1
|
Roughgarden J. Lytic/Lysogenic Transition as a Life-History Switch. Virus Evol 2024; 10:veae028. [PMID: 38756985 PMCID: PMC11097211 DOI: 10.1093/ve/veae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/15/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024] Open
Abstract
The transition between lytic and lysogenic life cycles is the most important feature of the life-history of temperate viruses. To explain this transition, an optimal life-history model is offered based a discrete-time formulation of phage/bacteria population dynamics that features infection of bacteria by Poisson sampling of virions from the environment. The time step is the viral latency period. In this model, density-dependent viral absorption onto the bacterial surface produces virus/bacteria coexistence and density dependence in bacterial growth is not needed. The formula for the transition between lytic and lysogenic phases is termed the 'fitness switch'. According to the model, the virus switches from lytic to lysogenic when its population grows faster as prophage than as virions produced by lysis of the infected cells, and conversely for the switch from lysogenic to lytic. A prophage that benefits the bacterium it infects automatically incurs lower fitness upon exiting the bacterial genome, resulting in its becoming locked into the bacterial genome in what is termed here as a 'prophage lock'. The fitness switch qualitatively predicts the ecogeographic rule that environmental enrichment leads to microbialization with a concomitant increase in lysogeny, fluctuating environmental conditions promote virus-mediated horizontal gene transfer, and prophage-containing bacteria can integrate into the microbiome of a eukaryotic host forming a functionally integrated tripartite holobiont. These predictions accord more with the 'Piggyback-the-Winner' hypothesis than with the 'Kill-the-Winner' hypothesis in virus ecology.
Collapse
Affiliation(s)
- Joan Roughgarden
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Vashisth M, Yashveer S, Anand T, Virmani N, Bera BC, Vaid RK. Antibiotics targeting bacterial protein synthesis reduce the lytic activity of bacteriophages. Virus Res 2022; 321:198909. [PMID: 36057417 DOI: 10.1016/j.virusres.2022.198909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/01/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
Combination therapy of bacteriophages and antibiotics requires careful selection of specific antibiotics as it is crucial towards determining the success of phage therapy to treat multiple drug-resistant bacterial infections. So, we examined how different antibiotics can affect phage lytic activity when used in combination against targeted bacteria. Various antibiotics targeting bacterial protein synthesis pathways were tested for their bactericidal action in combination with bacteriophages of Acinetobacter baumannii (φAB145, φAB182), Staphylococcus aureus (φSA115, φSA116) and Salmonella Typhimurium (φST143, φST188). The phages displayed highly significant antagonism with most of the protein/ribosomal machinery targeting antibiotics: φSA115 (13/13); φSA116 (13/13); φST143 (11/13); φAB145 (11/13); φST188 (9/13); φAB182 (7/13). To validate this antagonistic effect, synergy assessment of these phages with gentamicin (GEN) and tetracycline (TE) was performed using time kill curve assays and counting the remaining viable bacterial cells at the end of the experiment. An increase in bacterial turbidity in phage-antibiotic combination groups was observed as compared to the treatment with phages individually. Also, GEN exhibited 4.22, 5.90, 2.02, 3.15, 2.68, and 2.60 log proliferation in viable cell count, respectively, for φSA115, φSA116, φST145, φAB182, φST143 and φAB188 in combination group in comparison to their individual actions. TE supplementation also led to 2.40, 4.90, 1.61, 2.73, 3.93, and 1.81 log increments in viable bacterial count when combined with φSA115, φSA116, φST145, φAB182, φST143 and φAB188, respectively. This study concludes that antibiotics targeting the bacterial protein biosynthetic machinery may lead to a reduction in the lytic activity of bacteriophages, thus lowering their therapeutic potential. Hence, such compounds must be carefully screened before their employment in combination treatment regimens.
Collapse
Affiliation(s)
- Medhavi Vashisth
- Bacteriophage Laboratory, National Centre for Veterinary Type Cultures, ICAR - National Research Centre on Equines, Sirsa Road, Hisar, Haryana 125001, India; Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004, India
| | - Shikha Yashveer
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004, India
| | - Taruna Anand
- Bacteriophage Laboratory, National Centre for Veterinary Type Cultures, ICAR - National Research Centre on Equines, Sirsa Road, Hisar, Haryana 125001, India.
| | - Nitin Virmani
- Bacteriophage Laboratory, National Centre for Veterinary Type Cultures, ICAR - National Research Centre on Equines, Sirsa Road, Hisar, Haryana 125001, India
| | - Bidhan Chand Bera
- Bacteriophage Laboratory, National Centre for Veterinary Type Cultures, ICAR - National Research Centre on Equines, Sirsa Road, Hisar, Haryana 125001, India
| | - Rajesh Kumar Vaid
- Bacteriophage Laboratory, National Centre for Veterinary Type Cultures, ICAR - National Research Centre on Equines, Sirsa Road, Hisar, Haryana 125001, India
| |
Collapse
|
3
|
Silva J, Dias R, Junior JI, Marcelino M, Silva M, Carmo A, Sousa M, Silva C, de Paula S. A Rapid Method for Performing a Multivariate Optimization of Phage Production Using the RCCD Approach. Pathogens 2021; 10:1100. [PMID: 34578135 PMCID: PMC8468216 DOI: 10.3390/pathogens10091100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 01/15/2023] Open
Abstract
Bacteriophages can be used in various applications, from the classical approach as substitutes for antibiotics (phage therapy) to new biotechnological uses, i.e., as a protein delivery vehicle, a diagnostic tool for specific strains of bacteria (phage typing), or environmental bioremediation. The demand for bacteriophage production increases daily, and studies that improve these production processes are necessary. This study evaluated the production of a T4-like bacteriophage vB_EcoM-UFV09 (an E. coli-infecting phage with high potential for reducing environmental biofilms) in seven types of culture media (Luria-Bertani broth and the M9 minimal medium with six different carbon sources) employing four cultivation variables (temperature, incubation time, agitation, and multiplicity of infection). For this purpose, the rotatable central composite design (RCCD) methodology was used, combining and comparing all parameters to determine the ideal conditions for starting to scale up the production process. We used the RCCD to set up the experimental design by combining the cultivation parameters in a specific and systematic way. Despite the high number of conditions evaluated, the results showed that when specific conditions were utilized, viral production was effective even when using a minimal medium, such as M9/glucose, which is less expensive and can significantly reduce costs during large-scale phage production.
