1
|
Johnson S, Weigele P, Fomenkov A, Ge A, Vincze A, Eaglesham J, Roberts R, Sun Z. Domainator, a flexible software suite for domain-based annotation and neighborhood analysis, identifies proteins involved in antiviral systems. Nucleic Acids Res 2025; 53:gkae1175. [PMID: 39657740 PMCID: PMC11754643 DOI: 10.1093/nar/gkae1175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
The availability of large databases of biological sequences presents an opportunity for in-depth exploration of gene diversity and function. Bacterial defense systems are a rich source of diverse but difficult to annotate genes with biotechnological applications. In this work, we present Domainator, a flexible and modular software suite for domain-based gene neighborhood and protein search, extraction and clustering. We demonstrate the utility of Domainator through three examples related to bacterial defense systems. First, we cluster CRISPR-associated Rossman fold (CARF) containing proteins with difficult to annotate effector domains, classifying most of them as likely transcriptional regulators and a subset as likely RNases. Second, we extract and cluster P4-like phage satellite defense hotspots, identify an abundant variant of Lamassu defense systems and demonstrate its in vivo activity against several T-even phages. Third, we integrate a protein language model into Domainator and use it to identify restriction endonucleases with low similarity to known reference sequences, validating the activity of one example in vitro. Domainator is made available as an open-source package with detailed documentation and usage examples.
Collapse
Affiliation(s)
| | | | | | - Andrew Ge
- New England Biolabs Inc., Ipswich, MA 01938, USA
| | - Anna Vincze
- New England Biolabs Inc., Ipswich, MA 01938, USA
| | | | | | - Zhiyi Sun
- New England Biolabs Inc., Ipswich, MA 01938, USA
| |
Collapse
|
2
|
Rousset F, Depardieu F, Miele S, Dowding J, Laval AL, Lieberman E, Garry D, Rocha EPC, Bernheim A, Bikard D. Phages and their satellites encode hotspots of antiviral systems. Cell Host Microbe 2022; 30:740-753.e5. [PMID: 35316646 PMCID: PMC9122126 DOI: 10.1016/j.chom.2022.02.018] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 01/27/2022] [Accepted: 02/23/2022] [Indexed: 11/18/2022]
Abstract
Bacteria carry diverse genetic systems to defend against viral infection, some of which are found within prophages where they inhibit competing viruses. Phage satellites pose additional pressures on phages by hijacking key viral elements to their own benefit. Here, we show that E. coli P2-like phages and their parasitic P4-like satellites carry hotspots of genetic variation containing reservoirs of anti-phage systems. We validate the activity of diverse systems and describe PARIS, an abortive infection system triggered by a phage-encoded anti-restriction protein. Antiviral hotspots participate in inter-viral competition and shape dynamics between the bacterial host, P2-like phages, and P4-like satellites. Notably, the anti-phage activity of satellites can benefit the helper phage during competition with virulent phages, turning a parasitic relationship into a mutualistic one. Anti-phage hotspots are present across distant species and constitute a substantial source of systems that participate in the competition between mobile genetic elements.
Collapse
Affiliation(s)
- François Rousset
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France.
| | - Florence Depardieu
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France
| | - Solange Miele
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France
| | - Julien Dowding
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France
| | - Anne-Laure Laval
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France
| | | | | | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris, CNRS UMR 3525, Microbial Evolutionary Genomics, 75015 Paris, France
| | - Aude Bernheim
- Université de Paris, INSERM, IAME, 75006 Paris, France
| | - David Bikard
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France.
| |
Collapse
|
3
|
Birkholz N, Jackson SA, Fagerlund RD, Fineran P. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3348-3361. [PMID: 35286398 PMCID: PMC8989522 DOI: 10.1093/nar/gkac147] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Epigenetic DNA methylation plays an important role in bacteria by influencing gene expression and allowing discrimination between self-DNA and intruders such as phages and plasmids. Restriction–modification (RM) systems use a methyltransferase (MTase) to modify a specific sequence motif, thus protecting host DNA from cleavage by a cognate restriction endonuclease (REase) while leaving invading DNA vulnerable. Other REases occur solitarily and cleave methylated DNA. REases and RM systems are frequently mobile, influencing horizontal gene transfer by altering the compatibility of the host for foreign DNA uptake. However, whether mobile defence systems affect pre-existing host defences remains obscure. Here, we reveal an epigenetic conflict between an RM system (PcaRCI) and a methylation-dependent REase (PcaRCII) in the plant pathogen Pectobacterium carotovorum RC5297. The PcaRCI RM system provides potent protection against unmethylated plasmids and phages, but its methylation motif is targeted by the methylation-dependent PcaRCII. This potentially lethal co-existence is enabled through epigenetic silencing of the PcaRCII-encoding gene via promoter methylation by the PcaRCI MTase. Comparative genome analyses suggest that the PcaRCII-encoding gene was already present and was silenced upon establishment of the PcaRCI system. These findings provide a striking example for selfishness of RM systems and intracellular competition between different defences.
Collapse
Affiliation(s)
- Nils Birkholz
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Robert D Fagerlund
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- To whom correspondence should be addressed: Tel: +64 3 479 7735;
| |
Collapse
|
4
|
|
5
|
Anton BP, Roberts RJ. Beyond Restriction Modification: Epigenomic Roles of DNA Methylation in Prokaryotes. Annu Rev Microbiol 2021; 75:129-149. [PMID: 34314594 DOI: 10.1146/annurev-micro-040521-035040] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The amount of bacterial and archaeal genome sequence and methylome data has greatly increased over the last decade, enabling new insights into the functional roles of DNA methylation in these organisms. Methyltransferases (MTases), the enzymes responsible for DNA methylation, are exchanged between prokaryotes through horizontal gene transfer and can function either as part of restriction-modification systems or in apparent isolation as single (orphan) genes. The patterns of DNA methylation they confer on the host chromosome can have significant effects on gene expression, DNA replication, and other cellular processes. Some processes require very stable patterns of methylation, resulting in conservation of persistent MTases in a particular lineage. Other processes require patterns that are more dynamic yet more predictable than what is afforded by horizontal gene transfer and gene loss, resulting in phase-variable or recombination-driven MTase alleles. In this review, we discuss what is currently known about the functions of DNA methylation in prokaryotes in light of these evolutionary patterns. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Brian P Anton
- New England Biolabs, Ipswich, Massachusetts 01938, USA; ,
| | | |
Collapse
|
6
|
Oliveira PH, Fang G. Conserved DNA Methyltransferases: A Window into Fundamental Mechanisms of Epigenetic Regulation in Bacteria. Trends Microbiol 2020; 29:28-40. [PMID: 32417228 DOI: 10.1016/j.tim.2020.04.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/19/2020] [Accepted: 04/10/2020] [Indexed: 12/14/2022]
Abstract
An increasing number of studies have reported that bacterial DNA methylation has important functions beyond the roles in restriction-modification systems, including the ability of affecting clinically relevant phenotypes such as virulence, host colonization, sporulation, biofilm formation, among others. Although insightful, such studies have a largely ad hoc nature and would benefit from a systematic strategy enabling a joint functional characterization of bacterial methylomes by the microbiology community. In this opinion article, we propose that highly conserved DNA methyltransferases (MTases) represent a unique opportunity for bacterial epigenomic studies. These MTases are rather common in bacteria, span various taxonomic scales, and are present in multiple human pathogens. Apart from well-characterized core DNA MTases, like those from Vibrio cholerae, Salmonella enterica, Clostridioides difficile, or Streptococcus pyogenes, multiple highly conserved DNA MTases are also found in numerous human pathogens, including those belonging to the genera Burkholderia and Acinetobacter. We discuss why and how these MTases can be prioritized to enable a community-wide, integrative approach for functional epigenomic studies. Ultimately, we discuss how some highly conserved DNA MTases may emerge as promising targets for the development of novel epigenetic inhibitors for biomedical applications.
