PMCID: PMC135288 DOI: 10.1128/jb.184.17.4739-4746.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Palindromic units (PUs) are intergenic repeated sequences scattered over the chromosomes of Escherichia coli and several other enterobacteria. In the latter, IS1397, an E. coli insertion sequence specific to PUs, transposes into PUs with sequences close to the E. coli consensus. Reasons for this insertion specificity can relate to either a direct recognition of the target (by its sequence or its structure) by the transposase or an interaction between a specific host protein and the PU target DNA sequence. In this study, we show that for Yersinia pestis, a species deprived of PUs, IS1397 can transpose onto its chromosome, with transpositional hot spots. Our results are in favor of a direct recognition of target DNA by IS1397 transposase.
Collapse
Affiliation(s)
- Caroline Wilde
- Unité de Programmation Moléculaire et Toxicologie Génétique, CNRS URA 1444, Laboratoire des Yersinia, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
13
|
Huang XZ, Chu MC, Engelthaler DM, Lindler LE. Genotyping of a homogeneous group of Yersinia pestis strains isolated in the United States. J Clin Microbiol 2002; 40:1164-73. [PMID: 11923326 PMCID: PMC140403 DOI: 10.1128/jcm.40.4.1164-1173.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis, the causative agent of deadly plague, is considered a reemerging infectious disease and a significant biological terrorism threat. The present project focused on epidemiological investigation of the genetic variability of well-documented strains of Y. pestis from the United States by pulsed-field gel electrophoresis (PFGE) and restriction fragment length polymorphism (RFLP) analysis with insertion sequences IS100 and IS285 as probes. We examined 37 U.S. Y. pestis strains and isolates of a single ribotype, ribotype B, recovered between 1939 and 1998 from patients, animals, and fleas. Our results showed that all isolates had similar PFGE patterns, but minor differences such as missing, additional, and shifted bands were found among almost all strains if they came from different parent strains. The 37 strains and isolates were divided into 26 PFGE types. RFLP analysis with IS100 as a probe divided these strains and isolates into 16 types, with 43% belonging to IS100 type 1. Typing with IS285 as a probe was less specific and led to only four RFLP types, with 81% belonging to type 1. Similarity analysis with BioNumerics software showed that all strains shared >or=80, 86, and 91% similarities on dendrograms prepared from digitized PFGE, IS100 RFLP analysis, and IS285 RFLP analysis images, respectively. Our results demonstrate that PFGE offers an increased ability to discriminate between strains (Simpson's index of diversity, 0.98) and therefore can significantly improve epidemiological studies related to the origin of new plague isolates.
Collapse
Affiliation(s)
- Xiao-Zhe Huang
- Department of Bacterial Diseases, Division of Communicable Diseases and Immunology, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA
| | | | | | | |
Collapse
|
14
|
Motin VL, Georgescu AM, Elliott JM, Hu P, Worsham PL, Ott LL, Slezak TR, Sokhansanj BA, Regala WM, Brubaker RR, Garcia E. Genetic variability of Yersinia pestis isolates as predicted by PCR-based IS100 genotyping and analysis of structural genes encoding glycerol-3-phosphate dehydrogenase (glpD). J Bacteriol 2002; 184:1019-27. [PMID: 11807062 PMCID: PMC134790 DOI: 10.1128/jb.184.4.1019-1027.2002] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A PCR-based genotyping system that detects divergence of IS100 locations within the Yersinia pestis genome was used to characterize a large collection of isolates of different biovars and geographical origins. Using sequences derived from the glycerol-negative biovar orientalis strain CO92, a set of 27 locus-specific primers was designed to amplify fragments between the end of IS100 and its neighboring gene. Geographically diverse members of the orientalis biovar formed a homogeneous group with identical genotype with the exception of strains isolated in Indochina. In contrast, strains belonging to the glycerol-positive biovar antiqua showed a variety of fingerprinting profiles. Moreover, strains of the biovar medievalis (also glycerol positive) clustered together with the antiqua isolates originated from Southeast Asia, suggesting their close phylogenetic relationships. Interestingly, a Manchurian biovar antiqua strain Nicholisk 51 displayed a genotyping pattern typical of biovar orientalis isolates. Analysis of the glycerol pathway in Y. pestis suggested that a 93-bp deletion within the glpD gene encoding aerobic glycerol-3-phosphate dehydrogenase might account for the glycerol-negative phenotype of the orientalis biovar. The glpD gene of strain Nicholisk 51 did not possess this deletion, although it contained two nucleotide substitutions characteristic of the glpD version found exclusively in biovar orientalis strains. To account for this close relationship between biovar orientalis strains and the antiqua Nicholisk 51 isolate, we postulate that the latter represents a variant of this biovar with restored ability to ferment glycerol. The fact that such a genetic lesion might be repaired as part of the natural evolutionary process suggests the existence of genetic exchange between different Yersinia strains in nature. The relevance of this observation on the emergence of epidemic Y. pestis strains is discussed.
