1
|
Lin J, Ni S, Li B, Guo Y, Gao X, Liu Y, Yi L, Wang P, Chen R, Yao J, Wood T, Wang X. A noncanonical intrinsic terminator in the HicAB toxin-antitoxin operon promotes the transmission of conjugative antibiotic resistance plasmids. Nucleic Acids Res 2025; 53:gkaf125. [PMID: 40036506 PMCID: PMC11878559 DOI: 10.1093/nar/gkaf125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Conjugative plasmids, major vehicles for the spread of antibiotic resistance genes, often contain multiple toxin-antitoxin (TA) systems. However, the physiological functions of TA systems remain obscure. By studying two TA families commonly found on colistin-resistant IncI2 mcr-1-bearing plasmids, we discovered that the HicAB TA, rather than the StbDE TA, acts as a crucial addiction module to increase horizontal plasmid-plasmid competition. In contrast to the canonical type II TA systems in which the TA genes are cotranscribed and/or the antitoxin gene has an additional promoter to allow for an increased antitoxin/toxin ratio, the HicAB TA system with the toxin gene preceding the antitoxin gene employs internal transcription termination to allow for a higher toxin production. This intrinsic terminator, featuring a G/C-rich hairpin with a UUU tract, lies upstream of the antitoxin gene, introducing a unique mechanism for the enhancing toxin/antitoxin ratio. Critically, the hicAB TA significantly contributes to plasmid competition and plasmid persistence in the absence of antibiotic selection, and deleting this intrinsic terminator alone diminishes this function. These findings align with the observed high occurrence of hicAB in IncI2 plasmids and the persistence of these plasmids after banning colistin as a feed additive. This study reveals how reprogramming the regulatory circuits of TA operons impacts plasmid occupancy in the microbial community and provides critical targets for combating antibiotic resistance.
Collapse
Affiliation(s)
- Jianzhong Lin
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songwei Ni
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Baiyuan Li
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199 Hunan, China
| | - Yunxue Guo
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Xinyu Gao
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yabo Liu
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Lingxian Yi
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengxia Wang
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Ran Chen
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Jianyun Yao
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400, United States
| | - Xiaoxue Wang
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| |
Collapse
|
2
|
Encina-Robles J, Pérez-Villalobos V, Bustamante P. The HicAB System: Characteristics and Biological Roles of an Underappreciated Toxin-Antitoxin System. Int J Mol Sci 2024; 25:12165. [PMID: 39596231 PMCID: PMC11594946 DOI: 10.3390/ijms252212165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Small genetic elements known as toxin-antitoxin (TA) systems are abundant in bacterial genomes and involved in stress response, phage inhibition, mobile genetic elements maintenance and biofilm formation. Type II TA systems are the most abundant and diverse, and they are organized as bicistronic operons that code for proteins (toxin and antitoxin) able to interact through a nontoxic complex. However, HicAB is one of the type II TA systems that remains understudied. Here, we review the current knowledge of HicAB systems in different bacteria, their main characteristics and the existing evidence to associate them with some biological roles, are described. The accumulative evidence reviewed here, though modest, underscores that HicAB systems are underexplored TA systems with significant potential for future research.
Collapse
Affiliation(s)
| | | | - Paula Bustamante
- Molecular and Cellular Microbiology Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| |
Collapse
|
3
|
Hou B, Wang CY, Li SW, Zhou LJ, Che YL, Chen QY. Effects of Toxin-Antitoxin System HicAB on Biofilm Formation by Extraintestinal Pathogenic E. coli. Curr Microbiol 2022; 80:50. [PMID: 36542185 DOI: 10.1007/s00284-022-03138-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
The type II toxin-antitoxin (T-A) HicAB system is abundant in several bacteria and archaea, such as Escherichia coli, Burkholderia Pseudomallei, Yersinia pestis, Pseudomonas aeruginosa, and Streptococcus pneumoniae. This system engages in stress response, virulence, and bacterial persistence. This study showed that the biofilm-forming ability of the hicAB deletion mutant was significantly decreased to moderate ability compared to the extra-intestinal pathogenic Escherichia coli (ExPEC) parent strain and the complemented strain, which are strong biofilm producers. Congo red assay showed that the hicAB mutant maintained the ability to form curli fimbriae. Using RNA-seq and comparative real-time quantitative RT-PCR, we observed the difference in gene expression between the hicAB mutant and the parent strain, which was associated with biofilm formation. Our data indicate that the HicAB type II T-A system has a key role in biofilm formation by ExPEC, which may be associated with outer membrane protein (OMP) gene expression. Collectively, our results indicate that the hicAB type II T-A system is involved in ExPEC biofilm formation.
Collapse
Affiliation(s)
- Bo Hou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Disease Control Technology Development Center, Fujian Academy of Agricultural Sciences, No. 104 Xindian Town, Fuzhou, 350013, Fujian, China.
| | - Chen-Yan Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Disease Control Technology Development Center, Fujian Academy of Agricultural Sciences, No. 104 Xindian Town, Fuzhou, 350013, Fujian, China
| | - Shao-Wen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lun-Jiang Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Disease Control Technology Development Center, Fujian Academy of Agricultural Sciences, No. 104 Xindian Town, Fuzhou, 350013, Fujian, China.
| | - Yong-Liang Che
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Disease Control Technology Development Center, Fujian Academy of Agricultural Sciences, No. 104 Xindian Town, Fuzhou, 350013, Fujian, China
| | - Qiu-Yong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Disease Control Technology Development Center, Fujian Academy of Agricultural Sciences, No. 104 Xindian Town, Fuzhou, 350013, Fujian, China
| |
Collapse
|
4
|
Guellil M, Keller M, Dittmar JM, Inskip SA, Cessford C, Solnik A, Kivisild T, Metspalu M, Robb JE, Scheib CL. An invasive Haemophilus influenzae serotype b infection in an Anglo-Saxon plague victim. Genome Biol 2022; 23:22. [PMID: 35109894 PMCID: PMC8812261 DOI: 10.1186/s13059-021-02580-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The human pathogen Haemophilus influenzae was the main cause of bacterial meningitis in children and a major cause of worldwide infant mortality before the introduction of a vaccine in the 1980s. Although the occurrence of serotype b (Hib), the most virulent type of H. influenzae, has since decreased, reports of infections with other serotypes and non-typeable strains are on the rise. While non-typeable strains have been studied in-depth, very little is known of the pathogen's evolutionary history, and no genomes dating prior to 1940 were available. RESULTS We describe a Hib genome isolated from a 6-year-old Anglo-Saxon plague victim, from approximately 540 to 550 CE, Edix Hill, England, showing signs of invasive infection on its skeleton. We find that the genome clusters in phylogenetic division II with Hib strain NCTC8468, which also caused invasive disease. While the virulence profile of our genome was distinct, its genomic similarity to NCTC8468 points to mostly clonal evolution of the clade since the 6th century. We also reconstruct a partial Yersinia pestis genome, which is likely identical to a published first plague pandemic genome of Edix Hill. CONCLUSIONS Our study presents the earliest genomic evidence for H. influenzae, points to the potential presence of larger genomic diversity in the phylogenetic division II serotype b clade in the past, and allows the first insights into the evolutionary history of this major human pathogen. The identification of both plague and Hib opens questions on the effect of plague in immunocompromised individuals already affected by infectious diseases.
Collapse
Affiliation(s)
- Meriam Guellil
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.
| | - Marcel Keller
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.
| | - Jenna M Dittmar
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK
- Department of Archaeology, University of Aberdeen, St. Mary's, Elphinstone Road, Aberdeen, Scotland, AB24 3UF, UK
| | - Sarah A Inskip
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK
- School of Archaeology and Ancient History, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Craig Cessford
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK
- Cambridge Archaeological Unit, University of Cambridge, 34 A&B Storey's Way, Cambridge, CB3 0DT, UK
| | - Anu Solnik
- Core Facility, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
- Department of Human Genetics, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - John E Robb
- Department of Archaeology, University of Cambridge, Downing Street, Cambridge, CB2 3DZ, UK
| | - Christiana L Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.
- St John's College, University of Cambridge, St John's Street, Cambridge, CB2 1TP, UK.
| |
Collapse
|
5
|
Abstract
Bacterial endoribonuclease toxins belong to a protein family that inhibits bacterial growth by degrading mRNA or rRNA sequences. The toxin genes are organized in pairs with its cognate antitoxins in the chromosome and thus the activities of the toxins are antagonized by antitoxin proteins or RNAs during active translation. In response to a variety of cellular stresses, the endoribonuclease toxins appear to be released from antitoxin molecules via proteolytic cleavage of antitoxin proteins or preferential degradation of antitoxin RNAs and cleave a diverse range of mRNA or rRNA sequences in a sequence-specific or codon-specific manner, resulting in various biological phenomena such as antibiotic tolerance and persister cell formation. Given that substrate specificity of each endoribonuclease toxin is determined by its structure and the composition of active site residues, we summarize the biology, structure, and substrate specificity of the updated bacterial endoribonuclease toxins.
Collapse
Affiliation(s)
- Yoontak Han
- Department of Life Sciences, Korea University, Seoul 02481, Korea
| | - Eun-Jin Lee
- Department of Life Sciences, Korea University, Seoul 02481, Korea
| |
Collapse
|
6
|
Jurėnas D, Van Melderen L. The Variety in the Common Theme of Translation Inhibition by Type II Toxin-Antitoxin Systems. Front Genet 2020; 11:262. [PMID: 32362907 PMCID: PMC7180214 DOI: 10.3389/fgene.2020.00262] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Type II Toxin-antitoxin (TA) modules are bacterial operons that encode a toxic protein and its antidote, which form a self-regulating genetic system. Antitoxins put a halter on toxins in many ways that distinguish different types of TA modules. In type II TA modules, toxin and antitoxin are proteins that form a complex which physically sequesters the toxin, thereby preventing its toxic activity. Type II toxins inhibit various cellular processes, however, the translation process appears to be their favorite target and nearly every step of this complex process is inhibited by type II toxins. The structural features, enzymatic activities and target specificities of the different toxin families are discussed. Finally, this review emphasizes that the structural folds presented by these toxins are not restricted to type II TA toxins or to one particular cellular target, and discusses why so many of them evolved to target translation as well as the recent developments regarding the role(s) of these systems in bacterial physiology and evolution.