Collapse
Affiliation(s)
- Jessica Silva
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| | - Roberto Dias
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| | - José Ivo Junior
- Department of Statistics, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil;
| | - Maraísa Marcelino
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| | - Mirelly Silva
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| | - Adriele Carmo
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| | - Maira Sousa
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
- Leopoldo Américo Miguez de Mello Research Center (CENPES), Petrobras, Rio de Janeiro 20230-010, Brazil
| | - Cynthia Silva
- Department of Microbiology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil;
| | - Sergio de Paula
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| |
Collapse
|
4
|
Sandhu SK, Bayliss CD, Morozov AY. How does feedback from phage infections influence the evolution of phase variation in Campylobacter? PLoS Comput Biol 2021; 17:e1009067. [PMID: 34125841 PMCID: PMC8224891 DOI: 10.1371/journal.pcbi.1009067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Campylobacter jejuni (C. jejuni) causes gastroenteritis following the consumption of contaminated poultry meat, resulting in a large health and economic burden worldwide. Phage therapy is a promising technique for eradicating C. jejuni from poultry flocks and chicken carcasses. However, C. jejuni can resist infections by some phages through stochastic, phase-variable ON/OFF switching of the phage receptors mediated by simple sequence repeats (SSR). While selection strength and exposure time influence the evolution of SSR-mediated phase variation (PV), phages offer a more complex evolutionary environment as phage replication depends on having a permissive host organism. Here, we build and explore several continuous culture bacteria-phage computational models, each analysing different phase-variable scenarios calibrated to the experimental SSR rates of C. jejuni loci and replication parameters for the F336 phage. We simulate the evolution of PV rates via the adaptive dynamics framework for varying levels of selective pressures that act on the phage-resistant state. Our results indicate that growth reducing counter-selection on a single PV locus results in the stable maintenance of the phage, while compensatory selection between bacterial states affects the evolutionary stable mutation rates (i.e. very high and very low mutation rates are evolutionarily disadvantageous), whereas, in the absence of either selective pressure the evolution of PV rates results in mutation rates below the basal values. Contrastingly, a biologically-relevant model with two phase-variable loci resulted in phage extinction and locking of the bacteria into a phage-resistant state suggesting that another counter-selective pressure is required, instance, the use of a distinct phage whose receptor is an F336-phage-resistant state. We conclude that a delicate balance between counter-selection and phage-attack can result in both the evolution of phase-variable phage receptors and persistence of PV-receptor-specific phage. Globally rising rates of antibiotic resistance have renewed interest in phage therapy. Bacteriophages (phages) act on bacteria to select for resistance mechanisms such as loss of phage receptors by phase variation (PV). Phase-variable genes mediate rapid adaption by stochastic switching of gene expression. Campylobacter jejuni is a common commensal of birds but also causes serious gastrointestinal infections in humans. Optimisation of phage therapy against C. jejuni requires an in-depth understanding of how PV has evolved and mediates phage resistance. Here, we use a detailed continuous culture model for nutrient-limited bacteria-phage interactions, with PV rates calibrated to match the experimental observations for C.jejuni and phage F336. Evolution within a model accounting for two phase-variable loci closely matches the experimental results when growth reducing counter-selection is imposed on all phage-resistant states, but, not when restricted to the particular states associated with resistance to immune effectors. Our results emphasize that delicate balancing of selective pressures, imposed by single and multiple distinct phages, are necessary for effective use of phage therapy against C. jejuni.
Collapse
Affiliation(s)
- Simran K. Sandhu
- Department of Mathematics, University of Leicester, Leicester, United Kingdom
| | - Christopher D. Bayliss
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Andrew Yu. Morozov
- Department of Mathematics, University of Leicester, Leicester, United Kingdom
- Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| |
Collapse
|
5
|
Choua M, Heath MR, Bonachela JA. Evolutionarily Stable Coevolution Between a Plastic Lytic Virus and Its Microbial Host. Front Microbiol 2021; 12:637490. [PMID: 34093461 PMCID: PMC8172972 DOI: 10.3389/fmicb.2021.637490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/09/2021] [Indexed: 01/21/2023] Open
Abstract
Hosts influence and are influenced by viral replication. Cell size, for example, is a fundamental trait for microbial hosts that can not only alter the probability of viral adsorption, but also constrain the host physiological processes that the virus relies on to replicate. This intrinsic connection can affect the fitness of both host and virus, and therefore their mutual evolution. Here, we study the coevolution of bacterial hosts and their viruses by considering the dependence of viral performance on the host physiological state (viral plasticity). To this end, we modified a standard host-lytic phage model to include viral plasticity, and compared the coevolutionary strategies emerging under different scenarios, including cases in which only the virus or the host evolve. For all cases, we also obtained the evolutionary prediction of the traditional version of the model, which assumes a non-plastic virus. Our results reveal that the presence of the virus leads to an increase in host size and growth rate in the long term, which benefits both interacting populations. Our results also show that viral plasticity and evolution influence the classic host quality-quantity trade-off. Poor nutrient environments lead to abundant low-quality hosts, which tends to increase viral infection time. Conversely, richer nutrient environments lead to fewer but high-quality hosts, which decrease viral infection time. Our results can contribute to advancing our understanding of the microbial response to changing environments. For instance, both cell size and viral-induced mortality are essential factors that determine the structure and dynamics of the marine microbial community, and therefore our study can improve predictions of how marine ecosystems respond to environmental change. Our study can also help devise more reliable strategies to use phage to, for example, fight bacterial infections.