Collapse
Affiliation(s)
- Vladimir L Motin
- Lawrence Livermore National Laboratory, University of California, Livermore, California 94550, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Radnedge L, Gamez-Chin S, McCready PM, Worsham PL, Andersen GL. Identification of nucleotide sequences for the specific and rapid detection of Yersinia pestis. Appl Environ Microbiol 2001; 67:3759-62. [PMID: 11472963 PMCID: PMC93087 DOI: 10.1128/aem.67.8.3759-3762.2001] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Suppression subtractive hybridization, a cost-effective approach for targeting unique DNA, was used to identify a 41.7-kb Yersinia pestis-specific region. One primer pair designed from this region amplified PCR products from natural isolates of Y. pestis and produced no false positives for near neighbors, an important criterion for unambiguous bacterial identification.
Collapse
Affiliation(s)
- L Radnedge
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | | | | | | | | |
Collapse
|
16
|
Strauch E, Hoffmann B, Heins G, Appel B. Isolation of a new insertion element of Yersinia intermedia closely related to remnants of mobile genetic elements present on Yersinia plasmids harboring the Yop virulon. FEMS Microbiol Lett 2000; 193:37-44. [PMID: 11094276 DOI: 10.1111/j.1574-6968.2000.tb09399.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A new insertion element present in two alleles, designated IS1635.1 and IS1635.2, was identified on a plasmid of a Yersinia intermedia strain by hybridization with the Yersinia enterocolitica pYV virulence plasmid. IS1635.1 and IS1635.2 are 861 bp long, carry imperfect inverted terminal repeats and possess a single open reading frame encoding a putative transposase of the IS6 family. A truncated IS1635 element is present immediately downstream of element IS1635.2. The capacity of the IS1635 elements to mediate transposition in Yersinia was demonstrated with a R6K-derived suicide vector, where a kanamycin resistance gene had been inserted between IS1635.1 and IS1635.2. Hybridization and sequence alignments showed that remnants of IS1635-like insertion elements harboring large deletions and point mutations are present on the Yop virulon harboring plasmids of pathogenic Yersinia strains. In a few cases, the IS1635 element has also been found on plasmids of apathogenic Yersinia strains.
Collapse
Affiliation(s)
- E Strauch
- Robert Koch-Institut, Projekt Horizontaler Gentransfer, Nordufer 20, D-13353, Berlin, Germany.
| | | | | | | |
Collapse
|
17
|
Skurnik M, Peippo A, Ervelä E. Characterization of the O-antigen gene clusters of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Yersinia pestis shows that the plague bacillus is most closely related to and has evolved from Y. pseudotuberculosis serotype O:1b. Mol Microbiol 2000; 37:316-30. [PMID: 10931327 DOI: 10.1046/j.1365-2958.2000.01993.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One of the most virulent and feared bacterial pathogens is Yersinia pestis, the aetiologic agent of bubonic plague. Characterization of the O-antigen gene clusters of 21 serotypes of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Y. pestis showed that the plague bacillus is most closely related to and has evolved from Y. pseudotuberculosis serotype O:1b. The nucleotide sequences of both gene clusters (about 20.5 kb each) were determined and compared to identify the differences that caused the silencing of the Y. pestis gene cluster. At the nucleotide sequence level, the loci were 98.9% identical and, of the 17 biosynthetic genes identified from the O:1b gene cluster, five were inactivated in the Y. pestis cluster, four by insertions or deletions of one nucleotide and one by a deletion of 62 nucleotides. Apparently, the expression of the O-antigen is not beneficial for the virulence or to the lifestyle of Y. pestis and, therefore, as one step in the evolution of Y. pestis, the O-antigen gene cluster was inactivated.
