1
|
Fan X, Fraaije MW. Flavin transferase ApbE: From discovery to applications. J Biol Chem 2025; 301:108453. [PMID: 40154617 PMCID: PMC12052999 DOI: 10.1016/j.jbc.2025.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025] Open
Abstract
ApbE is a unique, membrane-bound enzyme which covalently attaches a flavin cofactor to specific target proteins. This irreversible posttranslational modification is crucial for proper functioning of various bacterial proteins. ApbEs have also been identified in archaea and eukaryotes. This review summarizes current knowledge on the structural and mechanistic properties of this unique protein-modifying enzyme and its recent applications. The flavin transferase is typically membrane-anchored and located in the periplasm and it possesses a conserved flavin-binding domain and a catalytic domain. It recognizes a specific sequence motif of target proteins, resulting in flavinylation of a threonine or serine. For flavinylation, it depends on magnesium and utilizes flavin adenine dinucleotide as substrate to attach the flavin mononucleotide moiety to the target protein, analogous to phosphorylation. ApbE-mediated flavinylation supports critical bacterial respiratory and metabolic pathways. Recently, ApbE was also shown to be a versatile tool for selectively modifying proteins. Using the flavin-tagging approach, proteins can be decorated with flavin mononucleotide or other flavins. Furthermore, it was demonstrated that ApbE can be employed to turn natural noncovalent flavoproteins into covalent flavoproteins. In summary, ApbE is crucial for the maturation of various flavoproteins by catalyzing covalent flavinylation. While great progress has been made in understanding the role and mode of action of ApbE, there are still many bacterial proteins predicted to be flavinylated by ApbE for which their role is enigmatic. Also, exploration of the potential of ApbE as protein modification tool has just begun. Clearly, future research will generate new ApbE-related insights and applications.
Collapse
Affiliation(s)
- Xiaoman Fan
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Lee KL, Lee JH, Kim YH, Roe JH. Functional Characterization of RseC in the SoxR Reducing System and Its Role in Oxidative Stress Response in Escherichia coli. J Microbiol Biotechnol 2024; 34:2547-2554. [PMID: 39631780 PMCID: PMC11729352 DOI: 10.4014/jmb.2410.10007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 12/28/2024]
Abstract
The reducing system of SoxR consists of a putative electron transfer system encoded by the rsxABCDGE operon, RseC encoded from the unlinked rpoE-rseABC operon, and ApbE. RseC is composed of two transmembrane helices, with both the N-terminal and C-terminal domains located in the cytoplasm. The N-terminal domain has a four-cysteine motif, CX5CX2CX5C, in the cytoplasm, with the latter three cysteines highly conserved in RseC homologs, allowing the SoxR reducer complex to function in Escherichia coli. These three cysteines can form an oxygen-sensitive Fe-S cluster when only the N-terminal domain is expressed in a truncated form. Without the C-terminal domain, RseC shows no significant difference in interaction with the SoxR reducer complex, but its ability to complement the function of an rseC mutant is greatly reduced. Additionally, the rseC mutant exhibits weak resistance to cumene hydrogen peroxide in the stationary phase and increased sensitivity to hydrogen peroxide in the exponential phase, independent of the SoxR regulon. This suggests that the full-length sequence of RseC is essential for its function and that it may have SoxR-independent additional roles.
Collapse
Affiliation(s)
- Kang-Lok Lee
- Department of Biology Education, IALS, Gyeongsang National University, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Joon-Hee Lee
- College of Pharmacy, Pusan National University, Pusan 46241, Republic of Korea
| | - Yun-Hee Kim
- Department of Biology Education, IALS, Gyeongsang National University, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jung-Hye Roe
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Wang Y, Zhang R, Mathivanan K, Zhang Y, Yang L, Guan F, Duan J. Proteomics and EPS Compositional Analysis Reveals Desulfovibrio bisertensis SY-1 Induced Corrosion on Q235 Steel by Biofilm Formation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5060. [PMID: 39459765 PMCID: PMC11509735 DOI: 10.3390/ma17205060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Microorganisms that exist in the seawater form microbial biofilms on materials used in marine construction, especially on metal surfaces submerged in seawater, where they form biofilms and cause severe corrosion. Biofilms are mainly composed of bacteria and their secreted polymeric substances. In order to understand how biofilms promote metal corrosion, planktonic and biofilm cells of Desulfovibrio bizertensis SY-1 (D. bizertensis) from Q235 steel were collected and analyzed as to their intracellular proteome and extracellular polymeric substances (EPS). The intracellular proteome analysis showed that the cellular proteins were strongly regulated in biofilm cells compared to planktonic cells, e.g., along with flagellar proteins, signaling-related proteins were significantly increased, whereas energy production and conversion proteins and DNA replication proteins were significantly regulated. The up-and-down regulation of proteins revealed that biofilm formation by bacteria on metal surfaces is affected by flagellar and signaling proteins. A significant decrease in DNA replication proteins indicated that DNA is no longer replicated and transcribed in mature biofilms, thus reducing energy consumption. Quantitative analysis and lectin staining of the biofilm on the metal's surface revealed that the bacteria secreted a substantial amount of EPS when they began to attach to the surface, and proteins dominated the main components of EPS. Further, the infrared analysis showed that the secondary structure of the proteins in the EPS of the biofilm was mainly dominated by β-sheet and 3-turn helix, which may help to enhance the adhesion of EPS. The functional groups of EPS analyzed using XPS showed that the C element of EPS in the biofilm mainly existed in the form of combinations with N. Furthermore, the hydroxyl structure in the EPS extracted from the biofilm had a stronger hydrogen bonding effect, which could maintain the stability of the EPS structure and biofilm. The study results revealed that D. bizertensis regulates the metabolic pathways and their secreted EPS structure to affect biofilm formation and cause metal corrosion, which has a certain reference significance for the study of the microbially influenced corrosion (MIC) mechanism.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiyong Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning 530007, China
| | - Krishnamurthy Mathivanan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
| | - Yimeng Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
| | - Luhua Yang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
| | - Fang Guan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning 530007, China
| | - Jizhou Duan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
4
|
Ranjan Kumar R, Jain R, Akhtar S, Parveen N, Ghosh A, Sharma V, Singh S. Characterization of thiamine pyrophosphokinase of vitamin B1 biosynthetic pathway as a drug target of Leishmania donovani. J Biomol Struct Dyn 2024; 42:5669-5685. [PMID: 37350670 DOI: 10.1080/07391102.2023.2227718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Vitamin B1 is an essential cofactor for enzymes involved in the metabolism of carbohydrates, particularly Transketolases. These enzymes are amenable to therapeutic interventions because of their specificity. In the final step of the Vitamin B1 biosynthesis pathway, Thiamine Pyrophosphokinase (TPK) converts thiamin into its active form, Thiamin Pyrophosphate (TPP), allowing researchers to investigate the functional importance of this enzyme and the pathway's dispensability in Leishmania donovani, a protozoan parasite that causes visceral leishmaniasis. In this study, various in silico, biochemical, biophysical, and cellular assays-based experiments have been conducted to identify and characterize LdTPK, and to provide a sound platform for the discovery of potential LdTPK inhibitors. LdTPK structural modelling ensured high protein quality. Oxythiamine and pyrithiamine were found to bind well with LdTPK with considerable binding energies, and MD simulation-based experiments indicated the stability of the complexation. Additionally, LdTPK1 was found to activate ROS defense in amastigotes, and its inhibition using oxythiamine and pyrithiamine led to the growth inhibition of L. donovani promastigotes and intracellular amastigotes. These findings highlight LdTPK as a promising target for the development of new anti-leishmanial agents. An in-depth analysis of the enzymes involved in TPP biosynthesis in L. donovani has the potential to yield novel therapeutic strategies for Leishmaniasis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ravi Ranjan Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith University, Banasthali, Rajasthan, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sabir Akhtar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Nidha Parveen
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Arabinda Ghosh
- Department of Computational Biology and Biotechnology, Mahapurusha Srimanta Sankaradeva Viswavidyalaya, Guwahati, Assam, India
| | - Veena Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith University, Banasthali, Rajasthan, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
5
|
Liu J, Zhang X, Deng S, Wang H, Zhao Y. Thiamine Is Required for Virulence and Survival of Pseudomonas syringae pv. tomato DC3000 on Tomatoes. Front Microbiol 2022; 13:903258. [PMID: 35783427 PMCID: PMC9247456 DOI: 10.3389/fmicb.2022.903258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas syringae pv. tomato DC3000 (PstDC3000) is an important plant pathogen that infects tomatoes and Arabidopsis. Thiamine and its derivative thiamine pyrophosphate (TPP) are cofactors that play an important role in the growth and survival of many bacterial microorganisms. However, the role of thiamine-related genes has not been determined in PstDC3000. Hence, to investigate the role of TPP in growth, resistance to stresses, and virulence of PstDC3000, double and quadruple mutants of thiamine biosynthesis-related genes (thiD/E, thiS/G, and thiD/E/S/G deletion mutants) as well as a single mutant of a lipoprotein-related gene (apbE) were constructed. Our results showed that growth of the thiD/E, thiS/G, and thiD/E/S/G mutants in the mannitol-glutamate (MG) medium was significantly lower than that of the wild type (WT) and their growth could be restored to the WT level with the addition of exogenous thiamine, whereas mutation of the apbE gene did not affect its growth in vitro. While tolerance to acid, osmotic, and oxidative stresses for the double mutants was similar to the WT, tolerance to stresses for the apbE mutant was reduced as compared to the WT. In addition, all four mutants exhibited reduced virulence and growth in tomatoes. However, when the double and quadruple mutants were inoculated with exogenous thiamine, the virulence and growth rate of these mutants were restored to the WT level. These results indicated that the thiD/E, thiS/G, and thiD/E/S/G mutants exhibiting growth deficiency in planta are probably due to a lack of thiamine biosynthesis, thus reducing colonization in tomatoes. On the other hand, it is possible that the apbE mutant exhibited reduced stress tolerances, thus resulting in reduced colonization. Overall, our findings suggest that the thiamine biosynthetic (TBS) pathway plays an important role in the colonization and infection of PstDC3000. Therefore, the thiamine biosynthetic pathway could be used as the target to develop new control measures for a bacterial spot in tomatoes.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan, China
| | - Xuejiang Zhang
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan, China
| | - Siyi Deng
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan, China
| | - Hua Wang
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan, China
| | - Youfu Zhao
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, United States
| |
Collapse
|
6
|
Characterization of components of a reducing system for SoxR in the cytoplasmic membrane of Escherichia coli. J Microbiol 2022; 60:387-394. [DOI: 10.1007/s12275-022-1667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 11/26/2022]
|
7
|
Tripathi AK, Saxena P, Thakur P, Rauniyar S, Samanta D, Gopalakrishnan V, Singh RN, Sani RK. Transcriptomics and Functional Analysis of Copper Stress Response in the Sulfate-Reducing Bacterium Desulfovibrio alaskensis G20. Int J Mol Sci 2022; 23:1396. [PMID: 35163324 PMCID: PMC8836040 DOI: 10.3390/ijms23031396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Copper (Cu) is an essential micronutrient required as a co-factor in the catalytic center of many enzymes. However, excess Cu can generate pleiotropic effects in the microbial cell. In addition, leaching of Cu from pipelines results in elevated Cu concentration in the environment, which is of public health concern. Sulfate-reducing bacteria (SRB) have been demonstrated to grow in toxic levels of Cu. However, reports on Cu toxicity towards SRB have primarily focused on the degree of toxicity and subsequent elimination. Here, Cu(II) stress-related effects on a model SRB, Desulfovibrio alaskensis G20, is reported. Cu(II) stress effects were assessed as alterations in the transcriptome through RNA-Seq at varying Cu(II) concentrations (5 µM and 15 µM). In the pairwise comparison of control vs. 5 µM Cu(II), 61.43% of genes were downregulated, and 38.57% were upregulated. In control vs. 15 µM Cu(II), 49.51% of genes were downregulated, and 50.5% were upregulated. The results indicated that the expression of inorganic ion transporters and translation machinery was massively modulated. Moreover, changes in the expression of critical biological processes such as DNA transcription and signal transduction were observed at high Cu(II) concentrations. These results will help us better understand the Cu(II) stress-response mechanism and provide avenues for future research.
