1
|
Cox MM, Goodman MF, Keck JL, van Oijen A, Lovett ST, Robinson A. Generation and Repair of Postreplication Gaps in Escherichia coli. Microbiol Mol Biol Rev 2023; 87:e0007822. [PMID: 37212693 PMCID: PMC10304936 DOI: 10.1128/mmbr.00078-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
When replication forks encounter template lesions, one result is lesion skipping, where the stalled DNA polymerase transiently stalls, disengages, and then reinitiates downstream to leave the lesion behind in a postreplication gap. Despite considerable attention in the 6 decades since postreplication gaps were discovered, the mechanisms by which postreplication gaps are generated and repaired remain highly enigmatic. This review focuses on postreplication gap generation and repair in the bacterium Escherichia coli. New information to address the frequency and mechanism of gap generation and new mechanisms for their resolution are described. There are a few instances where the formation of postreplication gaps appears to be programmed into particular genomic locations, where they are triggered by novel genomic elements.
Collapse
Affiliation(s)
- Michael M. Cox
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Myron F. Goodman
- Department of Biological Sciences, University of Southern California, University Park, Los Angeles, California, USA
- Department of Chemistry, University of Southern California, University Park, Los Angeles, California, USA
| | - James L. Keck
- Department of Biological Chemistry, University of Wisconsin—Madison School of Medicine, Madison, Wisconsin, USA
| | - Antoine van Oijen
- Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Susan T. Lovett
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA
| | - Andrew Robinson
- Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
2
|
Bethke JH, Davidovich A, Cheng L, Lopatkin AJ, Song W, Thaden JT, Fowler VG, Xiao M, You L. Environmental and genetic determinants of plasmid mobility in pathogenic Escherichia coli. SCIENCE ADVANCES 2020; 6:eaax3173. [PMID: 32042895 PMCID: PMC6981087 DOI: 10.1126/sciadv.aax3173] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 11/20/2019] [Indexed: 05/10/2023]
Abstract
Plasmids are key vehicles of horizontal gene transfer (HGT), mobilizing antibiotic resistance, virulence, and other traits among bacterial populations. The environmental and genetic forces that drive plasmid transfer are poorly understood, however, due to the lack of definitive quantification coupled with genomic analysis. Here, we integrate conjugative phenotype with plasmid genotype to provide quantitative analysis of HGT in clinical Escherichia coli pathogens. We find a substantial proportion of these pathogens (>25%) able to readily spread resistance to the most common classes of antibiotics. Antibiotics of varied modes of action had less than a 5-fold effect on conjugation efficiency in general, with one exception displaying 31-fold promotion upon exposure to macrolides and chloramphenicol. In contrast, genome sequencing reveals plasmid incompatibility group strongly correlates with transfer efficiency. Our findings offer new insights into the determinants of plasmid mobility and have implications for the development of treatments that target HGT.
Collapse
Affiliation(s)
- Jonathan H. Bethke
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
| | - Adam Davidovich
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Li Cheng
- BGI-Shenzhen, Shenzhen 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Allison J. Lopatkin
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Wenchen Song
- BGI-Shenzhen, Shenzhen 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
| | - Joshua T. Thaden
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA
| | - Vance G. Fowler
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA
| | - Minfeng Xiao
- BGI-Shenzhen, Shenzhen 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
| | - Lingchong You
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
3
|
Abstract
Homologous recombination is an ubiquitous process that shapes genomes and repairs DNA damage. The reaction is classically divided into three phases: presynaptic, synaptic, and postsynaptic. In Escherichia coli, the presynaptic phase involves either RecBCD or RecFOR proteins, which act on DNA double-stranded ends and DNA single-stranded gaps, respectively; the central synaptic steps are catalyzed by the ubiquitous DNA-binding protein RecA; and the postsynaptic phase involves either RuvABC or RecG proteins, which catalyze branch-migration and, in the case of RuvABC, the cleavage of Holliday junctions. Here, we review the biochemical properties of these molecular machines and analyze how, in light of these properties, the phenotypes of null mutants allow us to define their biological function(s). The consequences of point mutations on the biochemical properties of recombination enzymes and on cell phenotypes help refine the molecular mechanisms of action and the biological roles of recombination proteins. Given the high level of conservation of key proteins like RecA and the conservation of the principles of action of all recombination proteins, the deep knowledge acquired during decades of studies of homologous recombination in bacteria is the foundation of our present understanding of the processes that govern genome stability and evolution in all living organisms.
