1
|
Guerrero M. GG. Sporulation, Structure Assembly, and Germination in the Soil Bacterium Bacillus thuringiensis: Survival and Success in the Environment and the Insect Host. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a rod-shaped, Gram-positive soil bacterium that belongs to the phylum Firmicutes and the genus Bacillus. It is a spore-forming bacterium. During sporulation, it produces a wide range of crystalline proteins that are toxic to different orders of insects. Sporulation, structure assembly, and germination are essential stages in the cell cycle of B. thuringiensis. The majority of studies on these issues have focused on the model organism Bacillus subtilis, followed by Bacillus cereus and Bacillus anthracis. The machinery for sporulation and germination extrapolated to B. thuringiensis. However, in the light of recent findings concerning the role of the sporulation proteins (SPoVS), the germination receptors (Gr), and the cortical enzymes in Bt, the theory strengthened that conservation in sporulation, structure assembly, and germination programs drive the survival and success of B. thuringiensis in the environment and the insect host. In the present minireview, the latter pinpointed and reviewed.
Collapse
Affiliation(s)
- Gloria G. Guerrero M.
- Unidad Académica de Ciencias Biológicas, Laboratorio de Immunobiología, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Col. Agronomicas, Zacatecas 98066, Mexico
| |
Collapse
|
2
|
Hinnekens P, Fayad N, Gillis A, Mahillon J. Conjugation across Bacillus cereus and kin: A review. Front Microbiol 2022; 13:1034440. [PMID: 36406448 PMCID: PMC9673590 DOI: 10.3389/fmicb.2022.1034440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Horizontal gene transfer (HGT) is a major driving force in shaping bacterial communities. Key elements responsible for HGT are conjugation-like events and transmissible plasmids. Conjugative plasmids can promote their own transfer as well as that of co-resident plasmids. Bacillus cereus and relatives harbor a plethora of plasmids, including conjugative plasmids, which are at the heart of the group species differentiation and specification. Since the first report of a conjugation-like event between strains of B. cereus sensu lato (s.l.) 40 years ago, many have studied the potential of plasmid transfer across the group, especially for plasmids encoding major toxins. Over the years, more than 20 plasmids from B. cereus isolates have been reported as conjugative. However, with the increasing number of genomic data available, in silico analyses indicate that more plasmids from B. cereus s.l. genomes present self-transfer potential. B. cereus s.l. bacteria occupy diverse environmental niches, which were mimicked in laboratory conditions to study conjugation-related mechanisms. Laboratory mating conditions remain nonetheless simplistic compared to the complex interactions occurring in natural environments. Given the health, economic and ecological importance of strains of B. cereus s.l., it is of prime importance to consider the impact of conjugation within this bacterial group.
Collapse
Affiliation(s)
- Pauline Hinnekens
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
| | - Nancy Fayad
- Multi-Omics Laboratory, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
- *Correspondence: Jacques Mahillon,
| |
Collapse
|
3
|
Fayad N, Koné KM, Gillis A, Mahillon J. Bacillus cytotoxicus Genomics: Chromosomal Diversity and Plasmidome Versatility. Front Microbiol 2021; 12:789929. [PMID: 34992589 PMCID: PMC8725734 DOI: 10.3389/fmicb.2021.789929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Bacillus cytotoxicus is the thermotolerant representative of the Bacillus cereus group. This group, also known as B. cereus sensu lato, comprises both beneficial and pathogenic members and includes psychrotolerant and thermotolerant species. Bacillus cytotoxicus was originally recovered from a fatal outbreak in France in 1998. This species forms a remote cluster from the B. cereus group members and reliably contains the cytk-1 gene, coding for a cytotoxic variant of cytotoxin K. Although this species was originally thought to be homogenous, intra-species diversity has been recently described with four clades, six random amplified polymorphic DNA (RAPD) patterns, and 11 plasmids profiles. This study aimed to get new insights into the genomic diversity of B. cytotoxicus and to decipher the underlying chromosomal and plasmidial variations among six representative isolates through whole genome sequencing (WGS). Among the six sequenced strains, four fitted the previously described genomic clades A and D, while the remaining two constituted new distinct branches. As for the plasmid content of these strains, three large plasmids were putatively conjugative and three small ones potentially mobilizable, harboring coding genes for putative leaderless bacteriocins. Mobile genetic elements, such as prophages, Insertion Sequences (IS), and Bacillus cereus repeats (bcr) greatly contributed to the B. cytotoxicus diversity. As for IS elements and bcr, IS3 and bcr1 were the most abundant elements and, along with the group II intron B.c.I8, were found in all analyzed B. cytotoxicus strains. When compared to other B. cytotoxicus strains, the type-strain NVH 391-98 displayed a relatively low number of IS. Our results shed new light on the contribution of mobile genetic elements to the genome plasticity of B. cytotoxicus and their potential role in horizontal gene transfer.