Collapse
Affiliation(s)
- Abhilash Kumar Tripathi
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Payal Thakur
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Shailabh Rauniyar
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Dipayan Samanta
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Vinoj Gopalakrishnan
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Ram Nageena Singh
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Composite and Nanocomposite Advanced Manufacturing Centre—Biomaterials, Rapid City, SD 57701, USA
| |
Collapse
|
8
|
Vasieva O, Goryanin I. Is there a Function for a Sex Pheromone Precursor? J Integr Bioinform 2019; 16:/j/jib.ahead-of-print/jib-2019-0016/jib-2019-0016.xml. [PMID: 31301673 PMCID: PMC7074142 DOI: 10.1515/jib-2019-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/07/2019] [Indexed: 12/29/2022] Open
Abstract
Functional coupling and comparative genomics analysis have been applied to study functional associations of orthologs of enterococcal cAD1 sex pheromone (P13268) known to be responsible for biofilm formation, conjugative plasmid transfer and spreading of bacterial antibiotics resistance. cAD1 peptide pheromone is released from the membrane lipoprotein with the peptide precursor encoded by a gene cad (tr|C2JQE7). Our analysis of genomic neighbourhood of cad and motifs of the encoded polypeptide and its orthologs suggests a close functional association between cAD1 and ApbE protein (Q82Z24), a FMN insertion and trafficking facilitator. The cad and apbE orthologs were coupled in the genomes and ApbE-specific motifs for FMN covalent attachment were identified in cad-encoded protein sequence and its orthologs. These findings suggest a potential role of FMN-based reductase function of the cAD1 lipoprotein precursor in its processing and release of the active sex pheromone peptide. They may lead to a new approach in prevention of antibiotic resistance spread via targeting sex pheromone processing chaperones or by suppression of the FMN availability and covalent binding. This methods can be also applied to a controlled evolution of bacterial pathogenicity in microbial fuel cells, as the findings suggest the crosstalk between bacterial pathogenicity and bacterial electro-activity.
Collapse
Affiliation(s)
- O Vasieva
- University of Liverpool, Crown street, Liverpool, UK.,Ingenet ltd, 3d floor, 207 Regent street, London, UK
| | - I Goryanin
- University of Edinburgh, Edinburgh, UK.,Okinawa Institute Science and Technology, Okinawa, Japan.,Tianjin Institute of Industrial Biotechnology, Tianjin, China
| |
Collapse
|
9
|
Flavin transferase: the maturation factor of flavin-containing oxidoreductases. Biochem Soc Trans 2018; 46:1161-1169. [PMID: 30154099 DOI: 10.1042/bst20180524] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
Flavins, cofactors of many enzymes, are often covalently linked to these enzymes; for instance, flavin adenine mononucleotide (FMN) can form a covalent bond through either its phosphate or isoalloxazine group. The prevailing view had long been that all types of covalent attachment of flavins occur as autocatalytic reactions; however, in 2013, the first flavin transferase was identified, which catalyzes phosphoester bond formation between FMN and Na+-translocating NADH:quinone oxidoreductase in certain bacteria. Later studies have indicated that this post-translational modification is widespread in prokaryotes and is even found in some eukaryotes. Flavin transferase can occur as a separate ∼40 kDa protein or as a domain within the target protein and recognizes a degenerate DgxtsAT/S motif in various target proteins. The purpose of this review was to summarize the progress already achieved by studies of the structure, mechanism, and specificity of flavin transferase and to encourage future research on this topic. Interestingly, the flavin transferase gene (apbE) is found in many bacteria that have no known target protein, suggesting the presence of yet unknown flavinylation targets.
Collapse
|
10
|
Buttet GF, Willemin MS, Hamelin R, Rupakula A, Maillard J. The Membrane-Bound C Subunit of Reductive Dehalogenases: Topology Analysis and Reconstitution of the FMN-Binding Domain of PceC. Front Microbiol 2018; 9:755. [PMID: 29740408 PMCID: PMC5928378 DOI: 10.3389/fmicb.2018.00755] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Organohalide respiration (OHR) is the energy metabolism of anaerobic bacteria able to use halogenated organic compounds as terminal electron acceptors. While the terminal enzymes in OHR, so-called reductive dehalogenases, are well-characterized, the identity of proteins potentially involved in electron transfer to the terminal enzymes remains elusive. Among the accessory genes identified in OHR gene clusters, the C subunit (rdhC) could well code for the missing redox protein between the quinol pool and the reductive dehalogenase, although it was initially proposed to act as transcriptional regulator. RdhC sequences are characterized by the presence of multiple transmembrane segments, a flavin mononucleotide (FMN) binding motif and two conserved CX3CP motifs. Based on these features, we propose a curated selection of RdhC proteins identified in general sequence databases. Beside the Firmicutes from which RdhC sequences were initially identified, the identified sequences belong to three additional phyla, the Chloroflexi, the Proteobacteria, and the Bacteriodetes. The diversity of RdhC sequences mostly respects the phylogenetic distribution, suggesting that rdhC genes emerged relatively early in the evolution of the OHR metabolism. PceC, the C subunit of the tetrachloroethene (PCE) reductive dehalogenase is encoded by the conserved pceABCT gene cluster identified in Dehalobacter restrictus PER-K23 and in several strains of Desulfitobacterium hafniense. Surfaceome analysis of D. restrictus cells confirmed the predicted topology of the FMN-binding domain (FBD) of PceC that is the exocytoplasmic face of the membrane. Starting from inclusion bodies of a recombinant FBD protein, strategies for successful assembly of the FMN cofactor and refolding were achieved with the use of the flavin-trafficking protein from D. hafniense TCE1. Mass spectrometry analysis and site-directed mutagenesis of rFBD revealed that threonine-168 of PceC is binding FMN covalently. Our results suggest that PceC, and more generally RdhC proteins, may play a role in electron transfer in the metabolism of OHR.
Collapse
Affiliation(s)
- Géraldine F Buttet
- Laboratory for Environmental Biotechnology, Institute for Environmental Engineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Mathilde S Willemin
- Laboratory for Environmental Biotechnology, Institute for Environmental Engineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Romain Hamelin
- Protein Core Facility, Faculty of Life Sciences, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Aamani Rupakula
- Laboratory for Environmental Biotechnology, Institute for Environmental Engineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Julien Maillard
- Laboratory for Environmental Biotechnology, Institute for Environmental Engineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
cas9 Enhances Bacterial Virulence by Repressing the regR Transcriptional Regulator in Streptococcus agalactiae. Infect Immun 2018; 86:IAI.00552-17. [PMID: 29229728 DOI: 10.1128/iai.00552-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022] Open
Abstract
Clustered regularly interspaced palindromic repeats (CRISPR) and their associated cas genes have been demonstrated to regulate self-genes and virulence in many pathogens. In this study, we found that inactivation of cas9 caused reduced adhesion and intracellular survival of the piscine Streptococcus agalactiae strain GD201008-001 and significantly decreased the virulence of this strain in zebrafish and mice. Further investigation indicated that the regR transcriptional regulator was upregulated in the Δcas9 mutant. As regR mediates the repression of hyaluronidase, a critical factor involved in opening the blood-brain barrier (BBB) in mice, cas9-mediated repression of regR transcription is important for S. agalactiae to open the BBB and thereby cause meningitis in animals. This study expands our understanding of endogenous gene regulation mediated by CRISPR-Cas systems in bacteria.