Collapse
Affiliation(s)
- Dukas Jurėnas
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, CNRS, Aix-Marseille Université, Marseille, France
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
7
|
Thomet M, Trautwetter A, Ermel G, Blanco C. Characterization of HicAB toxin-antitoxin module of Sinorhizobium meliloti. BMC Microbiol 2019; 19:10. [PMID: 30630415 PMCID: PMC6327479 DOI: 10.1186/s12866-018-1382-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background Toxin-antitoxin (TA) systems are little genetic units generally composed of two genes encoding antitoxin and toxin. These systems are known to be involved in many functions that can lead to growth arrest and cell death. Among the different types of TA systems, the type II gathers together systems where the antitoxin directly binds and inhibits the toxin. Among these type II TA systems, the HicAB module is widely distributed in free-living Bacteria and Archaea and the toxin HicA functions via RNA binding and cleavage. The genome of the symbiotic Sinorhizobium meliloti encodes numerous TA systems and only a few of them are functional. Among the predicted TA systems, there is one homologous to HicAB modules. Results In this study, we characterize the HicAB toxin-antitoxin module of S. meliloti. The production of the HicA of S. meliloti in Escherichia coli cells abolishes growth and decreases cell viability. We show that expression of the HicB of S. meliloti counteracts HicA toxicity. The results of double hybrid assays and co-purification experiments allow demonstrating the interaction of HicB with the toxin HicA. Purified HicA, but not HicAB complex, is able to degrade ribosomal RNA in vitro. The analysis of separated domains of HicB protein permits us to define the antitoxin activity and the operator-binding domain. Conclusions This study points out the first characterization of the HicAB system of the symbiotic S. meliloti whereas HicA is a toxin with ribonuclease activity and HicB has two domains: the COOH-terminal one that binds the operator and the NH2-terminal one that inhibits the toxin. Electronic supplementary material The online version of this article (10.1186/s12866-018-1382-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manon Thomet
- Ribosome, bacteria and stress Team, Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000, Rennes, France
| | - Annie Trautwetter
- Ribosome, bacteria and stress Team, Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000, Rennes, France
| | - Gwennola Ermel
- Ribosome, bacteria and stress Team, Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000, Rennes, France.
| | - Carlos Blanco
- Ribosome, bacteria and stress Team, Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000, Rennes, France
| |
Collapse
|
8
|
Osman KL, Jefferies JM, Woelk CH, Cleary DW, Clarke SC. The adhesins of non-typeable Haemophilus influenzae. Expert Rev Anti Infect Ther 2018; 16:187-196. [PMID: 29415569 DOI: 10.1080/14787210.2018.1438263] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen of the respiratory tract and the greatest contributor to invasive Haemophilus disease. Additionally, in children, NTHi is responsible for the majority of otitis media (OM) which can lead to chronic infection and hearing loss. In adults, NTHi infection in the lungs is responsible for the onset of acute exacerbations in chronic obstructive pulmonary disease (COPD). Unfortunately, there is currently no vaccine available to protect against NTHi infections. Areas covered: NTHi uses an arsenal of adhesins to colonise the respiratory epithelium. The adhesins also have secondary roles that aid in the virulence of NTHi, including mechanisms that avoid immune clearance, adjust pore size to avoid antimicrobial destruction, form micro-colonies and invoke phase variation for protein mediation. Bacterial adhesins can also be ideal antigens for subunit vaccine design due to surface exposure and immunogenic capabilities. Expert commentary: The host-pathogen interactions of the NTHi adhesins are not fully investigated. The relationship between adhesins and the extracellular matrix (ECM) play a part in the success of NTHi colonisation and virulence by immune evasion, migration and biofilm development. Further research into these immunogenic proteins would further our understanding and enable a basis for better combatting NTHi disease.
Collapse
Affiliation(s)
- Karen L Osman
- a Faulty of Medicine , University of Southampton , Southampton , UK
| | | | - Christopher H Woelk
- a Faulty of Medicine , University of Southampton , Southampton , UK.,b Merck Exploratory Science Center , Merck Research Laboratories , Cambridge , MA , USA
| | - David W Cleary
- a Faulty of Medicine , University of Southampton , Southampton , UK.,c Faculty of Medicine and Institute for Life Sciences , University of Southampton , Southampton SO17 1BJ , UK.,d NIHR Southampton Biomedical Research Centre , University Hospital Southampton Foundation NHS Trust , Southampton SO16 6YD , UK
| | - Stuart C Clarke
- a Faulty of Medicine , University of Southampton , Southampton , UK.,c Faculty of Medicine and Institute for Life Sciences , University of Southampton , Southampton SO17 1BJ , UK.,d NIHR Southampton Biomedical Research Centre , University Hospital Southampton Foundation NHS Trust , Southampton SO16 6YD , UK.,e Global Health Research Institute , University of Southampton , Southampton SO17 1BJ , UK
| |
Collapse
|
9
|
Yang J, Xu B, Gao Z, Zhou K, Liu P, Dong Y, Zhang J, Liu Q. HicAB toxin-antitoxin complex from Escherichia coli: expression and crystallization. Acta Crystallogr F Struct Biol Commun 2017; 73:505-510. [PMID: 28876228 PMCID: PMC5619741 DOI: 10.1107/s2053230x17011529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/04/2017] [Indexed: 11/11/2022] Open
Abstract
Toxin-antitoxin (TA) systems are widespread in both bacteria and archaea, where they enable cells to adapt to environmental cues. TA systems play crucial roles in various cellular processes, such as programmed cell death, cell growth, persistence and virulence. Here, two distinct forms of the type II toxin-antitoxin complex HicAB were identified and characterized in Escherichia coli K-12, and both were successfully overexpressed and purified. The two proposed forms, HicABL and HicABS, differed in the presence or absence of a seven-amino-acid segment at the N-terminus in the antitoxin HicB. The short form HicABS readily crystallized under the conditions 0.1 M Tris-HCl pH 8.0, 20%(w/v) PEG 6000, 0.2 M ammonium sulfate. The HicABS crystal diffracted and data were collected to 2.5 Å resolution. The crystal belonged to space group I222 or I212121, with unit-cell parameters a = 67.04, b = 66.31, c = 120.78 Å. Matthews coefficient calculation suggested the presence of two molecules each of HicA and HicBS in the asymmetric unit, with a solvent content of 55.28% and a Matthews coefficient (VM) of 2.75 Å3 Da-1.
Collapse
Affiliation(s)
- Jingsi Yang
- College of Chemistry, Dalian University of Technology, 2 Linggong Road, Ganjingzi District, Dalian 116024, People’s Republic of China
| | - Bingshuang Xu
- Multi-Discipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Road 19B, Beijing 100049, People’s Republic of China
| | - Zengqiang Gao
- Multi-Discipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Road 19B, Beijing 100049, People’s Republic of China
| | - Ke Zhou
- Multi-Discipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Road 19B, Beijing 100049, People’s Republic of China
| | - Peng Liu
- Multi-Discipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Road 19B, Beijing 100049, People’s Republic of China
| | - Yuhui Dong
- Multi-Discipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Road 19B, Beijing 100049, People’s Republic of China
| | - Jianjun Zhang
- College of Chemistry, Dalian University of Technology, 2 Linggong Road, Ganjingzi District, Dalian 116024, People’s Republic of China
| | - Quansheng Liu
- Multi-Discipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Road 19B, Beijing 100049, People’s Republic of China
| |
Collapse
|
10
|
Bustamante P, Iredell JR. Carriage of type II toxin-antitoxin systems by the growing group of IncX plasmids. Plasmid 2017; 91:19-27. [PMID: 28267580 DOI: 10.1016/j.plasmid.2017.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/19/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
Abstract
The stable maintenance of certain plasmids in bacterial populations has contributed significantly to the current worldwide antibiotic resistance (AbR) emergency. IncX plasmids, long underestimated in this regard, have achieved recent notoriety for their roles in transmission of resistance to carbapenem and colistin, the last-line antibiotics for Gram-negative infections. Toxin-antitoxin (TA) systems contribute to stable maintenance of many AbR plasmids, and a few TA systems have been previously described in the IncX plasmids. Here we present an updated overview of the IncX plasmid family and an in silico analysis of the type II TA systems carried in 153 completely sequenced IncX plasmids that are readily available in public databases at time of writing. The greatest number is in the IncX1 subgroup, followed by IncX3 and IncX4, with only a few representatives of IncX2, IncX5 and IncX6. Toxins from the RelE/ParE superfamily are abundant within IncX1 and IncX4 subgroups, and are associated with a variety of antitoxins. By contrast, the HicBA system is almost exclusively encoded by IncX4 plasmids. Toxins from the superfamily CcdB/MazF were also identified, as were less common systems such as PIN-like and GNAT toxins, and plasmids encoding more than one TA system are probably not unusual. Our results highlight the importance of the IncX plasmid group and update previous much smaller studies, and we present for the first time a detailed analysis of type II TA systems in these plasmids.
Collapse
Affiliation(s)
- Paula Bustamante
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Westmead, NSW, Australia.
| |
Collapse
|
11
|
Naidoo N, Pillay M. Bacterial pili, with emphasis on Mycobacterium tuberculosis curli pili: potential biomarkers for point-of care tests and therapeutics. Biomarkers 2016; 22:93-105. [PMID: 27797276 DOI: 10.1080/1354750x.2016.1252960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
CONTEXT Novel biomarkers are essential for developing rapid diagnostics and therapeutic interventions Objective: This review aimed to highlight biomarker characterisation and assessment of unique bacterial pili. METHODS A PubMed search for bacterial pili, diagnostics, vaccine and therapeutics was performed, with emphasis on the well characterised pili. RESULTS In total, 46 papers were identified and reviewed. CONCLUSION Extensive analyses of pili enabled by advanced nanotechnology and whole genome sequencing provide evidence that they are strong biomarker candidates. Mycobacterium tuberculosis curli pili are emphasised as important epitopes for the development of much needed point-of-care diagnostics and therapeutics.
