1
|
Feng Y, Cui J, Xu B, Jiang Y, Fu C, Tan L. A Potentially Practicable Halotolerant Yeast Meyerozyma guilliermondii A4 for Decolorizing and Detoxifying Azo Dyes and Its Possible Halotolerance Mechanisms. J Fungi (Basel) 2023; 9:851. [PMID: 37623622 PMCID: PMC10456123 DOI: 10.3390/jof9080851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
In this study, a halotolerant yeast that is capable of efficiently decolorizing and detoxifying azo dyes was isolated, identified and characterized for coping with the treatment of azo-dye-containing wastewaters. A characterization of the yeast, including the optimization of its metabolism and growth conditions, its detoxification effectiveness and the degradation pathway of the target azo dye, as well as a determination of the key activities of the enzyme, was performed. Finally, the possible halotolerance mechanisms of the yeast were proposed through a comparative transcriptome analysis. The results show that a halotolerant yeast, A4, which could decolorize various azo dyes, was isolated from a marine environment and was identified as Meyerozyma guilliermondii. Its optimal conditions for dye decolorization were ≥1.0 g/L of sucrose, ≥0.2 g/L of (NH4)2SO4, 0.06 g/L of yeast extract, pH 6.0, a temperature of 35 °C and a rotation speed of ≥160 rpm. The yeast, A4, degraded and detoxified ARB through a series of steps, relying on the key enzymes that might be involved in the degradation of azo dye and aromatic compounds. The halotolerance of the yeast, A4, was mainly related to the regulation of the cell wall components and the excessive uptake of Na+/K+ and/or compatible organic solutes into the cells under different salinity conditions. The up-regulation of genes encoding Ca2+-ATPase and casein kinase II as well as the enrichment of KEGG pathways associated with proteasome and ribosome might also be responsible for its halotolerance.
Collapse
Affiliation(s)
- Yue Feng
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.F.); (J.C.); (Y.J.); (C.F.)
| | - Jingru Cui
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.F.); (J.C.); (Y.J.); (C.F.)
| | - Bingwen Xu
- Dalian Center for Certification and Food and Drug Control, Dalian 116037, China;
| | - Yifan Jiang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.F.); (J.C.); (Y.J.); (C.F.)
| | - Chunqing Fu
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.F.); (J.C.); (Y.J.); (C.F.)
| | - Liang Tan
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.F.); (J.C.); (Y.J.); (C.F.)
| |
Collapse
|
2
|
Ariño J, Ramos J, Sychrova H. Monovalent cation transporters at the plasma membrane in yeasts. Yeast 2019; 36:177-193. [PMID: 30193006 DOI: 10.1002/yea.3355] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 01/08/2023] Open
Abstract
Maintenance of proper intracellular concentrations of monovalent cations, mainly sodium and potassium, is a requirement for survival of any cell. In the budding yeast Saccharomyces cerevisiae, monovalent cation homeostasis is determined by the active extrusion of protons through the Pma1 H+ -ATPase (reviewed in another chapter of this issue), the influx and efflux of these cations through the plasma membrane transporters (reviewed in this chapter), and the sequestration of toxic cations into the vacuoles. Here, we will describe the structure, function, and regulation of the plasma membrane transporters Trk1, Trk2, Tok1, Nha1, and Ena1, which play a key role in maintaining physiological intracellular concentrations of Na+ , K+ , and H+ , both under normal growth conditions and in response to stress.
Collapse
Affiliation(s)
- Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - José Ramos
- Departamento de Microbiología, Universidad de Córdoba, Córdoba, Spain
| | - Hana Sychrova
- Department of Membrane Transport, Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
3
|
Santolaria C, Velázquez D, Strauss E, Ariño J. Mutations at the hydrophobic core affect Hal3 trimer stability, reducing its Ppz1 inhibitory capacity but not its PPCDC moonlighting function. Sci Rep 2018; 8:14701. [PMID: 30279472 PMCID: PMC6168597 DOI: 10.1038/s41598-018-32979-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/19/2018] [Indexed: 11/09/2022] Open
Abstract
S. cerevisiae Hal3 (ScHal3) is a moonlighting protein that, is in its monomeric state, regulates the Ser/Thr protein phosphatase Ppz1, but also joins ScCab3 (and in some instances the Hal3 paralog Vhs3) to form an unusual heterotrimeric phosphopantothenoylcysteine decarboxylase (PPCDC) enzyme. PPCDC is required for CoA biosynthesis and in most eukaryotes is a homotrimeric complex with three identical catalytic sites at the trimer interfaces. However, in S. cerevisiae the heterotrimeric arrangement results in a single functional catalytic center. Importantly, the specific structural determinants that direct Hal3's oligomeric state and those required for Ppz1 inhibition remain largely unknown. We mutagenized residues in the predicted hydrophobic core of ScHal3 (L403-L405) and the plant Arabidopsis thaliana Hal3 (AtHal3, G115-L117) oligomers and characterized their properties as PPCDC components and, for ScHal3, also as Ppz1 inhibitor. We found that in AtHal3 these changes do not affect trimerization or PPCDC function. Similarly, mutation of ScHal3 L403 has no effect. In contrast, ScHal3 L405E fails to form homotrimers, but retains the capacity to bind Cab3-explaining its ability to rescue a hal3 vhs3 synthetically lethal mutation. Remarkably, the L405E mutation decreases Hal3's ability to interact with and to inhibit Ppz1, confirming the importance of the oligomer/monomer equilibrium in Hal3's Ppz1 regulating function.
