1
|
Wu Q, Han T, Yang L, Wang Q, Zhao Y, Jiang D, Ruan X. The essential roles of OsFtsH2 in developing the chloroplast of rice. BMC PLANT BIOLOGY 2021; 21:445. [PMID: 34598671 PMCID: PMC8485545 DOI: 10.1186/s12870-021-03222-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/20/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Filamentation temperature-sensitive H (FtsH) is an ATP-dependent zinc metalloprotease with ATPase activity, proteolysis activity and molecular chaperone-like activity. For now, a total of nine FtsH proteins have been encoded in rice, but their functions have not revealed in detail. In order to investigate the molecular mechanism of OsFtsH2 here, several osftsh2 knockout mutants were successfully generated by the CRISPR/Cas9 gene editing technology. RESULTS All the mutants exhibited a phenotype of striking albino leaf and could not survive through the stage of three leaves. OsFtsH2 was located in the chloroplast and preferentially expressed in green tissues. In addition, osftsh2 mutants could not form normal chloroplasts and had lost photosynthetic autotrophic capacity. RNA sequencing analysis indicated that many biological processes such as photosynthesis-related pathways and plant hormone signal transduction were significantly affected in osftsh2 mutants. CONCLUSIONS Overall, the results suggested OsFtsH2 to be essential for chloroplast development in rice.
Collapse
Affiliation(s)
- Qingfei Wu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Tiantian Han
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Yang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Qiang Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China.
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| | - Yingxian Zhao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Dean Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Ruan
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China.
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| |
Collapse
|
2
|
Lin Y, Tan L, Zhao L, Sun X, Sun C. RLS3, a protein with AAA+ domain localized in chloroplast, sustains leaf longevity in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:971-982. [PMID: 27357911 DOI: 10.1111/jipb.12487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/28/2016] [Indexed: 05/05/2023]
Abstract
Leaf senescence plays an important role in crop developmental processes that dramatically affect crop yield and grain quality. The genetic regulation of leaf senescence is complex, involving many metabolic and signaling pathways. Here, we identified a rapid leaf senescence 3 (rls3) mutant that displayed accelerated leaf senescence, shorter plant height and panicle length, and lower seed set rate than the wild type. Map-based cloning revealed that RLS3 encodes a protein with AAA+ domain, localizing it to chloroplasts. Sequence analysis found that the rls3 gene had a single-nucleotide substitution (G→A) at the splice site of the 10th intron/11th exon, resulting in the cleavage of the first nucleotide in 11th exon and premature termination of RLS3 protein translation. Using transmission electron microscope, the chloroplasts of the rls3 mutant were observed to degrade much faster than those of the wild type. The investigation of the leaf senescence process under dark incubation conditions further revealed that the rls3 mutant displayed rapid leaf senescence. Thus, the RLS3 gene plays key roles in sustaining the normal growth of rice, while loss of function in RLS3 leads to rapid leaf senescence. The identification of RLS3 will be helpful to elucidate the mechanisms involved in leaf senescence in rice.
Collapse
Affiliation(s)
- Yanhui Lin
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Lubin Tan
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Lei Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Xianyou Sun
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Chuanqing Sun
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Yu F, Park SS, Liu X, Foudree A, Fu A, Powikrowska M, Khrouchtchova A, Jensen PE, Kriger JN, Gray GR, Rodermel SR. SUPPRESSOR OF VARIEGATION4, a new var2 suppressor locus, encodes a pioneer protein that is required for chloroplast biogenesis. MOLECULAR PLANT 2011; 4:229-40. [PMID: 21220584 DOI: 10.1093/mp/ssq074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
VAR2 is an integral thylakoid membrane protein and a member of the versatile FtsH class of metalloproteases in prokaryotes and eukaryotes. Recessive mutations in the VAR2 locus give rise to variegated plants (var2) that contain white sectors with abnormal plastids and green sectors with normal-appearing chloroplasts. In a continuing effort to isolate second-site suppressors of var2 variegation, we characterize in this report ems2505, a suppressor strain that has a virescent phenotype due to a missense mutation in At4g28590, the gene for a pioneer protein. We designated this gene SVR4 (for SUPPRESSOR OF VARIEGATION4) and the mutant allele in ems2505 as svr4-1. We demonstrate that SVR4 is located in chloroplasts and that svr4-1 single mutants are normal with respect to chloroplast anatomy and thylakoid membrane protein accumulation. However, they are modestly impaired in several aspects of photochemistry and have enhanced non-photochemical quenching (NPQ) capacity. A T-DNA insertion allele of SVR4, svr4-2, is seedling-lethal due to an early blockage of chloroplast development. We conclude that SVR4 is essential for chloroplast biogenesis, and hypothesize that SVR4 mediates some aspect of thylakoid structure or function that controls NPQ. We propose that in the suppressor strain, photoinhibitory pressure caused by a lack of VAR2 is ameliorated early in chloroplast development by enhanced NPQ capacity caused by reduced SVR4 activity. This would result in an increase in the number of chloroplasts that are able to surmount a threshold necessary to avoid photo-damage and thereby develop into functional chloroplasts.