Collapse
Affiliation(s)
- Nancy Fayad
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
- School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Klèma Marcel Koné
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Rap-Phr Systems from Plasmids pAW63 and pHT8-1 Act Together To Regulate Sporulation in the Bacillus thuringiensis Serovar kurstaki HD73 Strain. Appl Environ Microbiol 2020; 86:AEM.01238-20. [PMID: 32680861 DOI: 10.1128/aem.01238-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Bacillus thuringiensis is a Gram-positive spore-forming bacterium pathogenic to various insect species. This property is due to the Cry toxins encoded by plasmid genes and mostly produced during sporulation. B. thuringiensis contains a remarkable number of extrachromosomal DNA molecules and a great number of plasmid rap-phr genes. Rap-Phr quorum-sensing systems regulate different bacterial processes, notably the commitment to sporulation in Bacillus species. Rap proteins are quorum sensors acting as phosphatases on Spo0F, an intermediate of the sporulation phosphorelay, and are inhibited by Phr peptides that function as signaling molecules. In this study, we characterize the Rap63-Phr63 system encoded by the pAW63 plasmid from the B. thuringiensis serovar kurstaki HD73 strain. Rap63 has moderate activity on sporulation and is inhibited by the Phr63 peptide. The rap63-phr63 genes are cotranscribed, and the phr63 gene is also transcribed from a σH-specific promoter. We show that Rap63-Phr63 regulates sporulation together with the Rap8-Phr8 system harbored by plasmid pHT8_1 of the HD73 strain. Interestingly, the deletion of both phr63 and phr8 genes in the same strain has a greater negative effect on sporulation than the sum of the loss of each phr gene. Despite the similarities in the Phr8 and Phr63 sequences, there is no cross talk between the two systems. Our results suggest a synergism of these two Rap-Phr systems in the regulation of the sporulation of B. thuringiensis at the end of the infectious cycle in insects, thus pointing out the roles of the plasmids in the fitness of the bacterium.IMPORTANCE The life cycle of Bacillus thuringiensis in insect larvae is regulated by quorum-sensing systems of the RNPP family. After the toxemia caused by Cry insecticidal toxins, the sequential activation of these systems allows the bacterium to trigger first a state of virulence (regulated by PlcR-PapR) and then a necrotrophic lifestyle (regulated by NprR-NprX); ultimately, sporulation is controlled by the Rap-Phr systems. Our study describes a new rap-phr operon carried by a B. thuringiensis plasmid and shows that the Rap protein has a moderate effect on sporulation. However, this system, in combination with another plasmidic rap-phr operon, provides effective control of sporulation when the bacteria develop in the cadavers of infected insect larvae. Overall, this study highlights the important adaptive role of the plasmid Rap-Phr systems in the developmental fate of B. thuringiensis and its survival within its ecological niche.
Collapse
|
5
|
Wang P, Zhu Y, Shang H, Deng Y, Sun M. A minireplicon of plasmid pBMB26 represents a new typical replicon in the megaplasmids of Bacillus cereus group. J Basic Microbiol 2017; 58:263-272. [PMID: 29243837 DOI: 10.1002/jobm.201700525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/02/2017] [Accepted: 11/19/2017] [Indexed: 11/11/2022]
Abstract
A new minireplicon (rep26 minireplicon) from pBMB26, the 188 kb indigenous plasmid related to spore-crystal association (SCA) phenotype in Bacillus thuringiensis strain YBT-020, was characterized. A 12 kb EcoRI fragment, which encoded 10 putative open reading frames (ORFs), was capable of supporting replication when cloned in a replication probe vector. Deletion and frame shift mutation analysis showed that a 4.1 kb region encompassing two putative ORFs (orf21 and orf22) was essential for the plasmid replication in B. thuringiensis. Gene orf21 encoding a 49.8 kDa protein (named Rep26) with a helix-turn-helix motif showed no homology with known replication proteins and gene orf22 encoding a protein of 82.6 kDa showed homology to bacterial PcrA helicase. The replication origin of rep26 minireplicon was proved to be located in the coding region of orf21. Plasmid stability experiments indicated that the recombinant plasmid containing rep26 minireplicon has excellent segregational stability. BLASTP analysis revealed that amino acid sequences of ORF21 and ORF22 were well conserved among Bacillus cereus group strains. The rep26 minireplicon was widely distributed and could be defined as a new typical replicon in the megaplasmids of B. cereus group.
Collapse
Affiliation(s)
- Pengxia Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Yiguang Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Hui Shang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Yun Deng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
6
|
Short FL, Monson RE, Salmond GPC. A Type III protein-RNA toxin-antitoxin system from Bacillus thuringiensis promotes plasmid retention during spore development. RNA Biol 2016; 12:933-7. [PMID: 26274022 PMCID: PMC4615649 DOI: 10.1080/15476286.2015.1073438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Members of the Bacillus cereus sensu lato group of bacteria often contain multiple large plasmids, including those encoding virulence factors in B. anthracis. Bacillus species can develop into spores in response to stress. During sporulation the genomic content of the cell is heavily compressed, which could result in counterselection of extrachromosomal genomic elements, unless they have robust stabilization and segregation systems. Toxin-antitoxin (TA) systems are near-ubiquitous in prokaryotes and have multiple biological roles, including plasmid stabilization during vegetative growth. Here, we have shown that a Type III TA system, based on an RNA antitoxin and endoribonuclease toxin, from plasmid pAW63 in Bacillus thuringiensis serovar kurstaki HD-73 can dramatically promote plasmid retention in populations undergoing sporulation and germination, and we provide evidence that this occurs through the post-segregational killing of plasmid-free forespores. Our findings show how an extremely common genetic module can be used to ensure plasmid maintenance during stress-induced developmental transitions, with implications for plasmid dynamics in B. cereus s.l. bacteria.
Collapse
Affiliation(s)
- Francesca L Short
- a Department of Biochemistry ; University of Cambridge ; Cambridge , UK.,b Present affiliation: Division of Molecular Microbiology; College of Life Sciences; University of Dundee; Dundee, UK
| | - Rita E Monson
- a Department of Biochemistry ; University of Cambridge ; Cambridge , UK
| | | |
Collapse
|
7
|
Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4524] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
8
|
Distribution of 2-kb miniplasmid pBMB2062 from Bacillus thuringiensis kurstaki YBT-1520 strain in Bacillus species. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0627-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
9
|
Kuenne C, Voget S, Pischimarov J, Oehm S, Goesmann A, Daniel R, Hain T, Chakraborty T. Comparative analysis of plasmids in the genus Listeria. PLoS One 2010; 5:e12511. [PMID: 20824078 PMCID: PMC2932693 DOI: 10.1371/journal.pone.0012511] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 08/10/2010] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND We sequenced four plasmids of the genus Listeria, including two novel plasmids from L. monocytogenes serotype 1/2c and 7 strains as well as one from the species L. grayi. A comparative analysis in conjunction with 10 published Listeria plasmids revealed a common evolutionary background. PRINCIPAL FINDINGS All analysed plasmids share a common replicon-type related to theta-replicating plasmid pAMbeta1. Nonetheless plasmids could be broadly divided into two distinct groups based on replicon diversity and the genetic content of the respective plasmid groups. Listeria plasmids are characterized by the presence of a large number of diverse mobile genetic elements and a commonly occurring translesion DNA polymerase both of which have probably contributed to the evolution of these plasmids. We detected small non-coding RNAs on some plasmids that were homologous to those present on the chromosome of L. monocytogenes EGD-e. Multiple genes involved in heavy metal resistance (cadmium, copper, arsenite) as well as multidrug efflux (MDR, SMR, MATE) were detected on all listerial plasmids. These factors promote bacterial growth and survival in the environment and may have been acquired as a result of selective pressure due to the use of disinfectants in food processing environments. MDR efflux pumps have also recently been shown to promote transport of cyclic diadenosine monophosphate (c-di-AMP) as a secreted molecule able to trigger a cytosolic host immune response following infection. CONCLUSIONS The comparative analysis of 14 plasmids of genus Listeria implied the existence of a common ancestor. Ubiquitously-occurring MDR genes on plasmids and their role in listerial infection now deserve further attention.