Collapse
Affiliation(s)
- Carlos Santolaria
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Diego Velázquez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Matieland, 7602, South Africa
| | - Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| |
Collapse
|
4
|
Yenush L. Potassium and Sodium Transport in Yeast. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:187-228. [DOI: 10.1007/978-3-319-25304-6_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Burns LT, Wente SR. Casein kinase II regulation of the Hot1 transcription factor promotes stochastic gene expression. J Biol Chem 2014; 289:17668-79. [PMID: 24817120 DOI: 10.1074/jbc.m114.561217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, Hog1 MAPK is activated and induces a transcriptional program in response to hyperosmotic stress. Several Hog1-responsive genes exhibit stochastic transcription, resulting in cell-to-cell variability in mRNA and protein levels. However, the mechanisms governing stochastic gene activity are not fully defined. Here we uncover a novel role for casein kinase II (CK2) in the cellular response to hyperosmotic stress. CK2 interacts with and phosphorylates the Hot1 transcription factor; however, Hot1 phosphorylation is not sufficient for controlling the stochastic response. The CK2 protein itself is required to negatively regulate mRNA expression of Hot1-responsive genes and Hot1 enrichment at target promoters. Single-cell gene expression analysis reveals altered activation of Hot1-targeted STL1 in ck2 mutants, resulting in a bimodal to unimodal shift in expression. Together, this work reveals a novel CK2 function during the hyperosmotic stress response that promotes cell-to-cell variability in gene expression.
Collapse
Affiliation(s)
- Laura T Burns
- From the Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Susan R Wente
- From the Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
6
|
Subcellular potassium and sodium distribution in Saccharomyces cerevisiae wild-type and vacuolar mutants. Biochem J 2013; 454:525-32. [DOI: 10.1042/bj20130143] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Living cells accumulate potassium (K+) to fulfil multiple functions. It is well documented that the model yeast Saccharomyces cerevisiae grows at very different concentrations of external alkali cations and keeps high and low intracellular concentrations of K+ and sodium (Na+) respectively. However less attention has been paid to the study of the intracellular distribution of these cations. The most widely used experimental approach, plasma membrane permeabilization, produces incomplete results, since it usually considers only cytoplasm and vacuoles as compartments where the cations are present in significant amounts. By isolating and analysing the main yeast organelles, we have determined the subcellular location of K+ and Na+ in S. cerevisiae. We show that while vacuoles accumulate most of the intracellular K+ and Na+, the cytosol contains relatively low amounts, which is especially relevant in the case of Na+. However K+ concentrations in the cytosol are kept rather constant during the K+-starvation process and we conclude that, for that purpose, vacuolar K+ has to be rapidly mobilized. We also show that this intracellular distribution is altered in four different mutants with impaired vacuolar physiology. Finally, we show that both in wild-type and vacuolar mutants, nuclei contain and keep a relatively constant and important percentage of total intracellular K+ and Na+, which most probably is involved in the neutralization of negative charges.
Collapse
|
7
|
Chen L, Liu L, Wang M, Fu J, Zhang Z, Hou J, Bao X. Hal2p functions in Bdf1p-involved salt stress response in Saccharomyces cerevisiae. PLoS One 2013; 8:e62110. [PMID: 23614021 PMCID: PMC3629146 DOI: 10.1371/journal.pone.0062110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 03/19/2013] [Indexed: 11/18/2022] Open
Abstract
The Saccharomyces cerevisiae Bdf1p associates with the basal transcription complexes TFIID and acts as a transcriptional regulator. Lack of Bdf1p is salt sensitive and displays abnormal mitochondrial function. The nucleotidase Hal2p detoxifies the toxic compound 3' -phosphoadenosine-5'-phosphate (pAp), which blocks the biosynthesis of methionine. Hal2p is also a target of high concentration of Na(+). Here, we reported that HAL2 overexpression recovered the salt stress sensitivity of bdf1Δ. Further evidence demonstrated that HAL2 expression was regulated indirectly by Bdf1p. The salt stress response mechanisms mediated by Bdf1p and Hal2p were different. Unlike hal2Δ, high Na(+) or Li(+) stress did not cause pAp accumulation in bdf1Δ and methionine supplementation did not recover its salt sensitivity. HAL2 overexpression in bdf1Δ reduced ROS level and improved mitochondrial function, but not respiration. Further analyses suggested that autophagy was apparently defective in bdf1Δ, and autophagy stimulated by Hal2p may play an important role in recovering mitochondrial functions and Na(+) sensitivity of bdf1Δ. Our findings shed new light towards our understanding about the molecular mechanism of Bdf1p-involved salt stress response in budding yeast.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Liangyu Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Mingpeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jiafang Fu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
8
|
Identification of yeast genes involved in k homeostasis: loss of membrane traffic genes affects k uptake. G3-GENES GENOMES GENETICS 2011; 1:43-56. [PMID: 22384317 PMCID: PMC3276120 DOI: 10.1534/g3.111.000166] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/24/2011] [Indexed: 11/18/2022]
Abstract
Using the homozygous diploid Saccharomyces deletion collection, we searched for strains with defects in K(+) homeostasis. We identified 156 (of 4653 total) strains unable to grow in the presence of hygromycin B, a phenotype previously shown to be indicative of ion defects. The most abundant group was that with deletions of genes known to encode membrane traffic regulators. Nearly 80% of these membrane traffic defective strains showed defects in uptake of the K(+) homolog, (86)Rb(+). Since Trk1, a plasma membrane protein localized to lipid microdomains, is the major K(+) influx transporter, we examined the subcellular localization and Triton-X 100 insolubility of Trk1 in 29 of the traffic mutants. However, few of these showed defects in the steady state levels of Trk1, the localization of Trk1 to the plasma membrane, or the localization of Trk1 to lipid microdomains, and most defects were mild compared to wild-type. Three inositol kinase mutants were also identified, and in contrast, loss of these genes negatively affected Trk1 protein levels. In summary, this work reveals a nexus between K(+) homeostasis and membrane traffic, which does not involve traffic of the major influx transporter, Trk1.