Collapse
|
12
|
Fang X, Liang P, Raba DA, Rosas-Lemus M, Chakravarthy S, Tuz K, Juárez O. Kinetic characterization of Vibrio cholerae ApbE: Substrate specificity and regulatory mechanisms. PLoS One 2017; 12:e0186805. [PMID: 29065131 PMCID: PMC5655446 DOI: 10.1371/journal.pone.0186805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/06/2017] [Indexed: 12/20/2022] Open
Abstract
ApbE is a member of a novel family of flavin transferases that incorporates flavin mononucleotide (FMN) to subunits of diverse respiratory complexes, which fulfill important homeostatic functions. In this work a detailed characterization of Vibrio cholerae ApbE physiologic activity, substrate specificity and pH dependency was carried out. The data obtained show novel characteristics of the regulation and function of this family. For instance, our experiments indicate that divalent cations are essential for ApbE function, and that the selectivity depends largely on size and the coordination sphere of the cation. Our data also show that ApbE regulation by pH, ADP and potassium is an important mechanism that enhances the adaptation, survival and colonization of V. cholerae in the small intestine. Moreover, studies of the pH-dependency of the activity show that the reaction is favored under alkaline conditions, with a pKa of 8.4. These studies, together with sequence and structure analysis allowed us to identify His257, which is absolutely conserved in the family, as a candidate for the residue whose deprotonation controls the activity. Remarkably, the mutant H257G abolished the flavin transfer activity, strongly indicating that this residue plays an important role in the catalytic mechanism of ApbE.
Collapse
Affiliation(s)
- Xuan Fang
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Pingdong Liang
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Daniel Alexander Raba
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Mónica Rosas-Lemus
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Srinivas Chakravarthy
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
- Biophysics Collaborative Access Team, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Karina Tuz
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Oscar Juárez
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
13
|
Zhang L, Trncik C, Andrade SLA, Einsle O. The flavinyl transferase ApbE of Pseudomonas stutzeri matures the NosR protein required for nitrous oxide reduction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1858:95-102. [PMID: 27864152 DOI: 10.1016/j.bbabio.2016.11.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022]
Abstract
The copper-containing enzyme nitrous oxide reductase (N2OR) catalyzes the transformation of nitrous oxide (N2O) to dinitrogen (N2) in microbial denitrification. Several accessory factors are essential for assembling the two copper sites CuA and CuZ, and for maintaining the activity. In particular, the deletion of either the transmembrane iron-sulfur flavoprotein NosR or the periplasmic protein NosX, a member of the ApbE family, abolishes N2O respiration. Here we demonstrate through biochemical and structural studies that the ApbE protein from Pseudomonas stutzeri, where the nosX gene is absent, is a monomeric FAD-binding protein that can serve as the flavin donor for NosR maturation via covalent flavinylation of a threonine residue. The flavin transfer reaction proceeds both in vivo and in vitro to generate post-translationally modified NosR with covalently bound FMN. Only FAD can act as substrate and the reaction requires a divalent cation, preferably Mg2+ that was also present in the crystal structure. In addition, the reaction is species-specific to a certain extent.
Collapse
Affiliation(s)
- Lin Zhang
- Institute for Biochemistry, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Christian Trncik
- Institute for Biochemistry, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Susana L A Andrade
- Institute for Biochemistry, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg im Breisgau, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestrasse 1, 79104 Freiburg im Breisgau, Germany
| | - Oliver Einsle
- Institute for Biochemistry, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg im Breisgau, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestrasse 1, 79104 Freiburg im Breisgau, Germany.
| |
Collapse
|
14
|
Deka RK, Brautigam CA, Liu WZ, Tomchick DR, Norgard MV. Molecular insights into the enzymatic diversity of flavin-trafficking protein (Ftp; formerly ApbE) in flavoprotein biogenesis in the bacterial periplasm. Microbiologyopen 2015; 5:21-38. [PMID: 26626129 PMCID: PMC4767422 DOI: 10.1002/mbo3.306] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/03/2015] [Accepted: 09/15/2015] [Indexed: 01/26/2023] Open
Abstract
We recently reported a flavin‐trafficking protein (Ftp) in the syphilis spirochete Treponema pallidum (Ftp_Tp) as the first bacterial metal‐dependent FAD pyrophosphatase that hydrolyzes FAD into AMP and FMN in the periplasm. Orthologs of Ftp_Tp in other bacteria (formerly ApbE) appear to lack this hydrolytic activity; rather, they flavinylate the redox subunit, NqrC, via their metal‐dependent FMN transferase activity. However, nothing has been known about the nature or mechanism of metal‐dependent Ftp catalysis in either Nqr‐ or Rnf‐redox‐containing bacteria. In the current study, we identified a bimetal center in the crystal structure of Escherichia coli Ftp (Ftp_Ec) and show via mutagenesis that a single amino acid substitution converts it from an FAD‐binding protein to a Mg2+‐dependent FAD pyrophosphatase (Ftp_Tp‐like). Furthermore, in the presence of protein substrates, both types of Ftps are capable of flavinylating periplasmic redox‐carrying proteins (e.g., RnfG_Ec) via the metal‐dependent covalent attachment of FMN. A high‐resolution structure of the Ftp‐mediated flavinylated protein of Shewanella oneidensis NqrC identified an essential lysine in phosphoester‐threonyl‐FMN bond formation in the posttranslationally modified flavoproteins. Together, these discoveries broaden our understanding of the physiological capabilities of the bacterial periplasm, and they also clarify a possible mechanism by which flavoproteins are generated.
Collapse
Affiliation(s)
- Ranjit K Deka
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Chad A Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Wei Z Liu
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Diana R Tomchick
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Michael V Norgard
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
15
|
Abstract
This review describes the two main systems, namely the Isc (iron-sulfur cluster) and Suf (sulfur assimilation) systems, utilized by Escherichia coli and Salmonella for the biosynthesis of iron-sulfur (Fe-S) clusters, as well as other proteins presumably participating in this process. In the case of Fe-S cluster biosynthesis, it is assumed that the sulfur atoms from the cysteine desulfurase end up at cysteine residues of the scaffold protein, presumably waiting for iron atoms for cluster assembly. The review discusses the various potential iron donor proteins. For in vitro experiments, in general, ferrous salts are used during the assembly of Fe-S clusters, even though this approach is unlikely to reflect the physiological conditions. The fact that sulfur atoms can be directly transferred from cysteine desulfurases to scaffold proteins supports a mechanism in which the latter bind sulfur atoms first and iron atoms afterwards. In E. coli, fdx gene inactivation results in a reduced growth rate and reduced Fe-S enzyme activities. Interestingly, the SufE structure resembles that of IscU, strengthening the notion that the two proteins share the property of acting as acceptors of sulfur atoms provided by cysteine desulfurases. Several other factors have been suggested to participate in cluster assembly and repair in E. coli and Salmonella. Most of them were identified by their abilities to act as extragenic and/or multicopy suppressors of mutations in Fe-S cluster metabolism, while others possess biochemical properties that are consistent with a role in Fe-S cluster biogenesis.
Collapse
|
16
|
Thompson AL, Monteagudo-Mera A, Cadenas MB, Lampl ML, Azcarate-Peril MA. Milk- and solid-feeding practices and daycare attendance are associated with differences in bacterial diversity, predominant communities, and metabolic and immune function of the infant gut microbiome. Front Cell Infect Microbiol 2015; 5:3. [PMID: 25705611 PMCID: PMC4318912 DOI: 10.3389/fcimb.2015.00003] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/05/2015] [Indexed: 01/14/2023] Open
Abstract
The development of the infant intestinal microbiome in response to dietary and other exposures may shape long-term metabolic and immune function. We examined differences in the community structure and function of the intestinal microbiome between four feeding groups, exclusively breastfed infants before introduction of solid foods (EBF), non-exclusively breastfed infants before introduction of solid foods (non-EBF), EBF infants after introduction of solid foods (EBF+S), and non-EBF infants after introduction of solid foods (non-EBF+S), and tested whether out-of-home daycare attendance was associated with differences in relative abundance of gut bacteria. Bacterial 16S rRNA amplicon sequencing was performed on 49 stool samples collected longitudinally from a cohort of 9 infants (5 male, 4 female). PICRUSt metabolic inference analysis was used to identify metabolic impacts of feeding practices on the infant gut microbiome. Sequencing data identified significant differences across groups defined by feeding and daycare attendance. Non-EBF and daycare-attending infants had higher diversity and species richness than EBF and non-daycare attending infants. The gut microbiome of EBF infants showed increased proportions of Bifidobacterium and lower abundance of Bacteroidetes and Clostridiales than non-EBF infants. PICRUSt analysis indicated that introduction of solid foods had a marginal impact on the microbiome of EBF infants (24 enzymes overrepresented in EBF+S infants). In contrast, over 200 bacterial gene categories were overrepresented in non-EBF+S compared to non-EBF infants including several bacterial methyl-accepting chemotaxis proteins (MCP) involved in signal transduction. The identified differences between EBF and non-EBF infants suggest that breast milk may provide the gut microbiome with a greater plasticity (despite having a lower phylogenetic diversity) that eases the transition into solid foods.