Collapse
Affiliation(s)
- Fei Yu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Caspeta L, Flores N, Pérez NO, Bolívar F, Ramírez OT. The effect of heating rate onEscherichia colimetabolism, physiological stress, transcriptional response, and production of temperature-induced recombinant protein: A scale-down study. Biotechnol Bioeng 2009; 102:468-82. [DOI: 10.1002/bit.22084] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Abstract
This chapter discusses several topics relating to the mechanisms of mRNA decay. These topics include the following: important physical properties of mRNA molecules that can alter their stability; methods for determining mRNA half-lives; the genetics and biochemistry of proteins and enzymes involved in mRNA decay; posttranscriptional modification of mRNAs; the cellular location of the mRNA decay apparatus; regulation of mRNA decay; the relationships among mRNA decay, tRNA maturation, and ribosomal RNA processing; and biochemical models for mRNA decay. Escherichia coli has multiple pathways for ensuring the effective decay of mRNAs and mRNA decay is closely linked to the cell's overall RNA metabolism. Finally, the chapter highlights important unanswered questions regarding both the mechanism and importance of mRNA decay.
Collapse
|
6
|
Simionato MR, Tucker CM, Kuboniwa M, Lamont G, Demuth DR, Tribble GD, Lamont RJ. Porphyromonas gingivalis genes involved in community development with Streptococcus gordonii. Infect Immun 2006; 74:6419-28. [PMID: 16923784 PMCID: PMC1695522 DOI: 10.1128/iai.00639-06] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Porphyromonas gingivalis, one of the causative agents of adult periodontitis, develops biofilm microcolonies on substrata of Streptococcus gordonii but not on Streptococcus mutans. P. gingivalis genome microarrays were used to identify genes differentially regulated during accretion of P. gingivalis in heterotypic biofilms with S. gordonii. Thirty-three genes showed up- or downregulation by array analysis, and differential expression was confirmed by quantitative reverse transcription-PCR. The functions of the regulated genes were predominantly related to metabolism and energy production. In addition, many of the genes have no current known function. The roles of two upregulated genes, ftsH (PG0047) encoding an ATP-dependent zinc metallopeptidase and ptpA (PG1641) encoding a putative tyrosine phosphatase, were investigated further by mutational analysis. Strains with mutations in these genes developed more abundant biofilms with S. gordonii than the parental strain developed. ftsH and ptpA may thus participate in a regulatory network that constrains P. gingivalis accumulation in heterotypic biofilms. This study provided a global analysis of P. gingivalis transcriptional responses in an oral microbial community and also provided insight into the regulation of heterotypic biofilm development.