Collapse
Affiliation(s)
- Pedro H Oliveira
- Department of Genetics and Genomic Sciences, Institute for Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, NY, USA.
| | - Gang Fang
- Department of Genetics and Genomic Sciences, Institute for Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Negri A, Jąkalski M, Szczuka A, Pryszcz LP, Mruk I. Transcriptome analyses of cells carrying the Type II Csp231I restriction-modification system reveal cross-talk between two unrelated transcription factors: C protein and the Rac prophage repressor. Nucleic Acids Res 2019; 47:9542-9556. [PMID: 31372643 PMCID: PMC6765115 DOI: 10.1093/nar/gkz665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 12/27/2022] Open
Abstract
Restriction-modification (R–M) systems represent an effective mechanism of defence against invading bacteriophages, and are widely spread among bacteria and archaea. In acquiring a Type II R–M system via horizontal gene transfer, the new hosts become more resistant to phage infection, through the action of a restriction endonuclease (REase), which recognizes and cleaves specific target DNAs. To protect the host cell's DNA, there is also a methyltransferase (MTase), which prevents DNA cleavage by the cognate REase. In some R–M systems, the host also accepts a cis-acting transcription factor (C protein), which regulates the counteracting activities of REase and MTase to avoid host self-restriction. Our study characterized the unexpected phenotype of Escherichia coli cells, which manifested as extensive cell filamentation triggered by acquiring the Csp231I R–M system from Citrobacter sp. Surprisingly, we found that the cell morphology defect was solely dependent on the C regulator. Our transcriptome analysis supported by in vivo and in vitro assays showed that C protein directly silenced the expression of the RacR repressor to affect the Rac prophage-related genes. The rac locus ydaST genes, when derepressed, exerted a toxicity indicated by cell filamentation through an unknown mechanism. These results provide an apparent example of transcription factor cross-talk, which can have significant consequences for the host, and may represent a constraint on lateral gene transfer.
Collapse
Affiliation(s)
- Alessandro Negri
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Marcin Jąkalski
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Aleksandra Szczuka
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Leszek P Pryszcz
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology, Warsaw, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Iwona Mruk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| |
Collapse
|
8
|
Watanabe M, Kojima H, Umezawa K, Fukui M. Genomic Characteristics of Desulfonema ishimotonii Tokyo 01 T Implying Horizontal Gene Transfer Among Phylogenetically Dispersed Filamentous Gliding Bacteria. Front Microbiol 2019; 10:227. [PMID: 30837965 PMCID: PMC6390638 DOI: 10.3389/fmicb.2019.00227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/28/2019] [Indexed: 11/13/2022] Open
Abstract
Desulfonema ishimotonii strain Tokyo 01T is a filamentous sulfate-reducing bacterium isolated from a marine sediment. In this study, the genome of this strain was sequenced and analyzed with a focus on gene transfer from phylogenetically distant organisms. While the strain belongs to the class Deltaproteobacteria, hundreds of proteins encoded in the genome showed the highest sequence similarities to those of organisms outside of the class Deltaproteobacteria, suggesting that more than 20% of the genome is putatively of foreign origins. Many of these proteins had the highest sequence identities with proteins encoded in the genomes of filamentous bacteria, including giant sulfur oxidizers of the orders Thiotrichales, cyanobacteria of various genera, and uncultured bacteria of the candidate phylum KSB3. As mobile genetic elements transferred from phylogenetically distant organisms, putative inteins were identified in the GyrB and DnaE proteins encoded in the genome of strain Tokyo 01T. Genes involved in DNA recombination and repair were enriched in comparison to the closest relatives in the same family. Some of these genes were also related to those of organisms outside of the class Deltaproteobacteria, suggesting that they were acquired by horizontal gene transfer from diverse bacteria. The genomic data suggested significant genetic transfer among filamentous gliding bacteria in phylogenetically dispersed lineages including filamentous sulfate reducers. This study provides insights into the genomic evolution of filamentous bacteria belonging to diverse lineages, characterized by various physiological functions and different ecological roles.
Collapse
Affiliation(s)
- Miho Watanabe
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Umezawa
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Zharikova NV, Iasakov TR, Bumazhkin BK, Patutina EO, Zhurenko EI, Korobov VV, Sagitova AI, Kuznetsov BB, Markusheva TV. Isolation and sequence analysis of pCS36-4CPA, a small plasmid from Citrobacter sp. 36-4CPA. Saudi J Biol Sci 2018; 25:660-671. [PMID: 29736141 PMCID: PMC5935869 DOI: 10.1016/j.sjbs.2016.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/07/2015] [Accepted: 02/08/2016] [Indexed: 11/22/2022] Open
Abstract
A small plasmid designated pCS36-4CPA with a size of 5217 base pairs and G-C content of 50.74% was isolated from Citrobacter sp. 36-4CPA. The origin of replication (ori) of the plasmid was identified as a region of about 800 bp in length with an identity of 67.1% to the ColE1 plasmid at the nucleotide level. The replication region contained typical elements of ColE1-like plasmids: RNA I and RNA II with their corresponding -10 and -35 boxes, a single-strand initiation site (ssi), and a lagging-strand termination site (terH). As seen in other ColE1-like plasmids, pCS36-4CPA carried mobilisation machinery that include mobABCD genes but it did not possess the rom gene. Analysis of the multimer resolution site (mrs) was performed and XerC and XerD binding sites were identified. Also, the 70-nt transcript Rcd of pCS36-4CPA was predicted and similarity of the transcript's secondary structure with those of the ColE1-family was shown. The cargo module of pCS36-4CPA contained three open reading frames (ORFs). Two of them (ORF5 and ORF6) showed no significant homology to any known gene sequences but contained putative THAP DNA-binding (DBD) and type II restriction endonuclease EcoO109I domains. The seventh open reading frame (ORF7) encodes YhdJ-like DNA modification methylase. The region highly homologous to pCS36-4CPA was found in the Salmonella phage SE2 genome.
Collapse
|
10
|
Zheng Z, Bao M, Wu F, Van Horn C, Chen J, Deng X. A Type 3 Prophage of 'Candidatus Liberibacter asiaticus' Carrying a Restriction-Modification System. PHYTOPATHOLOGY 2018; 108:454-461. [PMID: 29192841 DOI: 10.1094/phyto-08-17-0282-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Prophages, the lysogenic form of bacterial phages, are important genetic entities of 'Candidatus Liberibacter asiaticus' (CLas), a nonculturable α-proteobacterium associated with citrus Huanglongbing. Two CLas prophages have been described, SC1 (NC_019549.1, Type 1) and SC2 (NC_019550.1, Type 2), which involve the lytic cycle and the lysogenic cycle, respectively. To explore the prophage repertoire, 523 CLas DNA samples extracted from leaf petioles of CLas-infected citrus were collected from southern China and surveyed for Type 1 and Type 2 prophages by specific PCR. Eighteen samples were found lacking both prophages. One sample, JXGC, sequenced using Illumina HiSeq, generated >100 million short sequence reads (150 bp per read). Read mapping to known prophage sequences showed a sequence coverage of 46% to SC1 and 50% to SC2. BLAST search using SC1 and SC2 as queries identified three contigs from the JXGC de novo assembly that form a circular P-JXGC-3 (31,449 bp), designated as a new Type 3 prophage. Chromosomal integration of P-JXGC-3 was detected to occur within a helicase gene, resulting in a duplication of this gene. P-JXGC-3 had 36 open reading frames (ORFs), 10 of which were not found in Type 1 or Type 2 prophages, including four genes that encoded a restriction-modification (R-M) system (hsdR, hsdS, hsdM1, and hsdM2). Typed by prophage-specific PCR, the CLas strains in southern China contained all combinations of the three prophage types with the exception of a Type 2-Type 3 combination, suggesting active ongoing prophage-phage interactions. Based on gene annotation, P-JXGC-3 is not capable of reproduction via the lytic cycle. The R-M system was speculated to play a role against Type 1 prophage-phage invasion.