Collapse
Affiliation(s)
- Amanda L. Thompson
- Department of Anthropology, University of North CarolinaChapel Hill, NC, USA
| | - Andrea Monteagudo-Mera
- Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, University of North CarolinaChapel Hill, NC, USA
| | - Maria B. Cadenas
- Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, University of North CarolinaChapel Hill, NC, USA
| | - Michelle L. Lampl
- Department of Anthropology and Center for the Study of Human Health, Emory UniversityAtlanta, GA, USA
| | - M. A. Azcarate-Peril
- Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, University of North CarolinaChapel Hill, NC, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North CarolinaChapel Hill, NC, USA
| |
Collapse
|
17
|
Py B, Barras F. Genetic approaches of the Fe-S cluster biogenesis process in bacteria: Historical account, methodological aspects and future challenges. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1429-35. [PMID: 25541283 DOI: 10.1016/j.bbamcr.2014.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
Abstract
Since their discovery in the 50's, Fe-S cluster proteins have attracted much attention from chemists, biophysicists and biochemists. However, in the 80's they were joined by geneticists who helped to realize that in vivo maturation of Fe-S cluster bound proteins required assistance of a large number of factors defining complex multi-step pathways. The question of how clusters are formed and distributed in vivo has since been the focus of much effort. Here we review how genetics in discovering genes and investigating processes as they unfold in vivo has provoked seminal advances toward our understanding of Fe-S cluster biogenesis. The power and limitations of genetic approaches are discussed. As a final comment, we argue how the marriage of classic strategies and new high-throughput technologies should allow genetics of Fe-S cluster biology to be even more insightful in the future. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Béatrice Py
- Laboratoire de Chimie Bactérienne, UMR7283 Aix-Marseille University and CNRS, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Frédéric Barras
- Laboratoire de Chimie Bactérienne, UMR7283 Aix-Marseille University and CNRS, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| |
Collapse
|
18
|
Rauch BJ, Gustafson A, Perona JJ. Novel proteins for homocysteine biosynthesis in anaerobic microorganisms. Mol Microbiol 2014; 94:1330-42. [DOI: 10.1111/mmi.12832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Benjamin Julius Rauch
- Department of Biochemistry and Molecular BiologyOregon Health and Science University 3181 S.W. Sam Jackson Park Road Portland OR 97239‐3098 USA
| | - Andrew Gustafson
- Department of ChemistryPortland State University 1719 SW 10th Avenue Portland OR 97201 USA
| | - John J. Perona
- Department of Biochemistry and Molecular BiologyOregon Health and Science University 3181 S.W. Sam Jackson Park Road Portland OR 97239‐3098 USA
- Department of ChemistryPortland State University 1719 SW 10th Avenue Portland OR 97201 USA
| |
Collapse
|
19
|
De Smet L, De Koker D, Hawley AK, Foster LJ, De Vos P, de Graaf DC. Effect of bodily fluids from honey bee (Apis mellifera) larvae on growth and genome-wide transcriptional response of the causal agent of American Foulbrood disease (Paenibacillus larvae). PLoS One 2014; 9:e89175. [PMID: 24586572 PMCID: PMC3930689 DOI: 10.1371/journal.pone.0089175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/16/2014] [Indexed: 11/18/2022] Open
Abstract
Paenibacillus larvae, the causal agent of American Foulbrood disease (AFB), affects honey bee health worldwide. The present study investigates the effect of bodily fluids from honey bee larvae on growth velocity and transcription for this Gram-positive, endospore-forming bacterium. It was observed that larval fluids accelerate the growth and lead to higher bacterial densities during stationary phase. The genome-wide transcriptional response of in vitro cultures of P. larvae to larval fluids was studied by microarray technology. Early responses of P. larvae to larval fluids are characterized by a general down-regulation of oligopeptide and sugar transporter genes, as well as by amino acid and carbohydrate metabolic genes, among others. Late responses are dominated by general down-regulation of sporulation genes and up-regulation of phage-related genes. A theoretical mechanism of carbon catabolite repression is discussed.
Collapse
Affiliation(s)
- Lina De Smet
- Ghent University, Laboratory of Zoophysiology, Department of Physiology, Ghent, Belgium
| | - Dieter De Koker
- Ghent University, Laboratory of Zoophysiology, Department of Physiology, Ghent, Belgium
| | - Alyse K. Hawley
- University of British Columbia, Department of Microbiology & Immunology, Vancouver, Canada
| | - Leonard J. Foster
- University of British Columbia, Department of Biochemistry & Molecular Biology, Vancouver, Canada
| | - Paul De Vos
- Ghent University, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent, Belgium
| | - Dirk C. de Graaf
- Ghent University, Laboratory of Zoophysiology, Department of Physiology, Ghent, Belgium
- * E-mail:
| |
Collapse
|
20
|
Mucyn TS, Yourstone S, Lind AL, Biswas S, Nishimura MT, Baltrus DA, Cumbie JS, Chang JH, Jones CD, Dangl JL, Grant SR. Variable suites of non-effector genes are co-regulated in the type III secretion virulence regulon across the Pseudomonas syringae phylogeny. PLoS Pathog 2014; 10:e1003807. [PMID: 24391493 PMCID: PMC3879358 DOI: 10.1371/journal.ppat.1003807] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/17/2013] [Indexed: 01/12/2023] Open
Abstract
Pseudomonas syringae is a phylogenetically diverse species of Gram-negative bacterial plant pathogens responsible for crop diseases around the world. The HrpL sigma factor drives expression of the major P. syringae virulence regulon. HrpL controls expression of the genes encoding the structural and functional components of the type III secretion system (T3SS) and the type three secreted effector proteins (T3E) that are collectively essential for virulence. HrpL also regulates expression of an under-explored suite of non-type III effector genes (non-T3E), including toxin production systems and operons not previously associated with virulence. We implemented and refined genome-wide transcriptional analysis methods using cDNA-derived high-throughput sequencing (RNA-seq) data to characterize the HrpL regulon from six isolates of P. syringae spanning the diversity of the species. Our transcriptomes, mapped onto both complete and draft genomes, significantly extend earlier studies. We confirmed HrpL-regulation for a majority of previously defined T3E genes in these six strains. We identified two new T3E families from P. syringae pv. oryzae 1_6, a strain within the relatively underexplored phylogenetic Multi-Locus Sequence Typing (MLST) group IV. The HrpL regulons varied among strains in gene number and content across both their T3E and non-T3E gene suites. Strains within MLST group II consistently express the lowest number of HrpL-regulated genes. We identified events leading to recruitment into, and loss from, the HrpL regulon. These included gene gain and loss, and loss of HrpL regulation caused by group-specific cis element mutations in otherwise conserved genes. Novel non-T3E HrpL-regulated genes include an operon that we show is required for full virulence of P. syringae pv. phaseolicola 1448A on French bean. We highlight the power of integrating genomic, transcriptomic, and phylogenetic information to drive concise functional experimentation and to derive better insight into the evolution of virulence across an evolutionarily diverse pathogen species.
Collapse
Affiliation(s)
- Tatiana S Mucyn
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Scott Yourstone
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Program in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Abigail L Lind
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Surojit Biswas
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Marc T Nishimura
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David A Baltrus
- School of Plant Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Jason S Cumbie
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America ; Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America ; Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America ; Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Corbin D Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Program in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Program in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah R Grant
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
21
|
Bertsova YV, Fadeeva MS, Kostyrko VA, Serebryakova MV, Baykov AA, Bogachev AV. Alternative pyrimidine biosynthesis protein ApbE is a flavin transferase catalyzing covalent attachment of FMN to a threonine residue in bacterial flavoproteins. J Biol Chem 2013; 288:14276-14286. [PMID: 23558683 DOI: 10.1074/jbc.m113.455402] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) contains two flavin residues as redox-active prosthetic groups attached by a phosphoester bond to threonine residues in subunits NqrB and NqrC. We demonstrate here that flavinylation of truncated Vibrio harveyi NqrC at Thr-229 in Escherichia coli cells requires the presence of a co-expressed Vibrio apbE gene. The apbE genes cluster with genes for Na(+)-NQR and other FMN-binding flavoproteins in bacterial genomes and encode proteins with previously unknown function. Experiments with isolated NqrC and ApbE proteins confirmed that ApbE is the only protein factor required for NqrC flavinylation and also indicated that the reaction is Mg(2+)-dependent and proceeds with FAD but not FMN. Inactivation of the apbE gene in Klebsiella pneumoniae, wherein the nqr operon and apbE are well separated in the chromosome, resulted in a complete loss of the quinone reductase activity of Na(+)-NQR, consistent with its dependence on covalently bound flavin. Our data thus identify ApbE as a novel modifying enzyme, flavin transferase.