Collapse
Affiliation(s)
- M Regina Simionato
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Yu F, Park S, Rodermel SR. The Arabidopsis FtsH metalloprotease gene family: interchangeability of subunits in chloroplast oligomeric complexes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:864-76. [PMID: 14996218 DOI: 10.1111/j.1365-313x.2003.02014.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Arabidopsis At filamentation temperature sensitive (FtsH) metalloprotease gene family comprises 12 members (AtFtsH1-AtFtsH12), including three pairs of closely related genes that are targeted to chloroplasts (AtFtsH2 and AtFtsH8; AtFtsH1 and AtFtsH5; and AtFtsH7 and AtFtsH9). Mutations in AtFtsH5 (var1) and AtFtsH2 (var2) give rise to variegated plants with green- and white-sectored leaves. Cells in the green sectors contain morphologically normal chloroplasts, whereas cells in the white sectors are blocked in chloroplast biogenesis. A major question is how chloroplasts arise in cells that have a mutant genotype. We have found by two-dimensional (2-D) green gel and gel filtration analyses that AtFtsH2/VAR2 forms oligomeric complexes. Two bands in the 2-D green gels that correspond to AtFtsH5/VAR1 + AtFtsH1 and AtFtsH2/VAR2 + AtFtsH8 have been identified, and these bands are coordinately reduced in amount in var1 and var2 thylakoids that lack AtFtsH5/VAR1 and AtFtsH2/VAR2, respectively. These reductions are not because of alterations in transcript abundance. Overexpression of AtFtsH8 in var2-4 (a putative null allele) normalizes the variegation phenotype of the mutant and restores the two bands to their wild-type levels. These results suggest that AtFtsH8 is interchangeable with AtFtsH2/VAR2 in AtFtsH-containing oligomers, and that the two proteins have redundant functions. Consistent with this hypothesis, AtFtsH2 and AtFtsH8 have similar expression patterns, as monitored by promoter-beta-glucuronidase (GUS) fusion and RT-PCR experiments. Based on our findings, we propose that AtFtsH1, AtFtsH2/VAR2, AtFtsH5/VAR1, and AtFtsH8 interact to form oligomeric structures, and that subunit stoichiometry is controlled post-transcriptionally in var1 and var2, perhaps by turnover. A threshold model is presented to explain the pattern of variegation in var2 in which AtFtsH8 provides a compensating activity in the green sectors of the mutant.
Collapse
Affiliation(s)
- Fei Yu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
8
|
Bruckner RC, Gunyuzlu PL, Stein RL. Coupled kinetics of ATP and peptide hydrolysis by Escherichia coli FtsH protease. Biochemistry 2003; 42:10843-52. [PMID: 12962509 DOI: 10.1021/bi034516h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
FtsH from Escherichia coli is an ATP- and Zn(2+)-dependent integral membrane protease that is involved in the degradation of regulatory proteins such as sigma(32) and uncomplexed subunits of membrane protein complexes such as secY of the protein translocase. We describe a protocol for solubilizing the recombinant enzyme from inclusion bodies and its subsequent refolding and purification to near homogeneity. This is a high-yield protocol and produces in excess of 20 mg of purified FtsH per liter of E. coli culture. We found that refolded FtsH has biochemical properties similar to detergent extracted overexpressed protein described previously. FtsH forms a large complex with an apparent mass of 1200 kDa as determined by gel filtration. Both ATPase and protease activities are coincident with this large complex; smaller forms of FtsH do not exhibit either activity. While FtsH-catalyzed hydrolysis of ATP can occur in the absence of protein substrate (k(c) = 22 min(-1); K(m) = 23 microM), proteolysis shows an absolute dependence on nucleoside-5'-triphosphates, including ATP, CTP, and various analogues. In the presence of 5 mM ATP, FtsH catalyzes the hydrolysis of sigma(32) with the following observed kinetic parameters: k(c) = 0.18 min(-1) and K(m) = 8.5 microM. Significantly, this reaction is processive and generates no intermediate species, but rather, approximately 10 peptide products, all of MW <3 kDa. FtsH protease also efficiently hydrolyzes the peptide Phe-Gly-His-(NO)2Phe-Phe-Ala-Phe-OMe. Hydrolysis occurs exclusively at the (NO)2Phe-Phe bond (k(c) = 2.1 min(-1); K(m) = 12 microM), and like proteolysis, shows an absolute dependence on NTPs. We propose a mechanism for the coupled hydrolytic activities of FtsH toward ATP and peptide substrates that is consistent with a recently proposed structural model for FtsH.