Collapse
|
9
|
Abstract
The maintenance of appropriate intracellular concentrations of alkali metal cations, principally K(+) and Na(+), is of utmost importance for living cells, since they determine cell volume, intracellular pH, and potential across the plasma membrane, among other important cellular parameters. Yeasts have developed a number of strategies to adapt to large variations in the concentrations of these cations in the environment, basically by controlling transport processes. Plasma membrane high-affinity K(+) transporters allow intracellular accumulation of this cation even when it is scarce in the environment. Exposure to high concentrations of Na(+) can be tolerated due to the existence of an Na(+), K(+)-ATPase and an Na(+), K(+)/H(+)-antiporter, which contribute to the potassium balance as well. Cations can also be sequestered through various antiporters into intracellular organelles, such as the vacuole. Although some uncertainties still persist, the nature of the major structural components responsible for alkali metal cation fluxes across yeast membranes has been defined within the last 20 years. In contrast, the regulatory components and their interactions are, in many cases, still unclear. Conserved signaling pathways (e.g., calcineurin and HOG) are known to participate in the regulation of influx and efflux processes at the plasma membrane level, even though the molecular details are obscure. Similarly, very little is known about the regulation of organellar transport and homeostasis of alkali metal cations. The aim of this review is to provide a comprehensive and up-to-date vision of the mechanisms responsible for alkali metal cation transport and their regulation in the model yeast Saccharomyces cerevisiae and to establish, when possible, comparisons with other yeasts and higher plants.
Collapse
|
10
|
Aliverdieva DA, Mamaev DV, Bondarenko DI. Plasmalemma dicarboxylate transporter of Saccharomyces cerevisiae is involved in citrate and succinate influx and is modulated by pH and cations. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2008. [DOI: 10.1134/s1990747808040090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Moreno-Romero J, Espunya MC, Platara M, Ariño J, Martínez MC. A role for protein kinase CK2 in plant development: evidence obtained using a dominant-negative mutant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:118-30. [PMID: 18363781 DOI: 10.1111/j.1365-313x.2008.03494.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Protein kinase CK2 is an evolutionary conserved Ser/Thr phosphotransferase composed of two distinct subunits, alpha (catalytic) and beta (regulatory), that combine to form a tetrameric complex. Plant genomes contain multiple genes for each subunit, the expression of which gives rise to different active holoenzymes. In order to study the effects of loss of function of CK2 on plant development, we have undertaken a dominant-negative mutant approach. We generated an inactive catalytic subunit by site-directed mutagenesis of an essential lysine residue. The mutated open reading frame was cloned downstream of an inducible promoter, and stably transformed Arabidopsis thaliana plants and tobacco BY2 cells were isolated. Continuous expression of the CK2 kinase-inactive subunit did not prevent seed germination, but seedlings exhibited a strong phenotype, affecting chloroplast development, cotyledon expansion, and root and shoot growth. Prolonged induction of the transgene was lethal. Moreover, dark-germinated seedlings exhibited an apparent de-etiolated phenotype that was not caused by disruption of the light-signalling pathways. Short-term induction of the CK2 kinase-inactive subunit allowed plant survival, but root growth and lateral root formation were significantly affected. The expression pattern of CYCB1;1::GFP in the root meristems of mutant plants demonstrated an important decrease of mitotic activity, and expression of the CK2 kinase-inactive subunit in stably transformed BY2 cells provoked perturbation of the G1/S and G2 phases of the cell cycle. Our results are consistent with a model in which CK2 plays a key role in cell division and cell expansion, with compelling effects on Arabidopsis development.
