1
|
Graham CI, Gierys AJ, MacMartin TL, Penner TV, Beck JC, Prehna G, de Kievit TR, Brassinga AKC. Transcription factors DksA and PsrA are synergistic contributors to Legionella pneumophila virulence in Acanthamoeba castellanii protozoa. MICROBIOLOGY (READING, ENGLAND) 2025; 171. [PMID: 40231716 DOI: 10.1099/mic.0.001551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The environmental bacterium Legionella pneumophila, an intracellular parasite of free-living freshwater protozoa as well as an opportunistic human pathogen, has a biphasic lifestyle. The switch from the vegetative replicative form to the environmentally resilient transmissive phase form is governed by a complex stringent response-based regulatory network that includes RNA polymerase co-factor DksA. Here, we report that, through a dysfunctional DksA mutation (DksA1), a synergistic interplay was discovered between DksA and transcription regulator PsrA using the Acanthamoeba castellanii protozoan infection model. Surprisingly, in trans expression of PsrA partially rescued the growth defect of a dksA1 strain. Whilst in trans expression of DksA expectantly could fully rescue the growth defect of the dksA1 strain, it could also surprisingly rescue the growth defect of a ΔpsrA strain. Conversely, the severe intracellular growth defect of a ΔdksA strain could be rescued by in trans expression of DksA and DksA1, but not PsrA. In vitro phenotypic assays show that either DksA or DksA1 was required for extended culturability of bacterial cells, but normal cell morphology and pigmentation required DksA only. Comparative structural modelling predicts that the DksA1 mutation affects the coordination of Mg2+ into the active site of RNAP, compromising transcription efficiency. Taken together, we propose that PsrA transcriptionally assists DksA in the expression of select transmissive phase traits. Additionally, in vitro evidence suggests that the long-chain fatty acid metabolic response is mediated by PsrA together with DksA, inferring a novel regulatory link to the stringent response pathway.
Collapse
Affiliation(s)
- Christopher I Graham
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Andrew J Gierys
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Teassa L MacMartin
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Tiffany V Penner
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Jordan C Beck
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Gerd Prehna
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Teresa R de Kievit
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Ann Karen C Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
2
|
Schmidt S, Mondino S, Gomez-Valero L, Escoll P, Mascarenhas DPA, Gonçalves A, Camara PHM, Garcia Rodriguez FJ, Rusniok C, Sachse M, Moya-Nilges M, Fontaine T, Zamboni DS, Buchrieser C. The unique Legionella longbeachae capsule favors intracellular replication and immune evasion. PLoS Pathog 2024; 20:e1012534. [PMID: 39259722 PMCID: PMC11419355 DOI: 10.1371/journal.ppat.1012534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/23/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
Legionella longbeachae and Legionella pneumophila are the most common causative agents of Legionnaires' disease. While the clinical manifestations caused by both species are similar, species-specific differences exist in environmental niches, disease epidemiology, and genomic content. One such difference is the presence of a genomic locus predicted to encode a capsule. Here, we show that L. longbeachae indeed expresses a capsule in post-exponential growth phase as evidenced by electron microscopy analyses, and that capsule expression is abrogated when deleting a capsule transporter gene. Capsule purification and its analysis via HLPC revealed the presence of a highly anionic polysaccharide that is absent in the capsule mutant. The capsule is important for replication and virulence in vivo in a mouse model of infection and in the natural host Acanthamoeba castellanii. It has anti-phagocytic function when encountering innate immune cells such as human macrophages and it is involved in the low cytokine responses in mice and in human monocyte derived macrophages, thus dampening the innate immune response. Thus, the here characterized L. longbeachae capsule is a novel virulence factor, unique among the known Legionella species, which may aid L. longbeachae to survive in its specific niches and which partly confers L. longbeachae its unique infection characteristics.
Collapse
Affiliation(s)
- Silke Schmidt
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Sonia Mondino
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| | - Laura Gomez-Valero
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| | - Pedro Escoll
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| | | | - Augusto Gonçalves
- Department of Cell Biology, Medical School of Ribeirão Preto, FMRP/USP, Ribeirão Preto, Brazil
| | - Pedro H. M. Camara
- Department of Cell Biology, Medical School of Ribeirão Preto, FMRP/USP, Ribeirão Preto, Brazil
| | | | - Christophe Rusniok
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| | - Martin Sachse
- UTechS UBI, Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Maryse Moya-Nilges
- UTechS UBI, Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Thierry Fontaine
- Biologie et Pathogénicité fongiques, Institut Pasteur, Paris, France
| | - Dario S. Zamboni
- Department of Cell Biology, Medical School of Ribeirão Preto, FMRP/USP, Ribeirão Preto, Brazil
| | - Carmen Buchrieser
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| |
Collapse
|
3
|
Graham CI, MacMartin TL, de Kievit TR, Brassinga AKC. Molecular regulation of virulence in Legionella pneumophila. Mol Microbiol 2024; 121:167-195. [PMID: 37908155 DOI: 10.1111/mmi.15172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 11/02/2023]
Abstract
Legionella pneumophila is a gram-negative bacteria found in natural and anthropogenic aquatic environments such as evaporative cooling towers, where it reproduces as an intracellular parasite of cohabiting protozoa. If L. pneumophila is aerosolized and inhaled by a susceptible person, bacteria may colonize their alveolar macrophages causing the opportunistic pneumonia Legionnaires' disease. L. pneumophila utilizes an elaborate regulatory network to control virulence processes such as the Dot/Icm Type IV secretion system and effector repertoire, responding to changing nutritional cues as their host becomes depleted. The bacteria subsequently differentiate to a transmissive state that can survive in the environment until a replacement host is encountered and colonized. In this review, we discuss the lifecycle of L. pneumophila and the molecular regulatory network that senses nutritional depletion via the stringent response, a link to stationary phase-like metabolic changes via alternative sigma factors, and two-component systems that are homologous to stress sensors in other pathogens, to regulate differentiation between the intracellular replicative phase and more transmissible states. Together, we highlight how this prototypic intracellular pathogen offers enormous potential in understanding how molecular mechanisms enable intracellular parasitism and pathogenicity.
Collapse
Affiliation(s)
- Christopher I Graham
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teassa L MacMartin
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teresa R de Kievit
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ann Karen C Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Shapira N, Zusman T, Segal G. The LysR-type transcriptional regulator LelA co-regulates various effectors in different Legionella species. Mol Microbiol 2024; 121:243-259. [PMID: 38153189 DOI: 10.1111/mmi.15214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
The intracellular pathogen Legionella pneumophila translocates more than 300 effector proteins into its host cells. The expression levels of the genes encoding these effectors are orchestrated by an intricate regulatory network. Here, we introduce LelA, the first L. pneumophila LysR-type transcriptional regulator of effectors. Through bioinformatic and experimental analyses, we identified the LelA target regulatory element and demonstrated that it directly activates the expression of three L. pneumophila effectors (legL7, legL6, and legU1). We further found that the gene encoding LelA is positively regulated by the RpoS sigma factor, thus linking it to the known effector regulatory network. Examination of other species throughout the Legionella genus revealed that this regulatory element is found upstream of 34 genes encoding validated effectors, putative effectors, and hypothetical proteins. Moreover, ten of these genes were examined and found to be activated by the L. pneumophila LelA as well as by their orthologs in the corresponding species. LelA represents a novel type of Legionella effector regulator, which coordinates the expression of both adjacently and distantly located effector-encoding genes, thus forming small groups of co-regulated effectors.
Collapse
Affiliation(s)
- Naomi Shapira
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Tal Zusman
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gil Segal
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
5
|
Ge Z, Yuan P, Chen L, Chen J, Shen D, She Z, Lu Y. New Global Insights on the Regulation of the Biphasic Life Cycle and Virulence Via ClpP-Dependent Proteolysis in Legionella pneumophila. Mol Cell Proteomics 2022; 21:100233. [PMID: 35427813 PMCID: PMC9112007 DOI: 10.1016/j.mcpro.2022.100233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/17/2022] [Accepted: 04/07/2022] [Indexed: 01/11/2023] Open
Abstract
Legionella pneumophila, an environmental bacterium that parasitizes protozoa, causes Legionnaires’ disease in humans that is characterized by severe pneumonia. This bacterium adopts a distinct biphasic life cycle consisting of a nonvirulent replicative phase and a virulent transmissive phase in response to different environmental conditions. Hence, the timely and fine-tuned expression of growth and virulence factors in a life cycle–dependent manner is crucial for survival and replication. Here, we report that the completion of the biphasic life cycle and bacterial pathogenesis is greatly dependent on the protein homeostasis regulated by caseinolytic protease P (ClpP)-dependent proteolysis. We characterized the ClpP-dependent dynamic profiles of the regulatory and substrate proteins during the biphasic life cycle of L. pneumophila using proteomic approaches and discovered that ClpP-dependent proteolysis specifically and conditionally degraded the substrate proteins, thereby directly playing a regulatory role or indirectly controlling cellular events via the regulatory proteins. We further observed that ClpP-dependent proteolysis is required to monitor the abundance of fatty acid biosynthesis–related protein Lpg0102/Lpg0361/Lpg0362 and SpoT for the normal regulation of L. pneumophila differentiation. We also found that the control of the biphasic life cycle and bacterial virulence is independent. Furthermore, the ClpP-dependent proteolysis of Dot/Icm (defect in organelle trafficking/intracellular multiplication) type IVB secretion system and effector proteins at a specific phase of the life cycle is essential for bacterial pathogenesis. Therefore, our findings provide novel insights on ClpP-dependent proteolysis, which spans a broad physiological spectrum involving key metabolic pathways that regulate the transition of the biphasic life cycle and bacterial virulence of L. pneumophila, facilitating adaptation to aquatic and intracellular niches. ClpP is the major determinant of biphasic life cycle–dependent protein turnover. ClpP-dependent proteolysis monitors SpoT abundance for cellular differentiation. ClpP-dependent regulation of life cycle and bacterial virulence is independent. ClpP-dependent proteolysis of T4BSS and effector proteins is vital for virulence.