Collapse
Affiliation(s)
- Robert C Bruckner
- Department of Chemical Enzymology, Pharmaceutical Research Institute, Bristol-Myers Squibb Company, P.O. Box 80400, Wilmington, Delaware 19880, USA.
| | | | | |
Collapse
|
9
|
Bernstein JA, Khodursky AB, Lin PH, Lin-Chao S, Cohen SN. Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci U S A 2002; 99:9697-702. [PMID: 12119387 PMCID: PMC124983 DOI: 10.1073/pnas.112318199] [Citation(s) in RCA: 637] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2002] [Indexed: 11/18/2022] Open
Abstract
Much of the information available about factors that affect mRNA decay in Escherichia coli, and by inference in other bacteria, has been gleaned from study of less than 25 of the approximately 4,300 predicted E. coli messages. To investigate these factors more broadly, we examined the half-lives and steady-state abundance of known and predicted E. coli mRNAs at single-gene resolution by using two-color fluorescent DNA microarrays. An rRNA-based strategy for normalization of microarray data was developed to permit quantitation of mRNA decay after transcriptional arrest by rifampicin. We found that globally, mRNA half-lives were similar in nutrient-rich media and defined media in which the generation time was approximately tripled. A wide range of stabilities was observed for individual mRNAs of E. coli, although approximately 80% of all mRNAs had half-lives between 3 and 8 min. Genes having biologically related metabolic functions were commonly observed to have similar stabilities. Whereas the half-lives of a limited number of mRNAs correlated positively with their abundance, we found that overall, increased mRNA stability is not predictive of increased abundance. Neither the density of putative sites of cleavage by RNase E, which is believed to initiate mRNA decay in E. coli, nor the free energy of folding of 5' or 3' untranslated region sequences was predictive of mRNA half-life. Our results identify previously unsuspected features of mRNA decay at a global level and also indicate that generalizations about decay derived from the study of individual gene transcripts may have limited applicability.
Collapse
Affiliation(s)
- Jonathan A Bernstein
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Steven Rodermel
- Department of Genetics, Development and Cell Biology, 353 Bessey Hall, Iowa State University, Ames, IA 50014, Tel: 515 294-8890, fax: 294-1337,
| |
Collapse
|
11
|
Abstract
Cytoplasmic proteolysis is an indispensable process for proper function of a cell. Degradation of many intracellular proteins is initiated by ATP-dependent proteinases, which are involved in the regulation of the level of proteins with short half-lives. In addition, they remove many damaged and abnormal proteins and thus play also an important role during stress. ATP-dependent proteinases are large multi-subunit assemblies composed of proteolytic core domains and ATPase-containing regulatory domains on a single polypeptide chain or on distinct subunits, which can act as molecular chaperones. This review briefly summarizes the data about four main groups of these proteinases in bacteria (i.e. Lon, Clp family, HslUV and FtsH) and characterizes their structure, mechanism of action and properties.
Collapse
Affiliation(s)
- O Hlavácek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia
| | | |
Collapse
|
12
|
Cooper KW, Baneyx F. Escherichia coli FtsH (HflB) degrades a membrane-associated TolAI-II-beta-lactamase fusion protein under highly denaturing conditions. Protein Expr Purif 2001; 21:323-32. [PMID: 11237695 DOI: 10.1006/prep.2000.1378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TolAI--II--beta-lactamase, a fusion protein consisting of the inner membrane and transperiplasmic domains of TolA followed by TEM--beta-lactamase associated with the inner membrane but remained confined to the cytoplasm when expressed at high level in Escherichia coli. Although the fusion protein was resistant to proteolysis in vivo, it was hydrolyzed during preparative SDS-polyacrylamide electrophoresis and when insoluble cellular fractions unfolded with 5 M urea were subjected to microdialysis. Inhibitor profiling studies revealed that both a metallo- and serine protease were involved in TolAI--II--beta-lactamase degradation under denaturing conditions. The in vitro degradation rates of the fusion protein were not affected when insoluble fractions were harvested from a strain lacking protease IV, but were significantly reduced when microdialysis experiments were conducted with material isolated from an isogenic ftsH1 mutant. Adenine nucleotides were not required for degradation, and ATP supplementation did not accelerate the apparent rate of TolAI--II--beta-lactamase hydrolysis under denaturing conditions. Our results indicate that the metalloprotease active site of FtsH remains functional in the presence of 3--5 M urea and suggest that the ATPase and proteolytic activities of FtsH can be uncoupled if the substrate is sufficiently unstructured. Thus, a key role of the FtsH AAA module appears to be the net unfolding of bound substrates so that they can be efficiently engaged by the protease active site.