Collapse
Affiliation(s)
- Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Maria S Fadeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Vitaly A Kostyrko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
22
|
Deka RK, Brautigam CA, Liu WZ, Tomchick DR, Norgard MV. The TP0796 lipoprotein of Treponema pallidum is a bimetal-dependent FAD pyrophosphatase with a potential role in flavin homeostasis. J Biol Chem 2013; 288:11106-21. [PMID: 23447540 DOI: 10.1074/jbc.m113.449975] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Treponema pallidum, an obligate parasite of humans and the causative agent of syphilis, has evolved the capacity to exploit host-derived metabolites for its survival. Flavin-containing compounds are essential cofactors that are required for metabolic processes in all living organisms, and riboflavin is a direct precursor of the cofactors FMN and FAD. Unlike many pathogenic bacteria, Treponema pallidum cannot synthesize riboflavin; we recently described a flavin-uptake mechanism composed of an ABC-type transporter. However, there is a paucity of information about flavin utilization in bacterial periplasms. Using a discovery-driven approach, we have identified the TP0796 lipoprotein as a previously uncharacterized Mg(2+)-dependent FAD pyrophosphatase within the ApbE superfamily. TP0796 probably plays a central role in flavin turnover by hydrolyzing exogenously acquired FAD, yielding AMP and FMN. Biochemical and structural investigations revealed that the enzyme has a unique bimetal Mg(2+) catalytic center. Furthermore, the pyrophosphatase activity is product-inhibited by AMP, indicating a possible role for this molecule in modulating FMN and FAD levels in the treponemal periplasm. The ApbE superfamily was previously thought to be involved in thiamine biosynthesis, but our characterization of TP0796 prompts a renaming of this superfamily as a periplasmic flavin-trafficking protein (Ftp). TP0796 is the first structurally and biochemically characterized FAD pyrophosphate enzyme in bacteria. This new paradigm for a bacterial flavin utilization pathway may prove to be useful for future inhibitor design.
Collapse
Affiliation(s)
- Ranjit K Deka
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
23
|
Metz S, Jäger A, Klug G. Role of a short light, oxygen, voltage (LOV) domain protein in blue light- and singlet oxygen-dependent gene regulation in Rhodobacter sphaeroides. Microbiology (Reading) 2012; 158:368-379. [DOI: 10.1099/mic.0.054700-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Sebastian Metz
- Institut für Mikro- und Molekularbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| | - Andreas Jäger
- Institut für Mikro- und Molekularbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| | - Gabriele Klug
- Institut für Mikro- und Molekularbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| |
Collapse
|
24
|
Decreased transport restores growth of a Salmonella enterica apbC mutant on tricarballylate. J Bacteriol 2011; 194:576-83. [PMID: 22101844 DOI: 10.1128/jb.05988-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutants of Salmonella enterica lacking apbC have nutritional and biochemical properties indicative of defects in iron-sulfur ([Fe-S]) cluster metabolism. An apbC mutant is unable to grow on tricarballylate as a carbon source. Based on the ability of ApbC to transfer an [Fe-S] cluster to an apoprotein, this defect was attributed to poor loading of the [Fe-S] cluster-containing TcuB enzyme. Consistent with these observations, a previous study showed that overexpression of iscU, which encodes an [Fe-S] cluster molecular scaffold, suppressed the tricarballylate growth defect of an apbC mutant (J. M. Boyd, J. A. Lewis, J. C. Escalante-Semerena, and D. M. Downs, J. Bacteriol. 190:4596-4602, 2008). In this study, tcuC mutations that suppress the growth defect of an apbC mutant by decreasing the intracellular concentration of tricarballylate are described. Collectively, the suppressor analyses support a model in which reduced TcuB activity prevents growth on tricarballylate by (i) decreasing catabolism and (ii) allowing levels of tricarballylate that are toxic to the cell to accumulate. The apbC tcuC mutant strains described here reveal that the balance of the metabolic network can be altered by the accumulation of deleterious metabolites.
Collapse
|
25
|
FAD binding by ApbE protein from Salmonella enterica: a new class of FAD-binding proteins. J Bacteriol 2010; 193:887-95. [PMID: 21148731 DOI: 10.1128/jb.00730-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The periplasmic protein ApbE was identified through the analysis of several mutants defective in thiamine biosynthesis and was implicated as having a role in iron-sulfur cluster biosynthesis or repair. While mutations in apbE cause decreased activity of several iron-sulfur enzymes in vivo, the specific role of ApbE remains unknown. Members of the AbpE family include NosX and RnfF, which have been implicated in oxidation-reduction associated with nitrous oxide and nitrogen metabolism, respectively. In this work, we show that ApbE binds one FAD molecule per monomeric unit. The structure of ApbE in the presence of bound FAD reveals a new FAD-binding motif. Protein variants that are nonfunctional in vivo were generated by random and targeted mutagenesis. Each variant was substituted in the environment of the FAD and analyzed for FAD binding after reconstitution. The variant that altered a key tyrosine residue involved in FAD binding prevented reconstitution of the protein.
Collapse
|
26
|
Koenigsknecht MJ, Downs DM. Thiamine biosynthesis can be used to dissect metabolic integration. Trends Microbiol 2010; 18:240-7. [PMID: 20382023 PMCID: PMC2906612 DOI: 10.1016/j.tim.2010.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 02/19/2010] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
Abstract
The emergence of systems biology has re-emphasized the advantages of understanding biological processes with a global perspective. One biological process amenable to global approaches is microbial metabolism. This review describes a model system that contributes to the goals of systems biology by experimentally defining metabolic integration found in a bacterial cell and thus providing data needed for implementation and interpretation of systems approaches. We have taken a largely unbiased in vivo approach centered on thiamine biosynthesis to identify new metabolic components and connections, and to explore uncharacterized paradigms of the integration between them. This article summarizes recent results from this approach that include the identification of the function of unknown genes, connections between cofactors biosynthesis and thiamine biosynthesis, and how metabolites from one biosynthetic pathway can be used in thiamine biosynthesis.
Collapse
Affiliation(s)
| | - Diana M. Downs
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
27
|
Sakurai H, Ogawa T, Shiga M, Inoue K. Inorganic sulfur oxidizing system in green sulfur bacteria. PHOTOSYNTHESIS RESEARCH 2010; 104:163-176. [PMID: 20143161 DOI: 10.1007/s11120-010-9531-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 01/16/2010] [Indexed: 05/28/2023]
Abstract
Green sulfur bacteria use various reduced sulfur compounds such as sulfide, elemental sulfur, and thiosulfate as electron donors for photoautotrophic growth. This article briefly summarizes what is known about the inorganic sulfur oxidizing systems of these bacteria with emphasis on the biochemical aspects. Enzymes that oxidize sulfide in green sulfur bacteria are membrane-bound sulfide-quinone oxidoreductase, periplasmic (sometimes membrane-bound) flavocytochrome c sulfide dehydrogenase, and monomeric flavocytochrome c (SoxF). Some green sulfur bacteria oxidize thiosulfate by the multienzyme system called either the TOMES (thiosulfate oxidizing multi-enzyme system) or Sox (sulfur oxidizing system) composed of the three periplasmic proteins: SoxB, SoxYZ, and SoxAXK with a soluble small molecule cytochrome c as the electron acceptor. The oxidation of sulfide and thiosulfate by these enzymes in vitro is assumed to yield two electrons and result in the transfer of a sulfur atom to persulfides, which are subsequently transformed to elemental sulfur. The elemental sulfur is temporarily stored in the form of globules attached to the extracellular surface of the outer membranes. The oxidation pathway of elemental sulfur to sulfate is currently unclear, although the participation of several proteins including those of the dissimilatory sulfite reductase system etc. is suggested from comparative genomic analyses.
Collapse
Affiliation(s)
- Hidehiro Sakurai
- Research Institute for Photosynthetic Hydrogen Production, Kanagawa University, Hiratsuka, Kanagawa, Japan
| | | | | | | |
Collapse
|
28
|
Koenigsknecht MJ, Fenlon LA, Downs DM. Phosphoribosylpyrophosphate synthetase (PrsA) variants alter cellular pools of ribose 5-phosphate and influence thiamine synthesis in Salmonella enterica. MICROBIOLOGY-SGM 2009; 156:950-959. [PMID: 19959576 DOI: 10.1099/mic.0.033050-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phosphoribosylamine (PRA) is the first intermediate in the common purine/thiamine biosynthetic pathway and is primarily synthesized by the product of the purF gene, glutamine phosphoribosylpyrophosphate (PRPP) amidotransferase (E.C. 2.4.2.14). Past genetic and biochemical studies have shown that multiple mechanisms for the synthesis of PRA independent of PurF are present in Salmonella enterica. Here, we describe mutant alleles of the essential prsA gene, which encodes PRPP synthetase (E.C. 2.7.6.1), that allow PurF-independent thiamine synthesis. The mutant alleles resulted in reduced PrsA activity in extracts, caused nutritional requirements indicative of PRPP limitation and allowed non-enzymic formation of PRA due to a build-up of ribose 5-phosphate (R5P). These results emphasize the balance that must be reached between pathways competing for the same substrate to maintain robustness of the metabolic network.
Collapse
Affiliation(s)
- Mark J Koenigsknecht
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Luke A Fenlon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Diana M Downs
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
29
|
Boyd JM, Sondelski JL, Downs DM. Bacterial ApbC protein has two biochemical activities that are required for in vivo function. J Biol Chem 2009; 284:110-118. [PMID: 19001370 PMCID: PMC2610507 DOI: 10.1074/jbc.m807003200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/16/2008] [Indexed: 11/06/2022] Open
Abstract
The ApbC protein has been shown previously to bind and rapidly transfer iron-sulfur ([Fe-S]) clusters to an apoprotein (Boyd, J. M., Pierik, A. J., Netz, D. J., Lill, R., and Downs, D. M. (2008) Biochemistry 47, 8195-8202. This study utilized both in vivo and in vitro assays to examine the function of variant ApbC proteins. The in vivo assays assessed the ability of ApbC proteins to function in pathways with low and high demand for [Fe-S] cluster proteins. Variant ApbC proteins were purified and assayed for the ability to hydrolyze ATP, bind [Fe-S] cluster, and transfer [Fe-S] cluster. This study details the first kinetic analysis of ATP hydrolysis for a member of the ParA subfamily of "deviant" Walker A proteins. Moreover, this study details the first functional analysis of mutant variants of the ever expanding family of ApbC/Nbp35 [Fe-S] cluster biosynthetic proteins. The results herein show that ApbC protein needs ATPase activity and the ability to bind and rapidly transfer [Fe-S] clusters for in vivo function.