Collapse
Affiliation(s)
- Natasha Naidoo
- a Medical Microbiology and Infection Control , School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Congella , Durban , South Africa
| | - Manormoney Pillay
- a Medical Microbiology and Infection Control , School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Congella , Durban , South Africa
| |
Collapse
|
12
|
Hologenome analysis of two marine sponges with different microbiomes. BMC Genomics 2016; 17:158. [PMID: 26926518 PMCID: PMC4772301 DOI: 10.1186/s12864-016-2501-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/18/2016] [Indexed: 01/09/2023] Open
Abstract
Background Sponges (Porifera) harbor distinct microbial consortia within their mesohyl interior. We herein analysed the hologenomes of Stylissa carteri and Xestospongia testudinaria, which notably differ in their microbiome content. Results Our analysis revealed that S. carteri has an expanded repertoire of immunological domains, specifically Scavenger Receptor Cysteine-Rich (SRCR)-like domains, compared to X. testudinaria. On the microbial side, metatranscriptome analyses revealed an overrepresentation of potential symbiosis-related domains in X. testudinaria. Conclusions Our findings provide genomic insights into the molecular mechanisms underlying host-symbiont coevolution and may serve as a roadmap for future hologenome analyses. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2501-0) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Su YC, Resman F, Hörhold F, Riesbeck K. Comparative genomic analysis reveals distinct genotypic features of the emerging pathogen Haemophilus influenzae type f. BMC Genomics 2014; 15:38. [PMID: 24438474 PMCID: PMC3928620 DOI: 10.1186/1471-2164-15-38] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The incidence of invasive disease caused by encapsulated Haemophilus influenzae type f (Hif) has increased in the post-H. influenzae type b (Hib) vaccine era. We previously annotated the first complete Hif genome from a clinical isolate (KR494) that caused septic shock and necrotizing myositis. Here, the full genome of Hif KR494 was compared to sequenced reference strains Hib 10810, capsule type d (Hid) Rd Kw20, and finally nontypeable H. influenzae 3655. The goal was to identify possible genomic characteristics that may shed light upon the pathogenesis of Hif. RESULTS The Hif KR494 genome exhibited large regions of synteny with other H. influenzae, but also distinct genome rearrangements. A predicted Hif core genome of 1390 genes was shared with the reference strains, and 6 unique genomic regions comprising half of the 191 unique coding sequences were revealed. The majority of these regions were inserted genetic fragments, most likely derived from the closely-related Haemophilus spp. including H. aegyptius, H. haemolyticus and H. parainfluenzae. Importantly, the KR494 genome possessed several putative virulence genes that were distinct from non-type f strains. These included the sap2 operon, aef3 fimbriae, and genes for kanamycin nucleotidyltranserase, iron-utilization proteins, and putative YadA-like trimeric autotransporters that may increase the bacterial virulence. Furthermore, Hif KR494 lacked a hisABCDEFGH operon for de novo histidine biosynthesis, hmg locus for lipooligosaccharide biosynthesis and biofilm formation, the Haemophilus antibiotic resistance island and a Haemophilus secondary molybdate transport system. We confirmed the histidine auxotrophy and kanamycin resistance in Hif by functional experiments. Moreover, the pattern of unique or missing genes of Hif KR494 was similar in 20 Hif clinical isolates obtained from different years and geographical areas. A cross-species comparison revealed that the Hif genome shared more characteristics with H. aegyptius than Hid and NTHi. CONCLUSIONS The genomic comparative analyses facilitated identification of genotypic characteristics that may be related to the specific virulence of Hif. In relation to non-type f H. influenzae strains, the Hif genome contains differences in components involved in metabolism and survival that may contribute to its invasiveness.
Collapse
Affiliation(s)
| | | | | | - Kristian Riesbeck
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Jan Waldenströms gata 59, SE-205 02 Malmö, Sweden.
| |
Collapse
|
14
|
Complete Genome Sequence of Encapsulated Haemophilus influenzae Type f KR494, an Invasive Isolate That Caused Necrotizing Myositis. GENOME ANNOUNCEMENTS 2013; 1:1/5/e00470-13. [PMID: 24092777 PMCID: PMC3790081 DOI: 10.1128/genomea.00470-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Haemophilus influenzae serotype f (Hif) is an etiologic agent of bacterial invasive disease. Here, we report the first annotated genome sequence of the Hif strain KR494, which was isolated from a patient suffering from sepsis and necrotizing myositis. The genome sequence will increase the understanding of Hif pathogenesis.
Collapse
|
15
|
Watson ME, Nelson KL, Nguyen V, Burnham CAD, Clarridge JE, Qin X, Smith AL. Adhesin genes and serum resistance in Haemophilus influenzae type f isolates. J Med Microbiol 2012; 62:514-524. [PMID: 23242639 DOI: 10.1099/jmm.0.052175-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The incidence of invasive infections due to Haemophilus influenzae has decreased significantly in developed countries with high rates of vaccination against H. influenzae serotype b (Hib). This vaccine provides no protection against H. influenzae serotype f (Hif), typically associated with invasive infections in adults with chronic disease and/or immunodeficiency, and rarely in otherwise healthy adults and children. The specific properties of Hif associated with virulence remain largely uncharacterized. A panel of 26 Hif strains consisting of both invasive disease-associated and mucosal surface non-invasive disease-associated isolates was surveyed by DNA fingerprinting, biotyping and PCR detection of hmw1, hmw2, hsf, the hif fimbrial locus and the lipo-oligosaccharide (LOS) biosynthetic island, and assessment of β-lactamase expression and determination of resistance to the bactericidal activity of normal adult human serum. Repetitive sequence-based PCR fingerprinting differentiated the 26 strains into three clusters, with the majority of isolates (22/26, 84.6 %) clustered into a single indistinguishable group. Most isolates (24/26, 92.3 %) were of biotype I and two isolates produced β-lactamase with detection of a conjugative plasmid, and the isolates displayed a range of resistances to the bactericidal activity of human serum. All 26 isolates carried the adhesin hsf, 21 carried a partial hif fimbrial operon and 4 had the adhesin genes hmw1/2. A LOS biosynthetic island was detected in 20 isolates consisting of the genes lic2BC. It was concluded that Hif has many recognized virulence properties and comprises a relatively homogeneous group independent of the anatomical source from which it was isolated.
Collapse
Affiliation(s)
- Michael E Watson
- Divison of Pediatric Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Kevin L Nelson
- Center for Childhood Infections, Seattle Children's Hospital Research Institute, Seattle, Washington, USA
| | - Victoria Nguyen
- Center for Childhood Infections, Seattle Children's Hospital Research Institute, Seattle, Washington, USA
| | - Carey-Ann D Burnham
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jill E Clarridge
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Xuan Qin
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Arnold L Smith
- Center for Childhood Infections, Seattle Children's Hospital Research Institute, Seattle, Washington, USA
| |
Collapse
|
16
|
Kao CY, Sheu SM, Sheu BS, Wu JJ. Length of thymidine homopolymeric repeats modulates promoter activity of sabA in Helicobacter pylori. Helicobacter 2012; 17:203-9. [PMID: 22515358 DOI: 10.1111/j.1523-5378.2012.00936.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Helicobacter pylori uses SabA to interact with sialyl-Lewis x on the gastric mucosal surface to establish persistent colonization. The number of CT repeats in sabA is variable and thus influences SabA translation, but the expression of SabA determined by Western blotting does not fully match with a CT sequence-based prediction. Furthermore, a homopolymeric thymidine (polyT) tract located upstream of sabA has been observed, but its role in regulating sabA expression is still unknown. METHODS The transcriptional start site (TSS) of sabA in strains J99 and Hp258 was determined by 5' RACE. One hundred and fifteen clinical isolates were sequenced to analyze the distribution of the polyT tract length and promoter sequence. Finally, RT-PCR and an E. coli-lux reporter system were used to determine the sabA promoter activity with different lengths of the polyT tract. RESULTS The TSS of sabA was located at 66 or 64 bp upstream of the translational start codon in J99 and Hp258, respectively. The polyT tract close to the -35 element varied from T₁₀ to T₂₈ in 115 clinical isolates, and 70% of the isolates contained a stretch of 14-19 Ts. The sabA gene displayed slipped strand mispairing (SSM) of the polyT tract, generating varying genotypes in J99 (16-18 Ts) and Hp258 (14-15 Ts). Furthermore, J99 with lengths of T₁₆ and T₃₀, had higher sabA promoter activity than the common length of T₁₈. CONCLUSION Our findings indicate that the sabA promoter region modulates its transcriptional activity through a variable polyT tract, and SSM generates mixed genotypes in the population.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | | | | | | |
Collapse
|
17
|
Kroll J, Klinter S, Schneider C, Voss I, Steinbüchel A. Plasmid addiction systems: perspectives and applications in biotechnology. Microb Biotechnol 2010; 3:634-57. [PMID: 21255361 PMCID: PMC3815339 DOI: 10.1111/j.1751-7915.2010.00170.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/17/2010] [Indexed: 11/26/2022] Open
Abstract
Biotechnical production processes often operate with plasmid-based expression systems in well-established prokaryotic and eukaryotic hosts such as Escherichia coli or Saccharomyces cerevisiae, respectively. Genetically engineered organisms produce important chemicals, biopolymers, biofuels and high-value proteins like insulin. In those bioprocesses plasmids in recombinant hosts have an essential impact on productivity. Plasmid-free cells lead to losses in the entire product recovery and decrease the profitability of the whole process. Use of antibiotics in industrial fermentations is not an applicable option to maintain plasmid stability. Especially in pharmaceutical or GMP-based fermentation processes, deployed antibiotics must be inactivated and removed. Several plasmid addiction systems (PAS) were described in the literature. However, not every system has reached a full applicable state. This review compares most known addiction systems and is focusing on biotechnical applications.