Collapse
Affiliation(s)
- Zheng Zheng
- First, second, third, and sixth author: Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China; and first, fourth, and fifth authors: San Joaquín Valley Agricultural Sciences Center, Parlier, CA
| | - Minli Bao
- First, second, third, and sixth author: Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China; and first, fourth, and fifth authors: San Joaquín Valley Agricultural Sciences Center, Parlier, CA
| | - Fengnian Wu
- First, second, third, and sixth author: Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China; and first, fourth, and fifth authors: San Joaquín Valley Agricultural Sciences Center, Parlier, CA
| | - Christopher Van Horn
- First, second, third, and sixth author: Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China; and first, fourth, and fifth authors: San Joaquín Valley Agricultural Sciences Center, Parlier, CA
| | - Jianchi Chen
- First, second, third, and sixth author: Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China; and first, fourth, and fifth authors: San Joaquín Valley Agricultural Sciences Center, Parlier, CA
| | - Xiaoling Deng
- First, second, third, and sixth author: Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China; and first, fourth, and fifth authors: San Joaquín Valley Agricultural Sciences Center, Parlier, CA
| |
Collapse
|
11
|
Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl Environ Microbiol 2013; 79:7547-55. [PMID: 24123737 DOI: 10.1128/aem.02229-13] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Type II DNA methyltransferases (MTases) are enzymes found ubiquitously in the prokaryotic world, where they play important roles in several cellular processes, such as host protection and epigenetic regulation. Three classes of type II MTases have been identified thus far in bacteria which function in transferring a methyl group from S-adenosyl-l-methionine (SAM) to a target nucleotide base, forming N-6-methyladenine (class I), N-4-methylcytosine (class II), or C-5-methylcytosine (class III). Often, these MTases are associated with a cognate restriction endonuclease (REase) to form a restriction-modification (R-M) system protecting bacterial cells from invasion by foreign DNA. When MTases exist alone, which are then termed orphan MTases, they are believed to be mainly involved in regulatory activities in the bacterial cell. Genomes of various lytic and lysogenic phages have been shown to encode multi- and mono-specific orphan MTases that have the ability to confer protection from restriction endonucleases of their bacterial host(s). The ability of a phage to overcome R-M and other phage-targeting resistance systems can be detrimental to particular biotechnological processes such as dairy fermentations. Conversely, as phages may also be beneficial in certain areas such as phage therapy, phages with additional resistance to host defenses may prolong the effectiveness of the therapy. This minireview will focus on bacteriophage-encoded MTases, their prevalence and diversity, as well as their potential origin and function.
Collapse
|
12
|
Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev 2013; 77:53-72. [PMID: 23471617 PMCID: PMC3591985 DOI: 10.1128/mmbr.00044-12] [Citation(s) in RCA: 405] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Restriction-modification (R-M) systems are ubiquitous and are often considered primitive immune systems in bacteria. Their diversity and prevalence across the prokaryotic kingdom are an indication of their success as a defense mechanism against invading genomes. However, their cellular defense function does not adequately explain the basis for their immaculate specificity in sequence recognition and nonuniform distribution, ranging from none to too many, in diverse species. The present review deals with new developments which provide insights into the roles of these enzymes in other aspects of cellular function. In this review, emphasis is placed on novel hypotheses and various findings that have not yet been dealt with in a critical review. Emerging studies indicate their role in various cellular processes other than host defense, virulence, and even controlling the rate of evolution of the organism. We also discuss how R-M systems could have successfully evolved and be involved in additional cellular portfolios, thereby increasing the relative fitness of their hosts in the population.
Collapse
Affiliation(s)
- Kommireddy Vasu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
13
|
Furuta Y, Kobayashi I. Movement of DNA sequence recognition domains between non-orthologous proteins. Nucleic Acids Res 2012; 40:9218-32. [PMID: 22821560 PMCID: PMC3467074 DOI: 10.1093/nar/gks681] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Comparisons of proteins show that they evolve through the movement of domains. However, in many cases, the underlying mechanisms remain unclear. Here, we observed the movements of DNA recognition domains between non-orthologous proteins within a prokaryote genome. Restriction-modification (RM) systems, consisting of a sequence-specific DNA methyltransferase and a restriction enzyme, contribute to maintenance/evolution of genomes/epigenomes. RM systems limit horizontal gene transfer but are themselves mobile. We compared Type III RM systems in Helicobacter pylori genomes and found that target recognition domain (TRD) sequences are mobile, moving between different orthologous groups that occupy unique chromosomal locations. Sequence comparisons suggested that a likely underlying mechanism is movement through homologous recombination of similar DNA sequences that encode amino acid sequence motifs that are conserved among Type III DNA methyltransferases. Consistent with this movement, incongruence was observed between the phylogenetic trees of TRD regions and other regions in proteins. Horizontal acquisition of diverse TRD sequences was suggested by detection of homologs in other Helicobacter species and distantly related bacterial species. One of these RM systems in H. pylori was inactivated by insertion of another RM system that likely transferred from an oral bacterium. TRD movement represents a novel route for diversification of DNA-interacting proteins.
Collapse
Affiliation(s)
- Yoshikazu Furuta
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | | |
Collapse
|
14
|
Kahramanoglou C, Prieto AI, Khedkar S, Haase B, Gupta A, Benes V, Fraser GM, Luscombe NM, Seshasayee ASN. Genomics of DNA cytosine methylation in Escherichia coli reveals its role in stationary phase transcription. Nat Commun 2012; 3:886. [PMID: 22673913 DOI: 10.1038/ncomms1878] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/30/2012] [Indexed: 01/16/2023] Open
Abstract
DNA cytosine methylation regulates gene expression in mammals. In bacteria, its role in gene expression and genome architecture is less understood. Here we perform high-throughput sequencing of bisulfite-treated genomic DNA from Escherichia coli K12 to describe, for the first time, the extent of cytosine methylation of bacterial DNA at single-base resolution. Whereas most target sites (C(m)CWGG) are fully methylated in stationary phase cells, many sites with an extended CC(m)CWGG motif are only partially methylated in exponentially growing cells. We speculate that these partially methylated sites may be selected, as these are slightly correlated with the risk of spontaneous, non-synonymous conversion of methylated cytosines to thymines. Microarray analysis in a cytosine methylation-deficient mutant of E. coli shows increased expression of the stress response sigma factor RpoS and many of its targets in stationary phase. Thus, DNA cytosine methylation is a regulator of stationary phase gene expression in E. coli.
Collapse
|
15
|
Seshasayee ASN, Singh P, Krishna S. Context-dependent conservation of DNA methyltransferases in bacteria. Nucleic Acids Res 2012; 40:7066-73. [PMID: 22573173 PMCID: PMC3424554 DOI: 10.1093/nar/gks390] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
DNA methytransferases (MTs) in bacteria are best understood in the context of restriction–modification (R–M) systems, which act as bacterial immune systems against incoming DNA including phages, but have also been described as selfish elements. But several orphan MTs, which are not associated with any restriction enzyme, have also been characterized and may protect against parasitism by R–M systems. The occurrence of MTs in these two contexts, namely as part of R–M systems or as orphans, is poorly understood. Here we report the results of a comparative genomic survey of DNA MTs across ∼1000 bacterial genomes. We show that orphan MTs overwhelm R–M systems in their occurrence. In general, R–M MTs are poorly conserved, whereas orphans are nearly as conserved within a genus as any average gene. However, oligonucleotide usage and conservation patterns across genera suggest that both forms of MTs might have been horizontally acquired. We suggest that many orphan MTs might be ‘degradation’ products of R–M systems, based on the properties of orphan MTs encoded adjacent to highly diverged REs. In addition, several fully degraded R–M systems exist in which both the MT and the RE are highly divergent from their corresponding reference R–M pair. Despite their sporadic occurrence, conserved R–M systems are present in strength in two highly transformable genera, in which they may contribute to selection against integration of foreign DNA.