Collapse
Affiliation(s)
- Carsten Kuenne
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Sonja Voget
- Goettingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg-August University Goettingen, Goettingen, Germany
| | - Jordan Pischimarov
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Sebastian Oehm
- Bioinformatics Resource Facility, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics Resource Facility, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Rolf Daniel
- Goettingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg-August University Goettingen, Goettingen, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
10
|
Wilcks A, Jacobsen BB. Lack of detectable DNA uptake by transformation of selected recipients in mono-associated rats. BMC Res Notes 2010; 3:49. [PMID: 20193062 PMCID: PMC2845597 DOI: 10.1186/1756-0500-3-49] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 03/01/2010] [Indexed: 11/10/2022] Open
Abstract
Background An important concern revealed in the public discussion of the use of genetically modified (GM) plants for human consumption, is the potential transfer of DNA from these plants to bacteria present in the gastrointestinal tract. Especially, there is a concern that antibiotic resistance genes used for the construction of GM plants end up in pathogenic bacteria, eventually leading to untreatable disease. Findings Three different bacterial species (Escherichia coli, Bacillus subtilis, Streptococcus gordonii), all natural inhabitants of the food and intestinal tract environment were used as recipients for uptake of DNA. As source of DNA both plasmid and genomic DNA from GM plants were used in in vitro and in vivo transformation studies. Mono-associated rats, creating a worst-case scenario, did not give rise to any detectable transfer of DNA. Conclusion Although we were unable to detect any transformation events in our experiment, it cannot be ruled out that this could happen in the GI tract. However, since several steps are required before expression of plant-derived DNA in intestinal bacteria, we believe this is unlikely, and antibiotic resistance development in this environment is more in danger by the massive use of antibiotics than the consumption of GM food harbouring antibiotic resistance genes.
Collapse
Affiliation(s)
- Andrea Wilcks
- Division of Microbiology and Risk Assessment, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark.
| | | |
Collapse
|
11
|
Conjugative transfer of insecticidal plasmid pHT73 from Bacillus thuringiensis to B. anthracis and compatibility of this plasmid with pXO1 and pXO2. Appl Environ Microbiol 2009; 76:468-73. [PMID: 19948871 DOI: 10.1128/aem.01984-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis, the etiologic agent of anthrax, is genetically close to and commonly shares a giant gene pool with B. cereus and B. thuringiensis. In view of the human pathogenicity and the long persistence in the environment of B. anthracis, there is growing concern about the effects of genetic exchange with B. anthracis on public health. In this work, we demonstrate that an insecticidal plasmid, pHT73, from B. thuringiensis strain KT0 could be efficiently transferred into two attenuated B. anthracis strains, Ba63002R (pXO1(+) pXO2(-)) and Ba63605R (pXO1(-) pXO2(+)), by conjugation in liquid medium in the laboratory, with transfer rates of 2.3 x 10(-4) and 1.6 x 10(-4) CFU/donor, respectively. The B. anthracis transconjugants containing both pHT73 and pXO1 or pXO2 could produce crystal protein Cry1Ac encoded by plasmid pHT73 and had high toxicity to Helicoverpa armigera larvae. Furthermore, the compatibility and stability of pHT73 with pXO1/pXO2 were demonstrated. The data are informative for further investigation of the safety of B. thuringiensis and closely related strains in food and in the environment.
Collapse
|
12
|
Beuls E, Van Houdt R, Leys N, Dijkstra C, Larkin O, Mahillon J. Bacillus thuringiensis conjugation in simulated microgravity. ASTROBIOLOGY 2009; 9:797-805. [PMID: 19845449 DOI: 10.1089/ast.2009.0383] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Spaceflight experiments have suggested a possible effect of microgravity on the plasmid transfer among strains of the Gram-positive Bacillus thuringiensis, as opposed to no effect recorded for Gram-negative conjugation. To investigate these potential effects in a more affordable experimental setup, three ground-based microgravity simulators were tested: the Rotating Wall Vessel (RWV), the Random Positioning Machine (RPM), and a superconducting magnet. The bacterial conjugative system consisted in biparental matings between two B. thuringiensis strains, where the transfer frequencies of the conjugative plasmid pAW63 and its ability to mobilize the nonconjugative plasmid pUB110 were assessed. Specifically, potential plasmid transfers in a 0 g position (simulated microgravity) were compared to those obtained under 1 g (normal gravity) condition in each device. Statistical analyses revealed no significant difference in the conjugative and mobilizable transfer frequencies between the three different simulated microgravitational conditions and our standard laboratory condition. These important ground-based observations emphasize the fact that, though no stimulation of plasmid transfer was observed, no inhibition was observed either. In the case of Gram-positive bacteria, this ability to exchange plasmids in weightlessness, as occurs under Earth's conditions, should be seen as particularly relevant in the scope of spread of antibiotic resistances and bacterial virulence.