Collapse
Affiliation(s)
- Jens Kroll
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
18
|
Izano EA, Shah SM, Kaplan JB. Intercellular adhesion and biocide resistance in nontypeable Haemophilus influenzae biofilms. Microb Pathog 2009; 46:207-13. [PMID: 19490830 PMCID: PMC2691864 DOI: 10.1016/j.micpath.2009.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 12/23/2008] [Accepted: 01/14/2009] [Indexed: 11/22/2022]
Abstract
Respiratory infections caused by nontypeable Haemophilus influenzae (NTHi) are a major medical problem. Evidence suggests that the ability to form biofilms on mucosal surfaces may play a role in NTHi pathogenesis. However, the factors that contribute to NTHi biofilm cohesion remain largely unknown. In this study we investigated the biofilm growth and detachment phenotypes of eight NTHi clinical strains in vitro. We found that the majority of strains produced biofilms within 6h when cultured statically in tubes. Biofilm formation was inhibited when culture medium was supplemented with proteinase K or DNase I. Both enzymes also caused significant detachment of pre-formed NTHi biofilms. These findings indicate that both proteinaceous adhesins and extracellular DNA contribute to NTHi biofilm cohesion. Treatment of NTHi biofilms cultured in centrifugal filter devices with DNase I, but not with proteinase K, caused a significant decrease in fluid convection through the biofilms. These results suggest that extracellular DNA is the major volumetric component of the NTHi biofilm matrix. Mechanical or enzymatic disruption of NTHi biofilms cultured in microtiter plates significantly increased their sensitivity to killing by SDS, cetylpyridinium chloride, chlorhexidine gluconate, povidone iodine and sodium hypochlorite. These findings indicate that biocide resistance in NTHi biofilms is mediated to a large part by the cohesive and protective properties of the biofilm matrix. Understanding the mechanisms of biofilm cohesion and biocide resistance in NTHi biofilms may lead to new methods for treating NTHi-associated infections.
Collapse
Affiliation(s)
- Era A. Izano
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA
| | - Suhagi M. Shah
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA
| | - Jeffrey B. Kaplan
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA
| |
Collapse
|
19
|
Nanoscale structural and mechanical properties of nontypeable Haemophilus influenzae biofilms. J Bacteriol 2009; 191:2512-20. [PMID: 19218382 DOI: 10.1128/jb.01596-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI) bacteria are commensals in the human nasopharynx, as well as pathogens associated with a spectrum of acute and chronic infections. Two important factors that influence NTHI pathogenicity are their ability to adhere to human tissue and their ability to form biofilms. Extracellular polymeric substances (EPS) and bacterial appendages such as pili critically influence cell adhesion and intercellular cohesion during biofilm formation. Structural components in the outer cell membrane, such as lipopolysaccharides, also play a fundamental role in infection of the host organism. In spite of their importance, these pathogenic factors are not yet well characterized at the nanoscale. Here, atomic force microscopy (AFM) was used in aqueous environments to visualize structural details, including probable Hif-type pili, of live NTHI bacteria at the early stages of biofilm formation. Using single-molecule AFM-based spectroscopy, the molecular elasticities of lipooligosaccharides present on NTHI cell surfaces were analyzed and compared between two strains (PittEE and PittGG) with very different pathogenicity profiles. Furthermore, the stiffness of single cells of both strains was measured and subsequently their turgor pressure was estimated.
Collapse
|
20
|
Delineation of the species Haemophilus influenzae by phenotype, multilocus sequence phylogeny, and detection of marker genes. J Bacteriol 2008; 191:822-31. [PMID: 19060144 DOI: 10.1128/jb.00782-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To obtain more information on the much-debated definition of prokaryotic species, we investigated the borders of Haemophilus influenzae by comparative analysis of H. influenzae reference strains with closely related bacteria including strains assigned to Haemophilus haemolyticus, cryptic genospecies biotype IV, and the never formally validated species "Haemophilus intermedius". Multilocus sequence phylogeny based on six housekeeping genes separated a cluster encompassing the type and the reference strains of H. influenzae from 31 more distantly related strains. Comparison of 16S rRNA gene sequences supported this delineation but was obscured by a conspicuously high number of polymorphic sites in many of the strains that did not belong to the core group of H. influenzae strains. The division was corroborated by the differential presence of genes encoding H. influenzae adhesion and penetration protein, fuculokinase, and Cu,Zn-superoxide dismutase, whereas immunoglobulin A1 protease activity or the presence of the iga gene was of limited discriminatory value. The existence of porphyrin-synthesizing strains ("H. intermedius") closely related to H. influenzae was confirmed. Several chromosomally encoded hemin biosynthesis genes were identified, and sequence analysis showed these genes to represent an ancestral genotype rather than recent transfers from, e.g., Haemophilus parainfluenzae. Strains previously assigned to H. haemolyticus formed several separate lineages within a distinct but deeply branching cluster, intermingled with strains of "H. intermedius" and cryptic genospecies biotype IV. Although H. influenzae is phenotypically more homogenous than some other Haemophilus species, the genetic diversity and multicluster structure of strains traditionally associated with H. influenzae make it difficult to define the natural borders of that species.
Collapse
|
21
|
HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea. J Bacteriol 2008; 191:1191-9. [PMID: 19060138 PMCID: PMC2631989 DOI: 10.1128/jb.01013-08] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxin-antitoxin (TA) loci are common in free-living bacteria and archaea. TA loci encode a stable toxin that is neutralized by a metabolically unstable antitoxin. The antitoxin can be either a protein or an antisense RNA. So far, six different TA gene families, in which the antitoxins are proteins, have been identified. Recently, Makarova et al. (K. S. Makarova, N. V. Grishin, and E. V. Koonin, Bioinformatics 22:2581-2584, 2006) suggested that the hicAB loci constitute a novel TA gene family. Using the hicAB locus of Escherichia coli K-12 as a model system, we present evidence that supports this inference: expression of the small HicA protein (58 amino acids [aa]) induced cleavage in three model mRNAs and tmRNA. Concomitantly, the global rate of translation was severely reduced. Using tmRNA as a substrate, we show that HicA-induced cleavage does not require the target RNA to be translated. Expression of HicB (145 aa) prevented HicA-mediated inhibition of cell growth. These results suggest that HicB neutralizes HicA and therefore functions as an antitoxin. As with other antitoxins (RelB and MazF), HicB could resuscitate cells inhibited by HicA, indicating that ectopic production of HicA induces a bacteriostatic rather than a bactericidal condition. Nutrient starvation induced strong hicAB transcription that depended on Lon protease. Mining of 218 prokaryotic genomes revealed that hicAB loci are abundant in bacteria and archaea.
Collapse
|
22
|
Makarova KS, Grishin NV, Koonin EV. The HicAB cassette, a putative novel, RNA-targeting toxin-antitoxin system in archaea and bacteria. ACTA ACUST UNITED AC 2006; 22:2581-4. [PMID: 16895922 DOI: 10.1093/bioinformatics/btl418] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Toxin-antitoxin systems (TAS) are abundant, diverse, horizontally mobile gene modules that encode powerful resistance mechanisms in prokaryotes. We use the comparative-genomic approach to predict a new TAS that consists of a two-gene cassette encoding uncharacterized HicA and HicB proteins. Numerous bacterial and archaeal genomes encode from one to eight HicAB modules which appear to be highly prone to horizontal gene transfer. The HicB protein (COG1598/COG4226) has a partially degraded RNAse H fold, whereas HicA (COG1724) contains a double-stranded RNA-binding domain. The stable combination of these two domains suggests a link to RNA metabolism, possibly, via an RNA interference-type mechanism. In most HicB proteins, the RNAse H-like domain is fused to a DNA-binding domain, either of the ribbon-helix-helix or of the helix-turn-helix class; in other TAS, proteins containing these DNA-binding domains function as antitoxins. Thus, the HicAB module is predicted to be a novel TAS whose mechanism involves RNA-binding and, possibly, cleavage.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD 20894, USA
| | | | | |
Collapse
|
23
|
Erwin AL, Nelson KL, Mhlanga-Mutangadura T, Bonthuis PJ, Geelhood JL, Morlin G, Unrath WCT, Campos J, Crook DW, Farley MM, Henderson FW, Jacobs RF, Mühlemann K, Satola SW, van Alphen L, Golomb M, Smith AL. Characterization of genetic and phenotypic diversity of invasive nontypeable Haemophilus influenzae. Infect Immun 2005; 73:5853-63. [PMID: 16113304 PMCID: PMC1231076 DOI: 10.1128/iai.73.9.5853-5863.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of unencapsulated (nontypeable) Haemophilus influenzae (NTHi) to cause systemic disease in healthy children has been recognized only in the past decade. To determine the extent of similarity among invasive nontypeable isolates, we compared strain R2866 with 16 additional NTHi isolates from blood and spinal fluid, 17 nasopharyngeal or throat isolates from healthy children, and 19 isolates from middle ear aspirates. The strains were evaluated for the presence of several genetic loci that affect bacterial surface structures and for biochemical reactions that are known to differ among H. influenzae strains. Eight strains, including four blood isolates, shared several properties with R2866: they were biotype V (indole and ornithine decarboxylase positive, urease negative), contained sequence from the adhesin gene hia, and lacked a genetic island flanked by the infA and ksgA genes. Multilocus sequence typing showed that most biotype V isolates belonged to the same phylogenetic cluster as strain R2866. When present, the infA-ksgA island contains lipopolysaccharide biosynthetic genes, either lic2B and lic2C or homologs of the losA and losB genes described for Haemophilus ducreyi. The island was found in most nasopharyngeal and otitis isolates but was absent from 40% of invasive isolates. Overall, the 33 hmw-negative isolates were much more likely than hmw-containing isolates to have tryptophanase, ornithine decarboxylase, or lysine decarboxylase activity or to contain the hif genes. We conclude (i) that invasive isolates are genetically and phenotypically diverse and (ii) that certain genetic loci of NTHi are frequently found in association among NTHi strains.