Collapse
Affiliation(s)
- Aswin Sai Narain Seshasayee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bellary Road, Bangalore 560065, India.
| | | | | |
Collapse
|
16
|
Abstract
Potential mobility of restriction-modification systems has been suggested by evolutionary/bioinformatic analysis of prokaryotic genomes. Here we demonstrate in vivo movement of a restriction-modification system within a genome under a laboratory condition. After blocking replication of a temperature-sensitive plasmid carrying a PaeR7I restriction-modification system in Escherichia coli cells, the plasmid was found integrated into the chromosome of the surviving cells. Sequence analysis revealed that, in the majority of products, the restriction-modification system was linked to chromosomal insertion sequences (ISs). Three types of products were: (I) apparent co-integration of the plasmid and the chromosome at a chromosomal IS1 or IS5 copy (24/28 analyzed); (II) de novo insertion of IS1 with the entire plasmid except for a 1–3 bp terminal deletion (2/28); and (III) reciprocal crossing-over between the plasmid and the chromosome involving 1–3 bp of sequence identity (2/28). An R-negative mutation apparently decreased the efficiency of successful integration by two orders of magnitude. Reconstruction experiments demonstrated that the restriction-dependence was mainly due to selection against cells without proper integration: their growth was inhibited by the restriction enzyme action. These results demonstrate collaboration of a mobile element and a restriction-modification system for successful joint migration. This collaboration may have promoted the spread and, therefore, the long-term persistence of these complexes and restriction-modification systems in a wide range of prokaryotes.
Collapse
|
17
|
Iwamoto M, Hishiki A, Shimada T, Imasaki T, Tsuda J, Kita K, Shimizu T, Sato M, Hashimoto H. Crystallization and X-ray diffraction studies of DNA-free and DNA-bound forms of EcoO109I DNA methyltransferase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1528-30. [PMID: 21045313 DOI: 10.1107/s174430911003753x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 09/20/2010] [Indexed: 11/10/2022]
Abstract
EcoO109I DNA methyltransferase (M.EcoO109I) is a type II modification enzyme from the EcoO109I restriction-modification system identified in Escherichia coli strain H709c. M.EcoO109I recognizes double-stranded RGGNCCY (where R = A or G, Y = T or C and N is any base) and transfers a methyl group to the C5 of the inner cytosines from S-adenosylmethionine. To reveal the mechanism of substrate recognition by M.EcoO109I, DNA-free and DNA-bound forms of M.EcoO109I were successfully crystallized. Crystals of the DNA-free and DNA-bound forms belonged to space groups P4(2)2(1)2, with unit-cell parameters a = b = 120.5, c = 79.8 Å, and P2(1), with unit-cell parameters a = 55.8, b = 77.4, c = 117.4 Å, β = 93.5°, respectively.
Collapse
Affiliation(s)
- Makoto Iwamoto
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Conservation of genomic localization and sequence content of Sau3AI-like restriction-modification gene cassettes among Listeria monocytogenes epidemic clone I and selected strains of serotype 1/2a. Appl Environ Microbiol 2010; 76:5577-84. [PMID: 20581194 DOI: 10.1128/aem.00648-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a food-borne pathogen with a clonal population structure and apparently limited gene flow between strains of different lineages. Strains of epidemic clone I (ECI) have been responsible for numerous outbreaks and invariably have DNA that is resistant to digestion by Sau3AI, suggesting methylation of cytosine at GATC sites. A putative restriction-modification (RM) gene cassette has been identified in the genome of the ECI strain F2365 and all other tested ECI strains but is absent from other strains of the same serotype (4b). Homologous RM cassettes have not been reported among L. monocytogenes isolates of other serotypes. Furthermore, conclusive evidence for the involvement of this RM cassette in the Sau3AI resistance phenotype of ECI strains has been lacking. In this study, we describe a highly conserved RM cassette in certain strains of serotypes 1/2a and 4a that have Sau3AI-resistant DNA. In these strains the RM cassette was in the same genomic location as in the ECI reference strain F2365. The cassette included a gene encoding a putative recombinase, suggesting insertion via site-specific recombination. Deletion of the RM cassette in the ECI strain F2365 and the serotype 1/2a strain A7 rendered the DNA of both strains susceptible to Sau3AI digestion, providing conclusive evidence that the cassette includes a gene required for methylation of cytosine at GATC sites in both strains. The findings suggest that, in addition to its presence in ECI strains, this RM cassette and the accompanying genomic DNA methylation is also encountered among selected strains of other lineages.
Collapse
|
19
|
Furuta Y, Abe K, Kobayashi I. Genome comparison and context analysis reveals putative mobile forms of restriction-modification systems and related rearrangements. Nucleic Acids Res 2010; 38:2428-43. [PMID: 20071371 PMCID: PMC2853133 DOI: 10.1093/nar/gkp1226] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The mobility of restriction–modification (RM) gene complexes and their association with genome rearrangements is a subject of active investigation. Here we conducted systematic genome comparisons and genome context analysis on fully sequenced prokaryotic genomes to detect RM-linked genome rearrangements. RM genes were frequently found to be linked to mobility-related genes such as integrase and transposase homologs. They were flanked by direct and inverted repeats at a significantly high frequency. Insertion by long target duplication was observed for I, II, III and IV restriction types. We found several RM genes flanked by long inverted repeats, some of which had apparently inserted into a genome with a short target duplication. In some cases, only a portion of an apparently complete RM system was flanked by inverted repeats. We also found a unit composed of RM genes and an integrase homolog that integrated into a tRNA gene. An allelic substitution of a Type III system with a linked Type I and IV system pair, and allelic diversity in the putative target recognition domain of Type IIG systems were observed. This study revealed the possible mobility of all types of RM systems, and the diversity in their mobility-related organization.
Collapse
Affiliation(s)
- Yoshikazu Furuta
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
20
|
Ooka T, Ogura Y, Asadulghani M, Ohnishi M, Nakayama K, Terajima J, Watanabe H, Hayashi T. Inference of the impact of insertion sequence (IS) elements on bacterial genome diversification through analysis of small-size structural polymorphisms in Escherichia coli O157 genomes. Genome Res 2009; 19:1809-16. [PMID: 19564451 DOI: 10.1101/gr.089615.108] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mobile genetic elements play important roles in the evolution and diversification of bacterial genomes. In enterohemorrhagic Escherichia coli O157, a major factor that affects genomic diversity is prophages, which generate most of the large-size structural polymorphisms (LSSPs) observed in O157 genomes. Here, we describe the results of a systematic analysis of numerous small-size structural polymorphisms (SSSPs) that were detected by comparing the genomes of eight clinical isolates with a sequenced strain, O157 Sakai. Most of the SSSPs were generated by genetic events associated with only two insertion sequence (IS) elements, IS629 and ISEc8, and a number of genes that were inactivated or deleted by these events were identified. Simple excisions of IS629 and small deletions (footprints) formed by the excision of IS629, both of which are rarely described in bacteria, were also detected. In addition, the distribution of IS elements was highly biased toward prophages, prophage-like integrative elements, and plasmids. Based on these and our previous results, we conclude that, in addition to prophages, these two IS elements are major contributors to the genomic diversification of O157 strains and that LSSPs have been generated mainly by bacteriophages and SSSPs by IS elements. We also suggest that IS elements possibly play a role in the inactivation and immobilization of incoming phages and plasmids. Taken together, our results reveal the true impact of IS elements on the diversification of bacterial genomes and highlight their novel role in genome evolution.