Collapse
|
4
|
Arshad R, Farooq S, Ali SS. Improvement of penicillin G acylase expression in Escherichia coli through UV induced mutations. Braz J Microbiol 2010; 41:1133-41. [PMID: 24031596 PMCID: PMC3769778 DOI: 10.1590/s1517-838220100004000035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 02/18/2010] [Accepted: 04/26/2010] [Indexed: 11/21/2022] Open
Abstract
We used ultraviolet (UV) radiation to induce mutation in three locally isolated strains of Escherichia coli. Different dilutions of bacterial cultures were exposed to UV lamp of 254 nm wavelength for different time intervals at varied distances ranging from 5 to 210 sec and 5 to 100 cm. Viable colonies were screened for mutants with an increased production of penicillin G acylase (PGA) and a reduced production of β-lactamase, which are the desired properties of PGA producing industrial strains. A survival curve was made to get optimum exposure time and distance. The survival percentage for each exposure period was calculated and 1-5% survival was found useful for obtaining mutants with desired change. Screening for PGA and β-lactamase constitutive and/or deficient mutants was made by Serratia marcescens overlay test. A total of 100 survivors were selected of which 49% expressed PGA activity higher than the parent strain. Frequency of β-lactamase constitutive and deficient mutants was 48 and 52%, respectively. The best hyper-producing mutant (BDCS-N-M74), with almost negligible expression of β-lactamase, exhibited three-fold (22.5 mg 6-APA h(-1) mg(-1) wet cells) increase in PGA activity compared with that in the parent strain (6.7 mg 6-APA h(-1) mg(-1) wet cells). The results indicated the successful induction of UV mediated mutation in E. coli for PGA hyper-producing mutants lacking β-lactamase activity.
Collapse
Affiliation(s)
- Rubina Arshad
- Nuclear Institute for Agriculture and Biology (NIAB) , Faisalabad Pakistan
| | | | | |
Collapse
|
5
|
Michel-Marks E, Courcelle CT, Korolev S, Courcelle J. ATP binding, ATP hydrolysis, and protein dimerization are required for RecF to catalyze an early step in the processing and recovery of replication forks disrupted by DNA damage. J Mol Biol 2010; 401:579-89. [PMID: 20558179 DOI: 10.1016/j.jmb.2010.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/06/2010] [Accepted: 06/08/2010] [Indexed: 12/30/2022]
Abstract
In Escherichia coli, the recovery of replication following disruption by UV-induced DNA damage requires the RecF protein and occurs through a process that involves stabilization of replication fork DNA, resection of nascent DNA to allow the offending lesion to be repaired, and reestablishment of a productive replisome on the DNA. RecF forms a homodimer and contains an ATP binding cassette ATPase domain that is conserved among eukaryotic SMC (structural maintenance of chromosome) proteins, including cohesin, condensin, and Rad50. Here, we investigated the functions of RecF dimerization, ATP binding, and ATP hydrolysis in the progressive steps involved in recovering DNA synthesis following disruption by DNA damage. RecF point mutations with altered biochemical properties were constructed in the chromosome. We observed that protein dimerization, ATP binding, and ATP hydrolysis were essential for maintaining and processing the arrested replication fork, as well as for restoring DNA synthesis. In contrast, stabilization of the RecF protein dimer partially protected the DNA at the arrested fork from degradation, although overall processing and recovery remained severely impaired.