Collapse
Affiliation(s)
- K W Cooper
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
13
|
Takechi K, Murata M, Motoyoshi F, Sakamoto W. The YELLOW VARIEGATED (VAR2) locus encodes a homologue of FtsH, an ATP-dependent protease in Arabidopsis. PLANT & CELL PHYSIOLOGY 2000; 41:1334-46. [PMID: 11134419 DOI: 10.1093/pcp/pcd067] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Variegated leaves are often caused by a nuclear recessive mutation in higher plants. Characterization of the gene responsible for variegation has shown to provide several pathways involved in plastid differentiation. Here we describe an Arabidopsis variegated mutant isolated by T-DNA tagging. The mutant displayed green and yellow sectors in all green tissues except for cotyledons. Cells in the yellow sector of the mutant contained both normal-appearing and mutant chloroplasts. The isolated mutant was shown to be an allele of the previously reported mutant, yellow variegated (var2). Cloning and molecular characterization of the VAR2 locus revealed that it potentially encodes a chloroplastic homologue of FtsH, an ATP-dependent metalloprotease that belongs to a large protein family involved in various cellular functions. ftsH-like genes appear to comprise a small gene family in Arabidopsis genome, since at least six homologues were found in addition to VAR2. Dispensability of VAR2 was therefore explained by the redundancy of genes coding for FstHs. In the yellow regions of the mutant leaves, accumulation of photosynthetic protein components in the thylakoid membrane appeared to be impaired. Based on the role of FtsH in a protein degradation pathway in plastids, we propose a possibility that VAR2 is required for plastid differentiation by avoiding partial photooxidation of developing chloroplasts.
Collapse
Affiliation(s)
- K Takechi
- Research Institute for Bioresources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| | | | | | | |
Collapse
|
14
|
Abstract
The problem of mRNA decay in E. coli has recently seen exciting progress, with the discoveries that key degradation enzymes are associated together in a high molecular weight degradosome and that polyadenylation promotes decay. Recent advances make it clear that mRNA decay in bacteria is far more interesting enzymatically than might have been predicted. In-depth study of specific mRNAs has revealed multiple pathways for degradation. Which pathway a given mRNA follows appears to depend in large part on the location of the initiating endonucleolytic cleavage within the mRNA. During the steps of mRNA decay, stable RNA structures pose formidable barriers to the 3' --> 5' exonucleases. However, polyadenylation is now emerging as a process that plays an important role in maintaining the momentum of exonucleolytic degradation by adding single-stranded extensions to the 3' ends of mRNAs and their decay intermediates, thereby facilitating further exonuclease digestion.
Collapse
Affiliation(s)
- D A Steege
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
15
|
Jayasekera MM, Foltin SK, Olson ER, Holler TP. Escherichia coli requires the protease activity of FtsH for growth. Arch Biochem Biophys 2000; 380:103-7. [PMID: 10900138 DOI: 10.1006/abbi.2000.1903] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
FtsH protease, the product of the essential ftsH gene, is a membrane-bound ATP-dependent metalloprotease of Escherichia coli that has been shown to be involved in the rapid turnover of key proteins, secretion of proteins into and through the membrane, and mRNA decay. The pleiotropic effects of ftsH mutants have led to the suggestion that FtsH possesses an ATP-dependent chaperone function that is independent of its protease function. When considering FtsH as a target for novel antibacterials, it is necessary to determine which of these functions is critical for the growth and survival of bacteria. To address this, we constructed the FtsH mutants E418Q, which retains significant ATPaseactivity but lacks protease activity, and K201N, which lacks both protease and ATPase activities. These mutants were introduced into an E. coli ftsH knockout strain which has wild-type FtsH supplied from a plasmid under control of the inducible araBAD promoter. Since neither mutant would complement the ftsH defect produced in the absence of arabinose, we conclude that the protease function of FtsH is required for bacterial growth.