Collapse
Affiliation(s)
- M Skurnik
- Department of Medical Biochemistry, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
| | | | | |
Collapse
|
18
|
Millemann Y, Gaubert S, Remy D, Colmin C. Evaluation of IS200-PCR and comparison with other molecular markers To trace Salmonella enterica subsp. enterica serotype typhimurium bovine isolates from farm to meat. J Clin Microbiol 2000; 38:2204-9. [PMID: 10834977 PMCID: PMC86765 DOI: 10.1128/jcm.38.6.2204-2209.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/1999] [Accepted: 03/25/2000] [Indexed: 11/20/2022] Open
Abstract
A procedure that uses an original molecular marker (IS200-PCR) and that is based on the amplification of DNA with outward-facing primers complementary to each end of IS200 has been evaluated with a collection of 85 Salmonella enterica subsp. enterica serotype Typhimurium isolates. These strains were isolated from a group of 10 cows at different stages: during transportation between the farm and the slaughterhouse, on the slaughter line, from the environment, and from the final product (ground beef). The 85 isolates were characterized by their antibiotic resistance patterns and were compared by IS200-PCR and by use of four other genotypic markers. Those markers included restriction profiles for 16S and 23S rRNA (ribotypes) and amplification profiles obtained by different approaches: random amplified polymorphic DNA analysis, enterobacterial repetitive intergenic consensus PCR, and PCR ribotyping. The results of the IS200-PCR were in accordance with those of other molecular typing methods for this collection of isolates. Five different genotypes were found, which made it possible to refine the hypotheses on transmission obtained from phenotypic results. The genotyping results indicated the massive contamination of the whole group of animals and of the environment by one clonal strain originally recovered from one cow that excreted the strain. On the other hand, a few animals and their environment appeared to be simultaneously contaminated with genetically different strains.
Collapse
Affiliation(s)
- Y Millemann
- Epidémiologie et Analyse des Risques, Ecole Nationale Vétérinaire d'Alfort, F-94704 Maisons-Alfort Cedex, France.
| | | | | | | |
Collapse
|
19
|
Masui S, Kamoda S, Sasaki T, Ishikawa H. The first detection of the insertion sequence ISW1 in the intracellular reproductive parasite Wolbachia. Plasmid 1999; 42:13-9. [PMID: 10413661 DOI: 10.1006/plas.1999.1407] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wolbachia are maternally inherited intracellular rickettsia-like bacteria known to infect a wide range of arthropods. They are associated with a number of different reproductive phenotypes in their hosts, such as cytoplasmic incompatibility, parthenogenesis, and feminization. We report on a novel insertion sequence (IS), ISW1, which was identified in the region downstream of groEL of a Wolbachia strain, wTai. The 573-bp-long ISW1 sequence is the first IS element observed in this organism, displays significant similarity to IS200, and lacks terminal inverted repeats. There were more than 20 copies of ISW1 on the chromosome of wTai. Sequence analysis of nine distinct ISW1 copies and their flanking regions showed that the copies were identical and suggested that ISW1 has no preference for its insertion sites. Possible roles of ISW1 in the adaptation of Wolbachia to intracellular environments and in various reproductive alterations caused by this bacterium are discussed.