Collapse
Affiliation(s)
- Jordi Moreno-Romero
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
12
|
Function and regulation of the Saccharomyces cerevisiae ENA sodium ATPase system. EUKARYOTIC CELL 2007; 6:2175-83. [PMID: 17951516 DOI: 10.1128/ec.00337-07] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
González A, Larroy C, Biosca JA, Ariño J. Use of the TRP1 auxotrophic marker for gene disruption and phenotypic analysis in yeast: a note of warning. FEMS Yeast Res 2007; 8:2-5. [PMID: 17892472 DOI: 10.1111/j.1567-1364.2007.00315.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The TRP1 marker has been commonly used for gene disruption experiments and subsequent phenotypic analysis. However, introduction of the TRP1 gene into a trp1 strain markedly affects growth under many conditions used for phenotypic profiling. Therefore, its use in the past should be revisited and utilization of this marker should be avoided in future analyses.
Collapse
Affiliation(s)
- Asier González
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
14
|
Ruiz A, González A, García-Salcedo R, Ramos J, Ariño J. Role of protein phosphatases 2C on tolerance to lithium toxicity in the yeast Saccharomyces cerevisiae. Mol Microbiol 2006; 62:263-77. [PMID: 16956380 DOI: 10.1111/j.1365-2958.2006.05370.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein phosphatases 2C are a family of conserved enzymes involved in many aspects of the cell biology. We reported that, in the yeast Saccharomyces cerevisiae, overexpression of the Ptc3p isoform resulted in increased lithium tolerance in the hypersensitive hal3 background. We have found that the tolerance induced by PTC3 overexpression is also observed in wild-type cells and that this is most probably the result of increased expression of the ENA1 Na(+)-ATPase mediated by the Hog1 MAP kinase pathway. This effect does not require a catalytically active protein. Surprisingly, deletion of PTC3 (similarly to that of PTC2, PTC4 or PTC5) does not confer a lithium-sensitive phenotype, but mutation of PTC1 does. Lack of PTC1 in an ena1-4 background did not result in additive lithium sensitivity and the ptc1 mutant showed a decreased expression of the ENA1 gene in cells stressed with LiCl. In agreement, under these conditions, the ptc1 mutant was less effective in extruding Li(+) and accumulated higher concentrations of this cation. Deletion of PTC1 in a hal3 background did not exacerbate the halosensitive phenotype of the hal3 strain. In addition, induction from the ENA1 promoter under LiCl stress decreased similarly (50%) in hal3, ptc1 and ptc1 hal3 mutants. Finally, mutation of PTC1 virtually abolishes the increased tolerance to toxic cations provided by overexpression of Hal3p. These results indicate that Ptc1p modulates the function of Ena1p by regulating the Hal3/Ppz1,2 pathway. In conclusion, overexpression of PTC3 and lack of PTC1 affect lithium tolerance in yeast, although through different mechanisms.
Collapse
Affiliation(s)
- Amparo Ruiz
- Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | | | | | | | | |
Collapse
|
15
|
García-Salcedo R, Casamayor A, Ruiz A, González A, Prista C, Loureiro-Dias MC, Ramos J, Ariño J. Heterologous expression implicates a GATA factor in regulation of nitrogen metabolic genes and ion homeostasis in the halotolerant yeast Debaryomyces hansenii. EUKARYOTIC CELL 2006; 5:1388-98. [PMID: 16896222 PMCID: PMC1539131 DOI: 10.1128/ec.00154-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 06/08/2006] [Indexed: 11/20/2022]
Abstract
The yeast Debaryomyces hansenii has a remarkable capacity to proliferate in salty and alkaline environments such as seawater. A screen for D. hansenii genes able to confer increased tolerance to high pH when overexpressed in Saccharomyces cerevisiae yielded a single gene, named here DhGZF3, encoding a putative negative GATA transcription factor related to S. cerevisiae Dal80 and Gzf3. Overexpression of this gene in wild-type S. cerevisiae increased caffeine and rapamycin tolerance, blocked growth in low glucose concentrations and nonfermentable carbon sources, and resulted in lithium- and sodium-sensitive cells. Sensitivity to salt could be attributed to a reduced cation efflux, most likely because of a decrease in expression of the ENA1 Na(+)-ATPase gene. Overexpression of DhGZF3 did not affect cell growth in a gat1 mutant but was lethal in the absence of Gln3. These are positive factors that oppose both Gzf3 and Dal80. Genome-wide transcriptional profiling of wild-type cells overexpressing DhGZF3 shows decreased expression of a number of genes that are usually induced in poor nitrogen sources. In addition, the entire pathway leading to Lys biosynthesis was repressed, probably as a result of a decrease in the expression of the specific Lys14 transcription factor. In conclusion, our results demonstrate that DhGzf3 can play a role as a negative GATA transcription factor when expressed in S. cerevisiae and that it most probably represents the only member of this family in D. hansenii. These findings also point to the GATA transcription factors as relevant elements for alkaline-pH tolerance.