Collapse
Affiliation(s)
- M M Jayasekera
- Department of Biochemistry, Department of Infectious Diseases, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105, USA
| | | | | | | |
Collapse
|
16
|
Abstract
A wide range of proteolytic processes in the chloroplast are well recognized. These include processing of precursor proteins, removal of oxidatively damaged proteins, degradation of proteins missing their prosthetic groups or their partner subunit in a protein complex, and adjustment of the quantity of certain chloroplast proteins in response to changing environmental conditions. To date, several chloroplast proteases have been identified and cloned. The chloroplast processing enzyme is responsible for removing the transit peptides of newly imported proteins. The thylakoid processing peptidase removes the thylakoid-transfer domain from proteins translocated into the thylakoid lumen. Within the lumen, Tsp removes the carboxy-terminal tail of the precursor of the PSII D1 protein. In contrast to these processing peptidases which perform a single endo-proteolytic cut, processive proteases that can completely degrade substrate proteins also exist in chloroplasts. The serine ATP-dependent Clp protease, composed of the proteolytic subunit ClpP and the regulatory subunit ClpC, is located in the stroma, and is involved in the degradation of abnormal soluble and membrane-bound proteins. The ATP-dependent metalloprotease FtsH is bound to the thylakoid membrane, facing the stroma. It degrades unassembled proteins and is involved in the degradation of the D1 protein of PSII following photoinhibition. DegP is a serine protease bound to the lumenal side of the thylakoid membrane that might be involved in the chloroplast response to heat. All these peptidases and proteases are homologues of known bacterial enzymes. Since ATP-dependent bacterial proteases and their mitochondrial homologues are also involved in the regulation of gene expression, via their determining the levels of key regulatory proteins, chloroplast proteases are expected to play a similar role.
Collapse
Affiliation(s)
- Z Adam
- Department of Agricultural Botany, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
17
|
Mohanty BK, Kushner SR. Analysis of the function of Escherichia coli poly(A) polymerase I in RNA metabolism. Mol Microbiol 1999; 34:1094-108. [PMID: 10594833 DOI: 10.1046/j.1365-2958.1999.01673.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To help understand the role of polyadenylation in Escherichia coli RNA metabolism, we constructed an IPTG-inducible pcnB [poly(A) polymerase I, PAP I] containing plasmid that permitted us to vary poly(A) levels without affecting cell growth or viability. Increased polyadenylation led to a decrease in the half-life of total pulse-labelled RNA along with decreased half-lives of the rpsO, trxA, lpp and ompA transcripts. In contrast, the transcripts for rne (RNase E) and pnp (polynucleotide phosphorylase, PNPase), enzymes involved in mRNA decay, were stabilized. rnb (RNase II) and rnc (RNase III) transcript levels were unaffected in the presence of increased polyadenylation. Long-term overproduction of PAP I led to slower growth and irreversible cell death. Differential display analysis showed that new RNA species were being polyadenylated after PAP I induction, including the mature 3'-terminus of 23S rRNA, a site that was not tailed in wild-type cells. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) demonstrated an almost 20-fold variation in the level of polyadenylation among three different transcripts and that PAP I accounted for between 94% and 98.6% of their poly(A) tails. Cloning and sequencing of cDNAs derived from lpp, 23S and 16S rRNA revealed that, during exponential growth, C and U residues were polymerized into poly(A) tails in a transcript-dependent manner.