Collapse
|
6
|
Handa N, Morimatsu K, Lovett ST, Kowalczykowski SC. Reconstitution of initial steps of dsDNA break repair by the RecF pathway of E. coli. Genes Dev 2009; 23:1234-45. [PMID: 19451222 DOI: 10.1101/gad.1780709] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The RecF pathway of Escherichia coli is important for recombinational repair of DNA breaks and gaps. Here ;we reconstitute in vitro a seven-protein reaction that recapitulates early steps of dsDNA break repair using purified RecA, RecF, RecO, RecR, RecQ, RecJ, and SSB proteins, components of the RecF system. Their combined action results in processing of linear dsDNA and its homologous pairing with supercoiled DNA. RecA, RecO, RecR, and RecJ are essential for joint molecule formation, whereas SSB and RecF are stimulatory. This reconstituted system reveals an unexpected essential function for RecJ exonuclease: the capability to resect duplex DNA. RecQ helicase stimulates this processing, but also disrupts joint molecules. RecO and RecR have two indispensable functions: They mediate exchange of RecA for SSB to form the RecA nucleoprotein filament, and act with RecF to load RecA onto the SSB-ssDNA complex at processed ssDNA-dsDNA junctions. The RecF pathway has many parallels with recombinational repair in eukaryotes.
Collapse
Affiliation(s)
- Naofumi Handa
- Department of Microbiology, University of California at Davis, Davis, Calfironia 95616, USA
| | | | | | | |
Collapse
|
7
|
Makharashvili N, Mi T, Koroleva O, Korolev S. RecR-mediated modulation of RecF dimer specificity for single- and double-stranded DNA. J Biol Chem 2008; 284:1425-34. [PMID: 19017635 DOI: 10.1074/jbc.m806378200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RecF pathway proteins play an important role in the restart of stalled replication and DNA repair in prokaryotes. Following DNA damage, RecF, RecR, and RecO initiate homologous recombination (HR) by loading of the RecA recombinase on single-stranded (ss) DNA, protected by ssDNA-binding protein. The specific role of RecF in this process is not well understood. Previous studies have proposed that RecF directs the RecOR complex to boundaries of damaged DNA regions by recognizing single-stranded/double-stranded (ss/ds) DNA junctions. RecF belongs to ABC-type ATPases, which function through an ATP-dependent dimerization. Here, we demonstrate that the RecF of Deinococcus radiodurans interacts with DNA as an ATP-dependent dimer, and that the DNA binding and ATPase activity of RecF depend on both the structure of DNA substrate, and the presence of RecR. We found that RecR interacts as a tetramer with the RecF dimer. RecR increases the RecF affinity to dsDNA without stimulating ATP hydrolysis but destabilizes RecF binding to ssDNA and dimerization, likely due to increasing the ATPase rate. The DNA-dependent binding of RecR to the RecF-DNA complex occurs through specific protein-protein interactions without significant contributions from RecR-DNA interactions. Finally, RecF neither alone nor in complex with RecR preferentially binds to the ss/dsDNA junction. Our data suggest that the specificity of the RecFOR complex toward the boundaries of DNA damaged regions may result from a network of protein-protein and DNA-protein interactions, rather than a simple recognition of the ss/dsDNA junction by RecF.