Collapse
Affiliation(s)
- Raúl García-Salcedo
- Departamento de Microbiología, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Spain
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Poole A, Poore T, Bandhakavi S, McCann RO, Hanna DE, Glover CVC. A global view of CK2 function and regulation. Mol Cell Biochem 2006; 274:163-70. [PMID: 16342414 DOI: 10.1007/s11010-005-2945-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The wealth of biochemical, molecular, genetic, genomic, and bioinformatic resources available in S. cerevisiae make it an excellent system to explore the global role of CK2 in a model organism. Traditional biochemical and genetic studies have revealed that CK2 is required for cell viability, cell cycle progression, cell polarity, ion homeostasis, and other functions, and have identified a number of potential physiological substrates of the enzyme. Data mining of available bioinformatic resources indicates that (1) there are likely to be hundreds of CK2 targets in this organism, (2) the majority of predicted CK2 substrates are involved in various aspects of global gene expression, (3) CK2 is present in several nuclear protein complexes predicted to have a role in chromatin structure and remodeling, transcription, or RNA metabolism, and (4) CK2 is localized predominantly in the nucleus. These bioinformatic results suggest that the observed phenotypic consequences of CK2 depletion may lie downstream of primary defects in chromatin organization and/or global gene expression. Further progress in defining the physiological role of CK2 will almost certainly require a better understanding of the mechanism of regulation of the enzyme. Beginning with the crystal structure of the human CK2 holoenzyme, we present a molecular model of filamentous CK2 that is consistent with earlier proposals that filamentous CK2 represents an inactive form of the enzyme. The potential role of filamentous CK2 in regulation in vivo is discussed.
Collapse
Affiliation(s)
- Allison Poole
- Department of Biochemistry and Molecular Biology, Life Sciences Building, The University of Georgia, Athens, GA, USA
| | | | | | | | | | | |
Collapse
|
17
|
Ruiz A, Muñoz I, Serrano R, González A, Simón E, Ariño J. Functional characterization of the Saccharomyces cerevisiae VHS3 gene: a regulatory subunit of the Ppz1 protein phosphatase with novel, phosphatase-unrelated functions. J Biol Chem 2004; 279:34421-30. [PMID: 15192104 DOI: 10.1074/jbc.m400572200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast gene VHS3 (YOR054c) has been recently identified as a multicopy suppressor of the G(1)/S cell cycle blockade of a conditional sit4 and hal3 mutant. Vhs3 is structurally related to Hal3, a negative regulatory subunit of the Ser/Thr protein phosphatase Ppz1 important for cell integrity, salt tolerance, and cell cycle control. Phenotypic analyses using vhs3 mutants and overexpressing strains clearly show that Vhs3 has functions reminiscent to those of Hal3 and contrary to those of Ppz1. Mutation of Vhs3 His(459), equivalent to the supposedly functionally relevant His(90) in the plant homolog AtHal3a, did not affect Vhs3 functions mentioned above. Similarly to Hal3, Vhs3 binds in vivo to the C-terminal catalytic moiety of Ppz1 and inhibits in vitro its phosphatase activity. Therefore, our results indicate that Vhs3 plays a role as an inhibitory subunit of Ppz1. We have found that the vhs3 and hal3 mutations are synthetically lethal. Remarkably, lethality is not suppressed by deletion of PPZ1, PPZ2, or both phosphatase genes, indicating that it is not because of an excess of Ppz phosphatase activity. Furthermore, a Vhs3 version carrying the H459A mutation did not rescue the synthetically lethal phenotype. A conditional vhs3 tetO:HAL3 double mutant displays, in the presence of doxycycline, a flocculation phenotype that is dependent on the presence of Flo8 and Flo11. These results indicate that, besides its role as Ppz1 inhibitory subunit, Vhs3 (and probably Hal3) might have important Ppz-independent functions.
Collapse
Affiliation(s)
- Amparo Ruiz
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Riera M, Figueras M, López C, Goday A, Pagès M. Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. Proc Natl Acad Sci U S A 2004; 101:9879-84. [PMID: 15159549 PMCID: PMC470767 DOI: 10.1073/pnas.0306154101] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The maize abscisic acid responsive protein Rab17 is a highly phosphorylated late embryogenesis abundant protein involved in plant responses to stress. In this study, we provide evidence of the importance of Rab17 phosphorylation by protein kinase CK2 in growth-related processes under stress conditions. We show the specific interaction of Rab17 with the CK2 regulatory subunits CK2 beta-1 and CK2 beta-3, and that these interactions do not depend on the phosphorylation state of Rab17. Live-cell fluorescence imaging of both CK2 and Rab17 indicates that the intracellular dynamics of Rab17 are regulated by CK2 phosphorylation. We found both CK2 beta subunits and Rab17 distributed over the cytoplasm and nucleus. By contrast, catalytic CK2 alpha subunits and a Rab17 mutant protein (mRab17) that is not a substrate for CK2 phosphorylation remain accumulated in the nucleoli. A dual-color image shows that the CK2 holoenzyme accumulates mainly in the nucleus. The importance of Rab17 phosphorylation in vivo was assessed in transgenic plants. The overexpression of Rab17, but not mRab17, arrests the process of seed germination under osmotic stress conditions. Thus, the role of Rab17 in growth processes is mediated through its phosphorylation by protein kinase CK2.