Collapse
Affiliation(s)
- Zhenhuang Ge
- School of Chemistry, Sun Yat-sen University, Guangzhou, China; School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou, China
| | - Peibo Yuan
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lingming Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junyi Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou, China
| | - Dong Shen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yongjun Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
The Legionella Lqs-LvbR Regulatory Network Controls Temperature-Dependent Growth Onset and Bacterial Cell Density. Appl Environ Microbiol 2022; 88:e0237021. [PMID: 34985976 DOI: 10.1128/aem.02370-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella species are facultative intracellular pathogens that cause a life-threatening pneumonia termed Legionnaires' disease. Legionella pneumophila employs the Lqs-LvbR (Legionella quorum sensing-Legionella virulence and biofilm regulator) network to regulate virulence and motility, but its role for growth in media is ill-defined. Here, we report that compared to the L. pneumophila reference strain JR32, a ΔlqsR mutant showed a reduced lag phase at 30°C and reached a higher cell density at 45°C, while the ΔlqsA, ΔlqsS, and ΔlqsT mutants showed a longer lag phase and reached a lower cell density. A ΔlvbR mutant resumed growth like the parental strain at 30°C but exhibited a substantially reduced cell density at 45°C. Thus, LvbR is an important cell density regulator at elevated temperatures. Environmental and clinical L. pneumophila strains grew in N-(2-acetamido)-2-aminoethanesulfonic acid (ACES)-buffered yeast extract (AYE) medium after distinct lag phases with similar rates at 30°C, reached different cell densities at the optimal growth temperature of 40°C, and no longer grew at 50°C. Legionella longbeachae reached a rather low cell density at 40°C and did not grow at and beyond 45°C. Genes encoding components of the Lqs-LvbR network were present in the genomes of the environmental and clinical L. pneumophila isolates, and upon growth at 30°C or 45°C, the PlqsR, PlqsA, PlqsS, and PlvbR promoters from strain JR32 were expressed in these strains with distinct patterns. Taken together, our results indicate that the Lqs-LvbR network governs the temperature-dependent growth onset and cell density of the L. pneumophila reference strain JR32 and possibly also of environmental and clinical L. pneumophila isolates. IMPORTANCE Environmental bacteria of the genus Legionella are the causative agents of the severe pneumonia Legionnaires' disease, the incidence of which is on the rise worldwide. Legionella pneumophila and Legionella longbeachae are the clinically most relevant species. The opportunistic pathogens are inhaled through contaminated aerosols and replicate in human lung macrophages with a mechanism similar to that in their natural hosts, free-living amoebae. Given their prevalence in natural and technical water systems, an efficient control of Legionella spp. by physical, chemical, or biological means will reduce the incidence of Legionnaires' disease. Here, we show that the Legionella quorum sensing (Lqs) system and the pleiotropic transcription factor LvbR govern the temperature-dependent growth onset and cell density of bacterial cultures. Hence, the growth of L. pneumophila in water systems is determined not only by the temperature and nutrient availability but also by quorum sensing, i.e., density- and signaling molecule-dependent gene regulation.
Collapse
|
7
|
Mraz AL, Weir MH. Knowledge to Predict Pathogens: Legionella pneumophila Lifecycle Systematic Review Part II Growth within and Egress from a Host Cell. Microorganisms 2022; 10:141. [PMID: 35056590 PMCID: PMC8780890 DOI: 10.3390/microorganisms10010141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
Legionella pneumophila (L. pneumophila) is a pathogenic bacterium of increasing concern, due to its ability to cause a severe pneumonia, Legionnaires' Disease (LD), and the challenges in controlling the bacteria within premise plumbing systems. L. pneumophila can thrive within the biofilm of premise plumbing systems, utilizing protozoan hosts for protection from environmental stressors and to increase its growth rate, which increases the bacteria's infectivity to human host cells. Typical disinfectant techniques have proven to be inadequate in controlling L. pneumophila in the premise plumbing system, exposing users to LD risks. As the bacteria have limited infectivity to human macrophages without replicating within a host protozoan cell, the replication within, and egress from, a protozoan host cell is an integral part of the bacteria's lifecycle. While there is a great deal of information regarding how L. pneumophila interacts with protozoa, the ability to use this data in a model to attempt to predict a concentration of L. pneumophila in a water system is not known. This systematic review summarizes the information in the literature regarding L. pneumophila's growth within and egress from the host cell, summarizes the genes which affect these processes, and calculates how oxidative stress can downregulate those genes.
Collapse
Affiliation(s)
- Alexis L. Mraz
- School of Nursing, Health, Exercise Science, The College of New Jersey, P.O. Box 7718, 2000 Pennington Rd., Ewing, NJ 08628, USA
| | - Mark H. Weir
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210, USA;
- Sustainability Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Linsky M, Segal G. A horizontally acquired Legionella genomic island encoding a LuxR type regulator and effector proteins displays variation in gene content and regulation. Mol Microbiol 2021; 116:766-782. [PMID: 34120381 DOI: 10.1111/mmi.14770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/30/2022]
Abstract
The intracellular pathogen Legionella pneumophila translocates >300 effector proteins into host cells, many of which are regulated at the transcriptional level. Here, we describe a novel L. pneumophila genomic island, which undergoes horizontal gene transfer within the Legionella genus. This island encodes two Icm/Dot effectors: LegK3 and a previously uncharacterized effector which we named CegK3, as well as a LuxR type regulator, which we named RegK3. Analysis of this island in different Legionella species revealed a conserved regulatory element located upstream to the effector-encoding genes in the island. Further analyses, including gene expression analysis, mutagenesis of the RegK3 regulatory element, controlled expression studies, and gel-mobility shift assays, all demonstrate that RegK3 directly activates the expression levels of legK3 and cegK3 effector-encoding genes. Additionally, the expression of all the components of the island is silenced by the Fis repressors. Comparison of expression profiles of these three genes among different Legionella species revealed variability in the activation levels mediated by RegK3, which were positively correlated with the Fis-mediated repression. Furthermore, LegK3 and CegK3 effectors moderately inhibit yeast growth, and importantly, they have a strong synergistic inhibitory effect on yeast growth, suggesting these two effectors are not only co-regulated but also might function together.
Collapse
Affiliation(s)
- Marika Linsky
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gil Segal
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
9
|
Bédard E, Trigui H, Liang J, Doberva M, Paranjape K, Lalancette C, Allegra S, Faucher SP, Prévost M. Local Adaptation of Legionella pneumophila within a Hospital Hot Water System Increases Tolerance to Copper. Appl Environ Microbiol 2021; 87:e00242-21. [PMID: 33674435 PMCID: PMC8117758 DOI: 10.1128/aem.00242-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/25/2021] [Indexed: 11/20/2022] Open
Abstract
In large-building water systems, Legionella pneumophila is exposed to common environmental stressors such as copper. The aim of this study was to evaluate the susceptibility to copper of L. pneumophila isolates recovered from various sites: two clinical and seven environmental isolates from hot water system biofilm and water and from cooling tower water. After a 1-week acclimation in simulated drinking water, strains were exposed to various copper concentrations (0.8 to 5 mg/liter) for over 672 h. Complete loss of culturability was observed for three isolates following copper exposure to 5 mg/liter for 672 h. Two sequence type 1427 (ST1427)-like isolates were highly sensitive to copper, while the other two, isolated from biofilm samples, maintained higher culturability. The expression of the copper resistance gene copA evaluated by reverse transcription-quantitative PCR (RT-qPCR) was significantly higher for the biofilm isolates. All four ST1427-like isolates were recovered from the same water system during an outbreak. Whole-genome sequencing results confirmed that the four isolates are very close phylogenetically, differing by only 29 single nucleotide polymorphisms, suggesting in situ adaptation to microenvironmental conditions, possibly due to epigenetic regulation. These results indicate that the immediate environment within a building water distribution system influences the tolerance of L. pneumophila to copper. Increased contact of L. pneumophila biofilm strains with copper piping or copper alloys in the heat exchanger might lead to local adaptation. The phenotypic differences observed between water and biofilm isolates from the hot water system of a health care facility warrants further investigation to assess the relevance of evaluating disinfection performances based on water sampling alone.IMPORTANCELegionella pneumophila is a pathogen indigenous to natural and large building water systems in the bulk and the biofilm phases. The immediate environment within a system can impact the tolerance of L. pneumophila to environmental stressors, including copper. In health care facilities, copper levels in water can vary, depending on water quality, plumbing materials, and age. This study evaluated the impact of the isolation site (water versus biofilm, hot water system versus cooling tower) within building water systems. Closely related strains isolated from a health care facility hot water system exhibited variable tolerance to copper stress, shown by differential expression of copA, with biofilm isolates displaying highest expression and tolerance. Relying on the detection of L. pneumophila in water samples following exposure to environmental stressors such as copper may underestimate the prevalence of L. pneumophila, leading to inappropriate risk management strategies and increasing the risk of exposure for vulnerable patients.
Collapse
Affiliation(s)
- Emilie Bédard
- Department of Civil Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Hana Trigui
- Department of Civil Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Jeffrey Liang
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Margot Doberva
- Department of Civil Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Kiran Paranjape
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Cindy Lalancette
- Laboratoire de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Séverine Allegra
- University of Lyon, UJM-Saint-Etienne, UMR 5600 CNRS, EVS-ISTHME, Saint-Etienne, France
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| |
Collapse
|
10
|
Chauhan D, Shames SR. Pathogenicity and Virulence of Legionella: Intracellular replication and host response. Virulence 2021; 12:1122-1144. [PMID: 33843434 PMCID: PMC8043192 DOI: 10.1080/21505594.2021.1903199] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bacteria of the genus Legionella are natural pathogens of amoebae that can cause a severe pneumonia in humans called Legionnaires’ Disease. Human disease results from inhalation of Legionella-contaminated aerosols and subsequent bacterial replication within alveolar macrophages. Legionella pathogenicity in humans has resulted from extensive co-evolution with diverse genera of amoebae. To replicate intracellularly, Legionella generates a replication-permissive compartment called the Legionella-containing vacuole (LCV) through the concerted action of hundreds of Dot/Icm-translocated effector proteins. In this review, we present a collective overview of Legionella pathogenicity including infection mechanisms, secretion systems, and translocated effector function. We also discuss innate and adaptive immune responses to L. pneumophila, the implications of Legionella genome diversity and future avenues for the field.
Collapse
Affiliation(s)
- Deepika Chauhan
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | | |
Collapse
|
11
|
Saoud J, Carrier MC, Massé É, Faucher SP. The small regulatory RNA Lpr10 regulates the expression of RpoS in Legionella pneumophila. Mol Microbiol 2020; 115:789-806. [PMID: 33191583 DOI: 10.1111/mmi.14644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022]
Abstract
Legionella pneumophila (Lp) is a waterborne bacterium able to infect human alveolar macrophages, causing Legionnaires' disease. Lp can survive for several months in water, while searching for host cells to grow in, such as ciliates and amoeba. In Lp, the sigma factor RpoS is essential for survival in water. A previous transcriptomic study showed that RpoS positively regulates the small regulatory RNA Lpr10. In the present study, deletion of lpr10 results in an increased survival of Lp in water. Microarray analysis and RT-qPCR revealed that Lpr10 negatively regulates the expression of RpoS in the postexponential phase. Electrophoretic mobility shift assay and in-line probing showed that Lpr10 binds to a region upstream of the previously identified transcription start sites (TSS) of rpoS. A third putative transcription start site was identified by primer extension analysis, upstream of the Lpr10 binding site. In addition, nlpD TSS produces a polycistronic mRNA including the downstream gene rpoS, indicating a fourth TSS for rpoS. Our results suggest that the transcripts from the third and fourth TSS are negatively regulated by the Lpr10 sRNA. Therefore, we propose that Lpr10 is involved in a negative regulatory feedback loop to maintain expression of RpoS to an optimal level.
