1
|
Zheng L, Yan Y, Li Q, Du J, Lu X, Xu L, Xie Q, Chen Y, Zhang A, Zhao B. Microbial Diversity, Co-Occurrence Patterns, and Functional Genes of Bacteria in Aged Coking Contaminated Soils by Polycyclic Aromatic Hydrocarbons: Implications to Soil Health and Bioremediation. Microorganisms 2025; 13:869. [PMID: 40284704 PMCID: PMC12029627 DOI: 10.3390/microorganisms13040869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/23/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
PAH contamination from coking plants have received widespread attention. However, the microbial diversity, co-occurrence patterns, and functional genes of bacteria in aged coking contaminated soils by PAHs are still not clear. In our study, we used a macro-genetic approach to detect PAH-contaminated soils from both a coking production area (CA group) and an office zone (OA group) in an abandoned coking plant, and analyzed the characteristic bacteria and function genes, microbial network interaction patterns, and soil P-cycling in long-term PAH-contaminated soils. The results revealed that Proteobacteria were significantly positively correlated with PAHs and Betaprobacteria bacterium rifcsplowo2 12 full 6514, candidatus Muproteobacteria bacterium RBG16609, and Sulfurifustis variabilis, which belong to Proteobacteria, were characteristic bacteria in PAH-contaminated soils. The phn, which is the PAH degradation gene, was abundantly expressed in the PAH-contaminated soil. The phn gene cluster genes (phnE, phnC, and phnD) were significantly expressed in the CA group of PAH-contaminated soils (p < 0.05). By integrating microbial diversity, network structure, and functional genes, it offers a comprehensive understanding of soil ecosystem response indicators to prolonged PAH stress. The results of this study will provide new ideas for constructing an assessment index system for soil health and screening biomarkers for PAH-contaminated soils.
Collapse
Affiliation(s)
- Liping Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (L.Z.); (L.X.); (Q.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (Y.Y.); (Q.L.); (J.D.); (X.L.)
| | - Yifan Yan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (Y.Y.); (Q.L.); (J.D.); (X.L.)
| | - Qun Li
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (Y.Y.); (Q.L.); (J.D.); (X.L.)
| | - Junyang Du
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (Y.Y.); (Q.L.); (J.D.); (X.L.)
| | - Xiaosong Lu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (Y.Y.); (Q.L.); (J.D.); (X.L.)
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (L.Z.); (L.X.); (Q.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China;
| | - Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (L.Z.); (L.X.); (Q.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China;
| | - Yangsheng Chen
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China;
| | - Aiguo Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (Y.Y.); (Q.L.); (J.D.); (X.L.)
| | - Bin Zhao
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China;
| |
Collapse
|
2
|
Zhang Z, Li H, Han H, Qin L, Lu W, Yue L, Guo Z, Gao S, Chen S, Liu H, Wang D, Wang J. Degradation of anthracene and phenanthrene by strain Streptomyces sp. M-1 and its application in the treatment of PAHs-contaminated water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124298. [PMID: 39869965 DOI: 10.1016/j.jenvman.2025.124298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/04/2025] [Accepted: 01/20/2025] [Indexed: 01/29/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants with mutagenicity, carcinogenicity and teratogenicity, widely distributed in the environment. Effective biodegradation of PAHs is highly required, especially in wastewater. An efficient PAHs degrading strain Streptomyces sp. M-1 was isolated from polluted kerosene. The degradation capacity of anthracene and phenanthrene was evaluated under various PAHs concentrations, pH, and temperatures by M-1. To find the degradation pathways, the key intermediates were detected by mass spectrometry and the enzyme-encoding genes were analyzed by many bioinformatics tools. Furthermore, the potential of the strain for bioremediation in PAH-contaminated water was evaluated. The results showed that the maximal degradation rate of anthracene and phenanthrene reached 93.14% (100 mg L-1, 7 days) and 49.25% (50 mg L-1, 7 days), respectively. Their average degradation rate increased within the concentration of 50-800 mg L-1 and reached 2.72 mg d-1 for anthracene and 1.28 mg d-1 for phenanthrene at 800 mg L-1. M-1 exhibited high and stable anthracene degradation rate under tested pH and temperatures, and high phenanthrene degradation under tested pH and higher temperatures. Based on the analysis of both intermediates and enzyme-encoding genes, it is proposed that anthracene undergoes degradation via the phthalic acid pathway, while phenanthrene follows the salicylic acid pathway. Finally, 98.98% degradation of anthracene and 72.77% degradation of phenanthrene in water was realized over 14 days. We thus propose that Streptomyces sp. M-1 is an effective degrader for bioremediation of PAHs pollution.
Collapse
Affiliation(s)
- Zaimei Zhang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hui Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Han Han
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Lijian Qin
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Wei Lu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Lin Yue
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zongzhen Guo
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shengsong Gao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shuang Chen
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Huie Liu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
3
|
Penna DDPS, Merzel VM, de Freitas JG, Martinez KJH, Barbosa AM, Nakayama CR. Effects of simulated low-temperature thermal remediation on the microbial community of a tropical creosote contaminated soil. Braz J Microbiol 2024; 55:3413-3424. [PMID: 39412603 PMCID: PMC11711421 DOI: 10.1007/s42770-024-01541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/04/2024] [Indexed: 01/11/2025] Open
Abstract
In the search for more sustainable remediation strategies for PAH-contaminated soils, an integrated application of thermal remediation and bioremediation (TEB) may allow the use of less impacting temperatures by associating heating to biological degradation. However, the influence of heating on soil microbiota remains poorly understood, especially in soils from tropical regions. This work investigated the effects of low-temperature heating on creosote-contaminated soil bacteria. We used culture-dependent and 16 S rRNA sequencing methods to compare the microbial community of soil samples heated to 60 and 100 oC for 1 h in microcosms. Heating to 60 °C reduced the density of cultivable heterotrophic bacteria compared to control soil (p < 0.05), and exposure to 100 °C inactivated the viable heterotrophic community. Burkholderia-Caballeronia-Paraburkholderia (BCP) group and Sphingobium were the predominant genera. Temperature and incubation time affected the Bray-Curtis dissimilarity index (p < 0.05). At 60 °C and 30 days incubation, the relative abundance of Sphingobium decreased and BCP increased dominance. The network of heated soil after 30 days of incubation showed fewer nodes and edges but maintained its density and complexity. Both main genera are associated with PAH degradation, suggesting functional redundancy and a likely potential of soil microbiota to maintain biodegradation ability after exposure to higher temperatures. We concluded that TEB can be considered as a potential strategy to bioremediate creosote-contaminated soils, allowing biodegradation in temperature ranges where thermal remediation does not completely remove contaminants. However, we recommend further research to determine degradation rates with this technology.
Collapse
Affiliation(s)
| | - Valéria Maia Merzel
- Pluridisciplinary Center for Chemical, Biological and Agricultural Research (CPQBA), State University of Campinas, Campinas, 13083-889, Brazil
| | | | - Kelly Johanna Hidalgo Martinez
- Pluridisciplinary Center for Chemical, Biological and Agricultural Research (CPQBA), State University of Campinas, Campinas, 13083-889, Brazil
| | - Alexandre Muselli Barbosa
- Laboratory of Waste and Contaminated Areas, Institute for Technological Research, São Paulo, SP, 05508-901, Brazil
| | - Cristina Rossi Nakayama
- Department of Environmental Sciences, Federal University of São Paulo, Diadema, 09913-030, Brazil.
| |
Collapse
|
4
|
Li J, Peng W, Yin X, Wang X, Liu Z, Liu Q, Deng Z, Lin S, Liang R. Identification of an efficient phenanthrene-degrading Pseudarthrobacter sp. L1SW and characterization of its metabolites and catabolic pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133138. [PMID: 38086304 DOI: 10.1016/j.jhazmat.2023.133138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 11/28/2023] [Indexed: 02/08/2024]
Abstract
Phenanthrene, a typical chemical of polycyclic aromatic hydrocarbons (PAHs) pollutants, severely threatens health of wild life and human being. Microbial degradation is effective and environment-friendly for PAH removal, while the phenanthrene-degrading mechanism in Gram-positive bacteria is unclear. In this work, one Gram-positive strain of plant growth-promoting rhizobacteria (PGPR), Pseudarthrobacter sp. L1SW, was isolated and identified with high phenanthrene-degrading efficiency and great stress tolerance. It degraded 96.3% of 500 mg/L phenanthrene in 72 h and kept stable degradation performance with heavy metals (65 mg/L of Zn2+, 5.56 mg/L of Ni2+, and 5.20 mg/L of Cr3+) and surfactant (10 CMC of Tween 80). Strain L1SW degraded phenanthrene mainly through phthalic acid pathway, generating intermediate metabolites including cis-3,4-dihydrophenanthrene-3,4-diol, 1-hydroxy-2-naphthoic acid, and phthalic acid. A novel metabolite (m/z 419.0939) was successfully separated and identified as an end-product of phenanthrene, suggesting a unique metabolic pathway. With the whole genome sequence alignment and comparative genomic analysis, 19 putative genes associated with phenanthrene metabolism in strain L1SW were identified to be distributed in three gene clusters and induced by phenanthrene and its metabolites. These findings advance the phenanthrene-degrading study in Gram-positive bacteria and promote the practical use of PGPR strains in the bioremediation of PAH-contaminated environments.