Collapse
Affiliation(s)
- Marta Riera
- Departament de Genètica Molecular, Institut de Biologia Molecular de Barcelona, Consell Superior d' Investigacions Científiques, Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | | | | | |
Collapse
|
19
|
Dihazi H, Kessler R, Eschrich K. High osmolarity glycerol (HOG) pathway-induced phosphorylation and activation of 6-phosphofructo-2-kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress. J Biol Chem 2004; 279:23961-8. [PMID: 15037628 DOI: 10.1074/jbc.m312974200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In response to changes in the environment, yeast cells coordinate intracellular activities to optimize survival and proliferation. The transductions of diverse extracellular stimuli are exerted through multiple mitogen-activated protein kinase (MAPK) cascades. The high osmolarity glycerol (HOG) MAPK pathway is activated by increased environmental osmolarity and results in a rise of the cellular glycerol concentration to adapt the intracellular osmotic pressure. We studied the importance of the short time regulation of glycolysis under hyperosmotic stress for the survival and proliferation of yeast cells. A stimulation of the HOG-MAPK pathway by increasing the medium osmolarity through addition of salt or glucose to cultivated yeast leads to an activation of 6-phosphofructo-2-kinase (PFK2), which is accompanied by a complex phosphorylation pattern of the enzyme. An increase in medium osmolarity with 5% NaCl activates PFK2 3-fold over the initial value. This change in the activity is the result of a 4-fold phosphorylation of the enzyme mediated by protein kinases from the HOG-MAPK pathway. In the case of hyperosmolar glucose a 5-fold PFK2 activation was achieved by a single phosphorylation with protein kinase A near the carboxyl terminus of the protein on Ser(644) and an additional 5-fold phosphorylation within the same amino-terminal fragment as in the presence of salt. The effect of hyperosmolar glucose is the result of an activation of the Ras-cAMP pathway together with the HOG-MAPK pathway. The activation of PFK2 leads to an activation of the upper part of glycolysis, which is a precondition for glycerol accumulation. Yeast cells containing PFK2 accumulate three times more glycerol than cells lacking PFK2, which are not able to grow under hypertonic stress.
Collapse
Affiliation(s)
- Hassan Dihazi
- Department of Nephrology and Rheumatology, University Hospital Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany.
| | | | | |
Collapse
|
20
|
Wadskog I, Maldener C, Proksch A, Madeo F, Adler L. Yeast lacking the SRO7/SOP1-encoded tumor suppressor homologue show increased susceptibility to apoptosis-like cell death on exposure to NaCl stress. Mol Biol Cell 2004; 15:1436-44. [PMID: 14718573 PMCID: PMC363166 DOI: 10.1091/mbc.e03-02-0114] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Yeast cells deleted for the SRO7/SOP1 encoded tumor suppressor homologue show increased sensitivity to NaCl stress. On exposure to growth-inhibiting NaCl concentrations, sro7Delta mutants display a rapid loss in viability that is associated with markers of apoptosis: accumulation of reactive oxygen species, DNA breakage, and nuclear fragmentation. Additional deletion of the yeast metacaspase gene YCA1 prevents the primary fast drop in viability and diminishes nuclear fragmentation and DNA breakage. We also observed that NaCl induced loss in viability of wild-type cells is Yca1p dependent. However, a yeast strain deleted for both SRO7 and its homologue SRO77 exhibits NaCl-induced cell death that is independent on YCA1. Likewise, sro77Delta single mutants do not survive better after additional deletion of the YCA1 gene, and both sro77Delta and sro77Deltayca1Delta mutants display apoptotic characteristics when exposed to growth-inhibiting salinity, suggesting that yeast possesses Yca1p-independent pathway(s) for apoptosis-like cell death. The activity of Yca1p increases with increasing NaCl stress and sro7Delta mutants achieve levels that are higher than in wild-type cells. However, mutants lacking SRO77 do not enhance caspase activity when subject to NaCl stress, suggesting that Sro7p and Sro77p exert opposing effects on the cellular activity of Yca1p.
Collapse
Affiliation(s)
- Ingrid Wadskog
- Department of Cell and Molecular Biology/Microbiology, Göteborg University, SE-40530 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
21
|
Riera M, Pages M, Issinger OG, Guerra B. Purification and characterization of recombinant protein kinase CK2 from Zea mays expressed in Escherichia coli. Protein Expr Purif 2003; 29:24-32. [PMID: 12729722 DOI: 10.1016/s1046-5928(03)00005-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recombinant protein kinase subunits rmCK2alpha-1 and rmCK2beta-1 from Zea mays were expressed separately in Escherichia coli and assembled to a fully active tetrameric holoenzyme complex in vitro. The obtained maize holoenzyme was purified to homogeneity, biochemically characterized, and compared to CK2 from human. Kinetic measurements of the recombinant maize holoenzyme (rmCK2) revealed k(cat) values for ATP and GTP of 4 and 2s(-1), respectively; whereas the recombinant maize catalytic subunit showed almost equal values for ATP and GTP, i.e., ca. 0.8s(-1). A comparison of the k(cat)/K(m) ratio between the maize holoenzyme and the catalytic subunit from CK2 maize shows that the incorporation of the catalytic subunit into the holoenzyme leads to a 14-fold activation in the case of ATP and 8-fold activation in the case of GTP. The maize holoenzyme is about 10 times more sensitive towards CK2 inhibitor heparin, on the other hand, it is stimulated only 0% by polylysine as compared to the human counterpart. The maize holoenzyme activity is more sensitive towards NaCl concentrations higher than those of rhCK2 and treatment with urea showed that rmCK2 holoenzyme was denatured more readily than the human holoenzyme.