Collapse
Affiliation(s)
- Tadasuke Ooka
- Department of Infectious Diseases, University of Miyazaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Genomic regions conserved in lineage II Escherichia coli O157:H7 strains. Appl Environ Microbiol 2009; 75:3271-80. [PMID: 19329668 DOI: 10.1128/aem.02123-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Populations of the food- and waterborne pathogen Escherichia coli O157:H7 are comprised of two major lineages. Recent studies have shown that specific genotypes within these lineages differ substantially in the frequencies with which they are associated with human clinical disease. While the nucleotide sequences of the genomes of lineage I strains E. coli O157 Sakai and EDL9333 have been determined, much less is known about the genomes of lineage II strains. In this study, suppression subtractive hybridization (SSH) was used to identify genomic features that define lineage II populations. Three SSH experiments were performed, yielding 1,085 genomic fragments consisting of 811 contigs. Bacteriophage sequences were identified in 11.3% of the contigs, 9% showed insertions and 2.3% deletions with respect to E. coli O157:H7 Sakai, and 23.2% did not have significant identity to annotated sequences in GenBank. In order to test for the presence of these novel loci in lineage I and II strains, 27 PCR primer sets were designed based on sequences from these contigs. All but two of these PCR targets were found in the majority (51.9% to 100%) of 27 lineage II strains but in no more than one (<6%) of the 17 lineage I strains. Several of these lineage II-related fragments contain insertions/deletions that may play an important role in virulence. These lineage II-related loci were also shown to be useful markers for genotyping of E. coli O157:H7 strains isolated from human and animal sources.
Collapse
|
22
|
Furmanek B, Sektas M, Wons E, Kaczorowski T. Molecular characterization of the DNA methyltransferase M1.NcuI from Neisseria cuniculi ATCC 14688. Res Microbiol 2006; 158:164-74. [PMID: 17306509 DOI: 10.1016/j.resmic.2006.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 10/19/2006] [Accepted: 10/24/2006] [Indexed: 10/23/2022]
Abstract
The methyltransferase M1.NcuI is a member of the restriction-modification system in Neisseria cuniculi ATCC14688 and recognizes the asymmetric pentanucleotide sequence 5'-GAAGA-3'/3'-CTTCT-5'. We purified M1.NcuI to electrophoretic homogeneity using a four-step chromatographic procedure. M1.NcuI is a protein with M(r)=32,000+/-1000 under denaturing conditions. It modifies the recognition sequence by transferring the methyl group from S-adenosyl-l-methionine to the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. M1.NcuI, like many other methyltransferases, occurs as a monomer in solution, as determined by gel filtration. Divalent cations inhibit the methylation activity of M1.NcuI. Optimal enzyme activity was observed at a pH of 8.0. M1.NcuI cross-reacted with anti-M1.MboII serum which reflects the similarity of M1.NcuI with M1.MboII at the amino acid level. The gene coding for the enzyme, designated ncuIM1, was cloned, sequenced and overexpressed in Escherichia coli. The structural gene is 780 nucleotides in length coding for a protein of 259 amino acids (M(r) 30,098). The presence and distribution of nine highly conserved amino acid sequence motifs and a putative target recognition domain in the enzyme structure suggest that M1.NcuI, similar to M1.MboII and M1.HpyAII, belongs to N(6)-adenine beta-class DNA methyltransferases.
Collapse
Affiliation(s)
- Beata Furmanek
- Department of Microbiology, University of Gdansk, 80-822 Gdansk, Kladki 24, Poland
| | | | | | | |
Collapse
|
23
|
Piazzolla D, Calì S, Spoldi E, Forti F, Sala C, Magnoni F, Dehò G, Ghisotti D. Expression of phage P4 integrase is regulated negatively by both Int and Vis. J Gen Virol 2006; 87:2423-2431. [PMID: 16847139 DOI: 10.1099/vir.0.81875-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phage P4 int gene encodes the integrase responsible for phage integration into and excision from the Escherichia coli chromosome. Here, the data showing that P4 int expression is regulated in a complex manner at different levels are presented. First of all, the Pint promoter is regulated negatively by both Int and Vis, the P4 excisionase. The N-terminal portion of Int appears to be sufficient for such a negative autoregulation, suggesting that the Int N terminus is implicated in DNA binding. Second, full-length transcripts covering the entire int gene could be detected only upon P4 infection, whereas in P4 lysogens only short 5′-end covering transcripts were detectable. On the other hand, transcripts covering the 5′-end of int were also very abundant upon infection. It thus appears that premature transcription termination and/or mRNA degradation play a role in Int-negative regulation both on the basal prophage transcription and upon infection. Finally, comparison between Pint–lacZ transcriptional and translational fusions suggests that Vis regulates Int expression post-transcriptionally. The findings that Vis is also an RNA-binding protein and that Int may be translated from two different start codons have implications on possible regulation models of Int expression.
Collapse
Affiliation(s)
- D Piazzolla
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - S Calì
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - E Spoldi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - F Forti
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - C Sala
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - F Magnoni
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - G Dehò
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - D Ghisotti
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
24
|
Piknova M, Filova M, Javorsky P, Pristas P. Different restriction and modification phenotypes in ruminal lactate-utilizing bacteria. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09632.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
25
|
|
26
|
Kita K, Kawakami H, Tanaka H. Evidence for horizontal transfer of the EcoT38I restriction-modification gene to chromosomal DNA by the P2 phage and diversity of defective P2 prophages in Escherichia coli TH38 strains. J Bacteriol 2003; 185:2296-305. [PMID: 12644501 PMCID: PMC151499 DOI: 10.1128/jb.185.7.2296-2305.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A DNA fragment carrying the genes coding for a novel EcoT38I restriction endonuclease (R.EcoT38I) and EcoT38I methyltransferase (M.EcoT38I), which recognize G(A/G)GC(C/T)C, was cloned from the chromosomal DNA of Escherichia coli TH38. The endonuclease and methyltransferase genes were in a head-to-head orientation and were separated by a 330-nucleotide intergenic region. A third gene, the C.EcoT38I gene, was found in the intergenic region, partially overlapping the R.EcoT38I gene. The gene product, C.EcoT38I, acted as both a positive regulator of R.EcoT38I gene expression and a negative regulator of M.EcoT38I gene expression. M.EcoT38I purified from recombinant E. coli cells was shown to be a monomeric protein and to methylate the inner cytosines in the recognition sequence. R.EcoT38I was purified from E. coli HB101 expressing M.EcoT38I and formed a homodimer. The EcoT38I restriction (R)-modification (M) system (R-M system) was found to be inserted between the A and Q genes of defective bacteriophage P2, which was lysogenized in the chromosome at locI, one of the P2 phage attachment sites observed in both E. coli K-12 MG1655 and TH38 chromosomal DNAs. Ten strains of E. coli TH38 were examined for the presence of the EcoT38I R-M gene on the P2 prophage. Conventional PCR analysis and assaying of R activity demonstrated that all strains carried a single copy of the EcoT38I R-M gene and expressed R activity but that diversity of excision in the ogr, D, H, I, and J genes in the defective P2 prophage had arisen.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacteriophage P2/genetics
- Base Sequence
- Chromosomes, Bacterial
- Cloning, Molecular
- DNA Restriction Enzymes/genetics
- DNA Restriction Enzymes/isolation & purification
- DNA Restriction Enzymes/metabolism
- DNA, Bacterial
- DNA, Intergenic
- DNA-Cytosine Methylases/genetics
- DNA-Cytosine Methylases/metabolism
- Deoxyribonucleases, Type II Site-Specific/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Dimerization
- Escherichia coli/genetics
- Escherichia coli/virology
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Gene Transfer, Horizontal
- Genes, Bacterial
- Genetic Variation
- Lysogeny
- Molecular Sequence Data
- Prophages/genetics
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Analysis
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Keiko Kita
- Department of Biotechnology, Tottori University, Tottori, Japan.