Collapse
Affiliation(s)
- Junlan Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanli Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xianqi Yin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhixiang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qinchen Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
5
|
Comprehensive Genomic Characterization of Marine Bacteria Thalassospira spp. Provides Insights into Their Ecological Roles in Aromatic Hydrocarbon-Exposed Environments. Microbiol Spectr 2022; 10:e0314922. [PMID: 36190412 PMCID: PMC9604089 DOI: 10.1128/spectrum.03149-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The marine bacterial genus Thalassospira has often been identified as an abundant member of polycyclic aromatic hydrocarbon (PAH)-exposed microbial communities. However, despite their potential usability for biotechnological applications, functional genes that are conserved in their genomes have barely been investigated. Thus, the goal of this study was to comprehensively examine the functional genes that were potentially responsible for aromatic hydrocarbon biodegradation in the Thalassospira genomes available from databases, including a new isolate of Thalassospira, strain GO-4, isolated from a phenanthrene-enriched marine bacterial consortium. Strain GO-4 was used in this study as a model organism to link the genomic data and their metabolic functions. Strain GO-4 growth assays confirmed that it utilized a common phenanthrene biodegradation intermediate 2-carboxybenzaldehyde (CBA) as the sole source of carbon and energy, but did not utilize phenanthrene. Consistently, strain GO-4 was found to possess homologous genes of phdK, pht, and pca that encode enzymes for biodegradation of CBA, phthalic acid, and protocatechuic acid, respectively. Further comprehensive genomic analyses for 33 Thalassospira genomes from databases showed that a gene cluster that consisted of phdK and pht homologs was conserved in 13 of the 33 strains. pca gene homologs were found in all examined genomes; however, homologs of the known PAH-degrading genes, such as the pah, phn, or nah genes, were not found. Possibly Thalassospira spp. co-occupy niches with other PAH-degrading bacteria that provide them with PAH degradation intermediates and facilitated their inhabitation in PAH-exposed microbial ecosystems. IMPORTANCE Comprehensive investigation of multiple genomic data sets from targeted microbial taxa deposited in databases may provide substantial information to predict metabolic capabilities and ecological roles in different environments. This study is the first report that details the functional profiling of Thalassospira spp. that have repeatedly been found in polycyclic aromatic hydrocarbon (PAH)-exposed marine bacterial communities by using genomic data from a new isolate, Thalassospira strain GO-4, and other strains in databases. Through screening of functional genes potentially involved in aromatic hydrocarbon biodegradation across 33 Thalassospira genomes and growth assays for strain GO-4, it was suggested that Thalassospira spp. unexceptionally conserved the ability to metabolize single-ring, PAH biodegradation intermediates, while being incapable of utilizing PAHs. This expanded our understanding of this potentially important contributing member to PAH-degrading microbial ecosystems; such species are considered to be specialized in driving downstream reactions of PAH biodegradation.
Collapse
|
6
|
Góngora E, Chen YJ, Ellis M, Okshevsky M, Whyte L. Hydrocarbon bioremediation on Arctic shorelines: Historic perspective and roadway to the future. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119247. [PMID: 35390417 DOI: 10.1016/j.envpol.2022.119247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/26/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Climate change has become one of the greatest concerns of the past few decades. In particular, global warming is a growing threat to the Canadian high Arctic and other polar regions. By the middle of this century, an increase in the annual mean temperature of 1.8 °C-2.7 °C for the Canadian North is predicted. Rising temperatures lead to a significant decrease of the sea ice area covered in the Northwest Passage. As a consequence, a surge of maritime activity in that region increases the risk of hydrocarbon pollution due to accidental fuel spills. In this review, we focus on bioremediation approaches on Arctic shorelines. We summarize historical experimental spill studies conducted at Svalbard, Baffin Island, and the Kerguelen Archipelago, and review contemporary studies that used modern omics techniques in various environments. We discuss how omics approaches can facilitate our understanding of Arctic shoreline bioremediation and identify promising research areas that should be further explored. We conclude that specific environmental conditions strongly alter bioremediation outcomes in Arctic environments and future studies must therefore focus on correlating these diverse parameters with the efficacy of hydrocarbon biodegradation.
Collapse
Affiliation(s)
- Esteban Góngora
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| | - Ya-Jou Chen
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Madison Ellis
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Mira Okshevsky
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
7
|
The structure-function relationship of bacterial transcriptional regulators as a target for enhanced biodegradation of aromatic hydrocarbons. Microbiol Res 2022; 262:127087. [DOI: 10.1016/j.micres.2022.127087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022]
|
8
|
Vanwijnsberghe S, Peeters C, Cnockaert M, De Canck E, Vandamme P. Paraburkholderia gardini sp. nov. and Paraburkholderia saeva sp. nov.: novel aromatic compound degrading bacteria isolated from garden and forest soil samples. Syst Appl Microbiol 2022; 45:126318. [DOI: 10.1016/j.syapm.2022.126318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
|
9
|
Méndez García M, García de Llasera MP. A review on the enzymes and metabolites identified by mass spectrometry from bacteria and microalgae involved in the degradation of high molecular weight PAHs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149035. [PMID: 34303250 DOI: 10.1016/j.scitotenv.2021.149035] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
High molecular weight PAHs (HMW PAHs) are dangerous pollutants widely distributed in the environment. The use of microorganisms represents an important tool for HMW PAHs bioremediation, so, the understanding of their biochemical pathways facilitates the development of biodegradation strategies. For this reason, the potential role of species of microalgae, bacteria, and microalga-bacteria consortia in the degradation of HMW PAHs is discussed. The identification of their metabolites, mostly by GC-MS and LC-MS, allows a better approach to the enzymes involved in the key steps of the metabolic pathways of HMW PAHs biodegradation. So, this review intends to address the proteomic research on enzyme activities and their involvement in regulating essential biochemical functions that help bacteria and microalgae in the biodegradation processes of HMW PAHs. It is noteworthy that, given that to the best of our knowledge, this is the first review focused on the mass spectrometry identification of the HMW PAHs metabolites; whereby and due to the great concern of the presence of HMW PAHs in the environment, this material could help the urgency of developing new bioremediation methods. The elucidation of the metabolic pathways of persistent pollutant degrading microorganisms should lead to a better knowledge of the enzymes involved, which could contribute to a very ecological route to the control of environmental contamination in the future.
Collapse
Affiliation(s)
- Manuel Méndez García
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D. F. 04510, Mexico
| | - Martha Patricia García de Llasera
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D. F. 04510, Mexico.
| |
Collapse
|
10
|
Wu C, Li F, Yi S, Ge F. Genetically engineered microbial remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons: Advances and ecological risk assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113185. [PMID: 34243092 DOI: 10.1016/j.jenvman.2021.113185] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/08/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Soils contaminated with heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) have been becoming a worldwide concerned environmental problem because of threatening public healthy via food chain exposure. Thus soils polluted by HMs and PAHs need to be remediated urgently. Physical and chemical remediation methods usually have some disadvantages, e.g., cost-expensiveness and incomplete removal, easily causing secondary pollution, which are hence not environmental-friendly. Conventional microbial approaches are mostly used to treat a single contaminant in soils and lack high efficiency and specificity for combined contaminants. Genetically engineered microorganisms (GEMs) have emerged as a desired requirement of higher bioremediation efficiency for soils polluted with HMs and PAHs and environmental sustainability, which can provide a more eco-friendly and cost-effective strategy in comparison with some conventional techniques. This review comments the recent advances about successful bioremediation techniques and approaches for soil contaminated with HMs and/or PAHs by GEMs, and discusses some challenges in the simultaneous removal of HMs and PAHs from soil by designing multi-functional genetic engineering microorganisms (MFGEMs), such as improvement of higher efficiency, strict environmental conditions, and possible ecological risks. Also, the modern biotechnological techniques and approaches in improving the ability of microbial enzymes to effectively degrade combined contaminants at a faster rate are introduced, such as reasonable gene editing, metabolic pathway modification, and protoplast fusion. Although MFGEMs are more potent than the native microbes and can quickly adapt to combined contaminants in soils, the ecological risk of MFGEMs needs to be evaluated under a regulatory, safety, or costs benefit-driving system in a way of stratified regulation. Nevertheless, the innovation of genetic engineering to produce MFGEMs should be inspired for the welfare of successful bioremediation for soils contaminated with HMs and PAHs but it must be supervised by the public, authorities, and laws.
Collapse
Affiliation(s)
- Chen Wu
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, PR China; Hunan Engineering Laboratory for High Efficiency Purification Technology and Its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, PR China
| | - Feng Li
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, PR China; Hunan Engineering Laboratory for High Efficiency Purification Technology and Its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, PR China.
| | - Shengwei Yi
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, PR China; Hunan Engineering Laboratory for High Efficiency Purification Technology and Its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, PR China
| | - Fei Ge
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, PR China; Hunan Engineering Laboratory for High Efficiency Purification Technology and Its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, PR China
| |
Collapse
|
11
|
Chen X, Wang W, Hu H, Tang H, Liu Y, Xu P, Lin K, Cui C. Insights from comparative proteomic analysis into degradation of phenanthrene and salt tolerance by the halophilic Martelella strain AD-3. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1499-1510. [PMID: 33244677 DOI: 10.1007/s10646-020-02310-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
A halophilic PAHs-degrading strain, Martelella AD-3, was previously isolated from highly saline petroleum-contaminated soil. In this study, label-free proteomics were performed to identify differentially expressed proteins (DEPs) under Group P (phenanthrene +5% salinity) and Group G (glycerol +1% salinity), which would help to reveal the mechanism of phenanthrene degradation and salt tolerance. A total of 307 up-regulated DEPs were found in Group P, including 17 phenanthrene degradation proteins. Among these phenanthrene-degrading proteins, the ferredoxin of aromatic ring-hydroxylating dioxygenase (RHD) was up-regulated by 110-fold and gentisate 1,2-dioxygenases (GDOs) were only expressed in Group P. Besides, we also found nine high salt stress response proteins, including ectoine synthase and transport protein of compatible (osmoprotectant) solutes, were differentially up-regulated. These results indicate that strain AD-3 mainly relied on RHD and dihydrodiol dehydrogenase to degrade phenanthrene, and accumulated compatible solutes for resistance to salt stress. This study provides strong theoretical guidance for understanding the degradation of phenanthrene by strain AD-3 in high salt environments.
Collapse
Affiliation(s)
- Xin Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
12
|
Abstract
Soil contamination with petroleum hydrocarbons (PHCs) has become a global concern and has resulted from the intensification of industrial activities. This has created a serious environmental issue; therefore, there is a need to find solutions, including application of efficient remediation technologies or improvement of current techniques. Rhizoremediation is a green technology that has received global attention as a cost-effective and possibly efficient remediation technique for PHC-polluted soil. Rhizoremediation refers to the use of plants and their associated microbiota to clean up contaminated soils, where plant roots stimulate soil microbes to mineralize organic contaminants to H2O and CO2. However, this multipartite interaction is complicated because many biotic and abiotic factors can influence microbial processes in the soil, making the efficiency of rhizoremediation unpredictable. This review reports the current knowledge of rhizoremediation approaches that can accelerate the remediation of PHC-contaminated soil. Recent approaches discussed in this review include (1) selecting plants with desired characteristics suitable for rhizoremediation; (2) exploiting and manipulating the plant microbiome by using inoculants containing plant growth-promoting rhizobacteria (PGPR) or hydrocarbon-degrading microbes, or a combination of both types of organisms; (3) enhancing the understanding of how the host–plant assembles a beneficial microbiome, and how it functions, under pollutant stress. A better understanding of plant–microbiome interactions could lead to successful use of rhizoremediation for PHC-contaminated soil in the future.