Collapse
Affiliation(s)
- Elise Beuls
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
13
|
Peng D, Luo Y, Guo S, Zeng H, Ju S, Yu Z, Sun M. Elaboration of an electroporation protocol for large plasmids and wild-type strains of Bacillus thuringiensis. J Appl Microbiol 2009; 106:1849-58. [PMID: 19291242 DOI: 10.1111/j.1365-2672.2009.04151.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To elaborate an effective electroporation protocol for large plasmids and wild type strains of Bacillus thuringiensis. METHODS AND RESULTS The effect of DNA desalting, wall-weakening agency, cell growth conditions, electroporation solutions, and electric fields on electroporation efficiency was evaluated to optimize electroporation conditions for B. thuringiensis. By using this improved method, the greatest efficiency was reached 2 x 10(10 )CFU microg(-1) with pHT304, which is 10(4) times higher than previously reported. Four large plasmids (29.1, 44.9, 58 and 60 kb) were successfully transferred into the acrystalliferous B. thuringiensis strain BMB171; these results have not been achieved with previous protocols. Three wild type B. thuringiensis strains which could not be transformed previously were also transferred successfully. CONCLUSIONS This improved method is more efficient for small plasmids; it is also appropriate for large plasmids and wild type B. thuringiensis strains which were not transformed by previous procedures. SIGNIFICANCE AND IMPACT OF THE STUDY The present study established an effective electroporation protocol for large plasmids and wild type strains of B. thuringiensis. This method is well suited for the cloning and expression of huge DNA fragments such as gene clusters in B. thuringiensis. It also can be used as a reference method for other Bacillus strains that are refractory to electroporate.
Collapse
Affiliation(s)
- D Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Wilcks A, Smidt L, Bahl MI, Hansen BM, Andrup L, Hendriksen NB, Licht TR. Germination and conjugation of Bacillus thuringiensis subsp. israelensis in the intestine of gnotobiotic rats. J Appl Microbiol 2007; 104:1252-9. [PMID: 18042185 DOI: 10.1111/j.1365-2672.2007.03657.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AIMS To study the ability of Bacillus thuringiensis subsp. israelensis spores to germinate and subsequently transfer a conjugative plasmid in the intestinal tract of gnotobiotic rats. METHODS AND RESULTS Germination was studied by feeding germ-free rats with spores of a B. thuringiensis strain harbouring a plasmid encoding green fluorescent protein (GFP), which enabled quantification of germinated bacteria by flow cytometry. To study in vivo conjugation, germ-free rats were first associated with a B. thuringiensis recipient strain and after 1 week an isogenic donor strain harbouring the conjugative plasmid pXO16 was introduced. Both strains were given as spores and transfer of pXO16 was observed from the donor to the recipient strain. CONCLUSIONS Bacillus thuringiensis is able to have a full life cycle in the intestine of gnotobiotic rats including germination of spores, several cycles of growth and sporulation of vegetative cells. For the first time conjugative plasmid transfer in a mammalian intestinal tract was shown between two B. thuringiensis strains. SIGNIFICANCE AND IMPACT OF THE STUDY Strains of B. thuringiensis are used worldwide to combat insect pests, and this study brings new insights into the nature of B. thuringiensis showing the potential of the bacteria to germinate and transfer DNA in the mammalian intestinal tract.
Collapse
Affiliation(s)
- A Wilcks
- Department of Microbiology and Risk Assessment, National Food Institute, Technical University of Denmark, Søborg, Denmark.
| | | | | | | | | | | | | |
Collapse
|
15
|
Tinsley E, Khan SA. A Bacillus anthracis-based in vitro system supports replication of plasmid pXO2 as well as rolling-circle-replicating plasmids. Appl Environ Microbiol 2007; 73:5005-10. [PMID: 17575005 PMCID: PMC1951006 DOI: 10.1128/aem.00240-07] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capsule-encoding virulence plasmid pXO2 of Bacillus anthracis is predicted to replicate by a unidirectional theta-type mechanism. To gain a better understanding of the mechanism of replication of pXO2 and other plasmids in B. anthracis and related organisms, we have developed a cell-free system based on B. anthracis that can faithfully replicate plasmid DNA in vitro. The newly developed system was shown to support the in vitro replication of plasmid pT181, which replicates by the rolling-circle mechanism. We also demonstrate that this system supports the replication of plasmid pXO2 of B. anthracis. Replication of pXO2 required directional transcription through the plasmid origin of replication, and increased transcription through the origin resulted in an increase in plasmid replication.
Collapse
Affiliation(s)
- Eowyn Tinsley
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, East 1240 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
16
|
Huang J, Han D, Yu Z, Sun M. A novel cryptic plasmid pBMB175 from Bacillus thuringiensis subsp. tenebrionis YBT-1765. Arch Microbiol 2007; 188:47-53. [PMID: 17310366 DOI: 10.1007/s00203-007-0222-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 12/31/2006] [Accepted: 01/25/2007] [Indexed: 10/23/2022]
Abstract
A new cryptic plasmid pBMB175 from Bacillus thuringiensis subsp. tenebrionis YBT-1765 was isolated and characterized. Sequence analysis showed that pBMB175 (14,841 bp and 31% GC content) contained at least eighteen putative open reading frames (ORFs), among which nine ORFs displayed the homology with the hypothetical proteins in rolling-circle replication plasmid pGI3. Deletion analysis revealed that the pBMB175 minireplicon located in a novel 1,151 bp fragment. This fragment contains ORF7 coding sequence, which encodes a protein (Rep175, 149 amino acids [aa]) indispensable for plasmid replication. Rep175 has no significant homology with known function proteins. Furthermore, a putative double-strand origin (dso), having no DNA similarity with characterized dso of other replicon so far, was identified in this minireplicon fragment. These features showed that pBMB175 could be placed into a new plasmid family.
Collapse
Affiliation(s)
- Junyan Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | | | | | | |
Collapse
|
17
|
Wu E, Jun L, Yuan Y, Yan J, Berry C, Yuan Z. Characterization of a cryptic plasmid from Bacillus sphaericus strain LP1-G. Plasmid 2007; 57:296-305. [PMID: 17218011 DOI: 10.1016/j.plasmid.2006.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Revised: 11/12/2006] [Accepted: 11/20/2006] [Indexed: 11/21/2022]
Abstract
A cryptic plasmid from Bacillus sphaericus strain LP1-G, designated as pLG, was sequenced and characterized. It was an 11,066bp circular molecule, with G+C content of 37%. The plasmid pLG was predicted to encode 23 putative ORFs, and ORF 21 shared the highest identity with Rep of pGI1 and pBMB9741, members of rolling-circle replication (RCR) pC194-family. Sequence analysis revealed a pC194-type double strand origin (dso) and a single strand origin (sso) like sequence located upstream and downstream of ORF 21, respectively. Moreover, Mung bean nuclease analysis and Southern hybridization confirmed the existence of single stranded DNA (ssDNA) intermediates, indicating that pLG belongs to the RCR pC194-family. Accumulation of multiple ssDNA intermediates in native strain LP1-G and decline of ssDNA and supercoiled DNA in rifampicin-treated strain implied that a special mechanism might be employed by pLG. Furthermore, the copy number of pLG in its original host was determined and about 58 copies of the plasmid exist in each cell. Subcloning and transformation experiments proved that the minimal replicon of pLG was within a 1.6-kb fragment, which was composed of rep gene and dso. These data are a good basis for the understanding of replication mechanisms and genetics of this B. sphaericus plasmid.