Collapse
Affiliation(s)
- Joseph Saoud
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, QC, Canada
| | - Marie-Claude Carrier
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, QC, Canada
| | - Éric Massé
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, QC, Canada
| | - Sébastien P Faucher
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
12
|
Personnic N, Striednig B, Lezan E, Manske C, Welin A, Schmidt A, Hilbi H. Quorum sensing modulates the formation of virulent Legionella persisters within infected cells. Nat Commun 2019; 10:5216. [PMID: 31740681 PMCID: PMC6861284 DOI: 10.1038/s41467-019-13021-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
The facultative intracellular bacterium Legionella pneumophila replicates in environmental amoebae and in lung macrophages, and causes Legionnaires' disease. Here we show that L. pneumophila reversibly forms replicating and nonreplicating subpopulations of similar size within amoebae. The nonreplicating bacteria are viable and metabolically active, display increased antibiotic tolerance and a distinct proteome, and show high virulence as well as the capacity to form a degradation-resistant compartment. Upon infection of naïve or interferon-γ-activated macrophages, the nonreplicating subpopulation comprises ca. 10% or 50%, respectively, of the total intracellular bacteria; hence, the nonreplicating subpopulation is of similar size in amoebae and activated macrophages. The numbers of nonreplicating bacteria within amoebae are reduced in the absence of the autoinducer synthase LqsA or other components of the Lqs quorum-sensing system. Our results indicate that virulent, antibiotic-tolerant subpopulations of L. pneumophila are formed during infection of evolutionarily distant phagocytes, in a process controlled by the Lqs system.
Collapse
Affiliation(s)
- Nicolas Personnic
- Institute for Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland.
| | - Bianca Striednig
- Institute for Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Emmanuelle Lezan
- Proteomics Core Facility, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Christian Manske
- Max von Pettenkofer Institute, Ludwig-Maximilians University Munich, Pettenkoferstrasse 9a, 80336, Munich, Germany
| | - Amanda Welin
- Institute for Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Hubert Hilbi
- Institute for Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| |
Collapse
|
13
|
Ge ZH, Long QS, Yuan PB, Pan X, Shen D, Lu YJ. The Temporal Expression of Global Regulator Protein CsrA Is Dually Regulated by ClpP During the Biphasic Life Cycle of Legionella pneumophila. Front Microbiol 2019; 10:2495. [PMID: 31787938 PMCID: PMC6853998 DOI: 10.3389/fmicb.2019.02495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/16/2019] [Indexed: 11/16/2022] Open
Abstract
Legionella pneumophila, an environmental bacterium that parasitizes protozoa, is the causative pathogen of Legionnaires' disease. L. pneumophila adopts a distinct biphasic life cycle that allows it to adapt to environmental conditions for survival, replication, and transmission. This cycle consists of a non-virulent replicative phase (RP) and a virulent transmissive phase (TP). Timely and fine-tuned expression of growth and virulence factors in a life cycle-dependent manner is crucial. Herein, we report evidence that CsrA, a key regulator of the switch between the RP and the TP, is dually regulated in a ClpP-dependent manner during the biphasic life cycle of L. pneumophila. First, we show that the protein level of CsrA is temporal during the life cycle and is degraded by ClpP during the TP. The ectopic expression of CsrA in a ΔclpP mutant, but not in the wild type, inhibits both the initiation of the RP in vitro and the invasiveness to Acanthamoeba castellanii, indicating that the ClpP-mediated proteolytic pathway regulates the CsrA protein level. We further show that the temporally expressed IHFB is the transcriptional inhibitor of csrA and is degraded via a ClpP-dependent manner during the RP. During the RP, the level of CsrA is increased by promoting the degradation of IHFB and reducing the degradation of the accumulated CsrA via a ClpP-dependent manner. During the TP, the level of CsrA is decreased by inhibiting the degradation of IHFB and promoting the degradation of the accumulated CsrA via a ClpP-dependent manner as well. In conclusion, our results show that the growth-stage-specific expression level of CsrA is dually regulated by ClpP-dependent proteolysis at both the transcription and protein levels during the biphasic life cycle of L. pneumophila.
Collapse
Affiliation(s)
- Zhen-Huang Ge
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| | - Qin-Sha Long
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| | - Pei-Bo Yuan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| | - Xin Pan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dong Shen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| | - Yong-Jun Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Antibiotic Killing of Diversely Generated Populations of Nonreplicating Bacteria. Antimicrob Agents Chemother 2019; 63:AAC.02360-18. [PMID: 31036690 PMCID: PMC6591645 DOI: 10.1128/aac.02360-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/18/2019] [Indexed: 01/11/2023] Open
Abstract
Nonreplicating bacteria are known to be (or at least commonly thought to be) refractory to antibiotics to which they are genetically susceptible. Here, we explore the sensitivity to killing by bactericidal antibiotics of three classes of nonreplicating populations of planktonic bacteria: (i) stationary phase, when the concentration of resources and/or nutrients are too low to allow for population growth; (ii) persisters, minority subpopulations of susceptible bacteria surviving exposure to bactericidal antibiotics; and (iii) antibiotic-static cells, bacteria exposed to antibiotics that prevent their replication but kill them slowly if at all, the so-called bacteriostatic drugs. Using experimental populations of Staphylococcus aureus Newman and Escherichia coli K-12 (MG1655) and, respectively, nine and seven different bactericidal antibiotics, we estimated the rates at which these drugs kill these different types of nonreplicating bacteria. In contrast to the common belief that bacteria that are nonreplicating are refractory to antibiotic-mediated killing, all three types of nonreplicating populations of these Gram-positive and Gram-negative bacteria are consistently killed by aminoglycosides and the peptide antibiotics daptomycin and colistin, respectively. This result indicates that nonreplicating cells, irrespectively of why they do not replicate, have an almost identical response to bactericidal antibiotics. We discuss the implications of these results to our understanding of the mechanisms of action of antibiotics and the possibility of adding a short-course of aminoglycosides or peptide antibiotics to conventional therapy of bacterial infections.
Collapse
|
15
|
Coxiella burnetii RpoS Regulates Genes Involved in Morphological Differentiation and Intracellular Growth. J Bacteriol 2019; 201:JB.00009-19. [PMID: 30745369 DOI: 10.1128/jb.00009-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Coxiella burnetii, the etiological agent of Q fever, undergoes a unique biphasic developmental cycle where bacteria transition from a replicating (exponential-phase) large cell variant (LCV) form to a nonreplicating (stationary-phase) small cell variant (SCV) form. The alternative sigma factor RpoS is an essential regulator of stress responses and stationary-phase physiology in several bacterial species, including Legionella pneumophila, which has a developmental cycle superficially similar to that of C. burnetii Here, we used a C. burnetii ΔrpoS mutant to define the role of RpoS in intracellular growth and SCV development. Growth yields following infection of Vero epithelial cells or THP-1 macrophage-like cells with the rpoS mutant in the SCV form, but not the LCV form, were significantly lower than that of wild-type bacteria. RNA sequencing and whole-cell mass spectrometry of the C. burnetii ΔrpoS mutant revealed that a substantial portion of the C. burnetii genome is regulated by RpoS during SCV development. Regulated genes include those involved in stress responses, arginine transport, peptidoglycan remodeling, and synthesis of the SCV-specific protein ScvA. Genes comprising the dot/icm locus, responsible for production of the Dot/Icm type 4B secretion system, were also dysregulated in the rpoS mutant. These data were corroborated with independent assays demonstrating that the C. burnetii ΔrpoS strain has increased sensitivity to hydrogen peroxide and carbenicillin and a thinner cell wall/outer membrane complex. Collectively, these results demonstrate that RpoS is an important regulator of genes involved in C. burnetii SCV development and intracellular growth.IMPORTANCE The Q fever bacterium Coxiella burnetii has spore-like environmental stability, a characteristic that contributes to its designation as a potential bioweapon. Stability is likely conferred by a highly resistant, small cell variant (SCV) stationary-phase form that arises during a biphasic developmental cycle. Here, we define the role of the alternative sigma factor RpoS in regulating genes associated with SCV development. Genes involved in stress responses, amino acid transport, cell wall remodeling, and type 4B effector secretion were dysregulated in the rpoS mutant. Cellular impairments included defects in intracellular growth, cell wall structure, and resistance to oxidants. These results support RpoS as a central regulator of the Coxiella developmental cycle and identify developmentally regulated genes involved in morphological differentiation.
Collapse
|
16
|
Lewis J, Soto E. Gene expression of putative type VI secretion system (T6SS) genes in the emergent fish pathogen Francisella noatunensis subsp. orientalis in different physiochemical conditions. BMC Microbiol 2019; 19:21. [PMID: 30665355 PMCID: PMC6341738 DOI: 10.1186/s12866-019-1389-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022] Open
Abstract
Background Francisella noatunensis subsp. orientalis (Fno) is an emergent fish pathogen and the etiologic agent of piscine francisellosis. Besides persisting in the environment in both biofilm and planktonic forms, Fno is known to infect and replicate inside tilapia macrophages and endothelial-derived cells. However, the mechanism used by this emergent bacterium for intracellular survival is unknown. Additionally, the basis of virulence for Fno is still poorly understood. Several potential virulence determinants have been identified in Fno, including homologues of the recently described F. tularensis Type VI Secretion System (T6SS). In order to gain a better understanding of the role the putative Fno T6SS might play in the pathogenesis of piscine francisellosis, we performed transcriptional analysis of Fno T6SS gene-homologues under temperature, acidic, and oxidative stress conditions. Results Few transcriptional differences were observed at different temperatures, growth stages and pHs; however, a trend towards higher expression of Fno T6SS-homologue genes at 25 °C and under oxidative stress was detected when compared to those quantified at 30 °C and under no H2O2 (p < 0.05). Conclusions Results from this study suggest that several of the F. tularensis T6SS-homologues may play an important role in the virulence of Fno, particularly when the bacterium is exposed to low temperatures and oxidative stress. Electronic supplementary material The online version of this article (10.1186/s12866-019-1389-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jainee Lewis
- Department of Medicine and Epidemiology, University of California-Davis, School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Esteban Soto
- Department of Medicine and Epidemiology, University of California-Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| |
Collapse
|
17
|
Best A, Abu Kwaik Y. Nutrition and Bipartite Metabolism of Intracellular Pathogens. Trends Microbiol 2019; 27:550-561. [PMID: 30655036 DOI: 10.1016/j.tim.2018.12.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/20/2018] [Accepted: 12/20/2018] [Indexed: 12/29/2022]
Abstract
The host is a nutrient-rich niche for microbial pathogens, but one that comes with obstacles and challenges. Many intracellular pathogens like Legionella pneumophila, Coxiella burnetii, Listeria monocytogenes, and Chlamydia trachomatis have developed bipartite metabolism within their hosts. This style of metabolic regulation enables pathogen sensing of specific nutrients to engage them into catabolic and anabolic processes, and contributes to temporal and spatial pathogen phenotypic modulation. Not only have intracellular pathogens adapted their metabolism to the host, they have also acquired idiosyncratic strategies to exploit host nutritional supplies and intercept metabolites. Francisella tularensis and Anaplasma phagocytophilum alter host autophagy, Shigella flexneri intercepts all host pyruvate, while L. pneumophila induces host protein degradation and blocks protein translation. Strategies of pathogen manipulation of host nutrients could serve as therapeutic targets.