Collapse
|
13
|
Biodegradation of aromatic pollutants meets synthetic biology. Synth Syst Biotechnol 2021; 6:153-162. [PMID: 34278013 PMCID: PMC8260767 DOI: 10.1016/j.synbio.2021.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 02/02/2023] Open
Abstract
Ubiquitously distributed microorganisms are natural decomposers of environmental pollutants. However, because of continuous generation of novel recalcitrant pollutants due to human activities, it is difficult, if not impossible, for microbes to acquire novel degradation mechanisms through natural evolution. Synthetic biology provides tools to engineer, transform or even re-synthesize an organism purposefully, accelerating transition from unable to able, inefficient to efficient degradation of given pollutants, and therefore, providing new solutions for environmental bioremediation. In this review, we described the pipeline to build chassis cells for the treatment of aromatic pollutants, and presented a proposal to design microbes with emphasis on the strategies applied to modify the target organism at different level. Finally, we discussed challenges and opportunities for future research in this field.
Collapse
|
14
|
Mahto KU, Das S. Whole genome characterization and phenanthrene catabolic pathway of a biofilm forming marine bacterium Pseudomonas aeruginosa PFL-P1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111087. [PMID: 32871516 DOI: 10.1016/j.ecoenv.2020.111087] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 05/02/2023]
Abstract
Pseudomonas aeruginosa is a small rod shaped Gram-negative bacterium of Gammaproteobacteria class known for its metabolic versatility. P. aeruginosa PFL-P1 was isolated from Polycyclic Aromatic Hydrocarbons (PAHs) contaminated site of Paradip Port, Odisha Coast, India. The strain showed excellent biofilm formation and could retain its ability to form biofilm grown with different PAHs in monoculture as well as co-cultures. To explore mechanistic insights of PAHs metabolism, the whole genome of the strain was sequenced. Next generation sequencing unfolded a genome size of 6,333,060 bp encoding 5857 CDSs. Gene ontology distribution assigned to a total of 2862 genes, wherein 2235 genes were allocated to biological process, 1549 genes to cellular component and 2339 genes to molecular function. A total of 318 horizontally transferred genes were identified when the genome was compared with the reference genomes of P. aeruginosa PAO1 and P. aeruginosa DSM 50071. Further comparison of P. aeruginosa PFL-P1 genome with P. putida containing TOL plasmids revealed similarities in the meta cleavage pathway employed for degradation of aromatic compounds like xylene and toluene. Gene annotation and pathway analysis unveiled 145 genes involved in xenobiotic biodegradation and metabolism. The biofilm cultures of P. aeruginosa PFL-P1 could degrade ~74% phenanthrene within 120 h while degradation increased up to ~76% in co-culture condition. GC-MS analysis indicated presence of diverse metabolites indicating the involvement of multiple pathways for one of the PAHs (phenanthrene) degradation. The strain also possesses the genetic machinery to utilize diverse toxic aromatic compounds such as naphthalene, benzoate, aminobenzoate, fluorobenzoate, toluene, xylene, styrene, atrazine, caprolactam etc. Common catabolic gene clusters such as benABCD, xylXYZ and catAB were observed within the genome of P. aeruginosa PFL-P1 which play key roles in the degradation of various toxic aromatic compounds.
Collapse
Affiliation(s)
- Kumari Uma Mahto
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
15
|
Kumari S, Mangwani N, Das S. Naphthalene catabolism by biofilm forming marine bacterium Pseudomonas aeruginosa N6P6 and the role of quorum sensing in regulation of dioxygenase gene. J Appl Microbiol 2020; 130:1217-1231. [PMID: 33025721 DOI: 10.1111/jam.14867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/31/2020] [Accepted: 09/17/2020] [Indexed: 11/27/2022]
Abstract
AIM This study aims to establish the role of quorum sensing (QS) system on the regulation of naphthalene ring cleaving gene ndo (encoding naphthalene dioxygenase) in biofilm forming marine bacterium Pseudomonas aeruginosa N6P6 for naphthalene degradation. METHODS AND RESULTS Total cell count of P. aeruginosa N6P6 during biofilm mode of growth was slightly higher (7·3 × 108 CFU per ml) than its planktonic mid-exponential phase culture (4·7 × 108 CFU per ml). Naphthalene degradation in 20h by biofilm (48-h old) and planktonic culture was 99·4 ± 0·002% and 77 ± 3·25%, respectively. Pseudomonas aeruginosa N6P6 was able to degrade 64·3 ± 4·7% naphthalene in sterile soil microcosm in 24 h. The bacterium showed the presence of 136 bp ndo gene which was upregulated in a dose-dependent manner in presence of naphthalene. QS inhibitor (QSI) tannic acid downregulated the expression of ndo gene, naphthalene 1, 2-dioxygenase (N12O) enzyme activity and naphthalene degradation (by biofilm culture). CONCLUSIONS P. aeruginosa N6P6 shows chemotaxis towards naphthalene and adapts well in terrestrial environment for naphthalene degradation. SIGNIFICANCE AND IMPACT THE OF STUDY This study provides the information that the QS plays crucial role in biofilm formation in P. aeruginosa N6P6 and QS regulatory genes subsequently control the ndo gene for enzymatic degradation of naphthalene.
Collapse
Affiliation(s)
- S Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - N Mangwani
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - S Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
16
|
Sakshi, Haritash AK. A comprehensive review of metabolic and genomic aspects of PAH-degradation. Arch Microbiol 2020; 202:2033-2058. [DOI: 10.1007/s00203-020-01929-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 01/01/2023]
|
17
|
Morya R, Salvachúa D, Thakur IS. Burkholderia: An Untapped but Promising Bacterial Genus for the Conversion of Aromatic Compounds. Trends Biotechnol 2020; 38:963-975. [PMID: 32818444 DOI: 10.1016/j.tibtech.2020.02.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 11/18/2022]
Abstract
Burkholderia, a bacterial genus comprising more than 120 species, is typically reported to inhabit soil and water environments. These Gram-negative bacteria harbor a variety of aromatic catabolic pathways and are thus potential organisms for bioremediation of sites contaminated with aromatic pollutants. However, there are still substantial gaps in our knowledge of these catabolic processes that must be filled before these pathways and organisms can be harnessed for biotechnological applications. This review presents recent discoveries on the catabolism of monoaromatic and polycyclic aromatic hydrocarbons, as well as of heterocyclic compounds, by a diversity of Burkholderia strains. We also present a perspective on the beneficial features of Burkholderia spp. and future directions for their potential utilization in the bioremediation and bioconversion of aromatic compounds.
Collapse
Affiliation(s)
- Raj Morya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Davinia Salvachúa
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
18
|
Patel R, Chudasama R, Solanki R, Patel P, Parmar K, Munshi NS. Structure prediction and molecular docking studies of aromatic hydrocarbon sensing proteins TbuT, HbpR and PhnR to detect priority pollutants. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 55:126-141. [PMID: 31566066 DOI: 10.1080/10934529.2019.1672457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
On-line detection of aromatic hydrocarbon pollutants in aqueous environments can be achieved by biosensing strains having fusion of gene responsible for pollutant sensing protein with a reporter gene. Regulatory proteins TbuT, HbpR and PhnR are such proteins for recognizing one-, two-and three-ring aromatic hydrocarbon pollutants respectively, for which the structure is not known till date. Aim of the present study was to predict the structure of proteins and to determine their in-silico interaction with array of pollutants. Structure prediction of proteins was performed using I-TASSER and Phyre2 and refined with ModRefiner and 3DRefine. Total 14 models were obtained for each protein and the best model had more than 95% coverage in Ramachandran plot region. After successful structure prediction, molecular interaction of proteins with respective aromatic hydrocarbon pollutants categorized by United States Environmental Protection Agency was studied using AutoDockVina where the binding energy was found to fall in range of -4.6 to -8.4 kcal/mol. The types of protein-pollutant interaction were analyzed by LigPlus and Discovery Studio 2017 R2 Client which were found to be similar for standard and pollutant compounds. This study enables us to predict the range of pollutants possible to be detected using these regulatory protein-based biosensors.
Collapse
Affiliation(s)
- Rushika Patel
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Rajesh Chudasama
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | | | - Priya Patel
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Krupali Parmar
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Nasreen S Munshi
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
19
|
Truskewycz A, Gundry TD, Khudur LS, Kolobaric A, Taha M, Aburto-Medina A, Ball AS, Shahsavari E. Petroleum Hydrocarbon Contamination in Terrestrial Ecosystems-Fate and Microbial Responses. Molecules 2019; 24:molecules24183400. [PMID: 31546774 PMCID: PMC6767264 DOI: 10.3390/molecules24183400] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022] Open
Abstract
Petroleum hydrocarbons represent the most frequent environmental contaminant. The introduction of petroleum hydrocarbons into a pristine environment immediately changes the nature of that environment, resulting in reduced ecosystem functionality. Natural attenuation represents the single, most important biological process which removes petroleum hydrocarbons from the environment. It is a process where microorganisms present at the site degrade the organic contaminants without the input of external bioremediation enhancers (i.e., electron donors, electron acceptors, other microorganisms or nutrients). So successful is this natural attenuation process that in environmental biotechnology, bioremediation has developed steadily over the past 50 years based on this natural biodegradation process. Bioremediation is recognized as the most environmentally friendly remediation approach for the removal of petroleum hydrocarbons from an environment as it does not require intensive chemical, mechanical, and costly interventions. However, it is under-utilized as a commercial remediation strategy due to incomplete hydrocarbon catabolism and lengthy remediation times when compared with rival technologies. This review aims to describe the fate of petroleum hydrocarbons in the environment and discuss their interactions with abiotic and biotic components of the environment under both aerobic and anaerobic conditions. Furthermore, the mechanisms for dealing with petroleum hydrocarbon contamination in the environment will be examined. When petroleum hydrocarbons contaminate land, they start to interact with its surrounding, including physical (dispersion), physiochemical (evaporation, dissolution, sorption), chemical (photo-oxidation, auto-oxidation), and biological (plant and microbial catabolism of hydrocarbons) interactions. As microorganism (including bacteria and fungi) play an important role in the degradation of petroleum hydrocarbons, investigations into the microbial communities within contaminated soils is essential for any bioremediation project. This review highlights the fate of petroleum hydrocarbons in tertial environments, as well as the contributions of different microbial consortia for optimum petroleum hydrocarbon bioremediation potential. The impact of high-throughput metagenomic sequencing in determining the underlying degradation mechanisms is also discussed. This knowledge will aid the development of more efficient, cost-effective commercial bioremediation technologies.