| | | | | |
Collapse
|
27
|
Kita K, Tsuda J, Nakai SY. C.EcoO109I, a regulatory protein for production of EcoO109I restriction endonuclease, specifically binds to and bends DNA upstream of its translational start site. Nucleic Acids Res 2002; 30:3558-65. [PMID: 12177297 PMCID: PMC134244 DOI: 10.1093/nar/gkf477] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The EcoO109I restriction-modification system, which recognizes 5'-(A/G)GGNCC(C/T)-3', has been cloned, and contains convergently transcribed endonuclease and methylase. The role and action mechanism of the gene product, C.EcoO109I, of a small open reading frame located upstream of ecoO109IR were investigated in vivo and in vitro. The results of deletion analysis suggested that C.EcoO109I acts as a positive regulator of ecoO109IR expression but has little effect on ecoO109IM expression. Assaying of promoter activity showed that the expression of ecoO109IC was regulated by its own gene product, C.EcoO109I. C.EcoO109I was overproduced as a His-tag fusion protein in recombinant Escherichia coli HB101 and purified to homogeneity. C.EcoO109I exists as a homodimer, and recognizes and binds to the DNA sequence 5'-CTAAG(N)(5)CTTAG-3' upstream of the ecoO109IC translational start site. It was also shown that C.EcoO109I bent the target DNA by 54 +/- 4 degrees.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Blotting, Western
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Deoxyribonucleases, Type II Site-Specific/biosynthesis
- Deoxyribonucleases, Type II Site-Specific/chemistry
- Deoxyribonucleases, Type II Site-Specific/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Dimerization
- Electrophoretic Mobility Shift Assay
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Molecular Sequence Data
- Mutation/genetics
- Nucleic Acid Conformation
- Promoter Regions, Genetic/genetics
- Protein Binding
- Protein Biosynthesis/genetics
- Response Elements/genetics
- Substrate Specificity
Collapse
Affiliation(s)
- Keiko Kita
- Department of Biotechnology, Tottori University, 4-101 Koyama, Tottori 680-8552, Japan.
| | | | | |
Collapse
|
28
|
Naderer M, Brust JR, Knowle D, Blumenthal RM. Mobility of a restriction-modification system revealed by its genetic contexts in three hosts. J Bacteriol 2002; 184:2411-9. [PMID: 11948154 PMCID: PMC135005 DOI: 10.1128/jb.184.9.2411-2419.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The flow of genes among prokaryotes plays a fundamental role in shaping bacterial evolution, and restriction-modification systems can modulate this flow. However, relatively little is known about the distribution and movement of restriction-modification systems themselves. We have isolated and characterized the genes for restriction-modification systems from two species of Salmonella, S. enterica serovar Paratyphi A and S. enterica serovar Bareilly. Both systems are closely related to the PvuII restriction-modification system and share its target specificity. In the case of S. enterica serovar Paratyphi A, the restriction endonuclease is inactive, apparently due to a mutation in the subunit interface region. Unlike the chromosomally located Salmonella systems, the PvuII system is plasmid borne. We have completed the sequence characterization of the PvuII plasmid pPvu1, originally from Proteus vulgaris, making this the first completely sequenced plasmid from the genus Proteus. Despite the pronounced similarity of the three restriction-modification systems, the flanking sequences in Proteus and Salmonella are completely different. The SptAI and SbaI genes lie between an equivalent pair of bacteriophage P4-related open reading frames, one of which is a putative integrase gene, while the PvuII genes are adjacent to a mob operon and a XerCD recombination (cer) site.
Collapse
Affiliation(s)
- Marc Naderer
- Department of Microbiology & Immunology and Program in Bioinformatics & Proteomics/Genomics, Medical College of Ohio, Toledo, Ohio 43614-5806, USA
| | | | | | | |
Collapse
|
29
|
Ohshima H, Matsuoka S, Asai K, Sadaie Y. Molecular organization of intrinsic restriction and modification genes BsuM of Bacillus subtilis Marburg. J Bacteriol 2002; 184:381-9. [PMID: 11751814 PMCID: PMC139560 DOI: 10.1128/jb.184.2.381-389.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transcriptional analysis and disruption of five open reading frames (ORFs), ydiO, ydiP, ydiR, ydiS, and ydjA, in the prophage 3 region of the chromosome of Bacillus subtilis Marburg revealed that they are component genes of the intrinsic BsuM restriction and modification system of this organism. The classical mutant strain RM125, which lacks the restriction and modification system of B. subtilis Marburg, lacks the prophage 3 region carrying these five ORFs. These ORFs constitute two operons, the ydiO-ydiP operon and the ydiR-ydiS-ydjA operon, both of which are expressed during the logarithmic phase of growth. The predicted gene products YdiO and YdiP are the orthologues of cytosine DNA methyltransferases. The predicted YdiS product is an orthologue of restriction nucleases, while the predicted YdiR and YdjA products have no apparent paralogues and orthologues whose functions are known. Disruption of the ydiR-ydiS-ydjA operon resulted in enhanced transformation by plasmid DNA carrying multiple BsuM target sequences. Disruption of ydiO or ydiP function requires disruption of at least one of the following genes on the chromosome: ydiR, ydiS, and ydjA. The degrees of methylation of the BsuM target sequences on chromosomal DNAs were estimated indirectly by determining the susceptibility to digestion with XhoI (an isoschizomer of BsuM) of DNAs extracted from the disruptant strains. Six XhoI (BsuM) sites were examined. XhoI digested at the XhoI sites in the DNAs from disruptants with disruptions in both operons, while XhoI did not digest at the XhoI sites in the DNAs from the wild-type strain or from the disruptants with disruptions in the ydiR-ydiS-ydjA operon. Therefore, the ydiO-ydiP operon and the ydiR-ydiS-ydjA operon are considered operons that are responsible for BsuM modification and BsuM restriction, respectively.
Collapse
Affiliation(s)
- Hideyuki Ohshima
- Graduate School for Advanced Study, National Institute of Genetics, Mishima 411-8540, Japan
| | | | | | | |
Collapse
|
30
|
Aras RA, Takata T, Ando T, van der Ende A, Blaser MJ. Regulation of the HpyII restriction-modification system of Helicobacter pylori by gene deletion and horizontal reconstitution. Mol Microbiol 2001; 42:369-82. [PMID: 11703661 DOI: 10.1046/j.1365-2958.2001.02637.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Helicobacter pylori, Gram-negative, curved bacteria colonizing the human stomach, possess strain-specific complements of functional restriction-modification (R-M) systems. Restriction-modification systems have been identified in most bacterial species studied and are believed to have evolved to protect the host genome from invasion by foreign DNA. The large number of R-Ms homologous to those in other bacterial species and their strain-specificity suggest that H. pylori may have horizontally acquired these genes. A type IIs restriction-modification system, hpyIIRM, was active in two out of the six H. pylori strains studied. We demonstrate now that in most strains lacking M.HpyII function, there is complete absence of the R-M system. Direct DNA repeats of 80 bp flanking the hpyIIRM system allow its deletion, resulting in an "empty-site" genotype. We show that strains possessing this empty-site genotype and strains with a full but inactive hpyIIRM can reacquire the hpyIIRM cassette and functional activity through natural transformation by DNA from the parental R-M+ strain. Identical isolates divergent for the presence of an active HpyII R-M pose different restriction barriers to transformation by foreign DNA. That H. pylori can lose HpyII R-M function through deletion or mutation, and can horizontally reacquire the hpyIIRM cassette, is, in composite, a novel mechanism for R-M regulation, supporting the general hypothesis that H. pylori populations use mutation and transformation to regulate gene function.