Collapse
Affiliation(s)
- Enying Wu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | | | |
Collapse
|
18
|
Huang J, Guo S, Mahillon J, Van der Auwera GA, Wang L, Han D, Yu Z, Sun M. Molecular characterization of a DNA fragment harboring the replicon of pBMB165 from Bacillus thuringiensis subsp. tenebrionis. BMC Genomics 2006; 7:270. [PMID: 17059605 PMCID: PMC1626470 DOI: 10.1186/1471-2164-7-270] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 10/23/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus thuringiensis belongs to the Bacillus cereus sensu lato group of Gram-positive and spore-forming bacteria. Most isolates of B. thuringiensis can bear many endogenous plasmids, and the number and size of these plasmids can vary widely among strains or subspecies. As far as we know, the replicon of the plasmid pBMB165 is the first instance of a plasmid replicon being isolated from subsp. tenebrionis and characterized. RESULTS A 20 kb DNA fragment containing a plasmid replicon was isolated from B. thuringiensis subsp. tenebrionis YBT-1765 and characterized. By Southern blot analysis, this replicon region was determined to be located on pBMB165, the largest detected plasmid (about 82 kb) of strain YBT-1765. Deletion analysis revealed that a replication initiation protein (Rep165), an origin of replication (ori165) and an iteron region were required for replication. In addition, two overlapping ORFs (orf6 and orf10) were found to be involved in stability control of plasmid. Sequence comparison showed that the replicon of pBMB165 was homologous to the pAMbeta1 family replicons, indicating that the pBMB165 replicon belongs to this family. The presence of five transposable elements or remnants thereof in close proximity to and within the replicon control region led us to speculate that genetic exchange and recombination are potentially responsible for the divergence among the replicons of this plasmid family. CONCLUSION The replication and stability features of the pBMB165 from B. thuringiensis subsp. tenebrionis YBT-1765 were identified. Of particular interest is the homology and divergence shared between the pBMB165 replicon and other pAMbeta1 family replicons.
Collapse
Affiliation(s)
- Junyan Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Suxia Guo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2/12, B-1348 Louvain-la-Neuve, Belgium
| | - Géraldine A Van der Auwera
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2/12, B-1348 Louvain-la-Neuve, Belgium
| | - Li Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Dongmei Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| |
Collapse
|
19
|
Van der Auwera GA, Timmery S, Hoton F, Mahillon J. Plasmid exchanges among members of the Bacillus cereus group in foodstuffs. Int J Food Microbiol 2006; 113:164-72. [PMID: 16996631 DOI: 10.1016/j.ijfoodmicro.2006.06.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 01/31/2006] [Accepted: 06/11/2006] [Indexed: 11/17/2022]
Abstract
The Bacillus cereus sensu lato group is genetically very close and possesses a remarkable plasmid gene pool that encodes a variety of functions such as virulence and self-transfer capabilities. The potential for horizontal transfer among the various subspecies of this group, which includes the human opportunistic pathogens B. cereus sensu stricto and B. anthracis as well as the biopesticide B. thuringiensis, has led to growing concerns regarding food safety and public health. In this study, the conjugative behaviour of B. thuringiensis strains was compared in LB medium, milk and rice pudding using the pXO16 and pAW63 conjugative systems, as well as the mobilisable plasmid pC194, in bi- and triparental matings. Conjugation and mobilisation of these plasmids were shown to occur at significant levels in both food products, attaining the highest transfer frequencies in milk, with an approximately ten-fold increase in conjugative transfer in this growth medium as compared to liquid LB. Furthermore, the ability of an emetic strain of B. cereus to function as either plasmid donor or recipient partner in heterologous biparental matings with B. thuringiensis was demonstrated in these food matrices.
Collapse
Affiliation(s)
- Géraldine A Van der Auwera
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud, 2/12, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
20
|
Tang M, Bideshi DK, Park HW, Federici BA. Minireplicon from pBtoxis of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 2006; 72:6948-54. [PMID: 16936050 PMCID: PMC1636135 DOI: 10.1128/aem.00976-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 2.2-kb fragment containing a replicon from pBtoxis, the large plasmid that encodes the insecticidal endotoxins of Bacillus thuringiensis subsp. israelensis, was identified, cloned, and sequenced. This fragment contains cis elements, including iterons, found in replication origins of other large plasmids and suggests that pBtoxis replicates by a type A theta mechanism. Two genes, pBt156 and pBt157, encoding proteins of 54.4 kDa and 11.8 kDa, respectively, were present in an operon within this minireplicon, and each was shown by deletion analysis to be essential for replication. The deduced amino acid sequences of the 54.4-kDa and 11.8-kDa proteins showed no substantial homology with known replication (Rep) proteins. However, the 54.4-kDa protein contained a conserved FtsZ domain, and the 11.8 kDa protein contained a helix-turn-helix motif. As FtsZ proteins have known functions in bacterial cell division and the helix-turn-helix motif is present in Rep proteins, it is likely that these proteins function in plasmid replication and partitioning. The minireplicon had a copy number of two or three per chromosome equivalent in B. thuringiensis subsp. israelensis but did not replicate in B. cereus, B. megaterium, or B. subtilis. A plasmid constructed to synthesize large quantities of the Cry11A and Cyt1A endotoxins demonstrated that this minireplicon can be used to engineer vectors for cry and cyt gene expression.