Collapse
Affiliation(s)
- Alice L Erwin
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Suite 500, Seattle, WA 98109-5219, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Calteau A, Gouy M, Perrière G. Horizontal transfer of two operons coding for hydrogenases between bacteria and archaea. J Mol Evol 2005; 60:557-65. [PMID: 15983865 DOI: 10.1007/s00239-004-0094-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 11/19/2004] [Indexed: 11/27/2022]
Abstract
Using a phylogenetic approach, we discovered three putative horizontal transfers between bacterial and archaeal species involving large clusters of genes. One transfer involves an operon of 13 genes, called mbx, which probably was transferred into the genome of Thermotoga maritima from a species belonging or close to the Pyrococcus genus. The two others implied an operon of six genes, called ech, transferred independently to the genomes of Thermoanaerobacter tengcongensis and Desulfovibrio gigas, from a species belonging or close to the Methanosarcina genus. All these transfers affected operons coding for multisubunit membrane-bound (NiFe) hydrogenases involved in the energy metabolism of the donor genomes. The functionality of the transferred operons has not been experimentally demonstrated for T. maritima, whereas in D. gigas and T. tengcongensis the encoded multisubunit hydrogenase could have a role in energy conservation. This report adds several cases of horizontal gene transfers among hydrogenases already described.
Collapse
Affiliation(s)
- Alexandra Calteau
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Claude Bernard--Lyon 1, Villeurbanne, France
| | | | | |
Collapse
|
25
|
Bishop-Hurley SL, Schmidt FJ, Erwin AL, Smith AL. Peptides selected for binding to a virulent strain of Haemophilus influenzae by phage display are bactericidal. Antimicrob Agents Chemother 2005; 49:2972-8. [PMID: 15980377 PMCID: PMC1168708 DOI: 10.1128/aac.49.7.2972-2978.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an obligate parasite of the oropharynx of humans, in whom it commonly causes mucosal infections such as otitis media, sinusitis, and bronchitis. We used a subtractive phage display approach to affinity select for peptides binding to the cell surface of a novel invasive NTHi strain R2866 (also called Int1). Over half of the selected phage peptides tested were bactericidal toward R2866 in a dose-dependent manner. Five of the clones encoded the same peptide sequence (KQRTSIRATEGCLPS; clone hi3/17), while the remaining four clones encoded unique peptides. All of the bactericidal phage peptides but one were cationic and had similar physical-chemical properties. Clone hi3/17 possessed a similar level of activity toward a panel of clinical NTHi isolates and H. influenzae type b strains but lacked bactericidal activity toward gram-positive (Enterococcus faecalis, Staphylococcus aureus) and gram-negative (Proteus mirabilis, Pseudomonas aeruginosa, and Salmonella enterica) bacteria. These data indicate that peptides binding to bacterial surface structures isolated by phage display may prove of value in developing new antibiotics.
Collapse
|
26
|
Gladitz J, Shen K, Antalis P, Hu FZ, Post JC, Ehrlich GD. Codon usage comparison of novel genes in clinical isolates of Haemophilus influenzae. Nucleic Acids Res 2005; 33:3644-58. [PMID: 15983137 PMCID: PMC1160521 DOI: 10.1093/nar/gki670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A similarity statistic for codon usage was developed and used to compare novel gene sequences found in clinical isolates of Haemophilus influenzae with a reference set of 80 prokaryotic, eukaryotic and viral genomes. These analyses were performed to obtain an indication as to whether individual genes were Haemophilus-like in nature, or if they probably had more recently entered the H.influenzae gene pool via horizontal gene transfer from other species. The average and SD values were calculated for the similarity statistics from a study of the set of all genes in the H.influenzae Rd reference genome that encoded proteins of 100 amino acids or longer. Approximately 80% of Rd genes gave a statistic indicating that they were most like other Rd genes. Genes displaying codon usage statistics >1 SD above this range were either considered part of the highly expressed group of H.influenzae genes, or were considered of foreign origin. An alternative determinant for identifying genes of foreign origin was when the similarity statistics produced a value that was much closer to a non-H.influenzae reference organism than to any of the Haemophilus species contained in the reference set. Approximately 65% of the novel sequences identified in the H.influenzae clinical isolates displayed codon usages most similar to Haemophilus sp. The remaining novel sequences produced similarity statistics closer to one of the other reference genomes thereby suggesting that these sequences may have entered the H.influenzae gene pool more recently via horizontal transfer.
Collapse
Affiliation(s)
| | | | | | | | | | - Garth D. Ehrlich
- To whom correspondence should be addressed. Tel: +1 412 359 4228; Fax: +1 412 359 6995;
| |
Collapse
|
27
|
Bakaletz LO, Baker BD, Jurcisek JA, Harrison A, Novotny LA, Bookwalter JE, Mungur R, Munson RS. Demonstration of Type IV pilus expression and a twitching phenotype by Haemophilus influenzae. Infect Immun 2005; 73:1635-43. [PMID: 15731063 PMCID: PMC1064948 DOI: 10.1128/iai.73.3.1635-1643.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae is considered a nonmotile organism that expresses neither flagella nor type IV pili, although H. influenzae strain Rd possesses a cryptic pilus locus. We demonstrate here that the homologous gene cluster pilABCD in an otitis media isolate of nontypeable H. influenzae strain 86-028NP encodes a surface appendage that is highly similar, structurally and functionally, to the well-characterized subgroup of bacterial pili known as type IV pili. This gene cluster includes a gene (pilA) that likely encodes the major subunit of the heretofore uncharacterized H. influenzae-expressed type IV pilus, a gene with homology to a type IV prepilin peptidase (pilD) as well as two additional uncharacterized genes (pilB and pilC). A second gene cluster (comABCDEF) was also identified by homology to other pil or type II secretion system genes. When grown in chemically defined medium at an alkaline pH, strain 86-028NP produces approximately 7-nm-diameter structures that are near polar in location. Importantly, these organisms exhibit twitching motility. A mutation in the pilA gene abolishes both expression of the pilus structure and the twitching phenotype, whereas a mutant lacking ComE, a Pseudomonas PilQ homologue, produced large appendages that appeared to be membrane bound and terminated in a slightly bulbous tip. These latter structures often showed a regular pattern of areas of constriction and expansion. The recognition that H. influenzae possesses a mechanism for twitching motility will likely profoundly influence our understanding of H. influenzae-induced diseases of the respiratory tract and their sequelae.
Collapse
Affiliation(s)
- Lauren O Bakaletz
- Department of Pediatrics, Columbus Children's Research Institute, Center for Microbial Pathogenesis, The Ohio State University College of Medicine and Public Health, 700 Children's Dr., Columbus, OH 43205-2696, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ecevit IZ, McCrea KW, Pettigrew MM, Sen A, Marrs CF, Gilsdorf JR. Prevalence of the hifBC, hmw1A, hmw2A, hmwC, and hia Genes in Haemophilus influenzae Isolates. J Clin Microbiol 2004; 42:3065-72. [PMID: 15243061 PMCID: PMC446296 DOI: 10.1128/jcm.42.7.3065-3072.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adherence of Haemophilus influenzae to respiratory epithelial cells is the first step in the pathogenesis of H. influenzae infection and is facilitated by the action of several adhesins located on the surface of the bacteria. In this study, prevalences of hifBC, which represent the pilus gene cluster; hmw1A, hmw2A, and hmwC, which represent high-molecular-weight (HMW) adhesin genes; and hia, which represents H. influenzae adhesin (Hia) genes were determined among clinical isolates of encapsulated type b (Hib) and nonencapsulated (NTHi) H. influenzae. hifBC genes were detected in 109 of 170 (64%) Hib strains and in 46 of 162 (28%) NTHi isolates (P = 0.0001) and were more prevalent among the invasive type b strains than invasive NTHi strains (P = 0.00003). Furthermore, hifBC genes were significantly more prevalent (P = 0.0398) among NTHi throat isolates than NTHi middle ear isolates. hmw1A, hmw2A, hmwC, and hia genes were not detected in Hib strains. Among NTHi isolates, the prevalence of hmw1A was 51%, the prevalence of hmw2A was 23%, the prevalence of hmwC was 48%, and the prevalence of hia was 33%. The hmw genes were significantly more prevalent among middle ear than throat isolates, while hia did not segregate with a respiratory tract site. These results show the variability of the presence of adhesin genes among clinical H. influenzae isolates and suggest that hemagglutinating pili may play a larger role in H. influenzae nasopharyngeal colonization than in acute otitis media whereas the HMW adhesins may be virulence factors for acute otitis media.