Collapse
Affiliation(s)
- Adam Truskewycz
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Taylor D Gundry
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Leadin S Khudur
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Adam Kolobaric
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Mohamed Taha
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh, Qaliuobia 13736, Egypt.
| | - Arturo Aburto-Medina
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Esmaeil Shahsavari
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
20
|
Burroughs AM, Glasner ME, Barry KP, Taylor EA, Aravind L. Oxidative opening of the aromatic ring: Tracing the natural history of a large superfamily of dioxygenase domains and their relatives. J Biol Chem 2019; 294:10211-10235. [PMID: 31092555 PMCID: PMC6664185 DOI: 10.1074/jbc.ra119.007595] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/09/2019] [Indexed: 12/20/2022] Open
Abstract
A diverse collection of enzymes comprising the protocatechuate dioxygenases (PCADs) has been characterized in several extradiol aromatic compound degradation pathways. Structural studies have shown a relationship between PCADs and the more broadly-distributed, functionally enigmatic Memo domain linked to several human diseases. To better understand the evolution of this PCAD-Memo protein superfamily, we explored their structural and functional determinants to establish a unified evolutionary framework, identifying 15 clearly-delineable families, including a previously-underappreciated diversity in five Memo clade families. We place the superfamily's origin within the greater radiation of the nucleoside phosphorylase/hydrolase-peptide/amidohydrolase fold prior to the last universal common ancestor of all extant organisms. In addition to identifying active-site residues across the superfamily, we describe three distinct, structurally-variable regions emanating from the core scaffold often housing conserved residues specific to individual families. These were predicted to contribute to the active-site pocket, potentially in substrate specificity and allosteric regulation. We also identified several previously-undescribed conserved genome contexts, providing insight into potentially novel substrates in PCAD clade families. We extend known conserved contextual associations for the Memo clade beyond previously-described associations with the AMMECR1 domain and a radical S-adenosylmethionine family domain. These observations point to two distinct yet potentially overlapping contexts wherein the elusive molecular function of the Memo domain could be finally resolved, thereby linking it to nucleotide base and aliphatic isoprenoid modification. In total, this report throws light on the functions of large swaths of the experimentally-uncharacterized PCAD-Memo families.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- From the Computational Biology Branch, NCBI, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Margaret E Glasner
- the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, and
| | - Kevin P Barry
- the Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459
| | - Erika A Taylor
- the Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459
| | - L Aravind
- From the Computational Biology Branch, NCBI, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894,
| |
Collapse
|
21
|
Kaczmarczyk-Ziemba A, Wagner GK, Grzywnowicz K, Kucharczyk M, Zielińska S. The microbiome profiling of fungivorous black tinder fungus beetle Bolitophagus reticulatus reveals the insight into bacterial communities associated with larvae and adults. PeerJ 2019; 7:e6852. [PMID: 31119076 PMCID: PMC6510215 DOI: 10.7717/peerj.6852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/23/2019] [Indexed: 01/01/2023] Open
Abstract
Saproxylic beetles play a crucial role in key processes occurring in forest ecosystems, and together with fungi contribute to the decomposition and mineralization of wood. Among this group are mycetophilic beetles which associate with wood-decaying fungi and use the fruiting body for nourishment and development. Therefore, their feeding strategy (especially in the case of fungivorous species) requires special digestive capabilities to take advantage of the nutritional value of fungal tissue. Although polypore-beetle associations have been investigated in numerous studies, detailed studies focusing on the microbiome associated with species feeding on fruiting bodies of polypores remain limited. Here we investigated the bacterial communities associated with larvae and adults of Bolitophagus reticulatus collected from Fomes fomentarius growing on two different host tree: beech (Fagus sp.) and birch (Betula sp.), respectively. Among 24 identified bacterial phyla, three were the most relatively abundant (Proteobacteria, Actinobacteria and Bacteroidetes). Moreover, we tried to find unique patterns of bacteria abundances which could be correlated with the long-term field observation showing that the fruiting bodies of F. fomentarius, growing on birch are more inhabited by beetles than fruiting bodies of the same fungus species growing on beech. Biochemical analyses showed that the level of protease inhibitors and secondary metabolites in F. fomentarius is higher in healthy fruiting bodies than in the inhabited ones. However, tested microbiome samples primarily clustered by developmental stage of B. reticulatus and host tree did not appear to impact the taxonomic distribution of the communities. This observation was supported by statistical analyses.
Collapse
Affiliation(s)
| | - Grzegorz K. Wagner
- Department of Zoology, Maria Curie-Sklodowska University, Lublin, Poland
| | | | - Marek Kucharczyk
- Department of Nature Protection, Maria Curie-Sklodowska University, Lublin, Poland
| | - Sylwia Zielińska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Gdansk, Poland
- Phage Consultants, Gdansk, Poland
| |
Collapse
|
22
|
Thomas T, Elain A, Bazire A, Bruzaud S. Complete genome sequence of the halophilic PHA-producing bacterium Halomonas sp. SF2003: insights into its biotechnological potential. World J Microbiol Biotechnol 2019; 35:50. [PMID: 30852675 DOI: 10.1007/s11274-019-2627-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/04/2019] [Indexed: 10/27/2022]
Abstract
A halophilic Gram-negative eubacterium was isolated from the Iroise Sea and identified as an efficient producer of polyhydroxyalkanoates (PHA). The strain, designated SF2003, was found to belong to the Halomonas genus on the basis of 16S rRNA gene sequence similarity. Previous biochemical tests indicated that the Halomonas sp. strain SF2003 is capable of supporting various culture conditions which sometimes can be constraining for marine strains. This versatility could be of great interest for biotechnological applications. Therefore, a complete bacterial genome sequencing and de novo assembly were performed using a PacBio RSII sequencer and Hierarchical Genome Assembly Process software in order to predict Halomonas sp. SF2003 metabolisms, and to identify genes involved in PHA production and stress tolerance. This study demonstrates the complete genome sequence of Halomonas sp. SF2003 which contains a circular 4,36 Mbp chromosome, and replaces the strain in a phylogenetic tree. Genes related to PHA metabolism, carbohydrate metabolism, fatty acid metabolism and stress tolerance were identified and a comparison was made with metabolisms of relative species. Genes annotation highlighted the presence of typical genes involved in PHA biosynthesis such as phaA, phaB and phaC and enabled a preliminary analysis of their organization and characteristics. Several genes of carbohydrates and fatty acid metabolisms were also identified which provided helpful insights into both a better knowledge of the intricacies of PHA biosynthetic pathways and of production purposes. Results show the strong versatility of Halomonas sp. SF2003 to adapt to various temperatures and salinity which can subsequently be exploited for industrial applications such as PHA production.
Collapse
Affiliation(s)
- Tatiana Thomas
- Institut de Recherche Dupuy de Lôme (IRDL), UMR CNRS 6027, Université de Bretagne Sud, Rue Saint Maudé, Lorient, France
| | - Anne Elain
- Institut de Recherche Dupuy de Lôme (IRDL), UMR CNRS 6027, Université de Bretagne Sud, Rue Saint Maudé, Lorient, France
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, EA3884, IUEM, Université de Bretagne-Sud, Lorient, France
| | - Stéphane Bruzaud
- Institut de Recherche Dupuy de Lôme (IRDL), UMR CNRS 6027, Université de Bretagne Sud, Rue Saint Maudé, Lorient, France.
| |
Collapse
|
23
|
Kosek K, Kozioł K, Luczkiewicz A, Jankowska K, Chmiel S, Polkowska Ż. Environmental characteristics of a tundra river system in Svalbard. Part 2: Chemical stress factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1585-1596. [PMID: 30446169 DOI: 10.1016/j.scitotenv.2018.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Bacterial communities in the Arctic environment are subject to multiple stress factors, including contaminants, although typically their concentrations are small. The Arctic contamination research has focused on persistent organic pollutants (POPs) because they are bioaccumulative, resistant to degradation and toxic for all organisms. Pollutants have entered the Arctic predominantly by atmospheric and oceanic long-range transport, and this was facilitated by their volatile or semi-volatile properties, while their chemical stability extended their lifetimes following emission. Chemicals present in the Arctic at detectable and quantifiable concentrations testify to their global impact. Chemical contamination may induce serious disorders in the integrity of polar ecosystems influencing the growth of bacterial communities. In this study, the abundance and the types of bacteria in the Arctic freshwater were examined and the microbial characteristics were compared to the amount of potentially harmful chemical compounds in particular elements of the Arctic catchment. The highest concentrations of all determined PAHs were observed in two samples in the vicinity of the estuary both in June and September 2016 and were 1964 ng L-1 (R12) and 3901 ng L-1 (R13) in June, and 2179 ng L-1 (R12) and 1349 ng L-1 (R13) in September. Remarkable concentrations of the sum of phenols and formaldehyde were detected also at the outflow of the Revelva river into the sea (R12) and were 0.24 mg L-1 in June and 0.35 mg L-1 in September 2016. The elevated concentrations of chemical compounds near the estuary suggest a potential impact of the water from the lower tributaries (including the glacier-fed stream measured at R13) or the sea currents and the sea aerosol as pollutant sources. The POPs' degradation at low temperature is not well understood but bacteria capable to degrading such compounds were noted in each sampling point.
Collapse
Affiliation(s)
- Klaudia Kosek
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Krystyna Kozioł
- Institute of Geography, Faculty of Geography and Biology, Pedagogical University in Cracow, Podchorążych 2, Cracow 30-084, Poland; Institute of Geophysics, Polish Academy of Sciences, 64 Księcia Janusza St., Warsaw 01-452, Poland
| | - Aneta Luczkiewicz
- Department of Water and Waste-Water Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Katarzyna Jankowska
- Department of Water and Waste-Water Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Stanisław Chmiel
- Faculty of Earth Sciences and Spatial Management, Maria Curie-Skłodowska University, 2 C-D Kraśnicka Ave., Lublin 20-718, Poland
| | - Żaneta Polkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| |
Collapse
|
24
|
Singleton DR, Lee J, Dickey AN, Stroud A, Scholl EH, Wright FA, Aitken MD. Polyphasic characterization of four soil-derived phenanthrene-degrading Acidovorax strains and proposal of Acidovorax carolinensis sp. nov. Syst Appl Microbiol 2018; 41:460-472. [PMID: 29937052 DOI: 10.1016/j.syapm.2018.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
Four bacterial strains identified as members of the Acidovorax genus were isolated from two geographically distinct but similarly contaminated soils in North Carolina, USA, characterized, and their genomes sequenced. Their 16S rRNA genes were highly similar to those previously recovered during stable-isotope probing (SIP) of one of the soils with the polycyclic aromatic hydrocarbon (PAH) phenanthrene. Heterotrophic growth of all strains occurred with a number of organic acids, as well as phenanthrene, but no other tested PAHs. Optimal growth occurred aerobically under mesophilic temperature, neutral pH, and low salinity conditions. Predominant fatty acids were C16:1ω7c/C16:1ω6c, C16:0, and C18:1ω7c, and were consistent with the genus. Genomic G+C contents ranged from 63.6 to 64.2%. A combination of whole genome comparisons and physiological analyses indicated that these four strains likely represent a single species within the Acidovorax genus. Chromosomal genes for phenanthrene degradation to phthalate were nearly identical to highly conserved regions in phenanthrene-degrading Delftia, Burkholderia, Alcaligenes, and Massilia species in regions flanked by transposable or extrachromosomal elements. The lower degradation pathway for phenanthrene metabolism was inferred by comparisons to described genes and proteins. The novel species Acidovorax carolinensis sp. nov. is proposed, comprising the four strains described in this study with strain NA3T as the type strain (=LMG 30136, =DSM 105008).