Collapse
Affiliation(s)
- Mujin Tang
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
21
|
Dmowski M, Sitkiewicz I, Ceglowski P. Characterization of a novel partition system encoded by the delta and omega genes from the streptococcal plasmid pSM19035. J Bacteriol 2006; 188:4362-72. [PMID: 16740943 PMCID: PMC1482978 DOI: 10.1128/jb.01922-05] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High segregational stability of the streptococcal plasmid pSM19035 is achieved by the concerted action of systems involved in plasmid copy number control, multimer resolution, and postsegregational killing. In this study, we demonstrate the role of two genes, delta and omega, in plasmid stabilization by a partition mechanism. We show that these two genes can stabilize the native pSM19035 replicon as well as other theta- and sigma-type plasmids in Bacillus subtilis. In contrast to other known partition systems, in this case the two genes are transcribed separately; however, they are coregulated by the product of the parB-like gene omega. Analysis of mutants of the parA-like gene delta showed that the Walker A ATPase motif is necessary for plasmid stabilization. The ParB-like product of the omega gene binds to three regions containing repeated WATCACW heptamers, localized in the copS (regulation of plasmid copy number), delta, and omega promoter regions. We demonstrate that all three of these regions can cause partition-mediated incompatibility. Moreover, our data suggest that each of these could play the role of a centromere-like sequence. We conclude that delta and omega constitute a novel type of plasmid stabilization system.
Collapse
Affiliation(s)
- Michal Dmowski
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawiskiego 5A, 02-106 Warsaw, Poland.
| | | | | |
Collapse
|
22
|
Van der Auwera GA, Andrup L, Mahillon J. Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727. BMC Genomics 2005; 6:103. [PMID: 16042811 PMCID: PMC1196294 DOI: 10.1186/1471-2164-6-103] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 07/26/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis belong to the genetically close-knit Bacillus cereus sensu lato group, a family of rod-shaped Gram-positive bacteria. pAW63 is the first conjugative plasmid from the B. cereus group to be completely sequenced. RESULTS The 71,777 bp nucleotide sequence of pAW63 reveals a modular structure, including a 42 kb tra region encoding homologs of the Type IV secretion systems components VirB11, VirB4 and VirD4, as well as homologs of Gram-positive conjugation genes from Enterococcus, Lactococcus, Listeria, Streptococcus and Staphylococcus species. It also firmly establishes the existence of a common backbone between pAW63, pXO2 from Bacillus anthracis and pBT9727 from the pathogenic Bacillus thuringiensis serovar konkukian strain 97-27. The alignment of these three plasmids highlights the presence of well conserved segments, in contrast to distinct regions of high sequence plasticity. The study of their specific differences has provided a three-point reference framework that can be exploited to formulate solid hypotheses concerning the functionalities and the molecular evolution of these three closely related plasmids. This has provided insight into the chronology of their divergence, and led to the discovery of two Type II introns on pAW63, matching copies of the mobile element IS231L in different loci of pXO2 and pBT9727, and the identification on pXO2 of a 37 kb pathogenicity island (PAI) containing the anthrax capsule genes. CONCLUSION The complete sequence determination of pAW63 has led to a functional map of the plasmid yielding insights into its conjugative apparatus, which includes T4SS-like components, as well as its resemblance to other large plasmids of Gram-positive bacteria. Of particular interest is the extensive homology shared between pAW63 and pXO2, the second virulence plasmid of B. anthracis, as well as pBT9727 from the pathogenic strain B. thuringiensis serovar konkukian strain 97-27.
Collapse
Affiliation(s)
- Géraldine A Van der Auwera
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2/12, B-1348 Louvain-la-Neuve, Belgium
| | - Lars Andrup
- National Institute of Occupational Health, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2/12, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
23
|
van Kranenburg R, Golic N, Bongers R, Leer RJ, de Vos WM, Siezen RJ, Kleerebezem M. Functional analysis of three plasmids from Lactobacillus plantarum. Appl Environ Microbiol 2005; 71:1223-30. [PMID: 15746322 PMCID: PMC1065126 DOI: 10.1128/aem.71.3.1223-1230.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus plantarum WCFS1 harbors three plasmids, pWCFS101, pWCFS102, and pWCFS103, with sizes of 1,917, 2,365, and 36,069 bp, respectively. The two smaller plasmids are of unknown function and contain replication genes that are likely to function via the rolling-circle replication mechanism. The host range of the pWCFS101 replicon includes Lactobacillus species and Lactococcus lactis, while that of the pWCFS102 replicon also includes Carnobacterium maltaromaticum and Bacillus subtilis. The larger plasmid is predicted to replicate via the theta-type mechanism. The host range of its replicon seems restricted to L. plantarum. Cloning vectors were constructed based on the replicons of all three plasmids. Plasmid pWCFS103 was demonstrated to be a conjugative plasmid, as it could be transferred to L. plantarum NC8. It confers arsenate and arsenite resistance, which can be used as selective markers.
Collapse
|
24
|
Rasko DA, Altherr MR, Han CS, Ravel J. Genomics of theBacillus cereusgroup of organisms. FEMS Microbiol Rev 2005. [DOI: 10.1016/j.fmrre.2004.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
25
|
Li TY, Yin P, Zhou Y, Zhang Y, Zhang YY, Chen TA. Characterization of the replicon of a 51-kb native plasmid from the gram-positive bacteriumLeifsonia xylisubsp.cynodontis. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09623.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
26
|
Tinsley E, Naqvi A, Bourgogne A, Koehler TM, Khan SA. Isolation of a minireplicon of the virulence plasmid pXO2 of Bacillus anthracis and characterization of the plasmid-encoded RepS replication protein. J Bacteriol 2004; 186:2717-23. [PMID: 15090513 PMCID: PMC387817 DOI: 10.1128/jb.186.9.2717-2723.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A minireplicon of plasmid pXO2 of Bacillus anthracis was isolated by molecular cloning in Escherichia coli and shown to replicate in B. anthracis, Bacillus cereus, and Bacillus subtilis. The pXO2 replicon included (i) an open reading frame encoding the putative RepS replication initiation protein and (ii) the putative origin of replication. The RepS protein was expressed as a fusion with the maltose binding protein (MBP) at its amino-terminal end and purified by affinity chromatography. Electrophoretic mobility shift assays showed that the purified MBP-RepS protein bound specifically to a 60-bp region corresponding to the putative origin of replication of pXO2 located immediately downstream of the RepS open reading frame. Competition DNA binding experiments showed that the 5' and central regions of the putative origin were important for RepS binding. MBP-RepS also bound nonspecifically to single-stranded DNA with a lower affinity.