Collapse
Affiliation(s)
- Melinda Choua
- Marine Population Modeling Group, Department of Mathematics and Statistics, University of Strathclyde, Scotland, United Kingdom
| | - Michael R Heath
- Marine Population Modeling Group, Department of Mathematics and Statistics, University of Strathclyde, Scotland, United Kingdom
| | - Juan A Bonachela
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
6
|
João J, Lampreia J, Prazeres DMF, Azevedo AM. Manufacturing of bacteriophages for therapeutic applications. Biotechnol Adv 2021; 49:107758. [PMID: 33895333 DOI: 10.1016/j.biotechadv.2021.107758] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/14/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022]
Abstract
Bacteriophages, or simply phages, are the most abundant biological entities on Earth. One of the most interesting characteristics of these viruses, which infect and use bacteria as their host organisms, is their high level of specificity. Since their discovery, phages became a tool for the comprehension of basic molecular biology and originated applications in a variety of areas such as agriculture, biotechnology, food safety, veterinary, pollution remediation and wastewater treatment. In particular, phages offer a solution to one of the major problems in public health nowadays, i.e. the emergence of multidrug-resistant bacteria. In these situations, the use of virulent phages as therapeutic agents offers an alternative to the classic, antibiotic-based strategies. The development of phage therapies should be accompanied by the improvement of phage biomanufacturing processes, both at laboratory and industrial scales. In this review, we first present some historical and general aspects related with the discovery, usage and biology of phages and provide a brief overview of the most relevant phage therapy applications. Then, we showcase current processes used for the production and purification of phages and future alternatives in development. On the production side, key factors such as the bacterial physiological state, the conditions of phage infection and the operation parameters are described alongside with the different operation modes, from batch to semi-continuous and continuous. Traditional purification methods used in the initial phage isolation steps are then described followed by the presentation of current state-of-the-art purification approaches. Continuous purification of phages is finally presented as a future biomanufacturing trend.
Collapse
Affiliation(s)
- Jorge João
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - João Lampreia
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - Duarte Miguel F Prazeres
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - Ana M Azevedo
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| |
Collapse
|
7
|
Subramanian S, Gorday K, Marcus K, Orellana MR, Ren P, Luo XR, O'Donnell ME, Kuriyan J. Allosteric communication in DNA polymerase clamp loaders relies on a critical hydrogen-bonded junction. eLife 2021; 10:e66181. [PMID: 33847559 PMCID: PMC8121543 DOI: 10.7554/elife.66181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/03/2021] [Indexed: 02/06/2023] Open
Abstract
Clamp loaders are AAA+ ATPases that load sliding clamps onto DNA. We mapped the mutational sensitivity of the T4 bacteriophage sliding clamp and clamp loader by deep mutagenesis, and found that residues not involved in catalysis or binding display remarkable tolerance to mutation. An exception is a glutamine residue in the AAA+ module (Gln 118) that is not located at a catalytic or interfacial site. Gln 118 forms a hydrogen-bonded junction in a helical unit that we term the central coupler, because it connects the catalytic centers to DNA and the sliding clamp. A suppressor mutation indicates that hydrogen bonding in the junction is important, and molecular dynamics simulations reveal that it maintains rigidity in the central coupler. The glutamine-mediated junction is preserved in diverse AAA+ ATPases, suggesting that a connected network of hydrogen bonds that links ATP molecules is an essential aspect of allosteric communication in these proteins.
Collapse
Affiliation(s)
- Subu Subramanian
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Kent Gorday
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Biophysics Graduate Group, University of California, BerkeleyBerkeleyUnited States
| | - Kendra Marcus
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Matthew R Orellana
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Peter Ren
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Xiao Ran Luo
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, Rockefeller UniversityNew YorkUnited States
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
8
|
Šivec K, Podgornik A. Determination of bacteriophage growth parameters under cultivating conditions. Appl Microbiol Biotechnol 2020; 104:8949-8960. [DOI: 10.1007/s00253-020-10866-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 01/15/2023]
|
9
|
Li G, Cortez MH, Dushoff J, Weitz JS. When to be temperate: on the fitness benefits of lysis vs. lysogeny. Virus Evol 2020; 6:veaa042. [PMID: 36204422 PMCID: PMC9532926 DOI: 10.1093/ve/veaa042] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacterial viruses, that is 'bacteriophage' or 'phage', can infect and lyse their bacterial hosts, releasing new viral progeny. In addition to the lytic pathway, certain bacteriophage (i.e. 'temperate' bacteriophage) can also initiate lysogeny, a latent mode of infection in which the viral genome is integrated into and replicated with the bacterial chromosome. Subsequently, the integrated viral genome, that is the 'prophage', can induce and restart the lytic pathway. Here, we explore the relationship among infection mode, ecological context, and viral fitness, in essence asking: when should viruses be temperate? To do so, we use network loop analysis to quantify fitness in terms of network paths through the life history of an infectious pathogen that start and end with infected cells. This analysis reveals that temperate strategies, particularly those with direct benefits to cellular fitness, should be favored at low host abundances. This finding applies to a spectrum of mechanistic models of phage-bacteria dynamics spanning both explicit and implicit representations of intra-cellular infection dynamics. However, the same analysis reveals that temperate strategies, in and of themselves, do not provide an advantage when infection imposes a cost to cellular fitness. Hence, we use evolutionary invasion analysis to explore when temperate phage can invade microbial communities with circulating lytic phage. We find that lytic phage can drive down niche competition amongst microbial cells, facilitating the subsequent invasion of latent strategies that increase cellular resistance and/or immunity to infection by lytic viruses-notably this finding holds even when the prophage comes at a direct fitness cost to cellular reproduction. Altogether, our analysis identifies broad ecological conditions that favor latency and provide a principled framework for exploring the impacts of ecological context on both the short- and long-term benefits of being temperate.