Collapse
Affiliation(s)
- Ashley Best
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, KY, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, KY, USA; Center for Predictive Medicine, College of Medicine, University of Louisville, KY, USA.
| |
Collapse
|
18
|
Mendis N, Trigui H, Saad M, Tsang A, Faucher SP. Deletion of oxyR in Legionella pneumophila causes growth defect on agar. Can J Microbiol 2018; 64:1030-1041. [PMID: 30212639 DOI: 10.1139/cjm-2018-0129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The intracellular pathogen Legionella pneumophila (Lp) is a strict aerobe, surviving and replicating in environments where it frequently encounters reactive oxygen species (ROS), such as the nutrient-poor water environment and its replicative niche inside host cells. In many proteobacteria, the LysR-type regulator OxyR controls the oxidative stress response; however, the importance of the OxyR homologue in Lp is still unclear. Therefore, we undertook the characterization of phenotypes associated with the deletion of oxyR in Lp. Contrary to the wild type, the oxyR deletion mutant exhibits a severe growth defect on charcoal - yeast extract (CYE) agar lacking α-ketoglutarate supplementation. Growth in AYE broth (CYE without agar and charcoal), in amoeba and in human cultured macrophages, and survival in water is unaffected by the deletion. Supplementing CYE agar with antioxidants that neutralize ROS or introducing the oxyR gene in trans rescues the observed growth defect. Moreover, the mutant grows as well as the wild type on CYE plates made with agarose instead of agar, suggesting that a compound present in the latter is responsible for the growth defect phenotype.
Collapse
Affiliation(s)
- Nilmini Mendis
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.,Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Hana Trigui
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.,Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Mariam Saad
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.,Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Adrianna Tsang
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.,Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Sébastien P Faucher
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.,Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
19
|
Mendis N, McBride P, Saoud J, Mani T, Faucher SP. The LetA/S two-component system regulates transcriptomic changes that are essential for the culturability of Legionella pneumophila in water. Sci Rep 2018; 8:6764. [PMID: 29712912 PMCID: PMC5928044 DOI: 10.1038/s41598-018-24263-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/07/2018] [Indexed: 11/13/2022] Open
Abstract
Surviving the nutrient-poor aquatic environment for extended periods of time is important for the transmission of various water-borne pathogens, including Legionella pneumophila (Lp). Previous work concluded that the stringent response and the sigma factor RpoS are essential for the survival of Lp in water. In the present study, we investigated the role of the LetA/S two-component signal transduction system in the successful survival of Lp in water. In addition to cell size reduction in the post-exponential phase, LetS also contributes to cell size reduction when Lp is exposed to water. Importantly, absence of the sensor kinase results in a significantly lower survival as measured by CFUs in water at various temperatures and an increased sensitivity to heat shock. According to the transcriptomic analysis, LetA/S orchestrates a general transcriptomic downshift of major metabolic pathways upon exposure to water leading to better culturability, and likely survival, suggesting a potential link with the stringent response. However, the expression of the LetA/S regulated small regulatory RNAs, RsmY and RsmZ, is not changed in a relAspoT mutant, which indicates that the stringent response and the LetA/S response are two distinct regulatory systems contributing to the survival of Lp in water.
Collapse
Affiliation(s)
- Nilmini Mendis
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Peter McBride
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Joseph Saoud
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Thangadurai Mani
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
20
|
Best A, Price C, Ozanic M, Santic M, Jones S, Abu Kwaik Y. A Legionella pneumophila amylase is essential for intracellular replication in human macrophages and amoebae. Sci Rep 2018; 8:6340. [PMID: 29679057 PMCID: PMC5910436 DOI: 10.1038/s41598-018-24724-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/05/2018] [Indexed: 11/09/2022] Open
Abstract
Legionella pneumophila invades protozoa with an "accidental" ability to cause pneumonia upon transmission to humans. To support its nutrition during intracellular residence, L. pneumophila relies on host amino acids as the main source of carbon and energy to feed the TCA cycle. Despite the apparent lack of a requirement for glucose for L. pneumophila growth in vitro and intracellularly, the organism contains multiple amylases, which hydrolyze polysaccharides into glucose monomers. Here we describe one predicted putative amylase, LamB, which is uniquely present only in L. pneumophila and L. steigerwaltii among the ~60 species of Legionella. Our data show that LamB has a strong amylase activity, which is abolished upon substitutions of amino acids that are conserved in the catalytic pocket of amylases. Loss of LamB or expression of catalytically-inactive variants of LamB results in a severe growth defect of L. pneumophila in Acanthamoeba polyphaga and human monocytes-derived macrophages. Importantly, the lamB null mutant is severely attenuated in intra-pulmonary proliferation in the mouse model and is defective in dissemination to the liver and spleen. Our data show an essential role for LamB in intracellular replication of L. pneumophila in amoeba and human macrophages and in virulence in vivo.
Collapse
Affiliation(s)
- Ashley Best
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, KY, USA
| | - Christopher Price
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, KY, USA
| | - Mateja Ozanic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marina Santic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Snake Jones
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, KY, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, KY, USA.
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
21
|
Knowledge to Predict Pathogens: Legionella pneumophila Lifecycle Critical Review Part I Uptake into Host Cells. WATER 2018. [DOI: 10.3390/w10020132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Oliva G, Sahr T, Buchrieser C. The Life Cycle of L. pneumophila: Cellular Differentiation Is Linked to Virulence and Metabolism. Front Cell Infect Microbiol 2018; 8:3. [PMID: 29404281 PMCID: PMC5780407 DOI: 10.3389/fcimb.2018.00003] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/05/2018] [Indexed: 12/20/2022] Open
Abstract
Legionella pneumophila is a gram-negative bacterium that inhabits freshwater ecosystems, where it is present in biofilm or as planktonic form. L. pneumophila is mainly found associated with protozoa, which serve as protection from hostile environments and as replication niche. If inhaled within aerosols, L. pneumophila is also able to infect and replicate in human alveolar macrophages, eventually causing the Legionnaires' disease. The transition between intracellular and extracellular environments triggers a differentiation program in which metabolic as well as morphogenetic changes occur. We here describe the current knowledge on how the different developmental states of this bacterium are regulated, with a particular emphasis on the stringent response activated during the transition from the replicative phase to the infectious phase and the metabolic features going in hand. We propose that the cellular differentiation of this intracellular pathogen is closely associated to key metabolic changes in the bacterium and the host cell, which together have a crucial role in the regulation of L. pneumophila virulence.
Collapse
Affiliation(s)
- Giulia Oliva
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France.,Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Tobias Sahr
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France.,Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France.,Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| |
Collapse
|
23
|
Jwanoswki K, Wells C, Bruce T, Rutt J, Banks T, McNealy TL. The Legionella pneumophila GIG operon responds to gold and copper in planktonic and biofilm cultures. PLoS One 2017; 12:e0174245. [PMID: 28463986 PMCID: PMC5413113 DOI: 10.1371/journal.pone.0174245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 03/06/2017] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila contaminates man-made water systems and creates numerous exposure risks for Legionnaires’ Disease. Because copper/silver ionization is commonly used to control L. pneumophila, its mechanisms of metal response and detoxification are of significant interest. Here we describe an L. pneumophila operon with significant similarity to the GIG operon of Cupriavidus metallidurans. The Legionella GIG operon is present in a subset of strains and has been acquired as part of the ICE-βox 65-kB integrative conjugative element. We assessed GIG promoter activity following exposure of L. pneumophila to multiple concentrations of HAuCl4, CuSO4 and AgNO3. At 37°C, control stationary phase cultures exhibited GIG promoter activity. This activity increased significantly in response to 20 and 50uM HAuCl4 and CuSO4 but not in response to AgNO3. Conversely, at 26°C, cultures exhibited decreased promoter response to copper. GIG promoter activity was also induced by HAuCl4 or CuSO4 during early biofilm establishment at both temperatures. When an L. pneumophila GIG promoter construct was transformed into E. coli DH5α, cultures showed baseline expression levels that did not increase following metal addition. Analysis of L. pneumophila transcriptional regulatory mutants suggested that GIG up-regulation in the presence of metal ions may be influenced by the stationary phase sigma factor, RpoS.
Collapse
Affiliation(s)
- Kathleen Jwanoswki
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Christina Wells
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Terri Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, South Carolina, United States of America
| | - Jennifer Rutt
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Tabitha Banks
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Tamara L. McNealy
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
24
|
Li L, Faucher SP. The Membrane Protein LasM Promotes the Culturability of Legionella pneumophila in Water. Front Cell Infect Microbiol 2016; 6:113. [PMID: 27734007 PMCID: PMC5039212 DOI: 10.3389/fcimb.2016.00113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022] Open
Abstract
The water-borne pathogen Legionella pneumophila (Lp) strongly expresses the lpg1659 gene in water. This gene encodes a hypothetical protein predicted to be a membrane protein using in silico analysis. While no conserved domains were identified in Lpg1659, similar proteins are found in many Legionella species and other aquatic bacteria. RT-qPCR showed that lpg1659 is positively regulated by the alternative sigma factor RpoS, which is essential for Lp to survive in water. These observations suggest an important role of this novel protein in the survival of Lp in water. Deletion of lpg1659 did not affect cell morphology, membrane integrity or tolerance to high temperature. Moreover, lpg1659 was dispensable for growth of Lp in rich medium, and during infection of the amoeba Acanthamoeba castellanii and of THP-1 human macrophages. However, deletion of lpg1659 resulted in an early loss of culturability in water, while over-expression of this gene promoted the culturability of Lp. Therefore, these results suggest that lpg1659 is required for Lp to maintain culturability, and possibly long-term survival, in water. Since the loss of culturability observed in the absence of Lpg1659 was complemented by the addition of trace metals into water, this membrane protein is likely a transporter for acquiring essential trace metal for maintaining culturability in water and potentially in other metal-deprived conditions. Given its role in the survival of Lp in water, Lpg1659 was named LasM for Legionella aquatic survival membrane protein.