Collapse
Affiliation(s)
- David R Singleton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA.
| | - Janice Lee
- Department of Biology, University of North Carolina,Chapel Hill, NC, 27599-3280, USA
| | - Allison N Dickey
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Aaron Stroud
- Department of Biology, University of North Carolina,Chapel Hill, NC, 27599-3280, USA
| | - Elizabeth H Scholl
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Fred A Wright
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Michael D Aitken
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA
| |
Collapse
|
25
|
Izmalkova TY, Gafarov AB, Sazonova OI, Sokolov SL, Kosheleva IA, Boronin AM. Diversity of Oil-Degrading Microorganisms in the Gulf of Finland (Baltic Sea) in Spring and in Summer. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718020054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Lee DW, Lee H, Lee AH, Kwon BO, Khim JS, Yim UH, Kim BS, Kim JJ. Microbial community composition and PAHs removal potential of indigenous bacteria in oil contaminated sediment of Taean coast, Korea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:503-512. [PMID: 29216488 DOI: 10.1016/j.envpol.2017.11.097] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 05/15/2023]
Abstract
The tidal flats near Sinduri beach in Taean, Korea, have been severely contaminated by heavy crude oils due to the Korea's worst oil spill accident, say the Hebei Spirit Oil Spill, in 2007. Crude oil compounds, including polycyclic aromatic hydrocarbons (PAHs), pose significant environmental damages due to their wide distribution, persistence, high toxicity, mutagenicity, and carcinogenicity. Microbial community of Sinduri beach sediments samples was analyzed by metagenomic data with 16S rRNA gene amplicons. Three phyla (Proteobacteria, Firmicutes, and Bacteroidetes) accounted for approximately ≥93.0% of the total phyla based on metagenomic analysis. Proteobacteria was the dominant phylum in Sinduri beach sediments. Cultivable bacteria were isolated from PAH-enriched cultures, and bacterial diversity was investigated through performing culture characterization followed by molecular biology methods. Sixty-seven isolates were obtained, comprising representatives of Actinobacteria, Firmicutes, α- and γ-Proteobacteria, and Bacteroidetes. PAH catabolism genes, such as naphthalene dioxygenase (NDO) and aromatic ring hydroxylating dioxygenase (ARHDO), were used as genetic markers to assess biodegradation of PAHs in the cultivable bacteria. The ability to degrade PAHs was demonstrated by monitoring the removal of PAHs using a gas chromatography mass spectrometer. Overall, various PAH-degrading bacteria were widely present in Sinduri beach sediments and generally reflected the restored microbial community. Among them, Cobetia marina, Rhodococcus soli, and Pseudoalteromonas agarivorans were found to be significant in degradation of PAHs. This large collection of PAH-degrading strains represents a valuable resource for studies investigating mechanisms of PAH degradation and bioremediation in oil contaminated coastal environment, elsewhere.
Collapse
Affiliation(s)
- Dong Wan Lee
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, 02841, Republic of Korea; BK21 Plus Eco-Leader Education Center, Korea University, Seoul, 02841, Republic of Korea
| | - Hanbyul Lee
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Aslan Hwanhwi Lee
- Department of Civil and Geological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| | - Bong-Oh Kwon
- School of Earth and Environmental Science & Research Institute of Oceanography, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Science & Research Institute of Oceanography, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Un Hyuk Yim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea
| | - Beom Seok Kim
- Division of Biotechnology, College of Life Science & Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
27
|
Festa S, Coppotelli BM, Madueño L, Loviso CL, Macchi M, Neme Tauil RM, Valacco MP, Morelli IS. Assigning ecological roles to the populations belonging to a phenanthrene-degrading bacterial consortium using omic approaches. PLoS One 2017; 12:e0184505. [PMID: 28886166 PMCID: PMC5591006 DOI: 10.1371/journal.pone.0184505] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/27/2017] [Indexed: 11/18/2022] Open
Abstract
The present study describes the behavior of a natural phenanthrene-degrading consortium (CON), a synthetic consortium (constructed with isolated strains from CON) and an isolated strain form CON (Sphingobium sp. AM) in phenanthrene cultures to understand the interactions among the microorganisms present in the natural consortium during phenanthrene degradation as a sole carbon and energy source in liquid cultures. In the contaminant degradation assay, the defined consortium not only achieved a major phenanthrene degradation percentage (> 95%) but also showed a more efficient elimination of the intermediate metabolite. The opposite behavior occurred in the CON culture where the lowest phenanthrene degradation and the highest HNA accumulation were observed, which suggests the presence of positive and also negative interaction in CON. To consider the uncultured bacteria present in CON, a metagenomic library was constructed with total CON DNA. One of the resulting scaffolds (S1P3) was affiliated with the Betaproteobacteria class and resulted in a significant similarity with a genome fragment from Burkholderia sp. HB1 chromosome 1. A complete gene cluster, which is related to one of the lower pathways (meta-cleavage of catechol) involved in PAH degradation (ORF 31-43), mobile genetic elements and associated proteins, was found. These results suggest the presence of at least one other microorganism in CON besides Sphingobium sp. AM, which is capable of degrading PAH through the meta-cleavage pathway. Burkholderiales order was further found, along with Sphingomonadales order, by a metaproteomic approach, which indicated that both orders were metabolically active in CON. Our results show the presence of negative interactions between bacterial populations found in a natural consortium selected by enrichment techniques; moreover, the synthetic syntrophic processing chain with only one microorganism with the capability of degrading phenanthrene was more efficient in contaminant and intermediate metabolite degradation than a generalist strain (Sphingobium sp. AM).
Collapse
Affiliation(s)
- Sabrina Festa
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), La Plata, Argentina
| | - Bibiana Marina Coppotelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), La Plata, Argentina
| | - Laura Madueño
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), La Plata, Argentina
| | | | - Marianela Macchi
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), La Plata, Argentina
| | - Ricardo Martin Neme Tauil
- Centro de Estudios Químicos y Biológicos por Espectrometría de Masa- CEQUIBIEM, Facultad de Ciencias Exactas y Naturales, UBA, IQUIBICEN, CONICET
| | - María Pía Valacco
- Centro de Estudios Químicos y Biológicos por Espectrometría de Masa- CEQUIBIEM, Facultad de Ciencias Exactas y Naturales, UBA, IQUIBICEN, CONICET
| | - Irma Susana Morelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), La Plata, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
| |
Collapse
|
28
|
Crampon M, Cébron A, Portet-Koltalo F, Uroz S, Le Derf F, Bodilis J. Low effect of phenanthrene bioaccessibility on its biodegradation in diffusely contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:663-673. [PMID: 28390702 DOI: 10.1016/j.envpol.2017.03.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
This study focused on the role of bioaccessibility in the phenanthrene (PHE) biodegradation in diffusely contaminated soil, by combining chemical and microbiological approaches. First, we determined PHE dissipation rates and PHE sorption/desorption isotherms for two soils (PPY and Pv) presenting similar chronic PAH contamination, but different physico-chemical properties. Our results revealed that the PHE dissipation rate was significantly higher in the Pv soil compared to the PPY soil, while PHE sorption/desorption isotherms were similar. Interestingly, increases of PHE desorption and potentially of PHE bioaccessibility were observed for both soils when adding rhamnolipids (biosurfactants produced by Pseudomonas aeruginosa). Second, using 13C-PHE incubated in the same soils, we analyzed the PHE degrading bacterial communities. The combination of stable isotope probing (DNA-SIP) and 16S rRNA gene pyrosequencing revealed that Betaproteobacteria were the main PHE degraders in the Pv soil, while a higher bacterial diversity (Alpha-, Beta-, Gammaproteobacteria and Actinobacteria) was involved in PHE degradation in the PPY soil. The amendment of biosurfactants commonly used in biostimulation methods (i.e. rhamnolipids) to the two soils clearly modified the PHE sorption/desorption isotherms, but had no significant impact on PHE degradation rates and PHE-degraders identity. These results demonstrated that increasing the bioaccessibility of PHE has a low impact on its degradation and on the functional populations involved in this degradation.