Collapse
Affiliation(s)
- S Masui
- Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | |
Collapse
|
20
|
Devalckenaere A, Odaert M, Trieu-Cuot P, Simonet M. Characterization of IS1541-like elements in Yersinia enterocolitica and Yersinia pseudotuberculosis. FEMS Microbiol Lett 1999; 176:229-33. [PMID: 10418150 DOI: 10.1111/j.1574-6968.1999.tb13666.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We characterized Yersinia enterocolitica and Yersinia pseudotuberculosis insertion sequences related to insertion sequence 1541, recently identified in Yersinia pestis. For each of the two species, two insertion sequence copies were cloned and sequenced. Genetic elements from Y. pseudotuberculosis were almost identical to insertion sequence 1541, whereas these from Y. enterocolitica were less related. Phylogenetic analysis of the putative transposases encoded by insertion sequences from the three pathogenic members of the genus Yersinia showed that they clustered with those encoded by Escherichia coli and Salmonella enterica elements belonging to the insertion sequence 200/insertion sequence 605 group. Insertion sequences originating from Y. pestis and Y. pseudotuberculosis constitute a monophyletic lineage distinct from that of Y. enterocolitica.
Collapse
Affiliation(s)
- A Devalckenaere
- Equipe Mixte INSERM-Université E99-19 and JE2225, Département de Pathogénèse des Maladies Infectieuses et Parasitaires, Institut de Biologie de Lille, France
| | | | | | | |
Collapse
|
21
|
Tsoi TV, Plotnikova EG, Cole JR, Guerin WF, Bagdasarian M, Tiedje JM. Cloning, expression, and nucleotide sequence of the Pseudomonas aeruginosa 142 ohb genes coding for oxygenolytic ortho dehalogenation of halobenzoates. Appl Environ Microbiol 1999; 65:2151-62. [PMID: 10224014 PMCID: PMC91311 DOI: 10.1128/aem.65.5.2151-2162.1999] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned and characterized novel oxygenolytic ortho-dehalogenation (ohb) genes from 2-chlorobenzoate (2-CBA)- and 2,4-dichlorobenzoate (2,4-dCBA)-degrading Pseudomonas aeruginosa 142. Among 3,700 Escherichia coli recombinants, two clones, DH5alphaF'(pOD22) and DH5alphaF'(pOD33), converted 2-CBA to catechol and 2,4-dCBA and 2,5-dCBA to 4-chlorocatechol. A subclone of pOD33, plasmid pE43, containing the 3,687-bp minimized ohb DNA region conferred to P. putida PB2440 the ability to grow on 2-CBA as a sole carbon source. Strain PB2440(pE43) also oxidized but did not grow on 2,4-dCBA, 2,5-dCBA, or 2,6-dCBA. Terminal oxidoreductase ISPOHB structural genes ohbA and ohbB, which encode polypeptides with molecular masses of 20,253 Da (beta-ISP) and 48,243 Da (alpha-ISP), respectively, were identified; these proteins are in accord with the 22- and 48-kDa (as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) polypeptides synthesized in E. coli and P. aeruginosa parental strain 142. The ortho-halobenzoate 1,2-dioxygenase activity was manifested in the absence of ferredoxin and reductase genes, suggesting that the ISPOHB utilized electron transfer components provided by the heterologous hosts. ISPOHB formed a new phylogenetic cluster that includes aromatic oxygenases featuring atypical structural-functional organization and is distant from the other members of the family of primary aromatic oxygenases. A putative IclR-type regulatory gene (ohbR) was located upstream of the ohbAB genes. An open reading frame (ohbC) of unknown function that overlaps lengthwise with ohbB but is transcribed in the opposite direction was found. The ohbC gene codes for a 48,969-Da polypeptide, in accord with the 49-kDa protein detected in E. coli. The ohb genes are flanked by an IS1396-like sequence containing a putative gene for a 39,715-Da transposase A (tnpA) at positions 4731 to 5747 and a putative gene for a 45,247-Da DNA topoisomerase I/III (top) at positions 346 to 1563. The ohb DNA region is bordered by 14-bp imperfect inverted repeats at positions 56 to 69 and 5984 to 5997.