Collapse
Affiliation(s)
- Jeffrey M Boyd
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Jamie L Sondelski
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Diana M Downs
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
30
|
Lindeberg M, Myers CR, Collmer A, Schneider DJ. Roadmap to new virulence determinants in Pseudomonas syringae: insights from comparative genomics and genome organization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:685-700. [PMID: 18624633 DOI: 10.1094/mpmi-21-6-0685] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Systematic comparison of the current repertoire of virulence-associated genes for three Pseudomonas syringae strains with complete genome sequences, P. syringae pv. tomato DC3,000, P. syringae pv. phaseolicola 1448A, and P. syringae pv. syringae B728a, is prompted by recent advances in virulence factor identification in P. syringae and other bacteria. Among these are genes linked to epiphytic fitness, plant- and insect-active toxins, secretion pathways, and virulence regulators, all reflected in the recently updated DC3,000 genome annotation. Distribution of virulence genes in relation to P. syringae genome organization was analyzed to distinguish patterns of conservation among genomes and association between genes and mobile genetic elements. Variable regions were identified on the basis of deviation in sequence composition and gaps in syntenic alignment among the three genomes. Mapping gene location relative to the genome structure revealed strong segregation of the HrpL regulon with variable genome regions (VR), divergent distribution patterns for toxin genes depending on association with plant or insect pathogenesis, and patterns of distribution for other virulence genes that highlight potential sources of strain-to-strain differences in host interaction. Distribution of VR among other sequenced bacterial genomes was analyzed and future plans for characterization of this potential reservoir of virulence genes are discussed.
Collapse
Affiliation(s)
- Magdalen Lindeberg
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, U.S.A
| | | | | | | |
Collapse
|
31
|
Abstract
Iron-sulfur (Fe-S) clusters are required for critical biochemical pathways, including respiration, photosynthesis, and nitrogen fixation. Assembly of these iron cofactors is a carefully controlled process in cells to avoid toxicity from free iron and sulfide. Multiple Fe-S cluster assembly pathways are present in bacteria to carry out basal cluster assembly, stress-responsive cluster assembly, and enzyme-specific cluster assembly. Although biochemical and genetic characterization is providing a partial picture of in vivo Fe-S cluster assembly, a number of mechanistic questions remain unanswered. Furthermore, new factors involved in Fe-S cluster assembly and repair have recently been identified and are expanding the complexity of current models. Here we attempt to summarize recent advances and to highlight new avenues of research in the field of Fe-S cluster assembly.
Collapse
|
32
|
Salmonella enterica requires ApbC function for growth on tricarballylate: evidence of functional redundancy between ApbC and IscU. J Bacteriol 2008; 190:4596-602. [PMID: 18441067 DOI: 10.1128/jb.00262-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutants of Salmonella enterica lacking apbC have nutritional and biochemical properties indicative of defects in [Fe-S] cluster metabolism. Here we show that apbC is required for S. enterica to use tricarballylate as a carbon and energy source. Tricarballylate catabolism requires three gene products, TcuA, TcuB, and TcuC. Of relevance to this work is the TcuB protein, which has two [4Fe-4S] clusters required for function, making it a logical target for the apbC effect. TcuB activity was 100-fold lower in an apbC mutant than in the isogenic apbC(+) strain. Genetic data show that derepression of the iscRSUA-hscAB-fdx-orf3 operon or overexpression of iscU from a plasmid compensates for the lack of ApbC during growth on tricarballylate. The studies described herein provide evidence that the scaffold protein IscU has a functional overlap with ApbC and that ApbC function is involved in the synthesis of active TcuB.
Collapse
|
33
|
Abstract
Metabolism encompasses the biochemical basis of life and as such spans all biological disciplines. Many decades of basic research, primarily in microbes, have resulted in extensive characterization of metabolic components and regulatory paradigms. With this basic knowledge in hand and the technologies currently available, it has become feasible to move toward an understanding of microbial metabolism as a system rather than as a collection of component parts. Insight into the system will be generated by continued efforts to rigorously define metabolic components combined with renewed efforts to discover components and connections using in vivo-driven approaches. On the tail of a detailed understanding of components and connections that comprise metabolism will come the ability to generate a comprehensive mathematical model that describes the system. While microbes provide the logical organism for this work, the value of such a model would span biological disciplines. Described herein are approaches that can provide insight into metabolism and caveats of their use. The goal of this review is to emphasize that in silico, in vitro, and in vivo approaches must be used in combination to achieve a full understanding of microbial metabolism.
Collapse
Affiliation(s)
- Diana M Downs
- Department of Bacteriology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| |
Collapse
|
34
|
Vencato M, Tian F, Alfano JR, Buell CR, Cartinhour S, DeClerck GA, Guttman DS, Stavrinides J, Joardar V, Lindeberg M, Bronstein PA, Mansfield JW, Myers CR, Collmer A, Schneider DJ. Bioinformatics-enabled identification of the HrpL regulon and type III secretion system effector proteins of Pseudomonas syringae pv. phaseolicola 1448A. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1193-206. [PMID: 17073302 DOI: 10.1094/mpmi-19-1193] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The ability of Pseudomonas syringae pv. phaseolicola to cause halo blight of bean is dependent on its ability to translocate effector proteins into host cells via the hypersensitive response and pathogenicity (Hrp) type III secretion system (T3SS). To identify genes encoding type III effectors and other potential virulence factors that are regulated by the HrpL alternative sigma factor, we used a hidden Markov model, weight matrix model, and type III targeting-associated patterns to search the genome of P. syringae pv. phaseolicola 1448A, which recently was sequenced to completion. We identified 44 high-probability putative Hrp promoters upstream of genes encoding the core T3SS machinery, 27 candidate effectors and related T3SS substrates, and 10 factors unrelated to the Hrp system. The expression of 13 of these candidate HrpL regulon genes was analyzed by real-time polymerase chain reaction, and all were found to be upregulated by HrpL. Six of the candidate type III effectors were assayed for T3SS-dependent translocation into plant cells using the Bordetella pertussis calmodulin-dependent adenylate cyclase (Cya) translocation reporter, and all were translocated. PSPPH1855 (ApbE-family protein) and PSPPH3759 (alcohol dehydrogenase) have no apparent T3SS-related function; however, they do have homologs in the model strain P. syringae pv. tomato DC3000 (PSPTO2105 and PSPTO0834, respectively) that are similarly upregulated by HrpL. Mutations were constructed in the DC3000 homologs and found to reduce bacterial growth in host Arabidopsis leaves. These results establish the utility of the bioinformatic or candidate gene approach to identifying effectors and other genes relevant to pathogenesis in P. syringae genomes.
Collapse
Affiliation(s)
- Monica Vencato
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dougherty MJ, Boyd JM, Downs DM. Inhibition of fructose-1,6-bisphosphatase by aminoimidazole carboxamide ribotide prevents growth of Salmonella enterica purH mutants on glycerol. J Biol Chem 2006; 281:33892-9. [PMID: 16987812 DOI: 10.1074/jbc.m604429200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme fructose-1,6-bisphosphatase (FBP) is key regulatory point in gluconeogenesis. Mutants of Salmonella enterica lacking purH accumulate 5-amino-4-imidazole carboxamide ribotide (AICAR) and are unable to utilize glycerol as sole carbon and energy sources. The work described here demonstrates this lack of growth is due to inhibition of FBP by AICAR. Mutant alleles of fbp that restore growth on glycerol encode proteins resistant to inhibition by AICAR and the allosteric regulator AMP. This is the first report of biochemical characterization of substitutions causing AMP resistance in a bacterial FBP. Inhibition of FBP activity by AICAR occurs at physiologically relevant concentrations and may represent a form of regulation of gluconeogenic flux in Salmonella enterica.
Collapse
Affiliation(s)
- Michael J Dougherty
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
36
|
Dougherty MJ, Downs DM. A connection between iron-sulfur cluster metabolism and the biosynthesis of 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate in Salmonella enterica. MICROBIOLOGY-SGM 2006; 152:2345-2353. [PMID: 16849799 DOI: 10.1099/mic.0.28926-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Several cellular pathways have been identified which affect the efficiency of thiamine biosynthesis in Salmonella enterica. Mutants defective in iron-sulfur (Fe-S) cluster metabolism are less efficient at synthesis of the pyrimidine moiety of thiamine. These mutants are compromised for the conversion of aminoimidazole ribotide (AIR) to 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate (HMP-P), not the synthesis of AIR. The gene product ThiC contains potential ligands for an Fe-S cluster that are required for function in vivo. The conversion of AIR to HMP-P is sensitive to oxidative stress, and variants of ThiC have been identified that have increased sensitivity to oxidative growth conditions. The data are consistent with ThiC or an as-yet-unidentified protein involved in HMP-P synthesis containing an Fe-S cluster required for its physiological function.