Collapse
Affiliation(s)
- M Crampon
- COBRA UMR CNRS 6014, Université de Rouen-Normandie, 55 rue saint Germain, 27000 Evreux, France; Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Université de Rouen, 76821 Mont Saint Aignan, France
| | - A Cébron
- CNRS, LIEC UMR 7360, Faculté des Sciences et Technologies, BP70239, 54506 Vandoeuvre-lès-Nancy Cedex, France; Université de Lorraine, LIEC UMR 7360, Faculté des Sciences et Technologies, BP70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - F Portet-Koltalo
- COBRA UMR CNRS 6014, Université de Rouen-Normandie, 55 rue saint Germain, 27000 Evreux, France
| | - S Uroz
- UMR 1138 INRA, Centre de Nancy, Biogéochimie des Ecosystèmes forestiers, Route d'Amance, 54280 Champenoux, France
| | - F Le Derf
- COBRA UMR CNRS 6014, Université de Rouen-Normandie, 55 rue saint Germain, 27000 Evreux, France
| | - J Bodilis
- Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Université de Rouen, 76821 Mont Saint Aignan, France; Université de Lyon, France, CNRS, INRA, Ecole Nationale Vétérinaire de Lyon, Université Lyon 1, UMR 5557 Ecologie Microbienne, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France.
| |
Collapse
|
29
|
Duarte M, Nielsen A, Camarinha-Silva A, Vilchez-Vargas R, Bruls T, Wos-Oxley ML, Jauregui R, Pieper DH. Functional soil metagenomics: elucidation of polycyclic aromatic hydrocarbon degradation potential following 12 years of in situ bioremediation. Environ Microbiol 2017; 19:2992-3011. [PMID: 28401633 DOI: 10.1111/1462-2920.13756] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 03/29/2017] [Accepted: 04/06/2017] [Indexed: 11/27/2022]
Abstract
A culture-independent function-based screening approach was used to assess the microbial aerobic catabolome for polycyclic aromatic hydrocarbons degradation of a soil subjected to 12 years of in situ bioremediation. A total of 422 750 fosmid clones were screened for key aromatic ring-cleavage activities using 2,3-dihydroxybiphenyl as substrate. Most of the genes encoding ring-cleavage enzymes on the 768 retrieved positive fosmids could not be identified using primer-based approaches and, thus, 205 fosmid inserts were sequenced. Nearly two hundred extradiol dioxygenase encoding genes of three different superfamilies could be identified. Additional key genes of aromatic metabolic pathways were identified, including a high abundance of Rieske non-heme iron oxygenases that provided detailed information on enzymes activating aromatic compounds and enzymes involved in activation of the side chain of methylsubstituted aromatics. The gained insights indicated a complex microbial network acting at the site under study, which comprises organisms similar to recently identified Immundisolibacter cernigliae TR3.2 and Rugosibacter aromaticivorans Ca6 and underlined the great potential of an approach that combines an activity-screening, a cost-effective high-throughput sequencing of fosmid clones and a phylogenomic-routed and manually curated database to carefully identify key proteins dedicated to aerobic degradation of aromatic compounds.
Collapse
Affiliation(s)
- Márcia Duarte
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, D-38124, Germany
| | - Agnes Nielsen
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, D-38124, Germany
| | - Amélia Camarinha-Silva
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, D-38124, Germany
| | - Ramiro Vilchez-Vargas
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, D-38124, Germany.,Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University, Magdeburg, Germany
| | - Thomas Bruls
- Institut de Génomique, Genoscope, UMR8030 (CNRS, CEA, Université d'Evry), Evry, France
| | - Melissa L Wos-Oxley
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, D-38124, Germany
| | - Ruy Jauregui
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, D-38124, Germany.,AgResearch Grasslands, Tennent drive, Palmerston North, New Zealand
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, D-38124, Germany
| |
Collapse
|
30
|
Trivedi VD, Jangir PK, Sharma R, Phale PS. Insights into functional and evolutionary analysis of carbaryl metabolic pathway from Pseudomonas sp. strain C5pp. Sci Rep 2016; 6:38430. [PMID: 27924916 PMCID: PMC5141477 DOI: 10.1038/srep38430] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/09/2016] [Indexed: 11/25/2022] Open
Abstract
Carbaryl (1-naphthyl N-methylcarbamate) is a most widely used carbamate pesticide in the agriculture field. Soil isolate, Pseudomonas sp. strain C5pp mineralizes carbaryl via 1-naphthol, salicylate and gentisate, however the genetic organization and evolutionary events of acquisition and assembly of pathway have not yet been studied. The draft genome analysis of strain C5pp reveals that the carbaryl catabolic genes are organized into three putative operons, ‘upper’, ‘middle’ and ‘lower’. The sequence and functional analysis led to identification of new genes encoding: i) hitherto unidentified 1-naphthol 2-hydroxylase, sharing a common ancestry with 2,4-dichlorophenol monooxygenase; ii) carbaryl hydrolase, a member of a new family of esterase; and iii) 1,2-dihydroxy naphthalene dioxygenase, uncharacterized type-II extradiol dioxygenase. The ‘upper’ pathway genes were present as a part of a integron while the ‘middle’ and ‘lower’ pathway genes were present as two distinct class-I composite transposons. These findings suggest the role of horizontal gene transfer event(s) in the acquisition and evolution of the carbaryl degradation pathway in strain C5pp. The study presents an example of assembly of degradation pathway for carbaryl.
Collapse
Affiliation(s)
- Vikas D Trivedi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pramod Kumar Jangir
- Microbial Biotechnology and Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110020, India
| | - Rakesh Sharma
- Microbial Biotechnology and Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110020, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
31
|
Chen B, Huang J, Yuan K, Lin L, Wang X, Yang L, Luan T. Direct evidences on bacterial growth pattern regulating pyrene degradation pathway and genotypic dioxygenase expression. MARINE POLLUTION BULLETIN 2016; 105:73-80. [PMID: 26952991 DOI: 10.1016/j.marpolbul.2016.02.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
Pyrene degradation by Mycobacterium sp. strain A1-PYR was investigated in the presence of nutrient broth, phenanthrene and fluoranthene, respectively. Fast bacterial growth in the nutrient broth considerably enhanced pyrene degradation rate, whereas degradation efficiency per cell was substantially decreased. The addition of nutrient broth could not alter the transcription levels of all dioxygenase genotypes. In the PAH-only substrates, bacterial growth completely relied on biological conversion of PAHs into the effective carbon sources, which led to a higher degradation efficiency of pyrene per cell than the case of nutrient broth. Significant correlations were only observed between nidA-related dioxygenase expression and pyrene degradation or bacterial growth. The highest pyrene degradation rate in the presence of phenanthrene was consistent with the highest transcription level of nidA and 4,5-pyrenediol as the sole initial metabolite. This study reveals that bacterial growth requirement can invigorate degradation of PAHs by regulating metabolic pathway and genotypic enzyme expression.
Collapse
Affiliation(s)
- Baowei Chen
- MOE Key Laboratory of Aquatic Product Safety, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Jinyin Huang
- MOE Key Laboratory of Aquatic Product Safety, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Ke Yuan
- MOE Key Laboratory of Aquatic Product Safety, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Li Lin
- MOE Key Laboratory of Aquatic Product Safety, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Xiaowei Wang
- MOE Key Laboratory of Aquatic Product Safety, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Lihua Yang
- MOE Key Laboratory of Aquatic Product Safety, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Tiangang Luan
- MOE Key Laboratory of Aquatic Product Safety, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.
| |
Collapse
|
32
|
Kotake T, Matsuzawa J, Suzuki-Minakuchi C, Okada K, Nojiri H, Iwata K. Purification and partial characterization of the extradiol dioxygenase, 2′-carboxy-2,3-dihydroxybiphenyl 1,2-dioxygenase, in the fluorene degradation pathway from Rhodococcus sp. strain DFA3. Biosci Biotechnol Biochem 2016; 80:719-25. [DOI: 10.1080/09168451.2015.1123605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Type II extradiol dioxygenase, 2′-carboxy-2,3-dihydroxybiphenyl 1,2-dioxygenase (FlnD1D2) involved in the fluorene degradation pathway of Rhodococcus sp. DFA3 was purified to homogeneity from a heterologously expressing Escherichia coli. Gel filtration chromatography and SDS-PAGE suggested that FlnD1D2 is an α4β4 heterooctamer and that the molecular masses of these subunits are 30 and 9.9 kDa, respectively. The optimum pH and temperature for enzyme activity were 8.0 and 30 °C, respectively. Assessment of metal ion effects suggested that exogenously supplied Fe2+ increases enzyme activity 3.2-fold. FlnD1D2 catalyzed meta-cleavage of 2′-carboxy-2,3-dihydroxybiphenyl homologous compounds, but not single-ring catecholic compounds. The Km and kcat/Km values of FlnD1D2 for 2,3-dihidroxybiphenyl were 97.2 μM and 1.5 × 10−2 μM−1sec−1, and for 2,2′,3-trihydroxybiphenyl, they were 168.0 μM and 0.5 × 10−2 μM−1sec−1, respectively. A phylogenetic tree of the large and small subunits of type II extradiol dioxygenases suggested that FlnD1D2 constitutes a novel subgroup among heterooligomeric type II extradiol dioxygenases.
Collapse
Affiliation(s)
- Tatsuro Kotake
- Department of Bioscience and Engineering, Shibaura Institute of Technology, Saitama, Japan
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Jun Matsuzawa
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | | | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Kenichi Iwata
- Department of Bioscience and Engineering, Shibaura Institute of Technology, Saitama, Japan
| |
Collapse
|
33
|
Abstract
The survival capacity of microorganisms in a contaminated environment is limited by the concentration and/or toxicity of the pollutant. Through evolutionary processes, some bacteria have developed or acquired mechanisms to cope with the deleterious effects of toxic compounds, a phenomenon known as tolerance. Common mechanisms of tolerance include the extrusion of contaminants to the outer media and, when concentrations of pollutants are low, the degradation of the toxic compound. For both of these approaches, plasmids that encode genes for the degradation of contaminants such as toluene, naphthalene, phenol, nitrobenzene, and triazine or are involved in tolerance toward organic solvents and heavy metals, play an important role in the evolution and dissemination of these catabolic pathways and efflux pumps. Environmental plasmids are often conjugative and can transfer their genes between different strains; furthermore, many catabolic or efflux pump genes are often associated with transposable elements, making them one of the major players in bacterial evolution. In this review, we will briefly describe catabolic and tolerance plasmids and advances in the knowledge and biotechnological applications of these plasmids.
Collapse
|
34
|
|
35
|
Wald J, Hroudova M, Jansa J, Vrchotova B, Macek T, Uhlik O. Pseudomonads Rule Degradation of Polyaromatic Hydrocarbons in Aerated Sediment. Front Microbiol 2015; 6:1268. [PMID: 26635740 PMCID: PMC4652016 DOI: 10.3389/fmicb.2015.01268] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 10/30/2015] [Indexed: 11/24/2022] Open
Abstract
Given that the degradation of aromatic pollutants in anaerobic environments such as sediment is generally very slow, aeration could be an efficient bioremediation option. Using stable isotope probing (SIP) coupled with pyrosequencing analysis of 16S rRNA genes, we identified naphthalene-utilizing populations in aerated polyaromatic hydrocarbon (PAH)-polluted sediment. The results showed that naphthalene was metabolized at both 10 and 20°C following oxygen delivery, with increased degradation at 20°C as compared to 10°C—a temperature more similar to that found in situ. Naphthalene-derived 13C was primarily assimilated by pseudomonads. Additionally, Stenotrophomonas, Acidovorax, Comamonas, and other minor taxa were determined to incorporate 13C throughout the measured time course. The majority of SIP-detected bacteria were also isolated in pure cultures, which facilitated more reliable identification of naphthalene-utilizing populations as well as proper differentiation between primary consumers and cross-feeders. The pseudomonads acquiring the majority of carbon were identified as Pseudomonas veronii and Pseudomonas gessardii. Stenotrophomonads and Acidovorax defluvii, however, were identified as cross-feeders unable to directly utilize naphthalene as a growth substrate. PAH degradation assays with the isolated bacteria revealed that all pseudomonads as well as Comamonas testosteroni degraded acenaphthene, fluorene, and phenanthrene in addition to naphthalene. Furthermore, P. veronii and C. testosteroni were capable of transforming anthracene, fluoranthene, and pyrene. Screening of isolates for naphthalene dioxygenase genes using a set of in-house designed primers for Gram-negative bacteria revealed the presence of such genes in pseudomonads and C. testosteroni. Overall, our results indicated an apparent dominance of pseudomonads in the sequestration of carbon from naphthalene and potential degradation of other PAHs upon aeration of the sediment at both 20 and 10°C.