Collapse
Affiliation(s)
- Nodar Makharashvili
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | |
Collapse
|
8
|
Al-Hadid Q, Ona K, Courcelle CT, Courcelle J. RecA433 cells are defective in recF-mediated processing of disrupted replication forks but retain recBCD-mediated functions. Mutat Res 2008; 645:19-26. [PMID: 18782580 DOI: 10.1016/j.mrfmmm.2008.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/14/2008] [Accepted: 08/01/2008] [Indexed: 05/26/2023]
Abstract
RecA is required for recombinational processes and cell survival following UV-induced DNA damage. recA433 is a historically important mutant allele that contains a single amino acid substitution (R243H). This mutation separates the recombination and survival functions of RecA. recA433 mutants remain proficient in recombination as measured by conjugation or transduction, but are hypersensitive to UV-induced DNA damage. The cellular functions carried out by RecA require either recF pathway proteins or recBC pathway proteins to initiate RecA-loading onto the appropriate DNA substrates. In this study, we characterized the ability of recA433 to carry out functions associated with either the recF pathway or recBC pathway. We show that several phenotypic deficiencies exhibited by recA433 mutants are similar to recF mutants but distinct from recBC mutants. In contrast to recBC mutants, recA433 and recF mutants fail to process or resume replication following disruption by UV-induced DNA damage. However, recA433 and recF mutants remain proficient in conjugational recombination and are resistant to formaldehyde-induced protein-DNA crosslinks, functions that are impaired in recBC mutants. The results are consistent with a model in which the recA433 mutation selectively impairs RecA functions associated with the RecF pathway, while retaining the ability to carry out RecBCD pathway-mediated functions. These results are discussed in the context of the recF and recBC pathways and the potential substrates utilized in each case.
Collapse
Affiliation(s)
- Qais Al-Hadid
- Department of Biology, Portland State University, Portland, OR 97207, USA.
| | | | | | | |
Collapse
|
9
|
Arad G, Hendel A, Urbanke C, Curth U, Livneh Z. Single-stranded DNA-binding protein recruits DNA polymerase V to primer termini on RecA-coated DNA. J Biol Chem 2008; 283:8274-82. [PMID: 18223256 DOI: 10.1074/jbc.m710290200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translesion DNA synthesis (TLS) by DNA polymerase V (polV) in Escherichia coli involves accessory proteins, including RecA and single-stranded DNA-binding protein (SSB). To elucidate the role of SSB in TLS we used an in vitro exonuclease protection assay and found that SSB increases the accessibility of 3' primer termini located at abasic sites in RecA-coated gapped DNA. The mutant SSB-113 protein, which is defective in protein-protein interactions, but not in DNA binding, was as effective as wild-type SSB in increasing primer termini accessibility, but deficient in supporting polV-catalyzed TLS. Consistently, the heterologous SSB proteins gp32, encoded by phage T4, and ICP8, encoded by herpes simplex virus 1, could replace E. coli SSB in the TLS reaction, albeit with lower efficiency. Immunoprecipitation experiments indicated that polV directly interacts with SSB and that this interaction is disrupted by the SSB-113 mutation. Taken together our results suggest that SSB functions to recruit polV to primer termini on RecA-coated DNA, operating by two mechanisms: 1) increasing the accessibility of 3' primer termini caused by binding of SSB to DNA and 2) a direct SSB-polV interaction mediated by the C terminus of SSB.
Collapse
Affiliation(s)
- Gali Arad
- Department of Biological Chemistry, Weizmann Institute of Science, Hertzl St, Rehovot, Israel
| | | | | | | | | |
Collapse
|
10
|
Genetics of recombination in the model bacterium Escherichia coli. MOLECULAR GENETICS OF RECOMBINATION 2007. [DOI: 10.1007/978-3-540-71021-9_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Fujii S, Isogawa A, Fuchs RP. RecFOR proteins are essential for Pol V-mediated translesion synthesis and mutagenesis. EMBO J 2006; 25:5754-63. [PMID: 17139245 PMCID: PMC1698908 DOI: 10.1038/sj.emboj.7601474] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 10/26/2006] [Indexed: 11/08/2022] Open
Abstract
When the replication fork moves through the template DNA containing lesions, daughter-strand gaps are formed opposite lesion sites. These gaps are subsequently filled-in either by translesion synthesis (TLS) or by homologous recombination. RecA filaments formed within these gaps are key intermediates for both of the gap-filling pathways. For instance, Pol V, the major lesion bypass polymerase in Escherichia coli, requires a functional interaction with the tip of the RecA filament. Here, we show that all three recombination mediator proteins RecFOR are needed to build a functionally competent RecA filament that supports efficient Pol V-mediated TLS in the presence of ssDNA-binding protein (SSB). A positive contribution of RecF protein to Pol V lesion bypass is demonstrated. When Pol III and Pol V are both present, Pol III imparts a negative effect on Pol V-mediated lesion bypass that is counteracted by the combined action of RecFOR and SSB. Mutations in recF, recO or recR gene abolish induced mutagenesis in E. coli.