Collapse
Affiliation(s)
- Michael J Dougherty
- Department of Bacteriology, University of Wisconsin, 420 Henry Mall, Madison, WI 53706-1502, USA
| | - Diana M Downs
- Department of Bacteriology, University of Wisconsin, 420 Henry Mall, Madison, WI 53706-1502, USA
| |
Collapse
|
37
|
Han GW, Sri Krishna S, Schwarzenbacher R, McMullan D, Ginalski K, Elsliger MA, Brittain SM, Abdubek P, Agarwalla S, Ambing E, Astakhova T, Axelrod H, Canaves JM, Chiu HJ, DiDonato M, Grzechnik SK, Hale J, Hampton E, Haugen J, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Koesema E, Kreusch A, Kuhn P, Miller MD, Morse AT, Moy K, Nigoghossian E, Oommachen S, Ouyang J, Paulsen J, Quijano K, Reyes R, Rife C, Spraggon G, Stevens RC, van den Bedem H, Velasquez J, Wang X, West B, White A, Wolf G, Xu Q, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of the ApbE protein (TM1553) from Thermotoga maritima at 1.58 A resolution. Proteins 2006; 64:1083-90. [PMID: 16779835 DOI: 10.1002/prot.20950] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gye Won Han
- Joint Center for Structural Genomics, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Loo CY, Mitrakul K, Jaafar S, Gyurko C, Hughes CV, Ganeshkumar N. Role of a nosX homolog in Streptococcus gordonii in aerobic growth and biofilm formation. J Bacteriol 2005; 186:8193-206. [PMID: 15576767 PMCID: PMC532431 DOI: 10.1128/jb.186.24.8193-8206.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oral streptococci such as Streptococcus gordonii are facultative anaerobes that initiate biofilm formation on tooth surfaces. An isolated S. gordonii::Tn917-lac biofilm-defective mutant contained a transposon insertion in an open reading frame (ORF) encoding a homolog of NosX of Ralstonia eutropha, a putative maturation factor of nitrous oxide reductase. Located downstream are two genes, qor1 and qor2, predicted to encode two putative NADPH quinone oxidoreductases. These three genes are cotranscribed, forming a putative oxidative stress response (osr) operon in S. gordonii. Inactivation of nosX, qor1, or qor2 resulted in biofilm-defective phenotypes. Expression of nosX, measured by the beta-galactosidase activity of the nosX::Tn917-lac mutant, was growth-phase dependent and enhanced when grown under aerobic conditions or in the presence of paraquat. Real-time reverse transcription-PCR revealed that nosX-specific mRNA levels were increased approximately 8.4 and 3.5 fold in biofilm-derived cells grown on plastic and glass, respectively, when compared to planktonic cells. Expression of nosX increased 19.9 fold in cells grown under aerated aerobic conditions and 4.7 fold in cells grown under static aerobic conditions. Two ORFs immediately adjacent to the osr operon encode a putative NADH oxidase (Nox) and a putative thiol-specific antioxidant enzyme (AhpC, for alkyl hydroperoxide peroxidase C). Expression of nox and ahpC was also significantly increased in cells grown under aerated and static aerobic conditions when compared to anaerobic conditions. In addition, nox expression was increased in biofilm cells compared to planktonic cells. These genes may be part of an island that deals with oxidoreductive response, some of which may be important in S. gordonii biofilm formation.
Collapse
Affiliation(s)
- C Y Loo
- Department of Pediatric Dentistry, Goldman School of Dental Medicine, Boston University, 801 Albany St., Room 215, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Diana M Downs
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
| | | | | |
Collapse
|
40
|
Narita SI, Kanamaru K, Matsuyama SI, Tokuda H. A mutation in the membrane subunit of an ABC transporter LolCDE complex causing outer membrane localization of lipoproteins against their inner membrane-specific signals. Mol Microbiol 2003; 49:167-77. [PMID: 12823819 DOI: 10.1046/j.1365-2958.2003.03569.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lipoproteins in Gram-negative bacteria are anchored to the inner or outer membrane via fatty acids attached to the N-terminal cysteine. The residue at position 2 determines the membrane specificity. An ATP binding cassette transporter LolCDE complex releases lipoproteins with residues other than aspartate at position 2 from the inner membrane, whereas those with aspartate at position 2 are rejected by LolCDE and therefore remain in the inner membrane. For further understanding of this rejection mechanism, a novel strategy was developed to select mutants in which lipoproteins with aspartate at position 2 are released. The isolated mutants carried an alanine to proline mutation at position 40 of LolC, a membrane subunit of the LolCDE complex. A significant portion of an inner membrane lipoprotein, L10P(DQ), was localized to the outer membrane when the LolC mutant was expressed. Periplasmic chaperone LolA formed a complex with the released L10P(DQ), which was subsequently incorporated into the outer membrane in a LolB-dependent manner, indicating that neither LolA nor LolB rejects lipoproteins with aspartate at position 2. The amount of the LolC mutant co-purified with LolD and LolE after membrane solubilization was reduced significantly. Taken together, these results indicate that the mutation causes destabilization of the LolCDE complex and concomitantly prevents the accurate recognition of lipoprotein-sorting signals.
Collapse
Affiliation(s)
- Shin-ichiro Narita
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
41
|
Skovran E, Downs DM. Lack of the ApbC or ApbE protein results in a defect in Fe-S cluster metabolism in Salmonella enterica serovar Typhimurium. J Bacteriol 2003; 185:98-106. [PMID: 12486045 PMCID: PMC141979 DOI: 10.1128/jb.185.1.98-106.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The isc genes function in the assembly of Fe-S clusters and are conserved in many prokaryotic and eukaryotic organisms. In most bacteria studied, the isc operon can be deleted without loss of cell viability, indicating that additional systems for Fe-S cluster assembly must exist. Several laboratories have described nutritional and biochemical defects resulting from mutations in the isc operon. Here we demonstrate that null mutations in two genes of unknown function, apbC and apbE, result in similar cellular deficiencies. Exogenous ferric chloride suppressed these deficiencies in the apbC and apbE mutants, distinguishing them from previously described isc mutants. The deficiencies caused by the apbC and isc mutations were additive, which is consistent with Isc and ApbC's having redundant functions or with Isc and ApbC's functioning in different areas of Fe-S cluster metabolism (e.g., Fe-S cluster assembly and Fe-S cluster repair). Both the ApbC and ApbE proteins are similar in sequence to proteins that function in metal cofactor assembly. Like the enzymes with sequence similarity to ApbC, purified ApbC protein was able to hydrolyze ATP. The data herein are consistent with the hypothesis that the ApbC and ApbE proteins function in Fe-S cluster metabolism in vivo.
Collapse
Affiliation(s)
- Elizabeth Skovran
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
42
|
Dougherty M, Downs DM. The stm4066 gene product of Salmonella enterica serovar Typhimurium has aminoimidazole riboside (AIRs) kinase activity and allows AIRs to satisfy the thiamine requirement of pur mutant strains. J Bacteriol 2003; 185:332-9. [PMID: 12486071 PMCID: PMC141821 DOI: 10.1128/jb.185.1.332-339.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In bacteria the biosynthetic pathways for purine mononucleotides and the hydroxymethyl pyrimidine moiety of thiamine share five reactions that result in the formation of aminoimidazole ribotide, the last metabolite common to both pathways. Here we describe the characterization of a Salmonella enterica mutant strain that has gained the ability to efficiently use exogenous aminoimidazole riboside (AIRs) as a source of thiamine. The lesion responsible for this phenotype is a null mutation in a transcriptional regulator of the GntR family (encoded by stm4068). Lack of this protein derepressed transcription of an associated operon (stm4065-4067) that encoded a predicted kinase. The stm4066 gene product was purified and shown to have AIRs kinase activity in vitro. This activity was consistent with the model presented to explain the phenotype caused by the original mutation. This mutation provides a genetic means to isolate the synthesis of the hydroxymethyl pyrimidine moiety of thiamine from the pathway for purine mononucleotide biosynthesis and thus facilitate in vivo analyses.
Collapse
Affiliation(s)
- Michael Dougherty
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
43
|
Allen S, Zilles JL, Downs DM. Metabolic flux in both the purine mononucleotide and histidine biosynthetic pathways can influence synthesis of the hydroxymethyl pyrimidine moiety of thiamine in Salmonella enterica. J Bacteriol 2002; 184:6130-7. [PMID: 12399482 PMCID: PMC151968 DOI: 10.1128/jb.184.22.6130-6137.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Together, the biosyntheses of histidine, purines, and thiamine pyrophosphate (TPP) contain examples of convergent, divergent, and regulatory pathway integration. Mutations in two purine biosynthetic genes (purI and purH) affect TPP biosynthesis due to flux through the purine and histidine pathways. The molecular genetic characterization of purI mutants and their respective pseudorevertants resulted in the conclusion that <1% of the wild-type activity of the PurI enzyme was sufficient for thiamine but not for purine synthesis. The respective pseudorevertants were found to be informational suppressors. In addition, it was shown that accumulation of the purine intermediate aminoimidazole carboxamide ribotide inhibits thiamine synthesis, specifically affecting the conversion of aminoimidazole ribotide to hydroxymethyl pyrimidine.
Collapse
Affiliation(s)
- Shara Allen
- Department of Bacteriology, University of Wisconsin-Madison, Madison 53706, USA
| | | | | |
Collapse
|
44
|
Yuan YJ, Ma ZY, Wu JC. Isolation of differential genes in suspension cultures of Taxus cuspidata induced by additional taxol. Mol Biotechnol 2002; 20:137-43. [PMID: 11876470 DOI: 10.1385/mb:20:2:137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Addition of taxol into suspension cultures of Taxus cuspidata induced cell apoptosis, which was confirmed by gel electrophoresis of the DNA ladders indicating the progressive delineation of fragmented nuclear DNA (nDNA) into distinct bodies. The additional taxol not only changed the microtubule assembly of cells, but also affected the gene expression. Fourteen cDNA fragments, named as TIGT9-22, were isolated after addition of taxol and their GenBank accession numbers were given as BF704560-BF704573, respectively. Among them, TIGT13 and TIGT21 were apparently homogeneous with apbE and carbamoylphosphate synthetase, respectively. Other cDNA fragments showed no significant analogy with the known sequences in GenBank.