Collapse
Affiliation(s)
- Marta Riera
- Departamento de Genetica Molecular, IBMB, CID, C.S.I.C., Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | | | |
Collapse
|
22
|
Kanhonou R, Serrano R, Palau RR. A catalytic subunit of the sugar beet protein kinase CK2 is induced by salt stress and increases NaCl tolerance in Saccharomyces cerevisiae. PLANT MOLECULAR BIOLOGY 2001; 47:571-9. [PMID: 11725943 DOI: 10.1023/a:1012227913356] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Salinity is an important limiting factor in plant growth and development. We have cloned a catalytic subunit of the sugar beet protein kinase CK2 (BvCKA2) by functional expression in yeast of a NaCl-induced cDNA library. BvCKA2 was able to increase the yeast tolerance to NaCl and to functionally complement the cka1 cka2 yeast double mutant upon over-expression. Southern blot analysis indicated that, in sugar beet, the BCKA2 gene is a member of a multigene family. The mRNA levels of BvCKA2 were up-regulated in response to NaCl stress which suggests that protein kinase CK2 may be involved in the plant response to salt stress.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Amino Acid Sequence
- Beta vulgaris/enzymology
- Beta vulgaris/genetics
- Blotting, Southern
- Casein Kinase II
- Catalytic Domain
- Cell Division/drug effects
- Cell Division/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Plant/genetics
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Gene Library
- Genetic Complementation Test
- Molecular Sequence Data
- Mutation
- Plant Leaves/enzymology
- Plant Leaves/genetics
- Potassium/metabolism
- Protein Serine-Threonine Kinases/genetics
- Saccharomyces cerevisiae/drug effects
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sodium/metabolism
- Sodium Chloride/pharmacology
Collapse
Affiliation(s)
- R Kanhonou
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Spain
| | | | | |
Collapse
|
23
|
Kinclová O, Ramos J, Potier S, Sychrová H. Functional study of the Saccharomyces cerevisiae Nha1p C-terminus. Mol Microbiol 2001; 40:656-68. [PMID: 11359571 DOI: 10.1046/j.1365-2958.2001.02412.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Saccharomyces cerevisiae cells possess an alkali metal cation antiporter encoded by the NHA1 gene. Nha1p is unique in the family of yeast Na+/H+ antiporters on account of its broad substrate specificity (Na+, Li+, K+) and its long C-terminus (56% of the whole protein). In order to study the role of the C-terminus in Nha1p function, we constructed a series of 13 truncated NHA1 versions ranging from the complete one (2958 nucleotides, 985 amino acids) down to the shortest version (1416 nucleotides, 472 amino acids), with only 41 amino acid residues after the last putative transmembrane domain. Truncated NHA1 versions were expressed in an S. cerevisiae alkali metal cation-sensitive strain (B31; ena1-4Delta nha1Delta). We found that the entire Nha1p C-terminus domain is not necessary for either the proper localization of the antiporter in the plasma membrane or the transport of all four substrates (we identified rubidium as the fourth Nha1p substrate). Partial truncation of the C-terminus of about 70 terminal amino acids improves the tolerance of cells to Na+, Li+ and Rb+ compared with cells expressing the complete Nha1p. The presence of the neighbouring part of the C-terminus (amino acids 883-928), rich in aspartate and glutamate residues, is necessary for the maintenance of maximum Nha1p activity towards sodium and lithium. In the case of potassium, the participation of the long C-terminus in the regulation of intracellular potassium content is demonstrated. We also present evidence that the Nha1p C-terminus is involved in the cell response to sudden changes in environmental osmolarity.