Collapse
MESH Headings
- Blotting, Southern
- Colony Count, Microbial
- Enzyme Induction
- Escherichia coli/enzymology
- Escherichia coli/growth & development
- Escherichia coli Proteins
- Isopropyl Thiogalactoside/metabolism
- Lac Operon/genetics
- Plasmids/genetics
- Poly A/metabolism
- Polynucleotide Adenylyltransferase/metabolism
- Promoter Regions, Genetic
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonucleases/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- B K Mohanty
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
18
|
Narberhaus F, Urech C, Hennecke H. Characterization of the Bradyrhizobium japonicum ftsH gene and its product. J Bacteriol 1999; 181:7394-7. [PMID: 10572147 PMCID: PMC103706 DOI: 10.1128/jb.181.23.7394-7397.1999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bradyrhizobium japonicum ftsH gene was cloned by using a set of widely applicable degenerated oligonucleotides. Western blot experiments indicated that the FtsH protein was produced under standard growth conditions and that it was not heat inducible. Attempts to delete the ftsH gene in B. japonicum failed, suggesting a pivotal cellular function of this gene. The expression of B. japonicum ftsH in an ftsH-negative Escherichia coli strain significantly enhanced the fitness of this mutant and reduced the steady-state level of sigma(32).
Collapse
Affiliation(s)
- F Narberhaus
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, CH-8092 Zürich, Switzerland.
| | | | | |
Collapse
|
19
|
Abstract
The maturation and degradation of RNA molecules are essential features of the mechanism of gene expression, and provide the two main points for post-transcriptional regulation. Cells employ a functionally diverse array of nucleases to carry out RNA maturation and turnover. Viruses also employ cellular ribonucleases, or even use their own in their reproductive cycles. Studies on bacterial ribonucleases, and in particular those from Escherichia coli, are providing insight into ribonuclease structure, mechanism, and regulation. Ongoing biochemical and genetic analyses are revealing that many ribonucleases are phylogenetically conserved, and exhibit overlapping functional roles and perhaps common catalytic mechanisms. This article reviews the salient features of bacterial ribonucleases, with a focus on those of E. coli, and in particular, ribonuclease III. RNase III participates in a number of RNA maturation and RNA decay pathways, and is regulated by phosphorylation in the T7 phage-infected cell. Plasmid and phage RNAs, in addition to cellular transcripts, are RNase III targets. RNase III orthologues occur in eukaryotic cells, and play key functional roles. As such, RNase III provides an important model with which to understand mechanisms of RNA maturation, RNA decay, and gene regulation.
Collapse
Affiliation(s)
- A W Nicholson
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
20
|
Abstract
The energy-dependent proteases originally defined in Escherichia coli have proven to have particularly important roles in bacterial developmental systems, including sporulation in Bacillus subtilis and cell cycle in Caulobacter. Degradation of key regulatory proteins participates, with regulation of synthesis and activity of the regulators, to ensure tight control and, where required, irreversible commitment of the cell to specific developmental pathways.
Collapse
Affiliation(s)
- S Gottesman
- Building 37, Room 2E18, Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892-4255, USA.
| |
Collapse
|
21
|
Coburn GA, Mackie GA. Degradation of mRNA in Escherichia coli: an old problem with some new twists. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 62:55-108. [PMID: 9932452 DOI: 10.1016/s0079-6603(08)60505-x] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metabolic instability is a hallmark property of mRNAs in most if not all organisms and plays an essential role in facilitating rapid responses to regulatory cues. This article provides a critical examination of recent progress in the enzymology of mRNA decay in Escherichia coli, focusing on six major enzymes: RNase III, RNase E, polynucleotide phosphorylase, RNase II, poly(A) polymerase(s), and RNA helicase(s). The first major advance in our thinking about mechanisms of RNA decay has been catalyzed by the possibility that mRNA decay is orchestrated by a multicomponent mRNA-protein complex (the "degradosome"). The ramifications of this discovery are discussed and developed into mRNA decay models that integrate the properties of the ribonucleases and their associated proteins, the role of RNA structure in determining the susceptibility of an RNA to decay, and some of the known kinetic features of mRNA decay. These models propose that mRNA decay is a vectorial process initiated primarily at or near the 5' terminus of susceptible mRNAs and propagated by successive endonucleolytic cleavages catalyzed by RNase E in the degradosome. It seems likely that the degradosome can be tethered to its substrate, either physically or kinetically through a preference for monphosphorylated RNAs, accounting for the usual "all or none" nature of mRNA decay. A second recent advance in our thinking about mRNA decay is the rediscovery of polyadenylated mRNA in bacteria. Models are provided to account for the role of polyadenylation in facilitating the 3' exonucleolytic degradation of structured RNAs. Finally, we have reviewed the documented properties of several well-studied paradigms for mRNA decay in E. coli. We interpret the published data in light of our models and the properties of the degradosome. It seems likely that the study of mRNA decay is about to enter a phase in which research will focus on the structural basis for recognition of cleavage sites, on catalytic mechanisms, and on regulation of mRNA decay.