Collapse
MESH Headings
- Amino Acid Sequence
- Apoptosis/genetics
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Cloning, Molecular
- DNA Damage/genetics
- DNA Fragmentation/physiology
- DNA, Complementary/classification
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Databases, Nucleic Acid
- Electrophoresis, Agar Gel
- Electrophoresis, Gel, Two-Dimensional
- Gene Expression
- Genes/genetics
- Molecular Sequence Data
- Paclitaxel/metabolism
- Paclitaxel/pharmacology
- Polymerase Chain Reaction
- RNA/isolation & purification
- Taxus/drug effects
- Taxus/genetics
- Taxus/metabolism
Collapse
Affiliation(s)
- Ying-Jin Yuan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, PR China.
| | | | | |
Collapse
|
45
|
Gralnick J, Downs D. Protection from superoxide damage associated with an increased level of the YggX protein in Salmonella enterica. Proc Natl Acad Sci U S A 2001; 98:8030-5. [PMID: 11416172 PMCID: PMC35462 DOI: 10.1073/pnas.151243198] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2000] [Accepted: 05/15/2001] [Indexed: 11/18/2022] Open
Abstract
The deleterious effect of superoxide radicals on cell growth and survival is predominantly caused by rapid oxidation of labile [Fe-S] clusters in proteins. Oxidation of these clusters releases Fe(II) ions, which participate in Fenton chemistry that damages DNA. Here it is shown that elevated levels of the YggX protein increase the resistance of Salmonella enterica to superoxide stress, reverse enzymatic defects attributed to oxidized [Fe-S] clusters, and decrease the spontaneous mutation frequency. The data are consistent with a model in which YggX protects protein [Fe-S] clusters from oxidation.
Collapse
Affiliation(s)
- J Gralnick
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
46
|
Zilles JL, Kappock TJ, Stubbe J, Downs DM. Altered pathway routing in a class of Salmonella enterica serovar Typhimurium mutants defective in aminoimidazole ribonucleotide synthetase. J Bacteriol 2001; 183:2234-40. [PMID: 11244062 PMCID: PMC95129 DOI: 10.1128/jb.183.7.2234-2240.2001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Salmonella enterica serovar Typhimurium, purine nucleotides and thiamine are synthesized by a branched pathway. The last known common intermediate, aminoimidazole ribonucleotide (AIR), is formed from formylglycinamidine ribonucleotide (FGAM) and ATP by AIR synthetase, encoded by the purI gene in S. enterica. Reduced flux through the first five steps of de novo purine synthesis results in a requirement for purines but not necessarily thiamine. To examine the relationship between the purine and thiamine biosynthetic pathways, purI mutants were made (J. L. Zilles and D. M. Downs, Genetics 143:37-44, 1996). Unexpectedly, some mutant purI alleles (R35C/E57G and K31N/A50G/L218R) allowed growth on minimal medium but resulted in thiamine auxotrophy when exogenous purines were supplied. To explain the biochemical basis for this phenotype, the R35C/E57G mutant PurI protein was purified and characterized kinetically. The K(m) of the mutant enzyme for FGAM was unchanged relative to the wild-type enzyme, but the V(max) was decreased 2.5-fold. The K(m) for ATP of the mutant enzyme was 13-fold increased. Genetic analysis determined that reduced flux through the purine pathway prevented PurI activity in the mutant strain, and purR null mutations suppressed this defect. The data are consistent with the hypothesis that an increased FGAM concentration has the ability to compensate for the lower affinity of the mutant PurI protein for ATP.
Collapse
Affiliation(s)
- J L Zilles
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
47
|
Gralnick J, Webb E, Beck B, Downs D. Lesions in gshA (Encoding gamma-L-glutamyl-L-cysteine synthetase) prevent aerobic synthesis of thiamine in Salmonella enterica serovar typhimurium LT2. J Bacteriol 2000; 182:5180-7. [PMID: 10960103 PMCID: PMC94667 DOI: 10.1128/jb.182.18.5180-5187.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2000] [Accepted: 07/03/2000] [Indexed: 11/20/2022] Open
Abstract
Thiamine pyrophosphate is an essential cofactor that is synthesized de novo in Salmonella enterica serovar Typhimurium and other bacteria. In addition to genes encoding enzymes in the biosynthetic pathway, mutations in other metabolic loci have been shown to prevent thiamine synthesis. The latter loci identify the integration of the thiamine biosynthetic pathway with other metabolic processes and can be uncovered when thiamine biosynthesis is challenged. Mutations in gshA, encoding gamma-L-glutamyl-L-cysteine synthetase, prevent the synthesis of glutathione, the major free thiol in the cell, and are shown here to result in a thiamine auxotrophy in some of the strains tested, including S. enterica LT2. Phenotypic characterization of the gshA mutants indicated they were similar enough to apbC and apbE mutants to warrant the definition of a class of mutants unified by (i) a requirement for both the hydroxymethyl pyrimidine (HMP) and thiazole (THZ) moiety of thiamine, (ii) the ability of L-tryosine to satisfy the THZ requirement, (iii) suppression of the thiamine requirement by anaerobic growth, and (iv) suppression by a second-site mutation at a single locus. Genetic data indicated that a defective ThiH generates the THZ requirement in these strains, and we suggest this defect is due to a reduced ability to repair a critical [Fe-S] cluster.
Collapse
Affiliation(s)
- J Gralnick
- Department of Bacteriology, University of Wisconsin-Madison, 53706, USA
| | | | | | | |
Collapse
|
48
|
Skovran E, Downs DM. Metabolic defects caused by mutations in the isc gene cluster in Salmonella enterica serovar typhimurium: implications for thiamine synthesis. J Bacteriol 2000; 182:3896-903. [PMID: 10869064 PMCID: PMC94571 DOI: 10.1128/jb.182.14.3896-3903.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The metabolic consequences of two insertions, iscR1::MudJ and iscA2::MudJ, in the isc gene cluster of Salmonella enterica serovar Typhimurium were studied. Each of these insertions had polar effects and caused a nutritional requirement for the thiazole moiety of thiamine. Data showed that IscS was required for the synthesis of nicotinic acid and the thiazole moiety of thiamine and that one or more additional isc gene products were required for a distinct step in the thiazole biosynthetic pathway. Strains with isc lesions had reduced succinate dehydrogenase and aconitase activities. Furthermore, isc mutants accumulated increased levels of pyruvate in the growth medium in response to exogenously added iron (FeCl(3)), and this response required a functional ferric uptake regulator, Fur.
Collapse
Affiliation(s)
- E Skovran
- Department of Bacteriology, University of Wisconsin-Madison, 53706, USA
| | | |
Collapse
|
49
|
Frodyma M, Rubio A, Downs DM. Reduced flux through the purine biosynthetic pathway results in an increased requirement for coenzyme A in thiamine synthesis in Salmonella enterica serovar typhimurium. J Bacteriol 2000; 182:236-40. [PMID: 10613889 PMCID: PMC94266 DOI: 10.1128/jb.182.1.236-240.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Work presented here establishes a connection between cellular coenzyme A (CoA) levels and thiamine biosynthesis in Salmonella enterica serovar Typhimurium. Prior work showed that panE mutants (panE encodes ketopantoate reductase) had a conditional requirement for thiamine or pantothenate. Data presented herein show that the nutritional requirement of panE mutants for either thiamine or pantothenate is manifest only when flux through the purine biosynthetic pathway is reduced. Further, the data show that under the above conditions it is the lack of thiamine pyrophosphate, and not decreased CoA levels, that directly prevents growth.
Collapse
Affiliation(s)
- M Frodyma
- Department of Bacteriology, University of Wisconsin-Madison, Madison 53706, USA
| | | | | |
Collapse
|
50
|
Claas K, Weber S, Downs DM. Lesions in the nuo operon, encoding NADH dehydrogenase complex I, prevent PurF-independent thiamine synthesis and reduce flux through the oxidative pentose phosphate pathway in Salmonella enterica serovar typhimurium. J Bacteriol 2000; 182:228-32. [PMID: 10613887 PMCID: PMC94264 DOI: 10.1128/jb.182.1.228-232.2000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Salmonella enterica serovar Typhimurium, PurF-independent thiamine synthesis (or alternative pyrimidine biosynthesis) allows strains, under some growth conditions, to synthesize thiamine in the absence of the first step in the purine biosynthetic pathway. Mutations have been isolated in a number of loci that prevent this synthesis and thus result in an Apb(-) phenotype. Here we identify a new class of mutations that prevent PurF-independent thiamine synthesis and show that they are defective in the nuo genes, which encode the major, energy-generating NADH dehydrogenase of the cell. Data presented here indicated that a nuo mutant has reduced flux through the oxidative pentose phosphate pathway that may contribute to, but is not sufficient to cause, the observed thiamine requirement. We suggest that reduction of the oxidative pentose phosphate pathway capacity in a nuo mutant is an attempt to restore the ratio between reduced and oxidized pyridine nucleotide pools.
Collapse
Affiliation(s)
- K Claas
- Department of Bacteriology, University of Wisconsin-Madison, Madison 53711, USA
| | | | | |
Collapse
|