Collapse
Affiliation(s)
- O Kinclová
- Department of Membrane Transport, Institute of Physiology CzAcadSci, 14220 Prague 4, Czech Republic
| | | | | | | |
Collapse
|
24
|
Simón E, Clotet J, Calero F, Ramos J, Ariño J. A screening for high copy suppressors of the sit4 hal3 synthetically lethal phenotype reveals a role for the yeast Nha1 antiporter in cell cycle regulation. J Biol Chem 2001; 276:29740-7. [PMID: 11382758 DOI: 10.1074/jbc.m101992200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A screening for multicopy suppressors of the G(1)/S blockage of a conditional sit4 hal3 mutant yielded the NHA1 gene, encoding a Na(+),K(+)/H(+) antiporter, composed of a transmembrane domain and a large carboxyl-terminal tail, which has been related to cation detoxification processes. Expression of either the powerful Saccharomyces cerevisiae Ena1 Na(+)/H(+)-ATPase or the Schizosaccharomyces pombe Sod2 Na(+)/H(+) antiporter, although increasing tolerance to sodium, was unable to mimic the Nha1 function in the cell cycle. Mutation of the conserved Asp residues Asp(266)-Asp(267) selectively abolished Na(+) efflux without modifying K(+) efflux and did not affect the capacity of Nha1 to relieve the G(1) blockage. Mutagenesis analysis revealed that the region near the carboxyl-terminal end of Nha1 comprising residues 800-948 is dispensable for sodium detoxification but necessary for transport of K(+) cations. Therefore, this portion of the protein contains structural elements that selectively modulate Nha1 antiporter functions. This region is also required for Nha1 to function in the cell cycle. However, expression of the closely related Cnh1 antiporter from Candida albicans, which also contains a long carboxyl-terminal extension, although allowing efficient K(+) transport does not relieve cell cycle blockage. This indicates that although the determinants for Nha1-mediated regulation of potassium transport and the cell cycle map very closely in the protein, most probably the function of Nha1 on cell cycle is independent of its ability to extrude potassium cations.
Collapse
Affiliation(s)
- E Simón
- Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | | | | | | | | |
Collapse
|
25
|
Riera M, Peracchia G, de Nadal E, Ariño J, Pagès M. Maize protein kinase CK2: regulation and functionality of three beta regulatory subunits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 25:365-374. [PMID: 11260493 DOI: 10.1046/j.1365-313x.2001.00973.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Biochemical and crystallographic data suggest that, in contrast with other organisms, the active maize protein kinase CK2 might be composed simply of a catalytic polypeptide (CK2alpha), thus lacking CK2beta regulatory subunits. To investigate the existence and functionality of CK2beta regulatory subunits in Zea mays, we have screened a maize cDNA library using different approaches and have isolated three full-length cDNAs encoding CK2beta regulatory subunits (CK2beta-1, CK2beta-2 and CK2beta-3) and a cDNA coding for a novel CK2alpha catalytic subunit, CK2alpha-3. The pattern of expression of all these alpha/beta subunits has been studied in different organs and developmental stages using specific probes for each isoform, and indicates that while CK2alpha subunits are constitutive, CK2beta subunits are expressed differentially during embryo development. The yeast two-hybrid system and pull-down assays have been used to study specific interactions between the different subunits. While CK2alpha subunits are unable to self-associate, preferential interactions between alpha/beta isoforms and beta/beta isoforms can be predicted. Furthermore, we show that maize CK2alpha/beta subunits assemble into a structural tetrameric complex which has very similar properties to those described in other organisms, and that expression of maize CK2beta subunits in yeast allows the rescue of the phenotypic defects associated to the lack of CK2 function, thus demonstrating the functionality of maize CK2beta regulatory subunits.
Collapse
Affiliation(s)
- M Riera
- Departament de Genètica Molecular, Centre d'Investigació i Desenvolupament, CSIC Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | | | | | |
Collapse
|
26
|
Russo GL, van den Bos C, Sutton A, Coccetti P, Baroni MD, Alberghina L, Marshak DR. Phosphorylation of Cdc28 and regulation of cell size by the protein kinase CKII in Saccharomyces cerevisiae. Biochem J 2000; 351:143-50. [PMID: 10998356 PMCID: PMC1221344 DOI: 10.1042/0264-6021:3510143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The CDK (cyclin-dependent kinase) family of enzymes is required for the G(1)-to-S-phase and G(2)-to-M-phase transitions during the cell-division cycle of eukaryotes. We have shown previously that the protein kinase CKII catalyses the phosphorylation of Ser-39 in Cdc2 during the G(1) phase of the HeLa cell-division cycle [Russo, Vandenberg, Yu, Bae, Franza and Marshak (1992) J. Biol. Chem. 267, 20317-20325]. To identify a functional role for this phosphorylation, we have studied the homologous enzymes in the budding yeast Saccharomyces cerevisiae. The S. cerevisiae homologue of Cdc2, Cdc28, contains a consensus CKII site (Ser-46), which is homologous with that of human Cdc2. Using in vitro kinase assays, metabolic labelling, peptide mapping and phosphoamino acid analysis, we demonstrate that this site is phosphorylated in Cdc28 in vivo as well in vitro. In addition, S. cerevisiae cells in which Ser-46 has been mutated to alanine show a decrease in both cell volume and protein content of 33%, and this effect is most pronounced in the stationary phase. Because cell size in S. cerevisiae is regulated primarily at the G(1) stage, we suggest that CKII contributes to the regulation of the cell cycle in budding yeast by phosphorylation of Cdc28 as a checkpoint for G(1) progression.
Collapse
Affiliation(s)
- G L Russo
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Avellino 83100, Italy.
| | | | | | | | | | | | | |
Collapse
|