Collapse
Affiliation(s)
- Laam Li
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Montreal, QC, Canada
| | - Sébastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Montreal, QC, Canada
| |
Collapse
|
25
|
Eisenreich W, Heuner K. The life stage-specific pathometabolism of Legionella pneumophila. FEBS Lett 2016; 590:3868-3886. [PMID: 27455397 DOI: 10.1002/1873-3468.12326] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/08/2016] [Accepted: 07/21/2016] [Indexed: 12/17/2022]
Abstract
The genus Legionella belongs to Gram-negative bacteria found ubiquitously in aquatic habitats, where it grows in natural biofilms and replicates intracellularly in various protozoa (amoebae, ciliates). L. pneumophila is known as the causative agent of Legionnaires' disease, since it is also able to replicate in human alveolar macrophages, finally leading to inflammation of the lung and pneumonia. To withstand the degradation by its host cells, a Legionella-containing vacuole (LCV) is established for intracellular replication, and numerous effector proteins are secreted into the host cytosol using a type four B secretion system (T4BSS). During intracellular replication, Legionella has a biphasic developmental cycle that alternates between a replicative and a transmissive form. New knowledge about the host-adapted and life stage-dependent metabolism of intracellular L. pneumophila revealed a bipartite metabolic network with life stage-specific usages of amino acids (e.g. serine), carbohydrates (e.g. glucose) and glycerol as major substrates. These metabolic features are associated with the differentiation of the intracellular bacteria, and thus have an important impact on the virulence of L. pneumophila.
Collapse
Affiliation(s)
| | - Klaus Heuner
- Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
26
|
Zhao BB, Li XH, Zeng YL, Lu YJ. ClpP-deletion impairs the virulence of Legionella pneumophila and the optimal translocation of effector proteins. BMC Microbiol 2016; 16:174. [PMID: 27484084 PMCID: PMC4969725 DOI: 10.1186/s12866-016-0790-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/27/2016] [Indexed: 12/19/2022] Open
Abstract
Background The opportunistic bacterial pathogen Legionella pneumophila uses substrate effectors of Dot/Icm type IVB secretion system (T4BSS) to accomplish survival and replication in amoebae cells and mammalian alveolar macrophages. During the conversion between its highly resistant, infectious dormant form and vigorously growing, uninfectious replicative form, L. pneumophila utilizes a complicated regulatory network in which proteolysis may play a significant role. As a highly conserved core protease, ClpP is involved in various cellular processes as well as virulence in bacteria, and has been proved to be required for the expression of transmission traits and cell division of L. pneumophila. Results The clpP-deficient L. pneumophila strain failed to replicate and was digested in the first 3 h post-infection in mammalian cells J774A.1. Further investigation demonstrates that the clpP deficient mutant strain was unable to escape the endosome-lysosomal pathway in host cells. We also found that the clpP deficient mutant strain still expresses T4BSS components, induces contact-dependent cytotoxicity and translocate effector proteins RalF and LegK2, indicating that its T4BSS was overall functional. Interestingly, we further found that the translocation of several effector proteins is significantly reduced without ClpP. Conclusions The data indicate that ClpP plays an important role in regulating the virulence and effector translocation of Legionella pneumophila. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0790-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bei-Bei Zhao
- School of Life Sciences and Biomedical Center, Sun Yat-sen University, No. 135 Xingang road west, Guangzhou, 510275, China
| | - Xiang-Hui Li
- School of Life Sciences and Biomedical Center, Sun Yat-sen University, No. 135 Xingang road west, Guangzhou, 510275, China.,Present address: Jiangsu Information Institute of Science and Technology, Nanjing, 210042, China
| | - Yong-Lun Zeng
- School of Life Sciences and Biomedical Center, Sun Yat-sen University, No. 135 Xingang road west, Guangzhou, 510275, China.,Present address: School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Yong-Jun Lu
- School of Life Sciences and Biomedical Center, Sun Yat-sen University, No. 135 Xingang road west, Guangzhou, 510275, China.
| |
Collapse
|
27
|
Metabolism of myo-Inositol by Legionella pneumophila Promotes Infection of Amoebae and Macrophages. Appl Environ Microbiol 2016; 82:5000-14. [PMID: 27287324 DOI: 10.1128/aem.01018-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/06/2016] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Legionella pneumophila is a natural parasite of environmental amoebae and the causative agent of a severe pneumonia termed Legionnaires' disease. The facultative intracellular pathogen employs a bipartite metabolism, where the amino acid serine serves as the major energy supply, while glycerol and glucose are mainly utilized for anabolic processes. The L. pneumophila genome harbors the cluster lpg1653 to lpg1649 putatively involved in the metabolism of the abundant carbohydrate myo-inositol (here termed inositol). To assess inositol metabolism by L. pneumophila, we constructed defined mutant strains lacking lpg1653 or lpg1652, which are predicted to encode the inositol transporter IolT or the inositol-2-dehydrogenase IolG, respectively. The mutant strains were not impaired for growth in complex or defined minimal media, and inositol did not promote extracellular growth. However, upon coinfection of Acanthamoeba castellanii, the mutants were outcompeted by the parental strain, indicating that the intracellular inositol metabolism confers a fitness advantage to the pathogen. Indeed, inositol added to L. pneumophila-infected amoebae or macrophages promoted intracellular growth of the parental strain, but not of the ΔiolT or ΔiolG mutant, and growth stimulation by inositol was restored by complementation of the mutant strains. The expression of the Piol promoter and bacterial uptake of inositol required the alternative sigma factor RpoS, a key virulence regulator of L. pneumophila Finally, the parental strain and ΔiolG mutant bacteria but not the ΔiolT mutant strain accumulated [U-(14)C6]inositol, indicating that IolT indeed functions as an inositol transporter. Taken together, intracellular L. pneumophila metabolizes inositol through the iol gene products, thus promoting the growth and virulence of the pathogen. IMPORTANCE The environmental bacterium Legionella pneumophila is the causative agent of a severe pneumonia termed Legionnaires' disease. The opportunistic pathogen replicates in protozoan and mammalian phagocytes in a unique vacuole. Amino acids are thought to represent the prime source of carbon and energy for L. pneumophila However, genome, transcriptome, and proteome studies indicate that the pathogen not only utilizes amino acids as carbon sources but possesses broader metabolic capacities. In this study, we analyzed the metabolism of inositol by extra- and intracellularly growing L. pneumophila By using genetic, biochemical, and cell biological approaches, we found that L. pneumophila accumulates and metabolizes inositol through the iol gene products, thus promoting the intracellular growth, virulence, and fitness of the pathogen. Our study significantly contributes to an understanding of the intracellular niche of a human pathogen.
Collapse
|
28
|
Tanner JR, Li L, Faucher SP, Brassinga AKC. The CpxRA two-component system contributes to Legionella pneumophila virulence. Mol Microbiol 2016; 100:1017-38. [PMID: 26934669 DOI: 10.1111/mmi.13365] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2016] [Indexed: 12/11/2022]
Abstract
The bacterium Legionella pneumophila is capable of intracellular replication within freshwater protozoa as well as human macrophages, the latter of which results in the serious pneumonia Legionnaires' disease. A primary factor involved in these host cell interactions is the Dot/Icm Type IV secretion system responsible for translocating effector proteins needed to establish and maintain the bacterial replicative niche. Several regulatory factors have been identified to control the expression of the Dot/Icm system and effectors, one of which is the CpxRA two-component system, suggesting essentiality for virulence. In this study, we generated cpxR, cpxA and cpxRA in-frame null mutant strains to further delineate the role of the CpxRA system in bacterial survival and virulence. We found that cpxR is essential for intracellular replication within Acanthamoeba castellanii, but not in U937-derived macrophages. Transcriptome analysis revealed that CpxRA regulates a large number of virulence-associated proteins including Dot/Icm effectors as well as Type II secreted substrates. Furthermore, the cpxR and cpxRA mutant strains were more sodium resistant than the parental strain Lp02, and cpxRA expression reaches maximal levels during postexponential phase. Taken together, our findings suggest the CpxRA system is a key contributor to L. pneumophila virulence in protozoa via virulence factor regulation.
Collapse
Affiliation(s)
- Jennifer R Tanner
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Laam Li
- Faculty of Agricultural and Environmental Sciences, Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Sébastien P Faucher
- Faculty of Agricultural and Environmental Sciences, Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Ann Karen C Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
29
|
Schell U, Simon S, Hilbi H. Inflammasome Recognition and Regulation of the Legionella Flagellum. Curr Top Microbiol Immunol 2016; 397:161-81. [PMID: 27460809 DOI: 10.1007/978-3-319-41171-2_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Gram-negative bacterium Legionella pneumophila colonizes extracellular environmental niches and infects free-living protozoa. Upon inhalation into the human lung, the opportunistic pathogen grows in macrophages and causes a fulminant pneumonia termed Legionnaires' disease. L. pneumophila employs a biphasic life cycle, comprising a replicative, non-virulent, and a stationary, virulent form. In the latter phase, the pathogen produces a plethora of so-called effector proteins, which are injected into host cells, where they subvert pivotal processes and promote the formation of a distinct membrane-bound compartment, the Legionella-containing vacuole. In the stationary phase, the bacteria also produce a single monopolar flagellum and become motile. L. pneumophila flagellin is recognized by and triggers the host's NAIP5 (Birc1e)/NLRC4 (Ipaf) inflammasome, which leads to caspase-1 activation, pore formation, and pyroptosis. The production of L. pneumophila flagellin and pathogen-host interactions are controlled by a complex stationary phase regulatory network, detecting nutrient availability as well as the Legionella quorum sensing (Lqs) signaling compound LAI-1 (3-hydroxypentadecane-4-one). Thus, the small molecule LAI-1 coordinates L. pneumophila flagellin production and motility, inflammasome activation, and virulence.