Collapse
Affiliation(s)
- Shingo Fujii
- Genome Instability and Carcinogenesis, CNRS FRE2931, Marseille, France
| | - Asako Isogawa
- Genome Instability and Carcinogenesis, CNRS FRE2931, Marseille, France
| | - Robert P Fuchs
- Genome Instability and Carcinogenesis, CNRS FRE2931, Marseille, France
- Genome Instability and Carcinogenesis, CRNS, FRE 2931, 31, chemin Joseph Aiguier, 13402 Marseille cedex 20, 13402, France. Tel.: +33 4 9116 4271; Fax: +33 4 9116 4168; E-mail:
| |
Collapse
|
12
|
Makharashvili N, Koroleva O, Bera S, Grandgenett DP, Korolev S. A novel structure of DNA repair protein RecO from Deinococcus radiodurans. Structure 2005; 12:1881-9. [PMID: 15458636 DOI: 10.1016/j.str.2004.08.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 07/29/2004] [Accepted: 08/11/2004] [Indexed: 11/30/2022]
Abstract
Recovery of arrested replication requires coordinated action of DNA repair, replication, and recombination machineries. Bacterial RecO protein is a member of RecF recombination repair pathway important for replication recovery. RecO possesses two distinct activities in vitro, closely resembling those of eukaryotic protein Rad52: DNA annealing and RecA-mediated DNA recombination. Here we present the crystal structure of the RecO protein from the extremely radiation resistant bacteria Deinococcus radiodurans (DrRecO) and characterize its DNA binding and strand annealing properties. The RecO structure is totally different from the Rad52 structure. DrRecO is comprised of three structural domains: an N-terminal domain which adopts an OB-fold, a novel alpha-helical domain, and an unusual zinc-binding domain. Sequence alignments suggest that the multidomain architecture is conserved between RecO proteins from other bacterial species and is suitable to elucidate sites of protein-protein and DNA-protein interactions necessary for RecO functions during the replication recovery and DNA repair.
Collapse
Affiliation(s)
- Nodar Makharashvili
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
The recent finding of a role for the recA gene in DNA replication restart does not negate previous data showing the existence of recA-dependent recombinational DNA repair, which occurs when there are two DNA duplexes present, as in the case for recA-dependent excision repair, for postreplication repair (i.e., the repair of DNA daughter-strand gaps), and for the repair of DNA double-strand breaks. Recombinational DNA repair is critical for the survival of damaged cells.
Collapse
Affiliation(s)
- Kendric C Smith
- Emeritus Professor of Radiation Oncology (Radiation Biology), Stanford University School of Medicine, 927 Mears Ct., Stanford, CA 94305-1041, USA.
| |
Collapse
|
14
|
Abstract
We present a summary of recent progress in understanding Escherichia coli K-12 gene and protein functions. New information has come both from classical biological experimentation and from using the analytical tools of functional genomics. The content of the E. coli genome can clearly be seen to contain elements acquired by horizontal transfer. Nevertheless, there is probably a large, stable core of >3500 genes that are shared among all E. coli strains. The gene-enzyme relationship is examined, and, in many cases, it exhibits complexity beyond a simple one-to-one relationship. Also, the E. coli genome can now be seen to contain many multiple enzymes that carry out the same or closely similar reactions. Some are similar in sequence and may share common ancestry; some are not. We discuss the concept of a minimal genome as being variable among organisms and obligatorily linked to their life styles and defined environmental conditions. We also address classification of functions of gene products and avenues of insight into the history of protein evolution.
Collapse
Affiliation(s)
- M Riley
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA. ,
| | | |
Collapse
|