Collapse
Affiliation(s)
- I Zafer Ecevit
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109-0244, USA
| | | | | | | | | | | |
Collapse
|
29
|
Bayliss CD, Sweetman WA, Moxon ER. Mutations in Haemophilus influenzae mismatch repair genes increase mutation rates of dinucleotide repeat tracts but not dinucleotide repeat-driven pilin phase variation rates. J Bacteriol 2004; 186:2928-35. [PMID: 15126452 PMCID: PMC400628 DOI: 10.1128/jb.186.10.2928-2935.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-frequency, reversible switches in expression of surface antigens, referred to as phase variation (PV), are characteristic of Haemophilus influenzae. PV enables this bacterial species, an obligate commensal and pathogen of the human upper respiratory tract, to adapt to changes in the host environment. Phase-variable hemagglutinating pili are expressed by many H. influenzae isolates. PV involves alterations in the number of 5' TA repeats located between the -10 and -35 promoter elements of the overlapping, divergently orientated promoters of hifA and hifBCDE, whose products mediate biosynthesis and assembly of pili. Dinucleotide repeat tracts are destabilized by mismatch repair (MMR) mutations in Escherichia coli. The influence of mutations in MMR genes of H. influenzae strain Rd on dinucleotide repeat-mediated PV rates was investigated by using reporter constructs containing 20 5' AT repeats. Mutations in mutS, mutL, and mutH elevated rates approximately 30-fold, while rates in dam and uvrD mutants were increased 14- and 3-fold, respectively. PV rates of constructs containing 10 to 12 5' AT repeats were significantly elevated in mutS mutants of H. influenzae strains Rd and Eagan. An intact hif locus was found in 14 and 12% of representative nontypeable H. influenzae isolates associated with either otitis media or carriage, respectively. Nine or more tandem 5' TA repeats were present in the promoter region. Surprisingly, inactivation of mutS in two serotype b H. influenzae strains did not alter pilin PV rates. Thus, although functionally analogous to the E. coli MMR pathway and active on dinucleotide repeat tracts, defects in H. influenzae MMR do not affect 5' TA-mediated pilin PV.
Collapse
Affiliation(s)
- Christopher D Bayliss
- Molecular Infectious Diseases Group, Department of Paediatrics, Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom.
| | | | | |
Collapse
|
30
|
Munson RS, Harrison A, Gillaspy A, Ray WC, Carson M, Armbruster D, Gipson J, Gipson M, Johnson L, Lewis L, Dyer DW, Bakaletz LO. Partial analysis of the genomes of two nontypeable Haemophilus influenzae otitis media isolates. Infect Immun 2004; 72:3002-10. [PMID: 15102813 PMCID: PMC387840 DOI: 10.1128/iai.72.5.3002-3010.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 1995, The Institute for Genomic Research completed the genomic sequence of a rough derivative of Haemophilus influenzae serotype d, strain KW20. This sequence, though extremely useful in understanding the basic biology of H. influenzae, has yet to provide significant insight into our understanding of disease caused by nontypeable H. influenzae (NTHI), because serotype d strains are not generally pathogens. In contrast, NTHI strains are frequently mucosal pathogens and are the primary pathogens of chronic otitis media as well as a significant cause of acute otitis media in children. Thus, it is of great importance to further understand their biology. We used a DNA-based microarray approach to identify genes present in a clinical isolate of NTHI that were absent from strain Rd. We also sequenced the genome of a second NTHI isolate from a child with chronic otitis media to threefold coverage and then used an array of bioinformatics tools to identify genes present in this NTHI strain but absent from strain Rd. These methods were complementary in approach and results. We identified, in both strains, homologues of H. influenzae lav, an autotransported protein of unknown function; tnaA, which encodes tryptophanase; as well as a homologue of Pasteurella multocida tsaA, which encodes an alkyl peroxidase that may play a role in protection against reactive oxygen species. We also identified a number of putative restriction-modification systems, bacteriophage genes and transposon-related genes. These data provide new insight that complements and extends our ongoing analysis of NTHI virulence determinants.
Collapse
Affiliation(s)
- Robert S Munson
- Center for Microbial Pathogenesis, Columbus Children's Research Institute and The Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gilsdorf JR, Marrs CF, Foxman B. Haemophilus influenzae: genetic variability and natural selection to identify virulence factors. Infect Immun 2004; 72:2457-61. [PMID: 15102751 PMCID: PMC387884 DOI: 10.1128/iai.72.5.2457-2461.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Janet R Gilsdorf
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | | | | |
Collapse
|
32
|
Bruant G, Watt S, Quentin R, Rosenau A. Typing of nonencapsulated haemophilus strains by repetitive-element sequence-based PCR using intergenic dyad sequences. J Clin Microbiol 2003; 41:3473-80. [PMID: 12904341 PMCID: PMC179775 DOI: 10.1128/jcm.41.8.3473-3480.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intergenic dyad sequences (IDS) are short repeated elements that have been described for several Haemophilus genomes and for only two other bacterial genera. We developed a repetitive-element sequence-based PCR using an IDS-specific primer as a typing method (IDS-PCR) for nonencapsulated Haemophilus strains and compared this technique with pulsed-field gel electrophoresis (PFGE) of DNA restricted with SmaI. IDS-PCR was rapid, easy to perform, and reproducible, with a high discriminatory capacity for nontypeable Haemophilus influenzae (NTHI) strains. The 69 NTHI strains tested generated 65 different banding patterns. Epidemiologically related strains gave similar or identical fingerprints, and all of the unrelated strains except two showed different patterns. These results were in agreement with those obtained by PFGE. For 20 genital strains usually identified as being biotype IV NTHI and belonging to a cryptic genospecies of Haemophilus with remarkable genetic homogeneity, four bands were significantly present and six bands were significantly absent from the fingerprints. The 20 strains were gathered in 11 closely related profiles, whereas PFGE provided no band when DNA was treated with SmaI. IDS-PCR improved the differentiation previously obtained within this species by ribotyping and multilocus enzyme electrophoresis. Our findings suggest that IDS-PCR is a rapid, reliable, and discriminatory method for typing NTHI strains and is currently the most efficient method for distinguishing strains within the cryptic genospecies of HAEMOPHILUS:
Collapse
Affiliation(s)
- Guillaume Bruant
- Département de Microbiologie Médicale et Moléculaire, Unité de Bactériologie, Centre Hospitalo-Universitaire Bretonneau, 37044 Tours Cedex, France
| | | | | | | |
Collapse
|
33
|
Rodriguez CA, Avadhanula V, Buscher A, Smith AL, St Geme JW, Adderson EE. Prevalence and distribution of adhesins in invasive non-type b encapsulated Haemophilus influenzae. Infect Immun 2003; 71:1635-42. [PMID: 12654775 PMCID: PMC152026 DOI: 10.1128/iai.71.4.1635-1642.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adhesion to the respiratory epithelium plays an important role in Haemophilus influenzae infection. The distribution of H. influenzae adhesins in type b and nontypeable strains has been characterized, but little is known about the prevalence of these factors in non-type b encapsulated strains. We analyzed 53 invasive type a, type e, and type f strains for the presence of hap, hia, hmw, and hif genes; Hap, Hia, and HMW1/2 adhesins; and hemagglutinating pili. The hap gene was ubiquitous, and homologs of hmw and hia were present in 7 of 53 (13.2%) and 45 of 53 (84.9%) strains, respectively. Hap was detected in 28 of 45 (62.2%) hap(+) strains, HMW1/2 was detected in 5 of 7 (71.4%) hmw(+) strains, and Hia was detected in 31 of 45 (68.8%) hia(+) strains. The hif gene cluster was present in 26 of 53 strains (49.1%), and 21 of 26 hif(+) strains (80.8%) agglutinated (HA) red blood cells. Nine isolates exhibited HA but lacked the hif gene cluster. The distribution of adhesin genes correlated with the genetic relatedness of the strains. Strains belonging to one type a clonotype and the major type e clonotype possessed hia but lacked the hif cluster. Strains belonging to the second type a clonotype possessed both hia and hif genes. All type f strains belonging to the major type f clonotype possessed hia and lacked hifB. Although the specific complement of adhesin genes in non-type b encapsulated H. influenzae varies, most invasive strains express Hap and Hia, suggesting these adhesins may be especially important to the virulence of these organisms.
Collapse
Affiliation(s)
- Carina A Rodriguez
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 332 N. Lauderdale Street, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
34
|
Möllenkvist A, Nordström T, Halldén C, Christensen JJ, Forsgren A, Riesbeck K. The Moraxella catarrhalis immunoglobulin D-binding protein MID has conserved sequences and is regulated by a mechanism corresponding to phase variation. J Bacteriol 2003; 185:2285-95. [PMID: 12644500 PMCID: PMC151486 DOI: 10.1128/jb.185.7.2285-2295.2003] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The prevalence of the Moraxella catarrhalis immunoglobulin D (IgD)-binding outer membrane protein MID and its gene was determined in 91 clinical isolates and in 7 culture collection strains. Eighty-four percent of the clinical Moraxella strains expressed MID-dependent IgD binding. The mid gene was detected in all strains as revealed by homology of the signal peptide sequence and a conserved area in the 3' end of the gene. When MID proteins from five different strains were compared, an identity of 65.3 to 85.0% and a similarity of 71.2 to 89.1% were detected. Gene analyses showed several amino acid repeat motifs in the open reading frames, and MID could be called a putative autotransport protein. Interestingly, homopolymeric [polyguanine [poly(G)]] tracts were detected at the 5' ends within the open reading frames. By flow cytometry, using human IgD and fluorescein isothiocyanate-conjugated anti-IgD polyclonal antibodies, most strains showed two peaks: one high- and one low-intensity peak. All isolates expressing high levels of MID had 1, 2, or 3 triplets of G's in their poly(G) tracts, while strains not expressing MID had 4, 7, 8, or 10 G's in their poly(G) tracts or point mutations causing a putative preterminated translation. Northern blot analysis revealed that the mid gene was regulated at the transcriptional level. Experiments with nonclumping variants of M. catarrhalis proved that bacteria lost their MID expression by removing a G in their poly(G) tracts. Moraxella strains isolated from the nasopharynx or from blood and sputum specimens expressed MID at approximately the same frequency. In addition, no variation was observed between strains of different geographical origins (Australia, Europe, Japan, or the United States). MID and the mid gene were found solely in M. catarrhalis, whereas related Neisseria and Moraxella species did not express MID. Taken together, MID appears to be a conserved protein that can be found in essentially all M. catarrhalis strains. Furthermore, MID is governed by poly(G) tracts when bacteria undergo phase variation.