Collapse
Affiliation(s)
- Guanlin Li
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Michael H Cortez
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jonathan Dushoff
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Mathematics and Statistics, McMaster University, Hamilton, ON L8S 4L8, Canada
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Joshua S Weitz
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
10
|
Abstract
Viruses use the host machinery to replicate, and their performance thus depends on the host's physiological state. For bacteriophages, this link between host and viral performance has been characterized empirically and with intracellular theories. Such theories are too detailed to be included in models that study host-phage interactions in the long term, which hinders our understanding of systems that range from pathogens infecting gut bacteria to marine phage shaping the oceans. Here, we combined data and models to study the short- and long-term consequences that host physiology has on bacteriophage performance. We compiled data showing the dependence of lytic-phage traits on host growth rate (referred to as viral phenotypic plasticity) to deduce simple expressions that represent such plasticity. Including these expressions in a standard host-phage model allowed us to understand mechanistically how viral plasticity affects emergent evolutionary strategies and the population dynamics associated with different environmental scenarios including, for example, nutrient pulses or host starvation. Moreover, we show that plasticity on the offspring number drives the phage ecological and evolutionary dynamics by reinforcing feedbacks between host, virus, and environment. Standard models neglect viral plasticity, which therefore handicaps their predictive ability in realistic scenarios. Our results highlight the importance of viral plasticity to unravel host-phage interactions and the need of laboratory and field experiments to characterize viral plastic responses across systems.
Collapse
|
11
|
High Throughput Manufacturing of Bacteriophages Using Continuous Stirred Tank Bioreactors Connected in Series to Ensure Optimum Host Bacteria Physiology for Phage Production. Viruses 2018; 10:v10100537. [PMID: 30275405 PMCID: PMC6213498 DOI: 10.3390/v10100537] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/21/2018] [Accepted: 09/29/2018] [Indexed: 12/26/2022] Open
Abstract
Future industrial demand for large quantities of bacteriophages e.g., for phage therapy, necessitates the development of scalable Good Manufacturing Practice compliant (cGMP) production platforms. The continuous production of high titres of E coli T3 phages (1011 PFU mL−1) was achieved using two continuous stirred tank bioreactors connected in series, and a third bioreactor was used as a final holding tank operated in semi-batch mode to finish the infection process. The first bioreactor allowed the steady-state propagation of host bacteria using a fully synthetic medium with glucose as the limiting substrate. Host bacterial growth was decoupled from the phage production reactor downstream of it to suppress the production of phage-resistant mutants, thereby allowing stable operation over a period of several days. The novelty of this process is that the manipulation of the host reactor dilution rates (range 0.1–0.6 hr−1) allows control over the physiological state of the bacterial population. This results in bacteria with considerably higher intracellular phage production capability whilst operating at high dilution rates yielding significantly higher overall phage process productivity. Using a pilot-scale chemostat system allowed optimisation of the upstream phage amplification conditions conducive for high intracellular phage production in the host bacteria. The effect of the host reactor dilution rates on the phage burst size, lag time, and adsorption rate were evaluated. The host bacterium physiology was found to influence phage burst size, thereby affecting the productivity of the overall process. Mathematical modelling of the dynamics of the process allowed parameter sensitivity evaluation and provided valuable insights into the factors affecting the phage production process. The approach presented here may be used at an industrial scale to significantly improve process control, increase productivity via process intensification, and reduce process manufacturing costs through process footprint reduction.
Collapse
|
12
|
Baker CW, Miller CR, Thaweethai T, Yuan J, Baker MH, Joyce P, Weinreich DM. Genetically Determined Variation in Lysis Time Variance in the Bacteriophage φX174. G3 (BETHESDA, MD.) 2016; 6:939-55. [PMID: 26921293 PMCID: PMC4825663 DOI: 10.1534/g3.115.024075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/02/2016] [Indexed: 11/18/2022]
Abstract
Researchers in evolutionary genetics recently have recognized an exciting opportunity in decomposing beneficial mutations into their proximal, mechanistic determinants. The application of methods and concepts from molecular biology and life history theory to studies of lytic bacteriophages (phages) has allowed them to understand how natural selection sees mutations influencing life history. This work motivated the research presented here, in which we explored whether, under consistent experimental conditions, small differences in the genome of bacteriophage φX174 could lead to altered life history phenotypes among a panel of eight genetically distinct clones. We assessed the clones' phenotypes by applying a novel statistical framework to the results of a serially sampled parallel infection assay, in which we simultaneously inoculated each of a large number of replicate host volumes with ∼1 phage particle. We sequentially plated the volumes over the course of infection and counted the plaques that formed after incubation. These counts served as a proxy for the number of phage particles in a single volume as a function of time. From repeated assays, we inferred significant, genetically determined heterogeneity in lysis time and burst size, including lysis time variance. These findings are interesting in light of the genetic and phenotypic constraints on the single-protein lysis mechanism of φX174. We speculate briefly on the mechanisms underlying our results, and we discuss the potential importance of lysis time variance in viral evolution.