Collapse
Affiliation(s)
- Ursula Schell
- Max von Pettenkofer Institute, Ludwig-Maximilians University, Pettenkoferstraße 9a, 80336, Munich, Germany
| | - Sylvia Simon
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30/32, 8006, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30/32, 8006, Zürich, Switzerland.
| |
Collapse
|
30
|
Schell U, Simon S, Sahr T, Hager D, Albers MF, Kessler A, Fahrnbauer F, Trauner D, Hedberg C, Buchrieser C, Hilbi H. The α-hydroxyketone LAI-1 regulates motility, Lqs-dependent phosphorylation signalling and gene expression ofLegionella pneumophila. Mol Microbiol 2015; 99:778-93. [DOI: 10.1111/mmi.13265] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Ursula Schell
- Max von Pettenkofer Institute; Ludwig-Maximilians University; Pettenkoferstraße 9a 80336 Munich Germany
| | - Sylvia Simon
- Max von Pettenkofer Institute; Ludwig-Maximilians University; Pettenkoferstraße 9a 80336 Munich Germany
- Institute of Medical Microbiology; University of Zürich; Gloriastrasse 30/32 8006 Zürich Switzerland
| | - Tobias Sahr
- Institut Pasteur; Unité de Biologie des Bactéries Intracellulaires; Paris France
- CNRS UMR 3525; 28 Rue du Dr Roux 75724 Paris France
| | - Dominik Hager
- Department of Chemistry; Ludwig-Maximilians University; Butenandtstrasse 5-13, Building F 81377 Munich Germany
| | - Michael F. Albers
- Chemical Biology Center (KBC); Institute of Chemistry; Umeå University; S-90187 Umeå Sweden
| | - Aline Kessler
- Max von Pettenkofer Institute; Ludwig-Maximilians University; Pettenkoferstraße 9a 80336 Munich Germany
| | - Felix Fahrnbauer
- Department of Chemistry; Ludwig-Maximilians University; Butenandtstrasse 5-13, Building F 81377 Munich Germany
| | - Dirk Trauner
- Department of Chemistry; Ludwig-Maximilians University; Butenandtstrasse 5-13, Building F 81377 Munich Germany
| | - Christian Hedberg
- Chemical Biology Center (KBC); Institute of Chemistry; Umeå University; S-90187 Umeå Sweden
| | - Carmen Buchrieser
- Institut Pasteur; Unité de Biologie des Bactéries Intracellulaires; Paris France
- CNRS UMR 3525; 28 Rue du Dr Roux 75724 Paris France
| | - Hubert Hilbi
- Max von Pettenkofer Institute; Ludwig-Maximilians University; Pettenkoferstraße 9a 80336 Munich Germany
- Institute of Medical Microbiology; University of Zürich; Gloriastrasse 30/32 8006 Zürich Switzerland
| |
Collapse
|
31
|
Li L, Mendis N, Trigui H, Faucher SP. Transcriptomic changes of Legionella pneumophila in water. BMC Genomics 2015; 16:637. [PMID: 26306795 PMCID: PMC4549902 DOI: 10.1186/s12864-015-1869-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 08/19/2015] [Indexed: 11/10/2022] Open
Abstract
Background Legionella pneumophila (Lp) is a water-borne opportunistic pathogen. In water, Lp can survive for an extended period of time until it encounters a permissive host. Therefore, identifying genes that are required for survival in water may help develop strategies to prevent Legionella outbreaks. Results We compared the global transcriptomic response of Lp grown in a rich medium to that of Lp exposed to an artificial freshwater medium (Fraquil) for 2, 6 and 24 hours. We uncovered successive changes in gene expression required for the successful adaptation to a nutrient-limited water environment. The repression of major pathways involved in cell division, transcription and translation, suggests that Lp enters a quiescent state in water. The induction of flagella associated genes (flg, fli and mot), enhanced-entry genes (enh) and some Icm/Dot effector genes suggests that Lp is primed to invade a suitable host in response to water exposure. Moreover, many genes involved in resistance to antibiotic and oxidative stress were induced, suggesting that Lp may be more tolerant to these stresses in water. Indeed, Lp exposed to water is more resistant to erythromycin, gentamycin and kanamycin than Lp cultured in rich medium. In addition, the bdhA gene, involved in the degradation pathway of the intracellular energy storage compound polyhydroxybutyrate, is also highly expressed in water. Further characterization show that expression of bdhA during short-term water exposure is dependent upon RpoS, which is required for the survival of Lp in water. Deletion of bdhA reduces the survival of Lp in water at 37 °C. Conclusions The increase of antibiotic resistance and the importance of bdhA to the survival of Lp in water seem consistent with the observed induction of these genes when Lp is exposed to water. Other genes that are highly induced upon exposure to water could also be necessary for Lp to maintain viability in the water environment. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1869-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laam Li
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, Montreal, QC, H9X 3V9, Canada.
| | - Nilmini Mendis
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, Montreal, QC, H9X 3V9, Canada.
| | - Hana Trigui
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, Montreal, QC, H9X 3V9, Canada.
| | - Sébastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, Montreal, QC, H9X 3V9, Canada.
| |
Collapse
|
32
|
Vakulskas CA, Potts AH, Babitzke P, Ahmer BMM, Romeo T. Regulation of bacterial virulence by Csr (Rsm) systems. Microbiol Mol Biol Rev 2015; 79:193-224. [PMID: 25833324 PMCID: PMC4394879 DOI: 10.1128/mmbr.00052-14] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Most bacterial pathogens have the remarkable ability to flourish in the external environment and in specialized host niches. This ability requires their metabolism, physiology, and virulence factors to be responsive to changes in their surroundings. It is no surprise that the underlying genetic circuitry that supports this adaptability is multilayered and exceedingly complex. Studies over the past 2 decades have established that the CsrA/RsmA proteins, global regulators of posttranscriptional gene expression, play important roles in the expression of virulence factors of numerous proteobacterial pathogens. To accomplish these tasks, CsrA binds to the 5' untranslated and/or early coding regions of mRNAs and alters translation, mRNA turnover, and/or transcript elongation. CsrA activity is regulated by noncoding small RNAs (sRNAs) that contain multiple CsrA binding sites, which permit them to sequester multiple CsrA homodimers away from mRNA targets. Environmental cues sensed by two-component signal transduction systems and other regulatory factors govern the expression of the CsrA-binding sRNAs and, ultimately, the effects of CsrA on secretion systems, surface molecules and biofilm formation, quorum sensing, motility, pigmentation, siderophore production, and phagocytic avoidance. This review presents the workings of the Csr system, the paradigm shift that it generated for understanding posttranscriptional regulation, and its roles in virulence networks of animal and plant pathogens.
Collapse
Affiliation(s)
- Christopher A Vakulskas
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Anastasia H Potts
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brian M M Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
33
|
Harrison CF, Kicka S, Kranjc A, Finsel I, Chiriano G, Ouertatani-Sakouhi H, Soldati T, Scapozza L, Hilbi H. Adrenergic antagonists restrict replication of Legionella. MICROBIOLOGY-SGM 2015; 161:1392-406. [PMID: 25873585 DOI: 10.1099/mic.0.000094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Legionella pneumophila is a facultative intracellular bacterium, which upon inhalation can cause a potentially fatal pneumonia termed Legionnaires' disease. The opportunistic pathogen grows in environmental amoebae and mammalian macrophages within a unique membrane-bound compartment, the 'Legionella-containing vacuole'. Bacteria are exposed to many environmental cues including small signalling molecules from eukaryotic cells. A number of pathogenic bacteria sense and respond to catecholamine hormones, such as adrenalin and noradrenalin, a process mediated via the QseBC two-component system in some bacteria. In this study, we examined the effect of adrenergic compounds on L. pneumophila, and discovered that the adrenergic receptor antagonists benoxathian, naftopidil, propranolol and labetalol, as well as the QseC sensor kinase inhibitor LED209, reduced the growth of L. pneumophila in broth or amoebae, while replication in macrophages was enhanced. Growth restriction was common to members of the genus Legionella and Mycobacterium, and was observed for L. pneumophila in the replicative but not stationary phase of the biphasic life cycle. Deletion of the L. pneumophila qseBC genes indicated that growth inhibition by adrenergics or LED209 is mediated only to a minor extent by this two-component system, implying the presence of other adrenergic sensing systems. This study identifies adrenergic molecules as novel inhibitors of extra- and intracellular growth of Legionella and reveals LED209 as a potential lead compound to combat infections with Legionella or Mycobacterium spp.
Collapse
Affiliation(s)
- Christopher F Harrison
- 1Max von Pettenkofer Institute, Department of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Sébastien Kicka
- 2Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Agata Kranjc
- 3School of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Ivo Finsel
- 1Max von Pettenkofer Institute, Department of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Gianpaolo Chiriano
- 3School of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | | | - Thierry Soldati
- 2Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Leonardo Scapozza
- 3School of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Hubert Hilbi
- 1Max von Pettenkofer Institute, Department of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany 5Institute of Medical Microbiology, Department of Medicine, University of Zurich, Gloriastrasse 30/32, 8006 Zurich, Switzerland
| |
Collapse
|
34
|
Robertson P, Abdelhady H, Garduño RA. The many forms of a pleomorphic bacterial pathogen-the developmental network of Legionella pneumophila. Front Microbiol 2014; 5:670. [PMID: 25566200 PMCID: PMC4273665 DOI: 10.3389/fmicb.2014.00670] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/18/2014] [Indexed: 01/18/2023] Open
Abstract
Legionella pneumophila is a natural intracellular bacterial parasite of free-living freshwater protozoa and an accidental human pathogen that causes Legionnaires' disease. L. pneumophila differentiates, and does it in style. Recent experimental data on L. pneumophila's differentiation point at the existence of a complex network that involves many developmental forms. We intend readers to: (i) understand the biological relevance of L. pneumophila's forms found in freshwater and their potential to transmit Legionnaires' disease, and (ii) learn that the common depiction of L. pneumophila's differentiation as a biphasic developmental cycle that alternates between a replicative and a transmissive form is but an oversimplification of the actual process. Our specific objectives are to provide updates on the molecular factors that regulate L. pneumophila's differentiation (Section The Differentiation Process and Its Regulation), and describe the developmental network of L. pneumophila (Section Dissecting Lp's Developmental Network), which for clarity's sake we have dissected into five separate developmental cycles. Finally, since each developmental form seems to contribute differently to the human pathogenic process and the transmission of Legionnaires' disease, readers are presented with a challenge to develop novel methods to detect the various L. pneumophila forms present in water (Section Practical Implications), as a means to improve our assessment of risk and more effectively prevent legionellosis outbreaks.