Collapse
Affiliation(s)
- Jiri Wald
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Miluse Hroudova
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences Prague, Czech Republic
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences Prague, Czech Republic
| | - Blanka Vrchotova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Tomas Macek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Prague, Czech Republic
| |
Collapse
|
36
|
Characterization of a protocatechuate catabolic gene cluster in Rhodococcus ruber OA1 involved in naphthalene degradation. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1132-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
37
|
Qi J, Wang B, Li J, Ning H, Wang Y, Kong W, Shen L. Genetic determinants involved in the biodegradation of naphthalene and phenanthrene in Pseudomonas aeruginosa PAO1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:6743-6755. [PMID: 25424032 DOI: 10.1007/s11356-014-3833-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/09/2014] [Indexed: 06/04/2023]
Abstract
Pseudomonas sp. are predominant isolates of degradation-competent strains while very few studies have explored the degradation-related genes and pathways in most of the degrading strains. P. aeruginosa PAO1 was found capable of degrading naphthalene and phenanthrene efficiently. In order to investigate the degradation-related genes of naphthalene and phenanthrene in P. aeruginosa PAO1, a random promoter library of about 5760 strains was constructed. Thirty-two clones for differentially expressed promoters were obtained by screening in the presence of sub-inhibitory concentration of naphthalene and phenanthrene. Among them, 13 genes were up-regulated and 15 were down-regulated in the presence of naphthalene as well as phenanthrene. The four remaining genes have different regulation tendencies by naphthalene or phenanthrene. By comparing the growth between the wild type and mutants as well as the complementations, the roles of seven selected up-regulated genes on naphthalene and phenanthrene degradation were investigated. Five of the seven selected up-regulated genes, like PA2666 and PA4780, were found playing key roles on the degradation in P. aeruginosa PAO1. Also, the results imply that these genes participate in the overlapping part of naphthalene and phenanthrene degradation pathways in PAO1. Results in the article offer the convenience quick method and platform for searching degradation-related genes. It also laid a foundation for understanding of the role of the regulated genes.
Collapse
Affiliation(s)
- Jing Qi
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Muangchinda C, Chavanich S, Viyakarn V, Watanabe K, Imura S, Vangnai AS, Pinyakong O. Abundance and diversity of functional genes involved in the degradation of aromatic hydrocarbons in Antarctic soils and sediments around Syowa Station. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4725-4735. [PMID: 25335763 DOI: 10.1007/s11356-014-3721-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/13/2014] [Indexed: 06/04/2023]
Abstract
Hydrocarbon catabolic genes were investigated in soils and sediments in nine different locations around Syowa Station, Antarctica, using conventional PCR, real-time PCR, cloning, and sequencing analysis. Polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHD)-coding genes from both Gram-positive and Gram-negative bacteria were observed. Clone libraries of Gram-positive RHD genes were related to (i) nidA3 of Mycobacterium sp. py146, (ii) pdoA of Terrabacter sp. HH4, (iii) nidA of Diaphorobacter sp. KOTLB, and (iv) pdoA2 of Mycobacterium sp. CH-2, with 95-99% similarity. Clone libraries of Gram-negative RHD genes were related to the following: (i) naphthalene dioxygenase of Burkholderia glathei, (ii) phnAc of Burkholderia sartisoli, and (iii) RHD alpha subunit of uncultured bacterium, with 41-46% similarity. Interestingly, the diversity of the Gram-positive RHD genes found around this area was higher than those of the Gram-negative RHD genes. Real-time PCR showed different abundance of dioxygenase genes between locations. Moreover, the PCR-denaturing gradient gel electrophoresis (DGGE) profile demonstrated diverse bacterial populations, according to their location. Forty dominant fragments in the DGGE profiles were excised and sequenced. All of the sequences belonged to ten bacterial phyla: Proteobacteria, Actinobacteria, Verrucomicrobia, Bacteroidetes, Firmicutes, Chloroflexi, Gemmatimonadetes, Cyanobacteria, Chlorobium, and Acidobacteria. In addition, the bacterial genus Sphingomonas, which has been suggested to be one of the major PAH degraders in the environment, was observed in some locations. The results demonstrated that indigenous bacteria have the potential ability to degrade PAHs and provided information to support the conclusion that bioremediation processes can occur in the Antarctic soils and sediments studied here.
Collapse
Affiliation(s)
- C Muangchinda
- Bioremediation Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | | | | | | | | | | |
Collapse
|
39
|
Sierra-García IN, Correa Alvarez J, Pantaroto de Vasconcellos S, Pereira de Souza A, dos Santos Neto EV, de Oliveira VM. New hydrocarbon degradation pathways in the microbial metagenome from Brazilian petroleum reservoirs. PLoS One 2014; 9:e90087. [PMID: 24587220 PMCID: PMC3935994 DOI: 10.1371/journal.pone.0090087] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 01/29/2014] [Indexed: 12/19/2022] Open
Abstract
Current knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Using a function-driven metagenomic approach, we investigated the metabolic abilities of microbial communities in oil reservoirs. Here, we describe novel functional metabolic pathways involved in the biodegradation of aromatic compounds in a metagenomic library obtained from an oil reservoir. Although many of the deduced proteins shared homology with known enzymes of different well-described aerobic and anaerobic catabolic pathways, the metagenomic fragments did not contain the complete clusters known to be involved in hydrocarbon degradation. Instead, the metagenomic fragments comprised genes belonging to different pathways, showing novel gene arrangements. These results reinforce the potential of the metagenomic approach for the identification and elucidation of new genes and pathways in poorly studied environments and contribute to a broader perspective on the hydrocarbon degradation processes in petroleum reservoirs.
Collapse
Affiliation(s)
- Isabel Natalia Sierra-García
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Campinas, Brazil
- * E-mail:
| | - Javier Correa Alvarez
- Laboratory of Genomics and Expression, University of Campinas - UNICAMP, Campinas, Brazil
| | | | - Anete Pereira de Souza
- Center of Molecular Biology and Genetic Engineering – CBMEG/UNICAMP, Rio de Janeiro, Brazil
| | | | - Valéria Maia de Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Campinas, Brazil
| |
Collapse
|
40
|
Xu T, Close D, Smartt A, Ripp S, Sayler G. Detection of organic compounds with whole-cell bioluminescent bioassays. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 144:111-51. [PMID: 25084996 PMCID: PMC4597909 DOI: 10.1007/978-3-662-43385-0_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices.
Collapse
Affiliation(s)
- Tingting Xu
- Joint Institute for Biological Sciences, The University of Tennessee, Knoxville, TN, USA
| | - Dan Close
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Abby Smartt
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA; Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Steven Ripp
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USADepartment of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Gary Sayler
- Joint Institute for Biological Sciences, The University of Tennessee, Knoxville, TN, USA; Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA; Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
41
|
Barry KP, Taylor EA. Characterizing the promiscuity of LigAB, a lignin catabolite degrading extradiol dioxygenase from Sphingomonas paucimobilis SYK-6. Biochemistry 2013; 52:6724-36. [PMID: 23977959 DOI: 10.1021/bi400665t] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LigAB from Sphingomonas paucimobilis SYK-6 is the only structurally characterized dioxygenase of the largely uncharacterized superfamily of Type II extradiol dioxygenases (EDO). This enzyme catalyzes the oxidative ring-opening of protocatechuate (3,4-dihydroxybenzoic acid or PCA) in a pathway allowing the degradation of lignin derived aromatic compounds (LDACs). LigAB has also been shown to utilize two other LDACs from the same metabolic pathway as substrates, gallate, and 3-O-methyl gallate; however, kcat/KM had not been reported for any of these compounds. In order to assess the catalytic efficiency and get insights into the observed promiscuity of this enzyme, steady-state kinetic analyses were performed for LigAB with these and a library of related compounds. The dioxygenation of PCA by LigAB was highly efficient, with a kcat of 51 s(-1) and a kcat/KM of 4.26 × 10(6) M(-1)s(-1). LigAB demonstrated the ability to use a variety of catecholic molecules as substrates beyond the previously identified gallate and 3-O-methyl gallate, including 3,4-dihydroxybenzamide, homoprotocatechuate, catechol, and 3,4-dihydroxybenzonitrile. Interestingly, 3,4-dihydroxybenzamide (DHBAm) behaves in a manner similar to that of the preferred benzoic acid substrates, with a kcat/Km value only ∼4-fold lower than that for gallate and ∼10-fold higher than that for 3-O-methyl gallate. All of these most active substrates demonstrate mechanistic inactivation of LigAB. Additionally, DHBAm exhibits potent product inhibition that leads to an inactive enzyme, being more highly deactivating at lower substrate concentration, a phenomena that, to our knowledge, has not been reported for another dioxygenase substrate/product pair. These results provide valuable catalytic insight into the reactions catalyzed by LigAB and make it the first Type II EDO that is fully characterized both structurally and kinetically.
Collapse
Affiliation(s)
- Kevin P Barry
- Department of Chemistry, Wesleyan University , 52 Lawn Avenue, Middletown, Connecticut 06459, United States
| | | |
Collapse
|
42
|
Hernandez-Raquet G, Durand E, Braun F, Cravo-Laureau C, Godon JJ. Impact of microbial diversity depletion on xenobiotic degradation by sewage-activated sludge. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:588-594. [PMID: 23864574 DOI: 10.1111/1758-2229.12053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
Microbial diversity is generally considered as having no effect on the major processes of the ecosystem such as respiration or nutrient assimilation. However, information about the impact of diversity on minor functions such as xenobiotic degradation is scant. We studied the role of diversity on the capacity of an activated-sludge microbial community to eliminate phenanthrene, a polycyclic aromatic hydrocarbon. We also assessed the impact of diversity erosion on the ability of activated sludge to oxidize a wide range of organic compounds. The diversity of activated sludge was artificially modified by dilution to extinction followed by regrowth stage which led to communities with similar biomass but displaying a diversity gradient. The capacity of activated-sludge community to degrade phenanthrene was greatly modified: at high levels of diversity, the community was able to mineralize phenanthrene whereas at medium levels it first of all partially lost its ability to mineralize this pollutant and at the lowest diversity, the activated sludge completely lost its capacity to transform phenanthrene. Diversity depletion also reduced the metabolic diversity and biomass productivity of sewage-activated sludge. This study demonstrates that diversity erosion can greatly affect major ecosystem services such as pollutant removal.