Collapse
Affiliation(s)
- Andrea Möllenkvist
- Department of Medical Microbiology, Malmö University Hospital, Lund University, SE-205 02 Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
35
|
Bruant G, Gousset N, Quentin R, Rosenau A. Fimbrial ghf gene cluster of genital strains of Haemophilus spp. Infect Immun 2002; 70:5438-45. [PMID: 12228268 PMCID: PMC128299 DOI: 10.1128/iai.70.10.5438-5445.2002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed the LKP fimbrial gene clusters of six piliated strains of a cryptic genospecies of Haemophilus isolated from the genital tracts of adult patients (five strains) and from an infected neonate. In a group of 19 genital strains, LKP-like genes have been found in only these 6 strains. In addition to the ghfA, ghfD, and ghfE genes previously described, we characterized two genes, designated ghfB and ghfC, encoding the putative chaperone and assembly platform proteins. All six strains had a complete and unique LKP-like gene cluster consisting of the five genes ghfA to ghfE, homologous to genes hifA to hifE of Haemophilus influenzae. The sequences of the coding and intergenic regions of the ghf clusters of the six strains were remarkably homologous. Unlike hif clusters, which are inserted between purE and pepN, the ghf cluster was inserted between purK and pepN on the chromosome. Analysis of the flanking regions of the ghf cluster identified a large deletion, identical in the 5' end regions of all strains, including the whole purE gene and much of the purK gene. Ultrastructural observations, an attempt at enriching LKP fimbriae, and hemagglutination experiments demonstrated that none of the strains had LKP-type fimbriae. Nevertheless, reverse transcription (RT)-PCR showed that ghf genes were transcribed in four of the six strains. Sequencing of the intergenic ghfA-ghfB regions, including the ghf gene promoters, showed that the absence of transcripts in the remaining two strains was due to a decrease in the number of TA repeats (4 or 9 repeats rather than 10) between the -10 and -35 boxes of the two overlapping and divergent promoters. The other four strains, which had ghf transcripts, had the optimal 10 TA repeats (one strain) or 5 repeats associated with putative alternative -35 boxes (three strains). The absence of 10 repeated palindromic sequences of 44 or 45 nucleotides upstream of ghfB induces an increased instability of mRNA, as quantified by real-time RT-PCR, and may explain why the LKP fimbrial gene cluster is not expressed in these strains.
Collapse
Affiliation(s)
- Guillaume Bruant
- Département de Microbiologie Médicale et Moléculaire, Unité de Bactériologie, Centre Hospitalo-Universitaire Bretonneau, 37044 Tours Cedex, France
| | | | | | | |
Collapse
|
36
|
Davis J, Smith AL, Hughes WR, Golomb M. Evolution of an autotransporter: domain shuffling and lateral transfer from pathogenic Haemophilus to Neisseria. J Bacteriol 2001; 183:4626-35. [PMID: 11443098 PMCID: PMC95358 DOI: 10.1128/jb.183.15.000-000.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genomes of pathogenic Haemophilus influenzae strains are larger than that of Rd KW20 (Rd), the nonpathogenic laboratory strain whose genome has been sequenced. To identify potential virulence genes, we examined genes possessed by Int1, an invasive nonencapsulated isolate from a meningitis patient, but absent from Rd. Int1 was found to have a novel gene termed lav, predicted to encode a member of the AIDA-I/VirG/PerT family of virulence-associated autotransporters (ATs). Associated with lav are multiple repeats of the tetranucleotide GCAA, implicated in translational phase variation of surface molecules. Laterally acquired by H. influenzae, lav is restricted in distribution to a few pathogenic strains, including H. influenzae biotype aegyptius and Brazilian purpuric fever isolates. The DNA sequence of lav is surprisingly similar to that of a gene previously described for Neisseria meningitidis. Sequence comparisons suggest that lav was transferred relatively recently from Haemophilus to Neisseria, shortly before the divergence of N. meningitidis and Neisseria gonorrhoeae. Segments of lav predicted to encode passenger and beta-domains differ sharply in G+C base content, supporting the idea that AT genes have evolved by fusing domains which originated in different genomes. Homology and base sequence comparisons suggest that a novel biotype aegyptius AT arose by swapping an unrelated sequence for the passenger domain of lav. The unusually mobile lav locus joins a growing list of genes transferred from H. influenzae to Neisseria. Frequent gene exchange suggests a common pool of hypervariable contingency genes and may help to explain the origin of invasiveness in certain respiratory pathogens.
Collapse
Affiliation(s)
- J Davis
- Division of Biological Sciences and Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Nontypable Haemophilus influenzae is a common cause of otitis media and initiates infection by colonizing the upper respiratory tract. In this article, I review our current understanding of the molecular determinants of H. influenzae colonization and discuss the relationship between colonization and otitis media.
Collapse
Affiliation(s)
- J W St Geme
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8208, St Louis, MO 63110, USA
| |
Collapse
|
38
|
Cerquetti M, Ciofi degli Atti ML, Renna G, Tozzi AE, Garlaschi ML, Mastrantonio P. Characterization of non-type B Haemophilus influenzae strains isolated from patients with invasive disease. The HI Study Group. J Clin Microbiol 2000; 38:4649-52. [PMID: 11101614 PMCID: PMC87655 DOI: 10.1128/jcm.38.12.4649-4652.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Forty-one non-type b Haemophilus influenzae isolates from cases of invasive disease were characterized. By PCR capsular genotyping, 33 nonencapsulated strains, 4 type f isolates, and 4 b(-) strains were identified. By pulsed-field gel electrophoresis, the nonencapsulated isolates exhibited great genetic heterogenicity, whereas the type f and the b(-) strains seemed to have a clonal spread. Occurrence of the hifA gene was found by PCR in 18% of the nonencapsulated, 50% of the b(-), and all of the type f strains. Hemagglutinating fimbriae were generally expressed by nonencapsulated isolates when fimbrial gene hifA was present. Two nonencapsulated isolates not susceptible to ampicillin were detected; no strains were positive for beta-lactamase production.
Collapse
Affiliation(s)
- M Cerquetti
- Laboratory of Bacteriology and Medical Mycology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
39
|
Read TD, Satola SW, Farley MM. Nucleotide sequence analysis of hypervariable junctions of Haemophilus influenzae pilus gene clusters. Infect Immun 2000; 68:6896-902. [PMID: 11083811 PMCID: PMC97796 DOI: 10.1128/iai.68.12.6896-6902.2000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae pili are surface structures that promote attachment to human epithelial cells. The five genes that encode pili, hifABCDE, are found inserted in genomes either between pmbA and hpt (hif-1) or between purE and pepN (hif-2). We determined the sequence between the ends of the pilus clusters and bordering genes in a number of H. influenzae strains. The junctions of the hif-1 cluster (limited to biogroup aegyptius isolates) are structurally simple. In contrast, hif-2 junctions are highly diverse, complex assemblies of conserved intergenic sequences (including genes hicA and hicB) with evidence of frequent recombination. Variation at hif-2 junctions seems to be tied to multiple copies of a 23-bp Haemophilus intergenic dyad sequence. The hif-1 cluster appears to have originated in biogroup aegyptius strains from invasion of the hpt-pmbA region by a DNA template containing the hif-2 genes with termini in the hairpin loop of flanking intergenic dyad sequences. The pilus gene clusters are an interesting model of a mobile "pathogenicity island" not associated with a phage, transposon, or insertion element.
Collapse
Affiliation(s)
- T D Read
- Atlanta Veterans Affairs Medical Center and Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | |
Collapse
|
40
|
Simpson AJ, Reinach FC, Arruda P, Abreu FA, Acencio M, Alvarenga R, Alves LM, Araya JE, Baia GS, Baptista CS, Barros MH, Bonaccorsi ED, Bordin S, Bové JM, Briones MR, Bueno MR, Camargo AA, Camargo LE, Carraro DM, Carrer H, Colauto NB, Colombo C, Costa FF, Costa MC, Costa-Neto CM, Coutinho LL, Cristofani M, Dias-Neto E, Docena C, El-Dorry H, Facincani AP, Ferreira AJ, Ferreira VC, Ferro JA, Fraga JS, França SC, Franco MC, Frohme M, Furlan LR, Garnier M, Goldman GH, Goldman MH, Gomes SL, Gruber A, Ho PL, Hoheisel JD, Junqueira ML, Kemper EL, Kitajima JP, Krieger JE, Kuramae EE, Laigret F, Lambais MR, Leite LC, Lemos EG, Lemos MV, Lopes SA, Lopes CR, Machado JA, Machado MA, Madeira AM, Madeira HM, Marino CL, Marques MV, Martins EA, Martins EM, Matsukuma AY, Menck CF, Miracca EC, Miyaki CY, Monteriro-Vitorello CB, Moon DH, Nagai MA, Nascimento AL, Netto LE, Nhani A, Nobrega FG, Nunes LR, Oliveira MA, de Oliveira MC, de Oliveira RC, Palmieri DA, Paris A, Peixoto BR, Pereira GA, Pereira HA, Pesquero JB, Quaggio RB, Roberto PG, Rodrigues V, de M Rosa AJ, de Rosa VE, de Sá RG, Santelli RV, Sawasaki HE, da Silva AC, da Silva AM, da Silva FR, da Silva WA, da Silveira JF, et alSimpson AJ, Reinach FC, Arruda P, Abreu FA, Acencio M, Alvarenga R, Alves LM, Araya JE, Baia GS, Baptista CS, Barros MH, Bonaccorsi ED, Bordin S, Bové JM, Briones MR, Bueno MR, Camargo AA, Camargo LE, Carraro DM, Carrer H, Colauto NB, Colombo C, Costa FF, Costa MC, Costa-Neto CM, Coutinho LL, Cristofani M, Dias-Neto E, Docena C, El-Dorry H, Facincani AP, Ferreira AJ, Ferreira VC, Ferro JA, Fraga JS, França SC, Franco MC, Frohme M, Furlan LR, Garnier M, Goldman GH, Goldman MH, Gomes SL, Gruber A, Ho PL, Hoheisel JD, Junqueira ML, Kemper EL, Kitajima JP, Krieger JE, Kuramae EE, Laigret F, Lambais MR, Leite LC, Lemos EG, Lemos MV, Lopes SA, Lopes CR, Machado JA, Machado MA, Madeira AM, Madeira HM, Marino CL, Marques MV, Martins EA, Martins EM, Matsukuma AY, Menck CF, Miracca EC, Miyaki CY, Monteriro-Vitorello CB, Moon DH, Nagai MA, Nascimento AL, Netto LE, Nhani A, Nobrega FG, Nunes LR, Oliveira MA, de Oliveira MC, de Oliveira RC, Palmieri DA, Paris A, Peixoto BR, Pereira GA, Pereira HA, Pesquero JB, Quaggio RB, Roberto PG, Rodrigues V, de M Rosa AJ, de Rosa VE, de Sá RG, Santelli RV, Sawasaki HE, da Silva AC, da Silva AM, da Silva FR, da Silva WA, da Silveira JF, Silvestri ML, Siqueira WJ, de Souza AA, de Souza AP, Terenzi MF, Truffi D, Tsai SM, Tsuhako MH, Vallada H, Van Sluys MA, Verjovski-Almeida S, Vettore AL, Zago MA, Zatz M, Meidanis J, Setubal JC. The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis. Nature 2000; 406:151-9. [PMID: 10910347 DOI: 10.1038/35018003] [Show More Authors] [Citation(s) in RCA: 542] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Xylella fastidiosa is a fastidious, xylem-limited bacterium that causes a range of economically important plant diseases. Here we report the complete genome sequence of X. fastidiosa clone 9a5c, which causes citrus variegated chlorosis--a serious disease of orange trees. The genome comprises a 52.7% GC-rich 2,679,305-base-pair (bp) circular chromosome and two plasmids of 51,158 bp and 1,285 bp. We can assign putative functions to 47% of the 2,904 predicted coding regions. Efficient metabolic functions are predicted, with sugars as the principal energy and carbon source, supporting existence in the nutrient-poor xylem sap. The mechanisms associated with pathogenicity and virulence involve toxins, antibiotics and ion sequestration systems, as well as bacterium-bacterium and bacterium-host interactions mediated by a range of proteins. Orthologues of some of these proteins have only been identified in animal and human pathogens; their presence in X. fastidiosa indicates that the molecular basis for bacterial pathogenicity is both conserved and independent of host. At least 83 genes are bacteriophage-derived and include virulence-associated genes from other bacteria, providing direct evidence of phage-mediated horizontal gene transfer.