Collapse
Affiliation(s)
- R A Aras
- Departments of Medicine and Microbiology, New York University School of Medicine and VA Medical Center, New York, USA.
| | | | | | | | | |
Collapse
|
31
|
Kobayashi I. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 2001; 29:3742-56. [PMID: 11557807 PMCID: PMC55917 DOI: 10.1093/nar/29.18.3742] [Citation(s) in RCA: 393] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2001] [Revised: 07/12/2001] [Accepted: 07/23/2001] [Indexed: 11/14/2022] Open
Abstract
Restriction-modification (RM) systems are composed of genes that encode a restriction enzyme and a modification methylase. RM systems sometimes behave as discrete units of life, like viruses and transposons. RM complexes attack invading DNA that has not been properly modified and thus may serve as a tool of defense for bacterial cells. However, any threat to their maintenance, such as a challenge by a competing genetic element (an incompatible plasmid or an allelic homologous stretch of DNA, for example) can lead to cell death through restriction breakage in the genome. This post-segregational or post-disturbance cell killing may provide the RM complexes (and any DNA linked with them) with a competitive advantage. There is evidence that they have undergone extensive horizontal transfer between genomes, as inferred from their sequence homology, codon usage bias and GC content difference. They are often linked with mobile genetic elements such as plasmids, viruses, transposons and integrons. The comparison of closely related bacterial genomes also suggests that, at times, RM genes themselves behave as mobile elements and cause genome rearrangements. Indeed some bacterial genomes that survived post-disturbance attack by an RM gene complex in the laboratory have experienced genome rearrangements. The avoidance of some restriction sites by bacterial genomes may result from selection by past restriction attacks. Both bacteriophages and bacteria also appear to use homologous recombination to cope with the selfish behavior of RM systems. RM systems compete with each other in several ways. One is competition for recognition sequences in post-segregational killing. Another is super-infection exclusion, that is, the killing of the cell carrying an RM system when it is infected with another RM system of the same regulatory specificity but of a different sequence specificity. The capacity of RM systems to act as selfish, mobile genetic elements may underlie the structure and function of RM enzymes.
Collapse
Affiliation(s)
- I Kobayashi
- Department of Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
32
|
Sekizaki T, Osaki M, Takamatsu D, Shimoji Y. Distribution of the SsuDAT1I restriction-modification system among different serotypes of Streptococcus suis. J Bacteriol 2001; 183:5436-40. [PMID: 11514530 PMCID: PMC95429 DOI: 10.1128/jb.183.18.5436-5440.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2001] [Accepted: 06/01/2001] [Indexed: 11/20/2022] Open
Abstract
The SsuDAT1I restriction-modification (R-M) system, which contains two methyltransferases and two restriction endonucleases with recognition sequence 5'-GATC-3', was first found in a field isolate of Streptococcus suis serotype 2. Isoschizomers of the R-M system were found in the same locus between purH and purD in a field isolate of serotype 1/2 and the reference strains of serotypes 3, 7, 23, and 26 among 29 strains of different serotypes examined in this study. The R-M gene sequences in serotypes 1/2, 3, 7, and 23 were very similar to those of SsuDAT1I, whereas those in serotype 26 were less similar. These results indicate intraspecies recombination among them and genetic divergence through their evolution.
Collapse
Affiliation(s)
- T Sekizaki
- National Institute of Animal Health, Tsukuba, Ibaraki, Japan.
| | | | | | | |
Collapse
|
33
|
Rocha EP, Danchin A, Viari A. Evolutionary Role of Restriction/Modification Systems as Revealed by Comparative Genome Analysis. Genome Res 2001. [DOI: 10.1101/gr.153101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Type II restriction modification systems (RMSs) have been regarded either as defense tools or as molecular parasites of bacteria. We extensively analyzed their evolutionary role from the study of their impact in the complete genomes of 26 bacteria and 35 phages in terms of palindrome avoidance. This analysis reveals that palindrome avoidance is not universally spread among bacterial species and that it does not correlate with taxonomic proximity. Palindrome avoidance is also not universal among bacteriophage, even when their hosts code for RMSs, and depends strongly on the genetic material of the phage. Interestingly, palindrome avoidance is intimately correlated with the infective behavior of the phage. We observe that the degree of palindrome and restriction site avoidance is significantly and consistently less important in phages than in their bacterial hosts. This result brings to the fore a larger selective load for palindrome and restriction site avoidance on the bacterial hosts than on their infecting phages. It is then consistent with a view where type II RMSs are considered as parasites possibly at the verge of mutualism. As a consequence, RMSs constitute a nontrivial third player in the host–parasite relationship between bacteria and phages.
Collapse
|
34
|
Piechula S, Waleron K, Swiatek W, Biedrzycka I, Podhajska AJ. Mesophilic cyanobacteria producing thermophilic restriction endonucleases. FEMS Microbiol Lett 2001; 198:135-40. [PMID: 11430404 DOI: 10.1111/j.1574-6968.2001.tb10632.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
When searching for the site-specific endonucleases in several strains of Phormidium we made the following observations. Among the 16 strains that originated from 15 species of Phormidium, 12 produced one or more restriction enzymes, of which two produced the highly thermophilic restriction endonucleases PtaI and PpaAII with their optimum activity at 65-80 degrees C, which is far above the lethal temperature for the host microorganism (40 degrees C). These two temperature-resistant enzymes are isoschizomers of known BspMII and TaqI endonucleases, respectively. The presence of the thermophilic TaqI isoschizomer does not seem to play any role in the mesophilic host microorganism, which does not even contain an active cognate methyltransferase. Among the remaining 10 strains, six produced isoschizomers of endonucleases which we first described in cyanobacteria, namely: PfaAII (NdeI), PinBII and PtaI (BspMII), PlaAII (RsalI), PpaAII, PpeI (ApaI). Two enzymes, PauAII (AhaIII) and PfaAII (NdeI), belong to a group of a very rarely occurring isoschizomers. Out of 21 cyanobacterial endonucleases investigated by us, four were active in a wide range of temperatures (from 15 to 60 degrees C) which also extended the optimal growth temperature of the hosts. We assume that our observation on the presence of temperature-resistant restriction enzymes in mesophilic hosts supports the idea of horizontal gene transfer. Restriction modification systems may be an excellent tool for investigation of that phenomenon.
Collapse
Affiliation(s)
- S Piechula
- Department of Biotechnology, Faculty of Biotechnology, University of Gdańsk, Poland
| | | | | | | | | |
Collapse
|
35
|
Handa N, Nakayama Y, Sadykov M, Kobayashi I. Experimental genome evolution: large-scale genome rearrangements associated with resistance to replacement of a chromosomal restriction-modification gene complex. Mol Microbiol 2001; 40:932-40. [PMID: 11401700 DOI: 10.1046/j.1365-2958.2001.02436.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type II restriction enzymes are paired with modification enzymes that protect type II restriction sites from cleavage by methylating them. A plasmid carrying a type II restriction-modification gene complex is not easily replaced by an incompatible plasmid because loss of the former leads to cell death through chromosome cleavage. In the present work, we looked to see whether a chromosomally located restriction-modification gene complex could be replaced by a homologous stretch of DNA. We tried to replace the PaeR7I gene complex on the Escherichia coli chromosome by transducing a homologous stretch of PaeR7I-modified DNA. The replacement efficiency of the restriction-modification complex was lower than expected. Some of the resulting recombinant clones retained the recipient restriction-modification gene complex as well as the homologous DNA (donor allele), and slowly lost the donor allele in the absence of selection. Analysis of their genome-wide rearrangements by Southern hybridization, inverse polymerase chain reaction (iPCR) and sequence determination demonstrated the occurrence of unequal homologous recombination between copies of the transposon IS3. It was strongly suggested that multiple rounds of unequal IS3-IS3 recombination caused large-scale duplication and inversion of the chromosome, and that only one of the duplicated copies of the recipient PaeR7I was replaced.