Collapse
Affiliation(s)
- Peter Robertson
- Department of Microbiology and Immunology, Dalhousie University Halifax, NS, Canada
| | - Hany Abdelhady
- Department of Microbiology and Immunology, Dalhousie University Halifax, NS, Canada
| | - Rafael A Garduño
- Department of Microbiology and Immunology, Dalhousie University Halifax, NS, Canada ; Division of Infectious Diseases, Department of Medicine, Dalhousie University Halifax, NS, Canada
| |
Collapse
|
35
|
A regulatory feedback loop between RpoS and SpoT supports the survival of Legionella pneumophila in water. Appl Environ Microbiol 2014; 81:918-28. [PMID: 25416763 DOI: 10.1128/aem.03132-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is a waterborne pathogen, and survival in the aquatic environment is central to its transmission to humans. Therefore, identifying genes required for its survival in water could help prevent Legionnaires' disease outbreaks. In the present study, we investigate the role of the sigma factor RpoS in promoting survival in water, where L. pneumophila experiences severe nutrient deprivation. The rpoS mutant showed a strong survival defect compared to the wild-type strain in defined water medium. The transcriptome of the rpoS mutant during exposure to water revealed that RpoS represses genes associated with replication, translation, and transcription, suggesting that the mutant fails to shut down major metabolic programs. In addition, the rpoS mutant is transcriptionally more active than the wild-type strain after water exposure. This could be explained by a misregulation of the stringent response in the rpoS mutant. Indeed, the rpoS mutant shows an increased expression of spoT and a corresponding decrease in the level of (p)ppGpp, which is due to the presence of a negative feedback loop between RpoS and SpoT. Therefore, the lack of RpoS causes an aberrant regulation of the stringent response, which prevents the induction of a successful response to starvation.
Collapse
|
36
|
Two Fis regulators directly repress the expression of numerous effector-encoding genes in Legionella pneumophila. J Bacteriol 2014; 196:4172-83. [PMID: 25225276 DOI: 10.1128/jb.02017-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Legionella pneumophila is an intracellular human pathogen that utilizes the Icm/Dot type IVB secretion system to translocate a large repertoire of effectors into host cells. For most of these effectors, there is no information regarding their regulation. Therefore, the aim of this study was to examine the involvement of the three L. pneumophila Fis homologs in the regulation of effector-encoding genes. Deletion mutants constructed in the genes encoding the three Fis regulators revealed that Fis1 (lpg0542 gene) and Fis3 (lpg1743) but not Fis2 (lpg1370) are partially required for intracellular growth of L. pneumophila in Acanthamoeba castellanii. To identify pathogenesis-related genes directly regulated by Fis, we established a novel in vivo system which resulted in the discovery of numerous effector-encoding genes directly regulated by Fis. Further examination of these genes revealed that Fis1 and Fis3 repress the level of expression of effector-encoding genes during exponential phase. Three groups of effector-encoding genes were identified: (i) effectors regulated mainly by Fis1, (ii) effectors regulated mainly by Fis3, and (iii) effectors regulated by both Fis1 and Fis3. Examination of the upstream regulatory region of all of these effector-encoding genes revealed multiple putative Fis regulatory elements, and site-directed mutagenesis confirmed that a few of these sites constitute part of a repressor binding element. Furthermore, gel mobility shift assays demonstrated the direct relation between the Fis1 and Fis3 regulators and these regulatory elements. Collectively, our results demonstrate for the first time that two of the three L. pneumophila Fis regulators directly repress the expression of Icm/Dot effector-encoding genes.
Collapse
|
37
|
Manske C, Hilbi H. Metabolism of the vacuolar pathogen Legionella and implications for virulence. Front Cell Infect Microbiol 2014; 4:125. [PMID: 25250244 PMCID: PMC4158876 DOI: 10.3389/fcimb.2014.00125] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/20/2014] [Indexed: 11/17/2022] Open
Abstract
Legionella pneumophila is a ubiquitous environmental bacterium that thrives in fresh water habitats, either as planktonic form or as part of biofilms. The bacteria also grow intracellularly in free-living protozoa as well as in mammalian alveolar macrophages, thus triggering a potentially fatal pneumonia called “Legionnaires' disease.” To establish its intracellular niche termed the “Legionella-containing vacuole” (LCV), L. pneumophila employs a type IV secretion system and translocates ~300 different “effector” proteins into host cells. The pathogen switches between two distinct forms to grow in its extra- or intracellular niches: transmissive bacteria are virulent for phagocytes, and replicative bacteria multiply within their hosts. The switch between these forms is regulated by different metabolic cues that signal conditions favorable for replication or transmission, respectively, causing a tight link between metabolism and virulence of the bacteria. Amino acids represent the prime carbon and energy source of extra- or intracellularly growing L. pneumophila. Yet, the genome sequences of several Legionella spp. as well as transcriptome and proteome data and metabolism studies indicate that the bacteria possess broad catabolic capacities and also utilize carbohydrates such as glucose. Accordingly, L. pneumophila mutant strains lacking catabolic genes show intracellular growth defects, and thus, intracellular metabolism and virulence of the pathogen are intimately connected. In this review we will summarize recent findings on the extra- and intracellular metabolism of L. pneumophila using genetic, biochemical and cellular microbial approaches. Recent progress in this field sheds light on the complex interplay between metabolism, differentiation and virulence of the pathogen.
Collapse
Affiliation(s)
- Christian Manske
- Max von Pettenkofer Institute, Faculty of Medicine, Ludwig-Maximilians University Munich, Germany
| | - Hubert Hilbi
- Max von Pettenkofer Institute, Faculty of Medicine, Ludwig-Maximilians University Munich, Germany ; Institute of Medical Microbiology, Faculty of Medicine, University of Zürich Zürich, Switzerland
| |
Collapse
|
38
|
Hoffmann C, Harrison CF, Hilbi H. The natural alternative: protozoa as cellular models forLegionellainfection. Cell Microbiol 2013; 16:15-26. [DOI: 10.1111/cmi.12235] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Christine Hoffmann
- Max von Pettenkofer Institute; Department of Medicine; Ludwig-Maximilians University Munich; 80336 Munich Germany
| | - Christopher F. Harrison
- Max von Pettenkofer Institute; Department of Medicine; Ludwig-Maximilians University Munich; 80336 Munich Germany
| | - Hubert Hilbi
- Max von Pettenkofer Institute; Department of Medicine; Ludwig-Maximilians University Munich; 80336 Munich Germany
| |
Collapse
|
39
|
Abdelhady H, Garduño RA. The progeny ofLegionella pneumophilain human macrophages shows unique developmental traits. FEMS Microbiol Lett 2013; 349:99-107. [DOI: 10.1111/1574-6968.12300] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/14/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Hany Abdelhady
- Department of Microbiology and Immunology; Dalhousie University; Halifax NS Canada
| | - Rafael A. Garduño
- Department of Microbiology and Immunology; Dalhousie University; Halifax NS Canada
- Department of Medicine-Division of Infectious Diseases; Dalhousie University; Halifax NS Canada
| |
Collapse
|
40
|
Harrison CF, Kicka S, Trofimov V, Berschl K, Ouertatani-Sakouhi H, Ackermann N, Hedberg C, Cosson P, Soldati T, Hilbi H. Exploring anti-bacterial compounds against intracellular Legionella. PLoS One 2013; 8:e74813. [PMID: 24058631 PMCID: PMC3772892 DOI: 10.1371/journal.pone.0074813] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 08/06/2013] [Indexed: 01/10/2023] Open
Abstract
Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an 'accidental' human pathogen and cause a severe pneumonia known as Legionnaires' disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoebacastellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target.
Collapse
Affiliation(s)
| | - Sébastien Kicka
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Valentin Trofimov
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Kathrin Berschl
- Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany
| | | | - Nikolaus Ackermann
- Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany
| | | | - Pierre Cosson
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Hubert Hilbi
- Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany
- * E-mail:
| |
Collapse
|
41
|
Aurass P, Schlegel M, Metwally O, Harding CR, Schroeder GN, Frankel G, Flieger A. The Legionella pneumophila Dot/Icm-secreted effector PlcC/CegC1 together with PlcA and PlcB promotes virulence and belongs to a novel zinc metallophospholipase C family present in bacteria and fungi. J Biol Chem 2013; 288:11080-92. [PMID: 23457299 PMCID: PMC3630882 DOI: 10.1074/jbc.m112.426049] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/19/2013] [Indexed: 11/06/2022] Open
Abstract
Legionella pneumophila is a water-borne bacterium that causes pneumonia in humans. PlcA and PlcB are two previously defined L. pneumophila proteins with homology to the phosphatidylcholine-specific phospholipase C (PC-PLC) of Pseudomonas fluorescens. Additionally, we found that Lpg0012 shows similarity to PLCs and has been shown to be a Dot/Icm-injected effector, CegC1, which is designated here as PlcC. It remained unclear, however, whether these L. pneumophila proteins exhibit PLC activity. PlcC expressed in Escherichia coli hydrolyzed a broad phospholipid spectrum, including PC, phosphatidylglycerol (PG), and phosphatidylinositol. The addition of Zn(2+) ions activated, whereas EDTA inhibited, PlcC-derived PLC activity. Protein homology search revealed that the three Legionella enzymes and P. fluorescens PC-PLC share conserved domains also present in uncharacterized fungal proteins. Fifteen conserved amino acids were essential for enzyme activity as identified via PlcC mutagenesis. Analysis of defined L. pneumophila knock-out mutants indicated Lsp-dependent export of PG-hydrolyzing PLC activity. PlcA and PlcB exhibited PG-specific activity and contain a predicted Sec signal sequence. In line with the reported requirement of host cell contact for Dot/Icm-dependent effector translocation, PlcC showed cell-associated PC-specific PLC activity after bacterial growth in broth. A PLC triple mutant, but not single or double mutants, exhibited reduced host killing in a Galleria mellonella infection model, highlighting the importance of the three PLCs in pathogenesis. In summary, we describe here a novel Zn(2+)-dependent PLC family present in Legionella, Pseudomonas, and fungi with broad substrate preference and function in virulence.