Collapse
|
43
|
Izmalkova TY, Sazonova OI, Kosheleva IA, Boronin AM. Phylogenetic analysis of the genes for naphthalene and phenanthrene degradation in Burkholderia sp. strains. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413060033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Bengtsson G, Törneman N, De Lipthay JR, Sørensen SJ. Microbial diversity and PAH catabolic genes tracking spatial heterogeneity of PAH concentrations. MICROBIAL ECOLOGY 2013; 65:91-100. [PMID: 22940734 DOI: 10.1007/s00248-012-0112-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 08/10/2012] [Indexed: 06/01/2023]
Abstract
We analyzed the within-site spatial heterogeneity of microbial community diversity, polyaromatic hydrocarbon (PAH) catabolic genotypes, and physiochemical soil properties at a creosote contaminated site. Genetic diversity and community structure were evaluated from an analysis of denaturant gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified sequences of 16S rRNA gene. The potential PAH degradation capability was determined from PCR amplification of a suit of aromatic dioxygenase genes. Microbial diversity, evenness, and PAH genotypes were patchily distributed, and hot and cold spots of their distribution coincided with hot and cold spots of the PAH distribution. The analyses revealed a positive covariation between microbial diversity, biomass, evenness, and PAH concentration, implying that the creosote contamination at this site promotes diversity and abundance. Three patchily distributed PAH-degrading genotypes, NAH, phnA, and pdo1, were identified, and their abundances were positively correlated with the PAH concentration and the fraction of soil organic carbon. The covariation of the PAH concentration with the number and spatial distribution of catabolic genotypes suggests that a field site capacity to degrade PAHs may vary with the extent of contamination.
Collapse
Affiliation(s)
- Göran Bengtsson
- Department of Ecology, Lund University, Sölvegatan 37, SE, 223 62, Lund, Sweden.
| | | | | | | |
Collapse
|
45
|
Ding GC, Heuer H, Smalla K. Dynamics of bacterial communities in two unpolluted soils after spiking with phenanthrene: soil type specific and common responders. Front Microbiol 2012; 3:290. [PMID: 22934091 PMCID: PMC3423926 DOI: 10.3389/fmicb.2012.00290] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/23/2012] [Indexed: 11/13/2022] Open
Abstract
Considering their key role for ecosystem processes, it is important to understand the response of microbial communities in unpolluted soils to pollution with polycyclic aromatic hydrocarbons (PAH). Phenanthrene, a model compound for PAH, was spiked to a Cambisol and a Luvisol soil. Total community DNA from phenanthrene-spiked and control soils collected on days 0, 21, and 63 were analyzed based on PCR-amplified 16S rRNA gene fragments. Denaturing gradient gel electrophoresis (DGGE) fingerprints of bacterial communities increasingly deviated with time between spiked and control soils. In taxon specific DGGE, significant responses of Alphaproteobacteria and Actinobacteria became only detectable after 63 days, while significant effects on Betaproteobacteria were detectable in both soils after 21 days. Comparison of the taxonomic distribution of bacteria in spiked and control soils on day 63 as revealed by pyrosequencing indicated soil type specific negative effects of phenanthrene on several taxa, many of them belonging to the Gamma-, Beta-, or Deltaproteobacteria. Bacterial richness and evenness decreased in spiked soils. Despite the significant differences in the bacterial community structure between both soils on day 0, similar genera increased in relative abundance after PAH spiking, especially Sphingomonas and Polaromonas. However, this did not result in an increased overall similarity of the bacterial communities in both soils.
Collapse
Affiliation(s)
- Guo-Chun Ding
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants Braunschweig, Germany
| | | | | |
Collapse
|
46
|
Martin F, Malagnoux L, Violet F, Jakoncic J, Jouanneau Y. Diversity and catalytic potential of PAH-specific ring-hydroxylating dioxygenases from a hydrocarbon-contaminated soil. Appl Microbiol Biotechnol 2012; 97:5125-35. [PMID: 22903320 DOI: 10.1007/s00253-012-4335-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/20/2012] [Accepted: 07/21/2012] [Indexed: 10/28/2022]
Abstract
Ring-hydroxylating dioxygenases (RHDs) catalyze the initial oxidation step of a range of aromatic hydrocarbons including polycyclic aromatic hydrocarbons (PAHs). As such, they play a key role in the bacterial degradation of these pollutants in soil. Several polymerase chain reaction (PCR)-based methods have been implemented to assess the diversity of RHDs in soil, allowing limited sequence-based predictions on RHD function. In the present study, we developed a method for the isolation of PAH-specific RHD gene sequences of Gram-negative bacteria, and for analysis of their catalytic function. The genomic DNA of soil PAH degraders was labeled in situ by stable isotope probing, then used to PCR amplify sequences specifying the catalytic domain of RHDs. Sequences obtained fell into five clusters phylogenetically linked to RHDs from either Sphingomonadales or Burkholderiales. However, two clusters comprised sequences distantly related to known RHDs. Some of these sequences were cloned in-frame in place of the corresponding region of the phnAIa gene from Sphingomonas CHY-1 to generate hybrid genes, which were expressed in Escherichia. coli as chimerical enzyme complexes. Some of the RHD chimeras were found to be competent in the oxidation of two- and three-ring PAHs, but other appeared unstable. Our data are interpreted in structural terms based on 3D modeling of the catalytic subunit of hybrid RHDs. The strategy described herein might be useful for exploring the catalytic potential of the soil metagenome and recruit RHDs with new activities from uncultured soil bacteria.
Collapse
Affiliation(s)
- Florence Martin
- Laboratoire de Chimie et Biologie des Métaux, CEA, DSV, 38054 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
47
|
Lin CL, Shen FT, Tan CC, Huang CC, Chen BY, Arun A, Young CC. Characterization of Gordonia sp. strain CC-NAPH129-6 capable of naphthalene degradation. Microbiol Res 2012; 167:395-404. [DOI: 10.1016/j.micres.2011.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/30/2011] [Accepted: 12/04/2011] [Indexed: 11/26/2022]
|
48
|
Heterologous expression of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes from a novel pyrene-degrading betaproteobacterium. Appl Environ Microbiol 2012; 78:3552-9. [PMID: 22427500 DOI: 10.1128/aem.00173-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A betaproteobacterium within the family Rhodocyclaceae previously identified as a pyrene degrader via stable-isotope probing (SIP) of contaminated soil (designated pyrene group 1 or PG1) was cultivated as the dominant member of a mixed bacterial culture. A metagenomic library was constructed, and the largest contigs were analyzed for genes associated with polycyclic aromatic hydrocarbon (PAH) metabolism. Eight pairs of genes with similarity to the α- and β-subunits of ring-hydroxylating dioxygenases (RHDs) associated with aerobic bacterial PAH degradation were identified and linked to PG1 through PCR analyses of a simplified enrichment culture. In tandem with a ferredoxin and reductase found in close proximity to one pair of RHD genes, six of the RHDs were cloned and expressed in Escherichia coli. Each cloned RHD was tested for activity against nine PAHs ranging in size from two to five rings. Despite differences in their predicted protein sequences, each of the six RHDs was capable of transforming phenanthrene and pyrene. Three RHDs could additionally transform naphthalene and fluorene, and these genotypes were also associated with the ability of the E. coli constructs to convert indole to indigo. Only one of the six cloned RHDs was capable of transforming anthracene and benz[a]anthracene. None of the tested RHDs were capable of significantly transforming fluoranthene, chrysene, or benzo[a]pyrene.
Collapse
|
49
|
Cupriavidus and Burkholderia species associated with agricultural plants that grow in alkaline soils. J Microbiol 2011; 49:867-76. [DOI: 10.1007/s12275-011-1127-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/08/2011] [Indexed: 01/11/2023]
|
50
|
Heterologous expression and characterization of two 1-hydroxy-2-naphthoic acid dioxygenases from Arthrobacter phenanthrenivorans. Appl Environ Microbiol 2011; 78:621-7. [PMID: 22101055 DOI: 10.1128/aem.07137-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A protein fraction exhibiting 1-hydroxy-2-naphthoic acid (1-H2NA) dioxygenase activity was purified via ion exchange, hydrophobic interactions, and gel filtration chromatography from Arthrobacter phenanthrenivorans sp. nov. strain Sphe3 isolated from a Greek creosote-oil-polluted site. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and tandem MS (MS-MS) analysis revealed that the amino acid sequences of oligopeptides of the major 45-kDa protein species, as analyzed by SDS-PAGE and silver staining, comprising 29% of the whole sequence, exhibited strong homology with 1-H2NA dioxygenase of Nocardioides sp. strain KP7. A BLAST search of the recently sequenced Sphe3 genome revealed two putative open reading frames, named diox1 and diox2, showing 90% nucleotide identity to each other and 85% identity at the amino acid level with the Nocardia sp. homologue. diox1 was found on an indigenous Sphe3 plasmid, whereas diox2 was located on the chromosome. Both genes were induced by the presence of phenanthrene used as a sole carbon and energy source, and as expected, both were subject to carbon catabolite repression. The relative RNA transcription level of the chromosomal (diox2) gene was significantly higher than that of its plasmid (diox1) homologue. Both diox1 and diox2 putative genes were PCR amplified, cloned, and overexpressed in Escherichia coli. Recombinant E. coli cells expressed 1-H2NA dioxygenase activity. Recombinant enzymes exhibited Michaelis-Menten kinetics with an apparent K(m) of 35 μM for Diox1 and 29 μM for Diox2, whereas they showed similar kinetic turnover characteristics with K(cat)/K(m) values of 11 × 10(6) M(-1) s(-1) and 12 × 10(6) M(-1) s(-1), respectively. Occurrence of two diox1 and diox2 homologues in the Sphe3 genome implies that a replicative transposition event has contributed to the evolution of 1-H2NA dioxygenase in A. phenanthrenivorans.
Collapse
|