Collapse
Affiliation(s)
- N Handa
- Department of Molecular Biology, Institute of Medical Science, University of Tokyo, Shirokanedai, Tokyo 108-8639 Japan
| | | | | | | |
Collapse
|
36
|
Abstract
We present a summary of recent progress in understanding Escherichia coli K-12 gene and protein functions. New information has come both from classical biological experimentation and from using the analytical tools of functional genomics. The content of the E. coli genome can clearly be seen to contain elements acquired by horizontal transfer. Nevertheless, there is probably a large, stable core of >3500 genes that are shared among all E. coli strains. The gene-enzyme relationship is examined, and, in many cases, it exhibits complexity beyond a simple one-to-one relationship. Also, the E. coli genome can now be seen to contain many multiple enzymes that carry out the same or closely similar reactions. Some are similar in sequence and may share common ancestry; some are not. We discuss the concept of a minimal genome as being variable among organisms and obligatorily linked to their life styles and defined environmental conditions. We also address classification of functions of gene products and avenues of insight into the history of protein evolution.
Collapse
Affiliation(s)
- M Riley
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA. ,
| | | |
Collapse
|
37
|
Sekizaki T, Otani Y, Osaki M, Takamatsu D, Shimoji Y. Evidence for horizontal transfer of SsuDAT1I restriction-modification genes to the Streptococcus suis genome. J Bacteriol 2001; 183:500-11. [PMID: 11133943 PMCID: PMC94905 DOI: 10.1128/jb.183.2.500-511.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Different strains of Streptococcus suis serotypes 1 and 2 isolated from pigs either contained a restriction-modification (R-M) system or lacked it. The R-M system was an isoschizomer of Streptococcus pneumoniae DpnII, which recognizes nucleotide sequence 5'-GATC-3'. The nucleotide sequencing of the genes encoding the R-M system in S. suis DAT1, designated SsuDAT1I, showed that the SsuDAT1I gene region contained two methyltransferase genes, designated ssuMA and ssuMB, as does the DpnII system. The deduced amino acid sequences of M. SsuMA and M.SsuMB showed 70 and 90% identity to M.DpnII and M.DpnA, respectively. However, the SsuDAT1I system contained two isoschizomeric restriction endonuclease genes, designated ssuRA and ssuRB. The deduced amino acid sequence of R.SsuRA was 49% identical to that of R.DpnII, and R.SsuRB was 72% identical to R.LlaDCHI of Lactococcus lactis subsp. cremoris DCH-4. The four SsuDAT1I genes overlapped and were bounded by purine biosynthetic gene clusters in the following gene order: purF-purM-purN-purH-ssuMA-ssuMB-ssuRA++ +-ssuRB-purD-purE. The G+C content of the SsuDAT1I gene region (34.1%) was lower than that of the pur region (48.9%), suggesting horizontal transfer of the SsuDAT1I system. No transposable element or long-repeat sequence was found in the flanking regions. The SsuDAT1I genes were functional by themselves, as they were individually expressed in Escherichia coli. Comparison of the sequences between strains with and without the R-M system showed that only the region from 53 bp upstream of ssuMA to 5 bp downstream of ssuRB was inserted in the intergenic sequence between purH and purD and that the insertion target site was not the recognition site of SsuDAT1I. No notable substitutions or insertions could be found, and the structures were conserved among all the strains. These results suggest that the SsuDAT1I system could have been integrated into the S. suis chromosome by an illegitimate recombination mechanism.
Collapse
Affiliation(s)
- T Sekizaki
- National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan.
| | | | | | | | | |
Collapse
|
38
|
Abstract
P4 is a natural phasmid (phage-plasmid) that exploits different modes of propagation in its host Escherichia coli. Extracellularly, P4 is a virion, with a tailed icosahedral head, which encapsidates the 11.6-kb-long double-stranded DNA genome. After infection of the E. coli host, P4 DNA can integrate into the bacterial chromosome and be maintained in a repressed state (lysogeny). Alternatively, P4 can replicate as a free DNA molecule; this leads to either the lytic cycle or the plasmid state, depending on the presence or absence of the genome of a helper phage P2 in the E. coli host. As a phage, P4 is thus a satellite of P2 phage, depending on the helper genes for all the morphogenetic functions, whereas for all its episomal functions (integration and immunity, multicopy plasmid replication) P4 is completely autonomous from the helper. Replication of P4 DNA depends on its alpha protein, a multifunctional polypeptide that exhibits primase and helicase activity and binds specifically the P4 origin. Replication starts from a unique point, ori1, and proceeds bidirectionally in a straight theta-type mode. P4 negatively regulates the plasmid copy number at several levels. An unusual mechanism of copy number control is based on protein-protein interaction: the P4-encoded Cnr protein interacts with the alpha gene product, inhibiting its replication potential. Furthermore, expression of the replication genes cnr and alpha is regulated in a complex way that involves modulation of promoter activity by positive and negative factors and multiple mechanisms of transcription elongation-termination control. Thus, the relatively small P4 genome encodes mostly regulatory functions, required for its propagation both as an episomal element and as a temperate satellite phage. Plasmids that, like P4, propagate horizontally via a specific transduction mechanism have also been found in the Archaea. The presence of P4-like prophages or cryptic prophages often associated with accessory bacterial functions attests to the contribution of satellite phages to bacterial evolution.
Collapse
Affiliation(s)
- F Briani
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università degli Studi di Milano, Milan, 20133, Italy
| | | | | | | |
Collapse
|
39
|
Xu Q, Stickel S, Roberts RJ, Blaser MJ, Morgan RD. Purification of the novel endonuclease, Hpy188I, and cloning of its restriction-modification genes reveal evidence of its horizontal transfer to the Helicobacter pylori genome. J Biol Chem 2000; 275:17086-93. [PMID: 10748211 DOI: 10.1074/jbc.m910303199] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated a novel restriction endonuclease, Hpy188I, from Helicobacter pylori strain J188. Hpy188I recognizes the unique sequence, TCNGA, and cleaves the DNA between nucleotides N and G in its recognition sequence to generate a one-base 3' overhang. Cloning and sequence analysis of the Hpy188I modification gene in strain J188 reveal that hpy188IM has a 1299-base pair (bp) open reading frame (ORF) encoding a 432-amino acid product. The predicted protein sequence of M.Hpy188I contains conserved motifs typical of aminomethyltransferases, and Western blotting indicates that it is an N-6 adenine methyltransferase. Downstream of hpy188IM is a 513-bp ORF encoding a 170-amino acid product, that has a 41-bp overlap with hpy188IM. The predicted protein sequence from this ORF matches the amino acid sequence obtained from purified Hpy188I, indicating that it encodes the endonuclease. The Hpy188I R-M genes are not present in either strain of H. pylori that has been completely sequenced but are found in two of 11 H. pylori strains tested. The significantly lower G + C content of the Hpy188I R-M genes implies that they have been introduced relatively recently during the evolution of the H. pylori genome.
Collapse
Affiliation(s)
- Q Xu
- Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
40
|
Kobayashi I, Nobusato A, Kobayashi-Takahashi N, Uchiyama I. Shaping the genome--restriction-modification systems as mobile genetic elements. Curr Opin Genet Dev 1999; 9:649-56. [PMID: 10607611 DOI: 10.1016/s0959-437x(99)00026-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A restriction enzyme gene is often linked to a modification methylase gene the role of which is to protect a recognition site on DNA from breakage by the former. Loss of some restriction-modification gene complexes leads to cell death through restriction breakage in the genome. Their behavior as genomic parasites/symbionts may explain the distribution of restriction sites and clarify certain aspects of bacterial recombination repair and mutagenesis. A comparison of bacterial genomes supports the hypothesis that restriction-modification gene complexes are mobile elements involved in various genome rearrangements and evolution.
Collapse
Affiliation(s)
- I Kobayashi
- Institute of Medical Science, University of Tokyo, Shirokanedai, 108-8639, Japan.
| | | | | | | |
Collapse
|