Collapse
Affiliation(s)
- T V Tsoi
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Perry RD, Straley SC, Fetherston JD, Rose DJ, Gregor J, Blattner FR. DNA sequencing and analysis of the low-Ca2+-response plasmid pCD1 of Yersinia pestis KIM5. Infect Immun 1998; 66:4611-23. [PMID: 9746557 PMCID: PMC108568 DOI: 10.1128/iai.66.10.4611-4623.1998] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/1998] [Accepted: 07/10/1998] [Indexed: 01/03/2023] Open
Abstract
The low-Ca2+-response (LCR) plasmid pCD1 of the plague agent Yersinia pestis KIM5 was sequenced and analyzed for its genetic structure. pCD1 (70,509 bp) has an IncFIIA-like replicon and a SopABC-like partition region. We have assigned 60 apparently intact open reading frames (ORFs) that are not contained within transposable elements. Of these, 47 are proven or possible members of the LCR, a major virulence property of human-pathogenic Yersinia spp., that had been identified previously in one or more of Y. pestis or the enteropathogenic yersiniae Yersinia enterocolitica and Yersinia pseudotuberculosis. Of these 47 LCR-related ORFs, 35 constitute a continuous LCR cluster. The other LCR-related ORFs are interspersed among three intact insertion sequence (IS) elements (IS100 and two new IS elements, IS1616 and IS1617) and numerous defective or partial transposable elements. Regional variations in percent GC content and among ORFs encoding effector proteins of the LCR are additional evidence of a complex history for this plasmid. Our analysis suggested the possible addition of a new Syc- and Yop-encoding operon to the LCR-related pCD1 genes and gave no support for the existence of YopL. YadA likely is not expressed, as was the case for Y. pestis EV76, and the gene for the lipoprotein YlpA found in Y. enterocolitica likely is a pseudogene in Y. pestis. The yopM gene is longer than previously thought (by a sequence encoding two leucine-rich repeats), the ORF upstream of ypkA-yopJ is discussed as a potential Syc gene, and a previously undescribed ORF downstream of yopE was identified as being potentially significant. Eight other ORFs not associated with IS elements were identified and deserve future investigation into their functions.
Collapse
Affiliation(s)
- R D Perry
- Department of Microbiology and Immunology, University of Kentucky, Lexington, Kentucky 40536-0084, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Hu P, Elliott J, McCready P, Skowronski E, Garnes J, Kobayashi A, Brubaker RR, Garcia E. Structural organization of virulence-associated plasmids of Yersinia pestis. J Bacteriol 1998; 180:5192-202. [PMID: 9748454 PMCID: PMC107557 DOI: 10.1128/jb.180.19.5192-5202.1998] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete nucleotide sequence and gene organization of the three virulence plasmids from Yersinia pestis KIM5 were determined. Plasmid pPCP1 (9,610 bp) has a GC content of 45.3% and encodes two previously known virulence factors, an associated protein, and a single copy of IS100. Plasmid pCD1 (70,504 bp) has a GC content of 44.8%. It is known to encode a number of essential virulence determinants, regulatory functions, and a multiprotein secretory system comprising the low-calcium response stimulation that is shared with the other two Yersinia species pathogenic for humans (Y. pseudotuberculosis and Y. enterocolitica). A new pseudogene, which occurs as an intact gene in the Y. enterocolitica and Y. pseudotuberculosis-derived analogues, was found in pCD1. It corresponds to that encoding the lipoprotein YlpA. Several intact and partial insertion sequences and/or transposons were also found in pCD1, as well as six putative structural genes with high homology to proteins of unknown function in other yersiniae. The sequences of the genes involved in the replication of pCD1 are highly homologous to those of the cognate plasmids in Y. pseudotuberculosis and Y. enterocolitica, but their localization within the plasmid differs markedly from those of the latter. Plasmid pMT1 (100,984 bp) has a GC content of 50.2%. It possesses two copies of IS100, which are located 25 kb apart and in opposite orientations. Adjacent to one of these IS100 inserts is a partial copy of IS285. A single copy of an IS200-like element (recently named IS1541) was also located in pMT1. In addition to 5 previously described genes, such as murine toxin, capsule antigen, capsule anchoring protein, etc., 30 homologues to genes of several bacterial species were found in this plasmid, and another 44 open reading frames without homology to any known or hypothetical protein in the databases were predicted.
Collapse
Affiliation(s)
- P Hu
- Human Genome Center, Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | | | | | | | | | | | | | | |
Collapse
|