Collapse
Affiliation(s)
- A J Simpson
- Instituto Ludwig de Pesquisa sobre o Câncer, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Krasan GP, Sauer FG, Cutter D, Farley MM, Gilsdorf JR, Hultgren SJ, St Geme JW. Evidence for donor strand complementation in the biogenesis of Haemophilus influenzae haemagglutinating pili. Mol Microbiol 2000; 35:1335-47. [PMID: 10760135 DOI: 10.1046/j.1365-2958.2000.01816.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Haemophilus influenzae haemagglutinating pili are surface appendages that promote attachment to host cells and facilitate respiratory tract colonization, an essential step in the pathogenesis of disease. In contrast to other well-characterized forms of pili, H. influenzae haemagglutinating pili are two-stranded helical structures. Nevertheless, haemagglutinating pili are assembled by a pathway that involves a periplasmic chaperone and an outer membrane usher, analogous to the prototype pathway involved in the biogenesis of Escherichia coli P pili. In this study, we performed site-directed mutagenesis of the H. influenzae HifB chaperone and HifA major pilus subunit at positions homologous to sites important for chaperone-subunit interactions and subunit oligomerization in P pili. Mutations at putative subunit binding pocket residues in HifB or at the penultimate tyrosine in HifA abolished formation of HifB-HifA periplasmic complexes, whereas mutations at the -14 glycine in HifA had no effect on HifB-HifA interactions but abrogated HifA oligomerization. To define further the constraints of the interaction between HifA and HifB, we examined the interchangeability of pilus gene cluster components from H. influenzae type b strain Eagan (hifA-hifEEag) and the related H. influenzae biogroup aegyptius strain F3031 (hifA-hifEF3031). Functional pili were assembled both with HifAEag and the strain F3031 gene cluster and with HifAF3031 and the strain Eagan gene cluster, underscoring the flexibility of the H. influenzae chaperone/usher pathway in incorporating HifA subunits with significant sequence diversity. To gain additional insight into the interactive surfaces of HifA and HifB, we aligned HifA sequences from 20 different strains and then modelled the HifA structure based on the recently crystallized PapD-PapK complex. Analysis of the resulting structure revealed high levels of sequence conservation in regions predicted to interact with HifB, and maximal sequence diversity in regions potentially exposed on the surface of assembled pili. These results suggest broad applicability of structure-function relationships identified in studies of P pili, including the concepts of donor strand complementation and donor strand exchange. In addition, they provide insight into the structure of HifA and suggest a basis for antigenic variation in H. influenzae haemagglutinating pili.
Collapse
Affiliation(s)
- G P Krasan
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, 63110, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Bach S, Buchrieser C, Prentice M, Guiyoule A, Msadek T, Carniel E. The high-pathogenicity island of Yersinia enterocolitica Ye8081 undergoes low-frequency deletion but not precise excision, suggesting recent stabilization in the genome. Infect Immun 1999; 67:5091-9. [PMID: 10496882 PMCID: PMC96857 DOI: 10.1128/iai.67.10.5091-5099.1999] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Highly pathogenic strains of Yersinia pestis, Y. pseudotuberculosis, and Y. enterocolitica are characterized by the possession of a pathogenicity island designated the high-pathogenicity island (HPI). This 35- to 45-kb island carries an iron uptake system named the yersiniabactin locus. While the HPIs of Y. pestis and Y. pseudotuberculosis are subject to high-frequency spontaneous deletion from the chromosome, we were initially unable to obtain HPI-deleted Y. enterocolitica 1B isolates. In the present study, using a positive selection strategy, we identified three HPI-deleted mutants of Y. enterocolitica strain Ye8081. In these three independent clones, the chromosomal deletion was not limited to the HPI but encompassed a larger DNA fragment of approximately 140 kb. Loss of this fragment, which occurred at a frequency of approximately 5 x 10(-7), resulted in the disappearance of several phenotypic traits, such as growth in a minimal medium, hydrolysis of o-nitrophenyl-beta-D-thiogalactopyranoside, Tween esterase activity, and motility, and in a decreased virulence for mice. However, no precise excision of the Ye8081 HPI was observed. To gain more insight into the molecular basis for this phenomenon, the putative machinery of HPI excision in Y. enterocolitica was analyzed and compared to that in Y. pseudotuberculosis. We show that the probable reasons for failure of precise excision of the HPI of Y. enterocolitica Ye8081 are (i) the interruption of the P4-like integrase gene located close to its right-hand boundary by a premature stop codon and (ii) lack of conservation of 17-bp att-like sequences at both extremities of the HPI. These mutations may represent a process of HPI stabilization in the species Y. enterocolitica.
Collapse
Affiliation(s)
- S Bach
- Unité de Bactériologie Moléculaire et Médicale, Laboratoire des Yersinia, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
43
|
Buchrieser C, Rusniok C, Frangeul L, Couve E, Billault A, Kunst F, Carniel E, Glaser P. The 102-kilobase pgm locus of Yersinia pestis: sequence analysis and comparison of selected regions among different Yersinia pestis and Yersinia pseudotuberculosis strains. Infect Immun 1999; 67:4851-61. [PMID: 10456941 PMCID: PMC96819 DOI: 10.1128/iai.67.9.4851-4861.1999] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We report the complete 119,443-bp sequence of the pgm locus from Yersinia pestis and its flanking regions. Sequence analysis confirms that the 102-kb unstable pgm locus is composed of two distinct parts: the pigmentation segment and a high-pathogenicity island (HPI) which carries virulence genes involved in iron acquisition (yersiniabactin biosynthetic gene cluster). Within the HPI, three genes coding for proteins related to phage proteins were uncovered. They are located at both extremities indicating that the entire HPI was acquired en bloc by phage-mediated horizontal transfer. We identified, within the pigmentation segment, two novel loci that may be involved in virulence: a fimbriae gene cluster and a locus probably encoding a two component regulatory system similar to the BvgAS regulatory system of Bordetella pertussis. Three genes containing frameshift mutations and two genes interrupted by insertion element insertion were found within this region. To investigate diversity among different Y. pestis and Yersinia pseudotuberculosis strains, the sequence of selected regions of the pgm locus and flanking regions were compared from 20 different Y. pestis and 10 Y. pseudotuberculosis strains. The results showed that the genes interrupted in Y. pestis are intact in Y. pseudotuberculosis. However, one of these mutations, in the bvgS homologue, is only present in Y. pestis strains of biovar Orientalis and not in those of the biovars Antiqua and Medievalis. The results obtained by analysis of variable positions in the sequence are in accordance with historical records, confirming that biovar Orientalis is the most recent lineage. Furthermore, sequence comparisons among 29 Yersinia strains suggest that Y. pestis is a recently emerged pathogen that is probably entering the initial phase of reductive evolution.
Collapse
Affiliation(s)
- C Buchrieser
- Laboratoire de Génomique des Microorganismes Pathogènes, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The expression of most bacterial genes is controlled at the level of transcription via promoter control mechanisms that permit a graded response. However, an increasing number of bacterial genes are found to exhibit an 'all-or-none' control mechanism that adapts the bacterium to more than one environment. One such mechanism is phase variation, traditionally defined as the high-frequency ON<-->OFF switching of phenotype expression. Phase variation events are usually random, but may be modulated by environmental conditions. The mechanisms of phase variation events and their significance within the microbial community are discussed here.
Collapse
Affiliation(s)
- I R Henderson
- Center for Vaccine Development, Department of Pediatrics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|