Collapse
Affiliation(s)
- Christopher W Baker
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912
| | - Craig R Miller
- Department of Mathematics, University of Idaho, Moscow, Idaho 83844 Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844 Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho 83844
| | - Tanayott Thaweethai
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912
| | - Jeffrey Yuan
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912
| | - Meghan Hollibaugh Baker
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912
| | - Paul Joyce
- Department of Mathematics, University of Idaho, Moscow, Idaho 83844
| | - Daniel M Weinreich
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912 Center for Computational Molecular Biology, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
13
|
Krysiak-Baltyn K, Martin GJO, Stickland AD, Scales PJ, Gras SL. Computational models of populations of bacteria and lytic phage. Crit Rev Microbiol 2016; 42:942-68. [PMID: 26828960 DOI: 10.3109/1040841x.2015.1114466] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The use of phages to control and reduce numbers of unwanted bacteria can be traced back to the early 1900s, when phages were explored as a tool to treat infections before the wide scale use of antibiotics. Recently, phage therapy has received renewed interest as a method to treat multiresistant bacteria. Phages are also widely used in the food industry to prevent the growth of certain bacteria in foods, and are currently being explored as a tool for use in bioremediation and wastewater treatment. Despite the large body of biological research on phages, relatively little attention has been given to computational modeling of the population dynamics of phage and bacterial interactions. The earliest model was described by Campbell in the 1960s. Subsequent modifications to this model include partial or complete resistance, multiple phage binding sites, and spatial heterogeneity. This review provides a general introduction to modeling of the population dynamics of bacteria and phage. The review introduces the basic model and relevant concepts and evaluates more complex variations of the basic model published to date, including a model of disease epidemics caused by infectious bacteria. Finally, the shortcomings and potential ways to improve the models are discussed.
Collapse
Affiliation(s)
- Konrad Krysiak-Baltyn
- a Department of Chemical and Biomolecular Engineering , University of Melbourne , Parkville , Australia
| | - Gregory J O Martin
- a Department of Chemical and Biomolecular Engineering , University of Melbourne , Parkville , Australia
| | - Anthony D Stickland
- a Department of Chemical and Biomolecular Engineering , University of Melbourne , Parkville , Australia
| | - Peter J Scales
- a Department of Chemical and Biomolecular Engineering , University of Melbourne , Parkville , Australia
| | - Sally L Gras
- a Department of Chemical and Biomolecular Engineering , University of Melbourne , Parkville , Australia
| |
Collapse
|
14
|
Aviram I, Rabinovitch A, Zaritsky A. Maximizing yields of virulent phage: the T4/Escherichia coli system as a test case. J Theor Biol 2015; 364:428-32. [PMID: 25258002 DOI: 10.1016/j.jtbi.2014.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/07/2014] [Accepted: 09/14/2014] [Indexed: 10/24/2022]
Abstract
A hybrid mathematical model was devised to obtain optimal values for bacterial doubling time and initial phage/bacteria multiplicity of infection for the purpose of reaching the highest possible phage titers in steady-state exponentially growing cultures. The computational model consists of an initial probabilistic stage, followed by a second one processed by a system of delayed differential equations. The model's approach can be used in any phage/bacteria system for which the relevant parameters have been measured. Results of a specific case, based on the detailed, known information about the interactions between virulent T4 phage and its host bacterium Escherichia coli, display a range of possible such values along a highlighted strip of parameter values in the relevant parameter plane. In addition, times to achieve these maxima and gains in phage concentrations are evaluated.
Collapse
Affiliation(s)
- Ira Aviram
- Department of Physics, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva 84105, Israel
| | - Avinoam Rabinovitch
- Department of Physics, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva 84105, Israel.