Collapse
Affiliation(s)
- Philipp Aurass
- From the Division of Bacterial Infections, Robert Koch-Institut, Burgstrasse 37, 38855 Wernigerode, Germany and
| | - Maren Schlegel
- From the Division of Bacterial Infections, Robert Koch-Institut, Burgstrasse 37, 38855 Wernigerode, Germany and
| | - Omar Metwally
- From the Division of Bacterial Infections, Robert Koch-Institut, Burgstrasse 37, 38855 Wernigerode, Germany and
| | - Clare R. Harding
- the MRC Centre for Molecular Bacteriology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Gunnar N. Schroeder
- the MRC Centre for Molecular Bacteriology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Gad Frankel
- the MRC Centre for Molecular Bacteriology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Antje Flieger
- From the Division of Bacterial Infections, Robert Koch-Institut, Burgstrasse 37, 38855 Wernigerode, Germany and
| |
Collapse
|
42
|
Pitre CAJ, Tanner JR, Patel P, Brassinga AKC. Regulatory control of temporally expressed integration host factor (IHF) in Legionella pneumophila. Microbiology (Reading) 2013; 159:475-492. [DOI: 10.1099/mic.0.062117-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Chantalle A. J. Pitre
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Jennifer R. Tanner
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Palak Patel
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ann Karen C. Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
43
|
Nicotinic acid modulates Legionella pneumophila gene expression and induces virulence traits. Infect Immun 2013; 81:945-55. [PMID: 23319553 DOI: 10.1128/iai.00999-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to environmental fluctuations or stresses, bacteria can activate transcriptional and phenotypic programs to coordinate an adaptive response. The intracellular pathogen Legionella pneumophila converts from a noninfectious replicative form to an infectious transmissive form when the bacterium encounters alterations in either amino acid concentrations or fatty acid biosynthesis. Here, we report that L. pneumophila differentiation is also triggered by nicotinic acid, a precursor of the central metabolite NAD(+). In particular, when replicative L. pneumophila are treated with 5 mM nicotinic acid, the bacteria induce numerous transmissive-phase phenotypes, including motility, cytotoxicity toward macrophages, sodium sensitivity, and lysosome avoidance. Transcriptional profile analysis determined that nicotinic acid induces the expression of a panel of genes characteristic of transmissive-phase L. pneumophila. Moreover, an additional 213 genes specific to nicotinic acid treatment were altered. Although nearly 25% of these genes lack an assigned function, the gene most highly induced by nicotinic acid treatment encodes a putative major facilitator superfamily transporter, Lpg0273. Indeed, lpg0273 protects L. pneumophila from toxic concentrations of nicotinic acid as judged by analyzing the growth of the corresponding mutant. The broad utility of the nicotinic acid pathway to couple central metabolism and cell fate is underscored by this small metabolite's modulation of gene expression by diverse microbes, including Candida glabrata, Bordetella pertussis, Escherichia coli, and L. pneumophila.
Collapse
|
44
|
Trigui H, Mendis N, Li L, Saad M, Faucher SP. Facets of small RNA-mediated regulation in Legionella pneumophila. Curr Top Microbiol Immunol 2013; 376:53-80. [PMID: 23918178 DOI: 10.1007/82_2013_347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Legionella pneumophila is a water-borne pathogen that causes a severe lung infection in humans. It is able to replicate inside amoeba in the water environment, and inside lung macrophages in humans. Efficient regulation of gene expression is critical for responding to the conditions that L. pneumophila encounters and for intracellular multiplication in host cells. In the last two decades, many reports have contributed to our understanding of the critical importance of small regulatory RNAs (sRNAs) in the regulatory network of bacterial species. This report presents the current state of knowledge about the sRNAs expressed by L. pneumophila and discusses a few regulatory pathways in which sRNAs should be involved in this pathogen.
Collapse
Affiliation(s)
- Hana Trigui
- Faculty of Agricultural and Environmental Sciences, Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada,
| | | | | | | | | |
Collapse
|
45
|
Kuhle K, Flieger A. Legionella phospholipases implicated in virulence. Curr Top Microbiol Immunol 2013; 376:175-209. [PMID: 23925490 DOI: 10.1007/82_2013_348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phospholipases are diverse enzymes produced in eukaryotic hosts and their bacterial pathogens. Several pathogen phospholipases have been identified as major virulence factors acting mainly in two different modes: on the one hand, they have the capability to destroy host membranes and on the other hand they are able to manipulate host signaling pathways. Reaction products of bacterial phospholipases may act as secondary messengers within the host and therefore influence inflammatory cascades and cellular processes, such as proliferation, migration, cytoskeletal changes as well as membrane traffic. The lung pathogen and intracellularly replicating bacterium Legionella pneumophila expresses a variety of phospholipases potentially involved in disease-promoting processes. So far, genes encoding 15 phospholipases A, three phospholipases C, and one phospholipase D have been identified. These cell-associated or secreted phospholipases may contribute to intracellular establishment, to egress of the pathogen from the host cell, and to the observed lung pathology. Due to the importance of phospholipase activities for host cell processes, it is conceivable that the pathogen enzymes may mimic or substitute host cell phospholipases to drive processes for the pathogen's benefit. The following chapter summarizes the current knowledge on the L. pneumophila phospholipases, especially their substrate specificity, localization, mode of secretion, and impact on host cells.
Collapse
Affiliation(s)
- Katja Kuhle
- FG 11 - Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institut, Burgstr. 37, 38855, Wernigerode, Germany
| | | |
Collapse
|
46
|
Kessler A, Schell U, Sahr T, Tiaden A, Harrison C, Buchrieser C, Hilbi H. TheLegionella pneumophilaorphan sensor kinase LqsT regulates competence and pathogen-host interactions as a component of the LAI-1 circuit. Environ Microbiol 2012; 15:646-62. [DOI: 10.1111/j.1462-2920.2012.02889.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/31/2012] [Accepted: 09/02/2012] [Indexed: 12/26/2022]
Affiliation(s)
- Aline Kessler
- Max von Pettenkofer Institute; Ludwig-Maximilians University; Pettenkoferstraße 9a; 80336; Munich; Germany
| | - Ursula Schell
- Max von Pettenkofer Institute; Ludwig-Maximilians University; Pettenkoferstraße 9a; 80336; Munich; Germany
| | - Tobias Sahr
- Institut Pasteur; Unité de Biologie des Bactéries Intracellulaires and CNRS URA 2171; 28 Rue du Dr Roux; 75724; Paris; France
| | - André Tiaden
- Competence Center for Applied Biotechnology and Molecular Medicine; University Zürich; Winterthurerstrasse 190; 8057; Zürich; Switzerland
| | - Christopher Harrison
- Max von Pettenkofer Institute; Ludwig-Maximilians University; Pettenkoferstraße 9a; 80336; Munich; Germany
| | - Carmen Buchrieser
- Institut Pasteur; Unité de Biologie des Bactéries Intracellulaires and CNRS URA 2171; 28 Rue du Dr Roux; 75724; Paris; France
| | - Hubert Hilbi
- Max von Pettenkofer Institute; Ludwig-Maximilians University; Pettenkoferstraße 9a; 80336; Munich; Germany
| |
Collapse
|
47
|
FliA expression analysis and influence of the regulatory proteins RpoN, FleQ and FliA on virulence and in vivo fitness in Legionella pneumophila. Arch Microbiol 2012; 194:977-89. [DOI: 10.1007/s00203-012-0833-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/11/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
|
48
|
Chiang SM, Schellhorn HE. Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch Biochem Biophys 2012; 525:161-9. [PMID: 22381957 DOI: 10.1016/j.abb.2012.02.007] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 01/31/2012] [Accepted: 02/12/2012] [Indexed: 01/24/2023]
Abstract
Oxidative stress, through the production of reactive oxygen species, is a natural consequence of aerobic metabolism. Escherichia coli has several major regulators activated during oxidative stress, including OxyR, SoxRS, and RpoS. OxyR and SoxR undergo conformation changes when oxidized in the presence of hydrogen peroxide and superoxide radicals, respectively, and subsequently control the expression of cognate genes. In contrast, the RpoS regulon is induced by an increase in RpoS levels. Current knowledge regarding the activation and function of these regulators and their dependent genes in E. coli during oxidative stress forms the scope of this review. Despite the enormous genomic diversity of bacteria, oxidative stress response regulators in E. coli are functionally conserved in a wide range of bacterial groups, possibly reflecting positive selection of these regulators. SoxRS and RpoS homologs are present and respond to oxidative stress in Proteobacteria, and OxyR homologs are present and function in H(2)O(2) resistance in a range of bacteria, from gammaproteobacteria to Actinobacteria. Bacteria have developed complex, adapted gene regulatory responses to oxidative stress, perhaps due to the prevalence of reactive oxygen species produced endogenously through metabolism or due to the necessity of aerotolerance mechanisms in anaerobic bacteria exposed to oxygen.
Collapse
Affiliation(s)
- Sarah M Chiang
- Department of Biology, McMaster University, 1280 Main St. West, Life Sciences Building, Hamilton, ON, Canada L8S 4K1
| | | |
Collapse
|
49
|
Abstract
In their stressful natural environments, bacteria often are in stationary phase and use their limited resources for maintenance and stress survival. Underlying this activity is the general stress response, which in Escherichia coli depends on the σS (RpoS) subunit of RNA polymerase. σS is closely related to the vegetative sigma factor σ70 (RpoD), and these two sigmas recognize similar but not identical promoter sequences. During the postexponential phase and entry into stationary phase, σS is induced by a fine-tuned combination of transcriptional, translational, and proteolytic control. In addition, regulatory "short-cuts" to high cellular σS levels, which mainly rely on the rapid inhibition of σS proteolysis, are triggered by sudden starvation for various nutrients and other stressful shift conditons. σS directly or indirectly activates more than 500 genes. Additional signal input is integrated by σS cooperating with various transcription factors in complex cascades and feedforward loops. Target gene products have stress-protective functions, redirect metabolism, affect cell envelope and cell shape, are involved in biofilm formation or pathogenesis, or can increased stationary phase and stress-induced mutagenesis. This review summarizes these diverse functions and the amazingly complex regulation of σS. At the molecular level, these processes are integrated with the partitioning of global transcription space by sigma factor competition for RNA polymerase core enzyme and signaling by nucleotide second messengers that include cAMP, (p)ppGpp, and c-di-GMP. Physiologically, σS is the key player in choosing between a lifestyle associated with postexponential growth based on nutrient scavenging and motility and a lifestyle focused on maintenance, strong stress resistance, and increased adhesiveness. Finally, research with other proteobacteria is beginning to reveal how evolution has further adapted function and regulation of σS to specific environmental niches.
Collapse
|
50
|
Faucher SP, Shuman HA. Small Regulatory RNA and Legionella pneumophila. Front Microbiol 2011; 2:98. [PMID: 21833335 PMCID: PMC3153055 DOI: 10.3389/fmicb.2011.00098] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 04/19/2011] [Indexed: 11/13/2022] Open
Abstract
Legionella pneumophila is a gram-negative bacterial species that is ubiquitous in almost any aqueous environment. It is the agent of Legionnaires’ disease, an acute and often under-reported form of pneumonia. In mammals, L. pneumophila replicates inside macrophages within a modified vacuole. Many protein regulators have been identified that control virulence-related properties, including RpoS, LetA/LetS, and PmrA/PmrB. In the past few years, the importance of regulation of virulence factors by small regulatory RNA (sRNAs) has been increasingly appreciated. This is also the case in L. pneumophila where three sRNAs (RsmY, RsmZ, and 6S RNA) were recently shown to be important determinants of virulence regulation and 79 actively transcribed sRNAs were identified. In this review we describe current knowledge about sRNAs and their regulatory properties and how this relates to the known regulatory systems of L. pneumophila. We also provide a model for sRNA-mediated control of gene expression that serves as a framework for understanding the regulation of virulence-related properties of L. pneumophila.
Collapse
Affiliation(s)
- Sébastien P Faucher
- Complex Traits Group, Department of Microbiology, McGill University Montreal, QC, Canada
| | | |
Collapse
|