Collapse
Affiliation(s)
- Eowyn Tinsley
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, East 1240 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
27
|
Wilcks A, van Hoek AHAM, Joosten RG, Jacobsen BBL, Aarts HJM. Persistence of DNA studied in different ex vivo and in vivo rat models simulating the human gut situation. Food Chem Toxicol 2004; 42:493-502. [PMID: 14871592 DOI: 10.1016/j.fct.2003.10.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Accepted: 10/25/2003] [Indexed: 10/26/2022]
Abstract
This study aimed to evaluate the possibility of DNA sequences from genetically modified plants to persist in the gastrointestinal (GI) tract. PCR analysis and transformation assays were used to study DNA persistence and integrity in various ex vivo and in vivo systems using gnotobiotic rats. DNA studied was either plasmid DNA, naked plant DNA or plant DNA embedded in maize flour. Ex vivo experiments performed by incubating plant DNA in intestinal samples, showed that DNA is rapidly degraded in the upper part of the GI tract whereas degradation is less severe in the lower part. In contrast, plasmid DNA could be recovered throughout the GI tract when intestinal samples were taken up to 5 h after feeding rats with plasmid. Furthermore, DNA isolated from these intestinal samples was able to transform electro-competent Escherichia coli, showing that the plasmid was still biologically active. The results indicate that ingested DNA may persist in the GI tract and consequently may be present for uptake by intestinal bacteria.
Collapse
Affiliation(s)
- Andrea Wilcks
- Institute of Food Safety and Nutrition, Danish Veterinary and Food Administration, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark.
| | | | | | | | | |
Collapse
|
28
|
Rasko DA, Ravel J, Økstad OA, Helgason E, Cer RZ, Jiang L, Shores KA, Fouts DE, Tourasse NJ, Angiuoli SV, Kolonay J, Nelson WC, Kolstø AB, Fraser CM, Read TD. The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res 2004; 32:977-88. [PMID: 14960714 PMCID: PMC373394 DOI: 10.1093/nar/gkh258] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We sequenced the complete genome of Bacillus cereus ATCC 10987, a non-lethal dairy isolate in the same genetic subgroup as Bacillus anthracis. Comparison of the chromosomes demonstrated that B.cereus ATCC 10987 was more similar to B.anthracis Ames than B.cereus ATCC 14579, while containing a number of unique metabolic capabilities such as urease and xylose utilization and lacking the ability to utilize nitrate and nitrite. Additionally, genetic mechanisms for variation of capsule carbohydrate and flagella surface structures were identified. Bacillus cereus ATCC 10987 contains a single large plasmid (pBc10987), of approximately 208 kb, that is similar in gene content and organization to B.anthracis pXO1 but is lacking the pathogenicity-associated island containing the anthrax lethal and edema toxin complex genes. The chromosomal similarity of B.cereus ATCC 10987 to B.anthracis Ames, as well as the fact that it contains a large pXO1-like plasmid, may make it a possible model for studying B.anthracis plasmid biology and regulatory cross-talk.
Collapse
Affiliation(s)
- David A Rasko
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Bacillus cereus sensu lato, the species group comprising Bacillus anthracis, Bacillus thuringiensis and B. cereus (sensu stricto), has previously been scrutinized regarding interspecies genetic correlation and pathogenic characteristics. So far, little attention has been paid to analysing the biological and ecological properties of the three species in their natural environments. In this review, we describe the B. cereus sensu lato living in a world on its own; all B. cereus sensu lato can grow saprophytically under nutrient-rich conditions, which are only occasionally found in the environment, except where nutrients are actively collected. As such, members of the B. cereus group have recently been discovered as common inhabitants of the invertebrate gut. We speculate that all members disclose symbiotic relationships with appropriate invertebrate hosts and only occasionally enter a pathogenic life cycle in which the individual species infects suitable hosts and multiplies almost unrestrained.
Collapse
Affiliation(s)
- G B Jensen
- National Institute of Occupational Health, Lersø Parkalle 105, 2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
30
|
Andrup L, Jensen GB, Wilcks A, Smidt L, Hoflack L, Mahillon J. The patchwork nature of rolling-circle plasmids: comparison of six plasmids from two distinct Bacillus thuringiensis serotypes. Plasmid 2003; 49:205-32. [PMID: 12749835 DOI: 10.1016/s0147-619x(03)00015-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bacillus thuringiensis, the entomopathogenic bacteria from the Bacillus cereus group, harbors numerous extrachromosomal molecules whose sizes vary from 2 to more than 200kb. Apart from the genes coding for the biopesticide delta-endotoxins located on large plasmids, little information has been obtained on these plasmids and their contribution to the biology of their host. In this paper, we embarked on a detailed comparison of six small rolling-circle replicating (RCR) plasmids originating from two major B. thuringiensis strains. The complete nucleotide sequences of plasmid pGI1, pGI2, pGI3, pTX14-1, pTX14-2, and pTX14-3 have been obtained and compared. Replication functions, comprising, for each plasmid, the gene encoding the Rep-protein, double-strand origin of replication (dso), single-strand origin of replication (sso), have been identified and analyzed. Two new families, or homology groups, of RCR plasmids originated from the studies of these plasmids (Group VI based on pGI3 and Group VII based on pTX14-3). On five of the six plasmids, loci involved in conjugative mobilization (Mob-genes and origin of transfer (oriT)) were identified. Plasmids pTX14-1, pTX14-2, and pTX14-3 each harbor an ORF encoding a polypeptide containing a central domain with repetitive elements similar to eukaryotic collagen (Gly-X-Y triplets). These genes were termed bcol for Bacillus-collagen-like genes.