| | - Arieh Zaritsky
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, POB 653, Kiryat Bergman, Be'er-Sheva 84105, Israel
| |
Collapse
|
15
|
Viazis S, Labuza TP, Diez-Gonzalez F. Bacteriophage Mixture Inactivation Kinetics against E
scherichia Coli
O157:H7 on Hard Surfaces. J Food Saf 2014. [DOI: 10.1111/jfs.12160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Stelios Viazis
- Department of Food Science and Nutrition; University of Minnesota; 1334 Eckles Avenue St. Paul MN 55108
| | - Theodore P. Labuza
- Department of Food Science and Nutrition; University of Minnesota; 1334 Eckles Avenue St. Paul MN 55108
| | - Francisco Diez-Gonzalez
- Department of Food Science and Nutrition; University of Minnesota; 1334 Eckles Avenue St. Paul MN 55108
| |
Collapse
|
16
|
Storms ZJ, Brown T, Cooper DG, Sauvageau D, Leask RL. Impact of the cell life-cycle on bacteriophage T4 infection. FEMS Microbiol Lett 2014; 353:63-8. [DOI: 10.1111/1574-6968.12402] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Zachary J. Storms
- Department of Chemical Engineering; McGill University; Montreal QC Canada
- Department of Chemical and Materials Engineering; University of Alberta; Edmonton AB Canada
| | - Tobin Brown
- Department of Chemical Engineering; McGill University; Montreal QC Canada
| | - David G. Cooper
- Department of Chemical Engineering; McGill University; Montreal QC Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering; University of Alberta; Edmonton AB Canada
| | - Richard L. Leask
- Department of Chemical Engineering; McGill University; Montreal QC Canada
| |
Collapse
|
17
|
Golec P, Karczewska-Golec J, Łoś M, Węgrzyn G. Bacteriophage T4 can produce progeny virions in extremely slowly growingEscherichia colihost: comparison of a mathematical model with the experimental data. FEMS Microbiol Lett 2014; 351:156-61. [DOI: 10.1111/1574-6968.12372] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/01/2014] [Accepted: 01/01/2014] [Indexed: 12/19/2022] Open
Affiliation(s)
- Piotr Golec
- Laboratory of Molecular Biology (affiliated with the University of Gdańsk); Institute of Biochemistry and Biophysics; Polish Academy of Sciences; Gdańsk Poland
| | | | - Marcin Łoś
- Department of Molecular Biology; University of Gdańsk; Gdańsk Poland
- Institute of Physical Chemistry; Polish Academy of Sciences; Warsaw Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology; University of Gdańsk; Gdańsk Poland
| |
Collapse
|
18
|
Golec P, Karczewska-Golec J, Voigt B, Albrecht D, Schweder T, Hecker M, Węgrzyn G, Łoś M. Proteomic profiles and kinetics of development of bacteriophage T4 and its rI and rIII mutants in slowly growing Escherichia coli. J Gen Virol 2012; 94:896-905. [PMID: 23239571 DOI: 10.1099/vir.0.048686-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage T4 survival in its natural environment requires adjustment of phage development to the slow bacterial growth rate or the initiation of mechanisms of pseudolysogeny or lysis inhibition (LIN). While phage-encoded RI and probably RIII proteins seem to be crucial players in pseudolysogeny and LIN phenomena, the identity of proteins involved in the regulation of T4 development in slowly growing bacteria has remained unknown. In this work, using a chemostat system, we studied the development of wild-type T4 (T4wt) and its rI (T4rI) and rIII (T4rIII) mutants in slowly growing bacteria, where T4 did not initiate LIN or pseudolysogeny. We determined eclipse periods, phage propagation times, latent periods and burst sizes of T4wt, T4rI and T4rIII. We also compared intracellular proteomes of slowly growing Escherichia coli infected with either T4wt or the mutants. Using two-dimensional PAGE analyses we found 18 differentially expressed proteins from lysates of infected cells. Proteins whose amounts were different in cells harbouring T4wt and the mutants are involved in processes of replication, phage-host interactions or they constitute virion components. Our data indicate that functional RI and RIII proteins - apart from their already known roles in LIN and pseudolysogeny - are also necessary for the regulation of phage T4 development in slowly growing bacteria. This regulation may be more complicated than previously anticipated, with many factors influencing T4 development in its natural habitat.
Collapse
Affiliation(s)
- Piotr Golec
- Laboratory of Molecular Biology (affiliated with the University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Joanna Karczewska-Golec
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Birgit Voigt
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, F.-L.-Jahn-Str. 15, 17489 Greifswald, Germany
| | - Dirk Albrecht
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, F.-L.-Jahn-Str. 15, 17489 Greifswald, Germany
| | - Thomas Schweder
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, Ernst-Moritz-Arndt-University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, F.-L.-Jahn-Str. 15, 17489 Greifswald, Germany
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Marcin Łoś
- Phage Consultants, Partyzantów10/18, 80-254 Gdańsk, Poland.,Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.,Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
19
|
Storms ZJ, Brown T, Sauvageau D, Cooper DG. Self-cycling operation increases productivity of recombinant protein in Escherichia coli. Biotechnol Bioeng 2012; 109:2262-70. [DOI: 10.1002/bit.24492] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/09/2012] [Accepted: 02/27/2012] [Indexed: 11/07/2022]
|
20
|
Abstract
A continuous delay differential model for dynamics of bacteria and bacteriophage interaction has been developed. The time lag is assumed because of latency period of infected bacteria. The model incorporates the lysogenic life cycle of bacteriophage. Accordingly, the infected bacteria can grow logistically. Due to the presence of lytic phage inside the infected bacterium cell, a constant number of phage is released to the system after lysis of each infected bacteria. The model has been analyzed both analytically and numerically. The coexistence of bacteria, bacteriophage and infected bacteria has been established. The condition for existence and stability of susceptible bacteria free equilibrium has been obtained. A simple Hopf-bifurcation has been discussed for non-zero equilibrium point. The lysogenic growth of infected bacteria can stabilize the unstable positive equilibrium point and increases the region of stability. Further, the unstable disease free equilibrium state can be stabilized with inclusion of lysogenic growth.