Collapse
Affiliation(s)
- G A Coburn
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
22
|
Ogura T, Inoue K, Tatsuta T, Suzaki T, Karata K, Young K, Su LH, Fierke CA, Jackman JE, Raetz CR, Coleman J, Tomoyasu T, Matsuzawa H. Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol Microbiol 1999; 31:833-44. [PMID: 10048027 DOI: 10.1046/j.1365-2958.1999.01221.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The suppressor mutation, named sfhC21, that allows Escherichia coli ftsH null mutant cells to survive was found to be an allele of fabZ encoding R-3-hydroxyacyl-ACP dehydrase, involved in a key step of fatty acid biosynthesis, and appears to upregulate the dehydrase. The ftsH1(Ts) mutation increased the amount of lipopolysaccharide at 42 degrees C. This was accompanied by a dramatic increase in the amount of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase [the IpxC (envA) gene product] involved in the committed step of lipid A biosynthesis. Pulse-chase experiments and in vitro assays with purified components showed that FtsH, the AAA-type membrane-bound metalloprotease, degrades the deacetylase. Genetic evidence also indicated that the FtsH protease activity for the deacetylase might be affected when acyl-ACP pools were altered. The biosynthesis of phospholipids and the lipid A moiety of lipopolysaccharide, both of which derive their fatty acyl chains from the same R-3-hydroxyacyl-ACP pool, is regulated by FtsH.
Collapse
Affiliation(s)
- T Ogura
- Department of Molecular Cell Biology, Kumamoto University School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
24
|
Wang RF, O'Hara EB, Aldea M, Bargmann CI, Gromley H, Kushner SR. Escherichia coli mrsC is an allele of hflB, encoding a membrane-associated ATPase and protease that is required for mRNA decay. J Bacteriol 1998; 180:1929-38. [PMID: 9537394 PMCID: PMC107109 DOI: 10.1128/jb.180.7.1929-1938.1998] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mrsC gene of Escherichia coli is required for mRNA turnover and cell growth, and strains containing the temperature-sensitive mrsC505 allele have longer half-lives than wild-type controls for total pulse-labeled and individual mRNAs (L. L. Granger et al., J. Bacteriol. 180:1920-1928, 1998). The cloned mrsC gene contains a long open reading frame beginning at an initiator UUG codon, confirmed by N-terminal amino acid sequencing, encoding a 70,996-Da protein with a consensus ATP-binding domain. mrsC is identical to the independently identified ftsH gene except for three additional amino acids at the N terminus (T. Tomoyasu et al., J. Bacteriol. 175:1344-1351, 1993). The purified protein had a Km of 28 microM for ATP and a Vmax of 21.2 nmol/microg/min. An amino-terminal glutathione S-transferase-MrsC fusion protein retained ATPase activity but was not biologically active. A glutamic acid replacement of the highly conserved lysine within the ATP-binding motif (mrsC201) abolished the complementation of the mrsC505 mutation, confirming that the ATPase activity is required for MrsC function in vivo. In addition, the mrsC505 allele conferred a temperature-sensitive HflB phenotype, while the hflB29 mutation promoted mRNA stability at both 30 and 44 degrees C, suggesting that the inviability associated with the mrsC505 allele is not related to the defect in mRNA decay. The data presented provide the first direct evidence for the involvement of a membrane-bound protein in mRNA decay in E. coli.
Collapse
Affiliation(s)
- R F Wang
- Department of Genetics, University of Georgia, Athens 30602-7223, USA
| | | | | | | | | | | |
Collapse
|