Collapse
Affiliation(s)
- Lars Andrup
- National Institute of Occupational Health, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
31
|
Pannucci J, Okinaka RT, Williams E, Sabin R, Ticknor LO, Kuske CR. DNA sequence conservation between the Bacillus anthracis pXO2 plasmid and genomic sequence from closely related bacteria. BMC Genomics 2002; 3:34. [PMID: 12473162 PMCID: PMC140023 DOI: 10.1186/1471-2164-3-34] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2002] [Accepted: 12/09/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Complete sequencing and annotation of the 96.2 kb Bacillus anthracis plasmid, pXO2, predicted 85 open reading frames (ORFs). Bacillus cereus and Bacillus thuringiensis isolates that ranged in genomic similarity to B. anthracis, as determined by amplified fragment length polymorphism (AFLP) analysis, were examined by PCR for the presence of sequences similar to 47 pXO2 ORFs. RESULTS The two most distantly related isolates examined, B. thuringiensis 33679 and B. thuringiensis AWO6, produced the greatest number of ORF sequences similar to pXO2; 10 detected in 33679 and 16 in AWO6. No more than two of the pXO2 ORFs were detected in any one of the remaining isolates. Dot-blot DNA hybridizations between pXO2 ORF fragments and total genomic DNA from AWO6 were consistent with the PCR assay results for this isolate and also revealed nine additional ORFs shared between these two bacteria. Sequences similar to the B. anthracis cap genes or their regulator, acpA, were not detected among any of the examined isolates. CONCLUSIONS The presence of pXO2 sequences in the other Bacillus isolates did not correlate with genomic relatedness established by AFLP analysis. The presence of pXO2 ORF sequences in other Bacillus species suggests the possibility that certain pXO2 plasmid gene functions may also be present in other closely related bacteria.
Collapse
Affiliation(s)
- James Pannucci
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Richard T Okinaka
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Erin Williams
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Robert Sabin
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Lawrence O Ticknor
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Cheryl R Kuske
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
32
|
Patra G, Fouet A, Vaissaire J, Guesdon JL, Mock M. Variation in rRNA operon number as revealed by ribotyping of Bacillus anthracis strains. Res Microbiol 2002; 153:139-48. [PMID: 12002563 DOI: 10.1016/s0923-2508(02)01299-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ribotyping of various Bacillus strains with one restriction enzyme (AccI) revealed significant similarity between Bacillus anthracis strains, Bacillus thuringiensis and Bacillus cereus strains, which are all members of the Bacillus cereus group. A further ribotyping study of 10 virulent and 8 attenuated B. anthracis strains, using 4 endonucleases and both 23S and 16S probes independently, was performed. The discrimination index D of Hunter and Gaston showed that the best combination for future large-scale ribotyping studies would be either the combination of AccI and 23S, or that of EcoRI and 16S. Depending on the B. anthracis strain analyzed 10 or 11 rRNA operons were found. In all cases, many strains were grouped into 2 to 3 patterns. Attenuated strains, including a laboratory-cured strain, yielded aberrant patterns.
Collapse
Affiliation(s)
- Guy Patra
- Laboratoire de Prédéveloppement des Sondes, Institut Pasteur, Paris, France.
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Kunnimalaiyaan M, Stevenson DM, Zhou Y, Vary PS. Analysis of the replicon region and identification of an rRNA operon on pBM400 of Bacillus megaterium QM B1551. Mol Microbiol 2001; 39:1010-21. [PMID: 11251820 DOI: 10.1046/j.1365-2958.2001.02292.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An 18 633 bp region containing the replicon from the approximately 53 kb pBM400 plasmid of Bacillus megaterium QM B1551 has been sequenced and characterized. This region contained a complete rRNA operon plus 10 other potential open reading frames (ORFs). The replicon consisted of an upstream promoter and three contiguous genes (repM400, orfB and orfC) that could encode putative proteins of 428, 251 and 289 amino acids respectively. A 1.6 kb minimal replicon was defined and contained most of repM400. OrfB was shown to be required for stability. Three 12 bp identical tandem repeats were located within the coding region of repM400, and their presence on another plasmid caused incompatibility with their own cognate replicon. Nonsense, frameshift and deletion mutations in repM400 prevented replication, but each mutation could be complemented in trans. RepM400 had no significant similarity to sequences in the GenBank database, whereas five other ORFs had some similarity to gene products from other plasmids and the Bacillus genome. An rRNA operon was located upstream of the replication region and is the first rRNA operon to be sequenced from B. megaterium. Its unusual location on non-essential plasmid DNA has implications for systematics and evolutionary biology.
Collapse
Affiliation(s)
- M Kunnimalaiyaan
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Plasmids encode partitioning genes (par) that are required for faithful plasmid segregation at cell division. Initially, par loci were identified on plasmids, but more recently they were also found on bacterial chromosomes. We present here a phylogenetic analysis of par loci from plasmids and chromosomes from prokaryotic organisms. All known plasmid-encoded par loci specify three components: a cis-acting centromere-like site and two trans-acting proteins that form a nucleoprotein complex at the centromere (i.e. the partition complex). The proteins are encoded by two genes in an operon that is autoregulated by the par-encoded proteins. In all cases, the upstream gene encodes an ATPase that is essential for partitioning. Recent cytological analyses indicate that the ATPases function as adaptors between a host-encoded component and the partition complex and thereby tether plasmids and chromosomal origin regions to specific subcellular sites (i.e. the poles or quarter-cell positions). Two types of partitioning ATPases are known: the Walker-type ATPases encoded by the par/sop gene family (type I partitioning loci) and the actin-like ATPase encoded by the par locus of plasmid R1 (type II partitioning locus). A phylogenetic analysis of the large family of Walker type of partitioning ATPases yielded a surprising pattern: most of the plasmid-encoded ATPases clustered into distinct subgroups. Surprisingly, however, the par loci encoding these distinct subgroups have different genetic organizations and thus divide the type I loci into types Ia and Ib. A second surprise was that almost all chromosome-encoded ATPases, including members from both Gram-negative and Gram-positive Bacteria and Archaea, clustered into one distinct subgroup. The phylogenetic tree is consistent with lateral gene transfer between Bacteria and Archaea. Using database mining with the ParM ATPase of plasmid R1, we identified a new par gene family from enteric bacteria. These type II loci, which encode ATPases of the actin type, have a genetic organization similar to that of type Ib loci.
Collapse
Affiliation(s)
- K Gerdes
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense University, Campusvej 55, DK-5230 Odense M,
| | | | | |
Collapse
|