Collapse
Affiliation(s)
- SUNITA GAKKHAR
- Department of Mathematics, IIT Roorkee, Roorkee, 247667, India
| | | |
Collapse
|
21
|
Smith HL, Thieme HR. Persistence of bacteria and phages in a chemostat. J Math Biol 2011; 64:951-79. [DOI: 10.1007/s00285-011-0434-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 03/31/2011] [Indexed: 11/25/2022]
|
22
|
Sauvageau D, Cooper DG. Two-stage, self-cycling process for the production of bacteriophages. Microb Cell Fact 2010; 9:81. [PMID: 21040541 PMCID: PMC2989940 DOI: 10.1186/1475-2859-9-81] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 11/01/2010] [Indexed: 11/26/2022] Open
Abstract
Background A two-stage, self-cycling process for the production of bacteriophages was developed. The first stage, containing only the uninfected host bacterium, was operated under self-cycling fermentation (SCF) conditions. This automated method, using the derivative of the carbon dioxide evolution rate (CER) as the control parameter, led to the synchronization of the host bacterium. The second stage, containing both the host and the phage, was operated using self-cycling infection (SCI) with CER and CER-derived data as the control parameters. When each infection cycle was terminated, phages were harvested and a new infection cycle was initiated by adding host cells from the SCF (first stage). This was augmented with fresh medium and the small amount of phages left from the previous cycle initiated the next infection cycle. Both stages were operated independently, except for this short period of time when the SCF harvest was added to the SCI to initiate the next cycle. Results It was demonstrated that this mode of operation resulted in stable infection cycles if the growth of the host cells in the SCF was synchronized. The final phage titers obtained were reproducible among cycles and were as good as those obtained in batch productions performed under the same conditions (medium, temperature, initial multiplicity of infection, etc.). Moreover, phages obtained in different cycles showed no important difference in infectivity. Finally, it was shown that cell synchronization of the host cells in the first stage (SCF) not only maintained the volumetric productivity (phages per volume) but also led to higher specific productivity (phage per cell per hour) in the second stage (SCI). Conclusions Production of bacteriophage T4 in the semi-continuous, automated SCF/SCI system was efficient and reproducible from cycle to cycle. Synchronization of the host in the first stage prior to infection led to improvements in the specific productivity of phages in the second stage while maintaining the volumetric productivity. These results demonstrate the significant potential of this approach for both upstream and downstream process optimization.
Collapse
Affiliation(s)
- Dominic Sauvageau
- Department of Chemical Engineering, McGill University, 3610 University, Montreal, Quebec, H3A 2B2, Canada
| | | |
Collapse
|
23
|
Zonenstein Y, Zaritsky A, Merchuk J, Einav M, Enden G. The initial adsorption of T4 bacteriophages to Escherichia coli cells at equivalent concentrations: Experiments and mathematical modeling. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2009.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
The effects of distributed life cycles on the dynamics of viral infections. J Theor Biol 2008; 254:430-8. [PMID: 18573261 DOI: 10.1016/j.jtbi.2008.05.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 05/26/2008] [Accepted: 05/29/2008] [Indexed: 11/20/2022]
Abstract
We explore the role of cellular life cycles for viruses and host cells in an infection process. For this purpose, we derive a generalized version of the basic model of virus dynamics (Nowak, M.A., Bangham, C.R.M., 1996. Population dynamics of immune responses to persistent viruses. Science 272, 74-79) from a mesoscopic description. In its final form the model can be written as a set of Volterra integrodifferential equations. We consider the role of distributed lifespans and a intracellular (eclipse) phase. These processes are implemented by means of probability distribution functions. The basic reproductive ratio R(0) of the infection is properly defined in terms of such distributions by using an analysis of the equilibrium states and their stability. It is concluded that the introduction of distributed delays can strongly modify both the value of R(0) and the predictions for the virus loads, so the effects on the infection dynamics are of major importance. We also show how the model presented here can be applied to some simple situations where direct comparison with experiments is possible. Specifically, phage-bacteria interactions are analyzed. The dynamics of the eclipse phase for phages is characterized analytically, which allows us to compare the performance of three different fittings proposed before for the one-step growth curve.
Collapse
|
25
|
Mudgal P, Breidt F, Lubkin SR, Sandeep KP. Quantifying the significance of phage attack on starter cultures: a mechanistic model for population dynamics of phage and their hosts isolated from fermenting sauerkraut. Appl Environ Microbiol 2006; 72:3908-15. [PMID: 16751496 PMCID: PMC1489654 DOI: 10.1128/aem.02429-05] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 03/21/2006] [Indexed: 11/20/2022] Open
Abstract
We investigated the possibility of using starter cultures in sauerkraut fermentation and thereby reducing the quantity of salt used in the process. This, in turn, would reduce the amount of waste salt that would enter in our water resources. Phage, naturally present in sauerkraut fermentation, could potentially affect the starter cultures introduced. Thus, a mechanistic mathematical model was developed to quantify the growth kinetics of the phage and starter cultures. The model was validated by independent experiments with two Leuconostoc mesenteroides strains isolated from sauerkraut and their corresponding phage. Model simulations and experimental evidence showed the presence of phage-resistant cell populations in starter cultures which replaced phage-sensitive cells, even when the initial phage density (P(0)) and multiplicity of infection (MOI) were low (P(0) < 1 x 10(3) PFU/ml; MOI < 10(-4)) in the MRS media. Based on the results of model simulation and parameter optimization, it was suggested that the kinetic parameters of phage-host interaction, especially the adsorption rate, vary with the initial phage and host densities and with time. The model was validated in MRS broth. Therefore, the effects of heterogeneity and other environmental factors, such as temperature and pH, should be considered to make the model applicable to commercial fermentations.
Collapse
Affiliation(s)
- P Mudgal
- U.S. Department of Agriculture, Agricultural Research Service, North Carolina Agricultural Research Service, Department of Food Science, Box 7624, North Carolina State University, Raleigh, NC 27695-7624, USA
| | | | | | | |
Collapse
|
26
|
Jain R, Knorr AL, Bernacki J, Srivastava R. Investigation of Bacteriophage MS2 Viral Dynamics Using Model Discrimination Analysis and the Implications for Phage Therapy. Biotechnol Prog 2006. [DOI: 10.1002/bp060161s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Enden G, Zhang YH, Merchuk JC. A model of the dynamics of insect cell infection at low multiplicity of infection. J Theor Biol 2005; 237:257-64. [PMID: 15979650 DOI: 10.1016/j.jtbi.2005.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2004] [Revised: 04/13/2005] [Accepted: 04/15/2005] [Indexed: 10/25/2022]
Abstract
In the present paper, we offer a preliminary mathematical model that describes the dynamic process of cell infection with baculovirus at low multiplicity of infection (MOI). The model accounts for the chain of events that follow the infection of insect cells, namely the eclipse period, the budding of viral particles from those cells, their attachment to non-infected cells and the initiation of a new infection cycle. These cycles appear as fluctuations in the viral concentration of actual cell culture media. The potential of the present approach in simulating the in vitro production of biological insecticides is demonstrated. The influence of the shape of the virus-budding function is shown, and parameter sensitivity analysis is carried out. The model provides a quantitative tool for the analysis of this complex dynamic system.
Collapse
Affiliation(s)
- Giora Enden
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel.
| | | | | |
Collapse
|
28
|
Rabinovitch A, Aviram I, Zaritsky A. Bacterial debris-an ecological mechanism for coexistence of bacteria and their viruses. J Theor Biol 2003; 224:377-83. [PMID: 12941595 DOI: 10.1016/s0022-5193(03)00174-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A model of bacteria and phage survival is developed based on the idea of shielding by bacterial debris in the system. This model is mathematically formulated by a set of four nonlinear difference equations for susceptible bacteria, contaminated bacteria, bacterial debris and phages. Simulation results show the possibility of survival, and domains of existence of stable and unstable solutions
Collapse
Affiliation(s)
- Avinoam Rabinovitch
- Department of Physics, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Be'er Sheva, Israel.
| | | | | |
Collapse
|
29
|
Rabinovitch A, Fishov I, Hadas H, Einav M, Zaritsky A. Bacteriophage T4 development in Escherichia coli is growth rate dependent. J Theor Biol 2002; 216:1-4. [PMID: 12076123 DOI: 10.1006/jtbi.2002.2543] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three independent parameters (eclipse and latent periods, and rate of ripening during the rise period) are essential and sufficient to describe bacteriophage development in its bacterial host. A general model to describe the classical "one-step growth" experiment [Rabinovitch et al. (1999a) J. Bacteriol.181, 1687-1683] allowed their calculations from experimental results obtained with T4 in Escherichia coli B/r under different growth conditions [Hadas et al. (1997) Microbiology143, 179-185]. It is found that all three parameters could be described by their dependence solely on the culture doubling time tau before infection. Their functional dependence on tau, derived by a best-fit analysis, was used to calculate burst size values. The latter agree well with the experimental results. The dependence of the derived parameters on growth conditions can be used to predict phage development under other experimental manipulations.
Collapse
Affiliation(s)
- Avinoam Rabinovitch
- Department of Physics, Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
30
|
Abedon ST, Herschler TD, Stopar D. Bacteriophage latent-period evolution as a response to resource availability. Appl Environ Microbiol 2001; 67:4233-41. [PMID: 11526028 PMCID: PMC93152 DOI: 10.1128/aem.67.9.4233-4241.2001] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophages (phages) modify microbial communities by lysing hosts, transferring genetic material, and effecting lysogenic conversion. To understand how natural communities are affected it is important to develop predictive models. Here we consider how variation between models--in eclipse period, latent period, adsorption constant, burst size, the handling of differences in host quantity and host quality, and in modeling strategy--can affect predictions. First we compare two published models of phage growth, which differ primarily in terms of how they model the kinetics of phage adsorption; one is a computer simulation and the other is an explicit calculation. At higher host quantities (approximately 10(8) cells/ml), both models closely predict experimentally determined phage population growth rates. At lower host quantities (10(7) cells/ml), the computer simulation continues to closely predict phage growth rates, but the explicit model does not. Next we concentrate on predictions of latent-period optima. A latent-period optimum is the latent period that maximizes the population growth of a specific phage growing in the presence of a specific quantity and quality of host cells. Both models predict similar latent-period optima at higher host densities (e.g., 17 min at 10(8) cells/ml). At lower host densities, however, the computer simulation predicts latent-period optima that are much shorter than those suggested by explicit calculations (e.g., 90 versus 1,250 min at 10(5) cells/ml). Finally, we consider the impact of host quality on phage latent-period evolution. By taking care to differentiate latent-period phenotypic plasticity from latent-period evolution, we argue that the impact of host quality on phage latent-period evolution may be relatively small.
Collapse
Affiliation(s)
- S T Abedon
- Department of Microbiology, Ohio State University, Mansfield, Ohio 44906, USA.
| | | | | |
Collapse
|
31
|
Rabinovitch A, Zaritsky A, Fishov I, Einav M, Hadas H. Bacterial lysis by phage--a theoretical model. J Theor Biol 1999; 201:209-13. [PMID: 10600364 DOI: 10.1006/jtbi.1999.1029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The similarity to materials corrosion is invoked to develop a model for phage-infected bacterial lysis based on the statistics of extremes. The importance of cell size, envelope thickness and lysozyme eclipse time on the final probability distribution of lysis is considered. Experiments are suggested to test the model.
Collapse
Affiliation(s)
- A Rabinovitch
- Department of Physics, Ben-Gurion University of the Negev, Be'er-Sheva, 84105, Israel.
| | | | | | | | | |
Collapse
|